1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
58 #include <linux/dca.h>
65 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66 __stringify(BUILD) "-k"
67 char igb_driver_name
[] = "igb";
68 char igb_driver_version
[] = DRV_VERSION
;
69 static const char igb_driver_string
[] =
70 "Intel(R) Gigabit Ethernet Network Driver";
71 static const char igb_copyright
[] = "Copyright (c) 2007-2012 Intel Corporation.";
73 static const struct e1000_info
*igb_info_tbl
[] = {
74 [board_82575
] = &e1000_82575_info
,
77 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl
) = {
78 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I211_COPPER
), board_82575
},
79 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I210_COPPER
), board_82575
},
80 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I210_FIBER
), board_82575
},
81 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I210_SERDES
), board_82575
},
82 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I210_SGMII
), board_82575
},
83 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_COPPER
), board_82575
},
84 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_FIBER
), board_82575
},
85 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_SERDES
), board_82575
},
86 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_SGMII
), board_82575
},
87 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_COPPER
), board_82575
},
88 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_FIBER
), board_82575
},
89 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_QUAD_FIBER
), board_82575
},
90 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_SERDES
), board_82575
},
91 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_SGMII
), board_82575
},
92 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82580_COPPER_DUAL
), board_82575
},
93 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_DH89XXCC_SGMII
), board_82575
},
94 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_DH89XXCC_SERDES
), board_82575
},
95 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_DH89XXCC_BACKPLANE
), board_82575
},
96 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_DH89XXCC_SFP
), board_82575
},
97 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576
), board_82575
},
98 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_NS
), board_82575
},
99 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_NS_SERDES
), board_82575
},
100 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_FIBER
), board_82575
},
101 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_SERDES
), board_82575
},
102 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_SERDES_QUAD
), board_82575
},
103 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_QUAD_COPPER_ET2
), board_82575
},
104 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_QUAD_COPPER
), board_82575
},
105 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_COPPER
), board_82575
},
106 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_FIBER_SERDES
), board_82575
},
107 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575GB_QUAD_COPPER
), board_82575
},
108 /* required last entry */
112 MODULE_DEVICE_TABLE(pci
, igb_pci_tbl
);
114 void igb_reset(struct igb_adapter
*);
115 static int igb_setup_all_tx_resources(struct igb_adapter
*);
116 static int igb_setup_all_rx_resources(struct igb_adapter
*);
117 static void igb_free_all_tx_resources(struct igb_adapter
*);
118 static void igb_free_all_rx_resources(struct igb_adapter
*);
119 static void igb_setup_mrqc(struct igb_adapter
*);
120 static int igb_probe(struct pci_dev
*, const struct pci_device_id
*);
121 static void __devexit
igb_remove(struct pci_dev
*pdev
);
122 static int igb_sw_init(struct igb_adapter
*);
123 static int igb_open(struct net_device
*);
124 static int igb_close(struct net_device
*);
125 static void igb_configure_tx(struct igb_adapter
*);
126 static void igb_configure_rx(struct igb_adapter
*);
127 static void igb_clean_all_tx_rings(struct igb_adapter
*);
128 static void igb_clean_all_rx_rings(struct igb_adapter
*);
129 static void igb_clean_tx_ring(struct igb_ring
*);
130 static void igb_clean_rx_ring(struct igb_ring
*);
131 static void igb_set_rx_mode(struct net_device
*);
132 static void igb_update_phy_info(unsigned long);
133 static void igb_watchdog(unsigned long);
134 static void igb_watchdog_task(struct work_struct
*);
135 static netdev_tx_t
igb_xmit_frame(struct sk_buff
*skb
, struct net_device
*);
136 static struct rtnl_link_stats64
*igb_get_stats64(struct net_device
*dev
,
137 struct rtnl_link_stats64
*stats
);
138 static int igb_change_mtu(struct net_device
*, int);
139 static int igb_set_mac(struct net_device
*, void *);
140 static void igb_set_uta(struct igb_adapter
*adapter
);
141 static irqreturn_t
igb_intr(int irq
, void *);
142 static irqreturn_t
igb_intr_msi(int irq
, void *);
143 static irqreturn_t
igb_msix_other(int irq
, void *);
144 static irqreturn_t
igb_msix_ring(int irq
, void *);
145 #ifdef CONFIG_IGB_DCA
146 static void igb_update_dca(struct igb_q_vector
*);
147 static void igb_setup_dca(struct igb_adapter
*);
148 #endif /* CONFIG_IGB_DCA */
149 static int igb_poll(struct napi_struct
*, int);
150 static bool igb_clean_tx_irq(struct igb_q_vector
*);
151 static bool igb_clean_rx_irq(struct igb_q_vector
*, int);
152 static int igb_ioctl(struct net_device
*, struct ifreq
*, int cmd
);
153 static void igb_tx_timeout(struct net_device
*);
154 static void igb_reset_task(struct work_struct
*);
155 static void igb_vlan_mode(struct net_device
*netdev
, netdev_features_t features
);
156 static int igb_vlan_rx_add_vid(struct net_device
*, u16
);
157 static int igb_vlan_rx_kill_vid(struct net_device
*, u16
);
158 static void igb_restore_vlan(struct igb_adapter
*);
159 static void igb_rar_set_qsel(struct igb_adapter
*, u8
*, u32
, u8
);
160 static void igb_ping_all_vfs(struct igb_adapter
*);
161 static void igb_msg_task(struct igb_adapter
*);
162 static void igb_vmm_control(struct igb_adapter
*);
163 static int igb_set_vf_mac(struct igb_adapter
*, int, unsigned char *);
164 static void igb_restore_vf_multicasts(struct igb_adapter
*adapter
);
165 static int igb_ndo_set_vf_mac(struct net_device
*netdev
, int vf
, u8
*mac
);
166 static int igb_ndo_set_vf_vlan(struct net_device
*netdev
,
167 int vf
, u16 vlan
, u8 qos
);
168 static int igb_ndo_set_vf_bw(struct net_device
*netdev
, int vf
, int tx_rate
);
169 static int igb_ndo_get_vf_config(struct net_device
*netdev
, int vf
,
170 struct ifla_vf_info
*ivi
);
171 static void igb_check_vf_rate_limit(struct igb_adapter
*);
173 #ifdef CONFIG_PCI_IOV
174 static int igb_vf_configure(struct igb_adapter
*adapter
, int vf
);
175 static bool igb_vfs_are_assigned(struct igb_adapter
*adapter
);
179 #ifdef CONFIG_PM_SLEEP
180 static int igb_suspend(struct device
*);
182 static int igb_resume(struct device
*);
183 #ifdef CONFIG_PM_RUNTIME
184 static int igb_runtime_suspend(struct device
*dev
);
185 static int igb_runtime_resume(struct device
*dev
);
186 static int igb_runtime_idle(struct device
*dev
);
188 static const struct dev_pm_ops igb_pm_ops
= {
189 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend
, igb_resume
)
190 SET_RUNTIME_PM_OPS(igb_runtime_suspend
, igb_runtime_resume
,
194 static void igb_shutdown(struct pci_dev
*);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block
*, unsigned long, void *);
197 static struct notifier_block dca_notifier
= {
198 .notifier_call
= igb_notify_dca
,
203 #ifdef CONFIG_NET_POLL_CONTROLLER
204 /* for netdump / net console */
205 static void igb_netpoll(struct net_device
*);
207 #ifdef CONFIG_PCI_IOV
208 static unsigned int max_vfs
= 0;
209 module_param(max_vfs
, uint
, 0);
210 MODULE_PARM_DESC(max_vfs
, "Maximum number of virtual functions to allocate "
211 "per physical function");
212 #endif /* CONFIG_PCI_IOV */
214 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*,
215 pci_channel_state_t
);
216 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*);
217 static void igb_io_resume(struct pci_dev
*);
219 static const struct pci_error_handlers igb_err_handler
= {
220 .error_detected
= igb_io_error_detected
,
221 .slot_reset
= igb_io_slot_reset
,
222 .resume
= igb_io_resume
,
225 static void igb_init_dmac(struct igb_adapter
*adapter
, u32 pba
);
227 static struct pci_driver igb_driver
= {
228 .name
= igb_driver_name
,
229 .id_table
= igb_pci_tbl
,
231 .remove
= __devexit_p(igb_remove
),
233 .driver
.pm
= &igb_pm_ops
,
235 .shutdown
= igb_shutdown
,
236 .err_handler
= &igb_err_handler
239 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
240 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
241 MODULE_LICENSE("GPL");
242 MODULE_VERSION(DRV_VERSION
);
244 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
245 static int debug
= -1;
246 module_param(debug
, int, 0);
247 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
249 struct igb_reg_info
{
254 static const struct igb_reg_info igb_reg_info_tbl
[] = {
256 /* General Registers */
257 {E1000_CTRL
, "CTRL"},
258 {E1000_STATUS
, "STATUS"},
259 {E1000_CTRL_EXT
, "CTRL_EXT"},
261 /* Interrupt Registers */
265 {E1000_RCTL
, "RCTL"},
266 {E1000_RDLEN(0), "RDLEN"},
267 {E1000_RDH(0), "RDH"},
268 {E1000_RDT(0), "RDT"},
269 {E1000_RXDCTL(0), "RXDCTL"},
270 {E1000_RDBAL(0), "RDBAL"},
271 {E1000_RDBAH(0), "RDBAH"},
274 {E1000_TCTL
, "TCTL"},
275 {E1000_TDBAL(0), "TDBAL"},
276 {E1000_TDBAH(0), "TDBAH"},
277 {E1000_TDLEN(0), "TDLEN"},
278 {E1000_TDH(0), "TDH"},
279 {E1000_TDT(0), "TDT"},
280 {E1000_TXDCTL(0), "TXDCTL"},
281 {E1000_TDFH
, "TDFH"},
282 {E1000_TDFT
, "TDFT"},
283 {E1000_TDFHS
, "TDFHS"},
284 {E1000_TDFPC
, "TDFPC"},
286 /* List Terminator */
291 * igb_regdump - register printout routine
293 static void igb_regdump(struct e1000_hw
*hw
, struct igb_reg_info
*reginfo
)
299 switch (reginfo
->ofs
) {
301 for (n
= 0; n
< 4; n
++)
302 regs
[n
] = rd32(E1000_RDLEN(n
));
305 for (n
= 0; n
< 4; n
++)
306 regs
[n
] = rd32(E1000_RDH(n
));
309 for (n
= 0; n
< 4; n
++)
310 regs
[n
] = rd32(E1000_RDT(n
));
312 case E1000_RXDCTL(0):
313 for (n
= 0; n
< 4; n
++)
314 regs
[n
] = rd32(E1000_RXDCTL(n
));
317 for (n
= 0; n
< 4; n
++)
318 regs
[n
] = rd32(E1000_RDBAL(n
));
321 for (n
= 0; n
< 4; n
++)
322 regs
[n
] = rd32(E1000_RDBAH(n
));
325 for (n
= 0; n
< 4; n
++)
326 regs
[n
] = rd32(E1000_RDBAL(n
));
329 for (n
= 0; n
< 4; n
++)
330 regs
[n
] = rd32(E1000_TDBAH(n
));
333 for (n
= 0; n
< 4; n
++)
334 regs
[n
] = rd32(E1000_TDLEN(n
));
337 for (n
= 0; n
< 4; n
++)
338 regs
[n
] = rd32(E1000_TDH(n
));
341 for (n
= 0; n
< 4; n
++)
342 regs
[n
] = rd32(E1000_TDT(n
));
344 case E1000_TXDCTL(0):
345 for (n
= 0; n
< 4; n
++)
346 regs
[n
] = rd32(E1000_TXDCTL(n
));
349 pr_info("%-15s %08x\n", reginfo
->name
, rd32(reginfo
->ofs
));
353 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-3]");
354 pr_info("%-15s %08x %08x %08x %08x\n", rname
, regs
[0], regs
[1],
359 * igb_dump - Print registers, tx-rings and rx-rings
361 static void igb_dump(struct igb_adapter
*adapter
)
363 struct net_device
*netdev
= adapter
->netdev
;
364 struct e1000_hw
*hw
= &adapter
->hw
;
365 struct igb_reg_info
*reginfo
;
366 struct igb_ring
*tx_ring
;
367 union e1000_adv_tx_desc
*tx_desc
;
368 struct my_u0
{ u64 a
; u64 b
; } *u0
;
369 struct igb_ring
*rx_ring
;
370 union e1000_adv_rx_desc
*rx_desc
;
374 if (!netif_msg_hw(adapter
))
377 /* Print netdevice Info */
379 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
380 pr_info("Device Name state trans_start "
382 pr_info("%-15s %016lX %016lX %016lX\n", netdev
->name
,
383 netdev
->state
, netdev
->trans_start
, netdev
->last_rx
);
386 /* Print Registers */
387 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
388 pr_info(" Register Name Value\n");
389 for (reginfo
= (struct igb_reg_info
*)igb_reg_info_tbl
;
390 reginfo
->name
; reginfo
++) {
391 igb_regdump(hw
, reginfo
);
394 /* Print TX Ring Summary */
395 if (!netdev
|| !netif_running(netdev
))
398 dev_info(&adapter
->pdev
->dev
, "TX Rings Summary\n");
399 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
400 for (n
= 0; n
< adapter
->num_tx_queues
; n
++) {
401 struct igb_tx_buffer
*buffer_info
;
402 tx_ring
= adapter
->tx_ring
[n
];
403 buffer_info
= &tx_ring
->tx_buffer_info
[tx_ring
->next_to_clean
];
404 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405 n
, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
406 (u64
)dma_unmap_addr(buffer_info
, dma
),
407 dma_unmap_len(buffer_info
, len
),
408 buffer_info
->next_to_watch
,
409 (u64
)buffer_info
->time_stamp
);
413 if (!netif_msg_tx_done(adapter
))
414 goto rx_ring_summary
;
416 dev_info(&adapter
->pdev
->dev
, "TX Rings Dump\n");
418 /* Transmit Descriptor Formats
420 * Advanced Transmit Descriptor
421 * +--------------------------------------------------------------+
422 * 0 | Buffer Address [63:0] |
423 * +--------------------------------------------------------------+
424 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
425 * +--------------------------------------------------------------+
426 * 63 46 45 40 39 38 36 35 32 31 24 15 0
429 for (n
= 0; n
< adapter
->num_tx_queues
; n
++) {
430 tx_ring
= adapter
->tx_ring
[n
];
431 pr_info("------------------------------------\n");
432 pr_info("TX QUEUE INDEX = %d\n", tx_ring
->queue_index
);
433 pr_info("------------------------------------\n");
434 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
435 "[bi->dma ] leng ntw timestamp "
438 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
439 const char *next_desc
;
440 struct igb_tx_buffer
*buffer_info
;
441 tx_desc
= IGB_TX_DESC(tx_ring
, i
);
442 buffer_info
= &tx_ring
->tx_buffer_info
[i
];
443 u0
= (struct my_u0
*)tx_desc
;
444 if (i
== tx_ring
->next_to_use
&&
445 i
== tx_ring
->next_to_clean
)
446 next_desc
= " NTC/U";
447 else if (i
== tx_ring
->next_to_use
)
449 else if (i
== tx_ring
->next_to_clean
)
454 pr_info("T [0x%03X] %016llX %016llX %016llX"
455 " %04X %p %016llX %p%s\n", i
,
458 (u64
)dma_unmap_addr(buffer_info
, dma
),
459 dma_unmap_len(buffer_info
, len
),
460 buffer_info
->next_to_watch
,
461 (u64
)buffer_info
->time_stamp
,
462 buffer_info
->skb
, next_desc
);
464 if (netif_msg_pktdata(adapter
) && buffer_info
->skb
)
465 print_hex_dump(KERN_INFO
, "",
467 16, 1, buffer_info
->skb
->data
,
468 dma_unmap_len(buffer_info
, len
),
473 /* Print RX Rings Summary */
475 dev_info(&adapter
->pdev
->dev
, "RX Rings Summary\n");
476 pr_info("Queue [NTU] [NTC]\n");
477 for (n
= 0; n
< adapter
->num_rx_queues
; n
++) {
478 rx_ring
= adapter
->rx_ring
[n
];
479 pr_info(" %5d %5X %5X\n",
480 n
, rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
484 if (!netif_msg_rx_status(adapter
))
487 dev_info(&adapter
->pdev
->dev
, "RX Rings Dump\n");
489 /* Advanced Receive Descriptor (Read) Format
491 * +-----------------------------------------------------+
492 * 0 | Packet Buffer Address [63:1] |A0/NSE|
493 * +----------------------------------------------+------+
494 * 8 | Header Buffer Address [63:1] | DD |
495 * +-----------------------------------------------------+
498 * Advanced Receive Descriptor (Write-Back) Format
500 * 63 48 47 32 31 30 21 20 17 16 4 3 0
501 * +------------------------------------------------------+
502 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
503 * | Checksum Ident | | | | Type | Type |
504 * +------------------------------------------------------+
505 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506 * +------------------------------------------------------+
507 * 63 48 47 32 31 20 19 0
510 for (n
= 0; n
< adapter
->num_rx_queues
; n
++) {
511 rx_ring
= adapter
->rx_ring
[n
];
512 pr_info("------------------------------------\n");
513 pr_info("RX QUEUE INDEX = %d\n", rx_ring
->queue_index
);
514 pr_info("------------------------------------\n");
515 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
516 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
517 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
518 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
520 for (i
= 0; i
< rx_ring
->count
; i
++) {
521 const char *next_desc
;
522 struct igb_rx_buffer
*buffer_info
;
523 buffer_info
= &rx_ring
->rx_buffer_info
[i
];
524 rx_desc
= IGB_RX_DESC(rx_ring
, i
);
525 u0
= (struct my_u0
*)rx_desc
;
526 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
528 if (i
== rx_ring
->next_to_use
)
530 else if (i
== rx_ring
->next_to_clean
)
535 if (staterr
& E1000_RXD_STAT_DD
) {
536 /* Descriptor Done */
537 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
543 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
547 (u64
)buffer_info
->dma
,
550 if (netif_msg_pktdata(adapter
) &&
551 buffer_info
->dma
&& buffer_info
->page
) {
552 print_hex_dump(KERN_INFO
, "",
555 page_address(buffer_info
->page
) +
556 buffer_info
->page_offset
,
568 * igb_get_hw_dev - return device
569 * used by hardware layer to print debugging information
571 struct net_device
*igb_get_hw_dev(struct e1000_hw
*hw
)
573 struct igb_adapter
*adapter
= hw
->back
;
574 return adapter
->netdev
;
578 * igb_init_module - Driver Registration Routine
580 * igb_init_module is the first routine called when the driver is
581 * loaded. All it does is register with the PCI subsystem.
583 static int __init
igb_init_module(void)
586 pr_info("%s - version %s\n",
587 igb_driver_string
, igb_driver_version
);
589 pr_info("%s\n", igb_copyright
);
591 #ifdef CONFIG_IGB_DCA
592 dca_register_notify(&dca_notifier
);
594 ret
= pci_register_driver(&igb_driver
);
598 module_init(igb_init_module
);
601 * igb_exit_module - Driver Exit Cleanup Routine
603 * igb_exit_module is called just before the driver is removed
606 static void __exit
igb_exit_module(void)
608 #ifdef CONFIG_IGB_DCA
609 dca_unregister_notify(&dca_notifier
);
611 pci_unregister_driver(&igb_driver
);
614 module_exit(igb_exit_module
);
616 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
618 * igb_cache_ring_register - Descriptor ring to register mapping
619 * @adapter: board private structure to initialize
621 * Once we know the feature-set enabled for the device, we'll cache
622 * the register offset the descriptor ring is assigned to.
624 static void igb_cache_ring_register(struct igb_adapter
*adapter
)
627 u32 rbase_offset
= adapter
->vfs_allocated_count
;
629 switch (adapter
->hw
.mac
.type
) {
631 /* The queues are allocated for virtualization such that VF 0
632 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
633 * In order to avoid collision we start at the first free queue
634 * and continue consuming queues in the same sequence
636 if (adapter
->vfs_allocated_count
) {
637 for (; i
< adapter
->rss_queues
; i
++)
638 adapter
->rx_ring
[i
]->reg_idx
= rbase_offset
+
647 for (; i
< adapter
->num_rx_queues
; i
++)
648 adapter
->rx_ring
[i
]->reg_idx
= rbase_offset
+ i
;
649 for (; j
< adapter
->num_tx_queues
; j
++)
650 adapter
->tx_ring
[j
]->reg_idx
= rbase_offset
+ j
;
655 static void igb_free_queues(struct igb_adapter
*adapter
)
659 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
660 kfree(adapter
->tx_ring
[i
]);
661 adapter
->tx_ring
[i
] = NULL
;
663 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
664 kfree(adapter
->rx_ring
[i
]);
665 adapter
->rx_ring
[i
] = NULL
;
667 adapter
->num_rx_queues
= 0;
668 adapter
->num_tx_queues
= 0;
672 * igb_alloc_queues - Allocate memory for all rings
673 * @adapter: board private structure to initialize
675 * We allocate one ring per queue at run-time since we don't know the
676 * number of queues at compile-time.
678 static int igb_alloc_queues(struct igb_adapter
*adapter
)
680 struct igb_ring
*ring
;
683 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
684 ring
= kzalloc(sizeof(struct igb_ring
), GFP_KERNEL
);
687 ring
->count
= adapter
->tx_ring_count
;
688 ring
->queue_index
= i
;
689 ring
->dev
= &adapter
->pdev
->dev
;
690 ring
->netdev
= adapter
->netdev
;
691 /* For 82575, context index must be unique per ring. */
692 if (adapter
->hw
.mac
.type
== e1000_82575
)
693 set_bit(IGB_RING_FLAG_TX_CTX_IDX
, &ring
->flags
);
694 adapter
->tx_ring
[i
] = ring
;
697 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
698 ring
= kzalloc(sizeof(struct igb_ring
), GFP_KERNEL
);
701 ring
->count
= adapter
->rx_ring_count
;
702 ring
->queue_index
= i
;
703 ring
->dev
= &adapter
->pdev
->dev
;
704 ring
->netdev
= adapter
->netdev
;
705 /* set flag indicating ring supports SCTP checksum offload */
706 if (adapter
->hw
.mac
.type
>= e1000_82576
)
707 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM
, &ring
->flags
);
710 * On i350, i210, and i211, loopback VLAN packets
711 * have the tag byte-swapped.
713 if (adapter
->hw
.mac
.type
>= e1000_i350
)
714 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP
, &ring
->flags
);
716 adapter
->rx_ring
[i
] = ring
;
719 igb_cache_ring_register(adapter
);
724 igb_free_queues(adapter
);
730 * igb_write_ivar - configure ivar for given MSI-X vector
731 * @hw: pointer to the HW structure
732 * @msix_vector: vector number we are allocating to a given ring
733 * @index: row index of IVAR register to write within IVAR table
734 * @offset: column offset of in IVAR, should be multiple of 8
736 * This function is intended to handle the writing of the IVAR register
737 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
738 * each containing an cause allocation for an Rx and Tx ring, and a
739 * variable number of rows depending on the number of queues supported.
741 static void igb_write_ivar(struct e1000_hw
*hw
, int msix_vector
,
742 int index
, int offset
)
744 u32 ivar
= array_rd32(E1000_IVAR0
, index
);
746 /* clear any bits that are currently set */
747 ivar
&= ~((u32
)0xFF << offset
);
749 /* write vector and valid bit */
750 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << offset
;
752 array_wr32(E1000_IVAR0
, index
, ivar
);
755 #define IGB_N0_QUEUE -1
756 static void igb_assign_vector(struct igb_q_vector
*q_vector
, int msix_vector
)
758 struct igb_adapter
*adapter
= q_vector
->adapter
;
759 struct e1000_hw
*hw
= &adapter
->hw
;
760 int rx_queue
= IGB_N0_QUEUE
;
761 int tx_queue
= IGB_N0_QUEUE
;
764 if (q_vector
->rx
.ring
)
765 rx_queue
= q_vector
->rx
.ring
->reg_idx
;
766 if (q_vector
->tx
.ring
)
767 tx_queue
= q_vector
->tx
.ring
->reg_idx
;
769 switch (hw
->mac
.type
) {
771 /* The 82575 assigns vectors using a bitmask, which matches the
772 bitmask for the EICR/EIMS/EIMC registers. To assign one
773 or more queues to a vector, we write the appropriate bits
774 into the MSIXBM register for that vector. */
775 if (rx_queue
> IGB_N0_QUEUE
)
776 msixbm
= E1000_EICR_RX_QUEUE0
<< rx_queue
;
777 if (tx_queue
> IGB_N0_QUEUE
)
778 msixbm
|= E1000_EICR_TX_QUEUE0
<< tx_queue
;
779 if (!adapter
->msix_entries
&& msix_vector
== 0)
780 msixbm
|= E1000_EIMS_OTHER
;
781 array_wr32(E1000_MSIXBM(0), msix_vector
, msixbm
);
782 q_vector
->eims_value
= msixbm
;
786 * 82576 uses a table that essentially consists of 2 columns
787 * with 8 rows. The ordering is column-major so we use the
788 * lower 3 bits as the row index, and the 4th bit as the
791 if (rx_queue
> IGB_N0_QUEUE
)
792 igb_write_ivar(hw
, msix_vector
,
794 (rx_queue
& 0x8) << 1);
795 if (tx_queue
> IGB_N0_QUEUE
)
796 igb_write_ivar(hw
, msix_vector
,
798 ((tx_queue
& 0x8) << 1) + 8);
799 q_vector
->eims_value
= 1 << msix_vector
;
806 * On 82580 and newer adapters the scheme is similar to 82576
807 * however instead of ordering column-major we have things
808 * ordered row-major. So we traverse the table by using
809 * bit 0 as the column offset, and the remaining bits as the
812 if (rx_queue
> IGB_N0_QUEUE
)
813 igb_write_ivar(hw
, msix_vector
,
815 (rx_queue
& 0x1) << 4);
816 if (tx_queue
> IGB_N0_QUEUE
)
817 igb_write_ivar(hw
, msix_vector
,
819 ((tx_queue
& 0x1) << 4) + 8);
820 q_vector
->eims_value
= 1 << msix_vector
;
827 /* add q_vector eims value to global eims_enable_mask */
828 adapter
->eims_enable_mask
|= q_vector
->eims_value
;
830 /* configure q_vector to set itr on first interrupt */
831 q_vector
->set_itr
= 1;
835 * igb_configure_msix - Configure MSI-X hardware
837 * igb_configure_msix sets up the hardware to properly
838 * generate MSI-X interrupts.
840 static void igb_configure_msix(struct igb_adapter
*adapter
)
844 struct e1000_hw
*hw
= &adapter
->hw
;
846 adapter
->eims_enable_mask
= 0;
848 /* set vector for other causes, i.e. link changes */
849 switch (hw
->mac
.type
) {
851 tmp
= rd32(E1000_CTRL_EXT
);
852 /* enable MSI-X PBA support*/
853 tmp
|= E1000_CTRL_EXT_PBA_CLR
;
855 /* Auto-Mask interrupts upon ICR read. */
856 tmp
|= E1000_CTRL_EXT_EIAME
;
857 tmp
|= E1000_CTRL_EXT_IRCA
;
859 wr32(E1000_CTRL_EXT
, tmp
);
861 /* enable msix_other interrupt */
862 array_wr32(E1000_MSIXBM(0), vector
++,
864 adapter
->eims_other
= E1000_EIMS_OTHER
;
873 /* Turn on MSI-X capability first, or our settings
874 * won't stick. And it will take days to debug. */
875 wr32(E1000_GPIE
, E1000_GPIE_MSIX_MODE
|
876 E1000_GPIE_PBA
| E1000_GPIE_EIAME
|
879 /* enable msix_other interrupt */
880 adapter
->eims_other
= 1 << vector
;
881 tmp
= (vector
++ | E1000_IVAR_VALID
) << 8;
883 wr32(E1000_IVAR_MISC
, tmp
);
886 /* do nothing, since nothing else supports MSI-X */
888 } /* switch (hw->mac.type) */
890 adapter
->eims_enable_mask
|= adapter
->eims_other
;
892 for (i
= 0; i
< adapter
->num_q_vectors
; i
++)
893 igb_assign_vector(adapter
->q_vector
[i
], vector
++);
899 * igb_request_msix - Initialize MSI-X interrupts
901 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
904 static int igb_request_msix(struct igb_adapter
*adapter
)
906 struct net_device
*netdev
= adapter
->netdev
;
907 struct e1000_hw
*hw
= &adapter
->hw
;
908 int i
, err
= 0, vector
= 0;
910 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
911 igb_msix_other
, 0, netdev
->name
, adapter
);
916 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
917 struct igb_q_vector
*q_vector
= adapter
->q_vector
[i
];
919 q_vector
->itr_register
= hw
->hw_addr
+ E1000_EITR(vector
);
921 if (q_vector
->rx
.ring
&& q_vector
->tx
.ring
)
922 sprintf(q_vector
->name
, "%s-TxRx-%u", netdev
->name
,
923 q_vector
->rx
.ring
->queue_index
);
924 else if (q_vector
->tx
.ring
)
925 sprintf(q_vector
->name
, "%s-tx-%u", netdev
->name
,
926 q_vector
->tx
.ring
->queue_index
);
927 else if (q_vector
->rx
.ring
)
928 sprintf(q_vector
->name
, "%s-rx-%u", netdev
->name
,
929 q_vector
->rx
.ring
->queue_index
);
931 sprintf(q_vector
->name
, "%s-unused", netdev
->name
);
933 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
934 igb_msix_ring
, 0, q_vector
->name
,
941 igb_configure_msix(adapter
);
947 static void igb_reset_interrupt_capability(struct igb_adapter
*adapter
)
949 if (adapter
->msix_entries
) {
950 pci_disable_msix(adapter
->pdev
);
951 kfree(adapter
->msix_entries
);
952 adapter
->msix_entries
= NULL
;
953 } else if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
954 pci_disable_msi(adapter
->pdev
);
959 * igb_free_q_vectors - Free memory allocated for interrupt vectors
960 * @adapter: board private structure to initialize
962 * This function frees the memory allocated to the q_vectors. In addition if
963 * NAPI is enabled it will delete any references to the NAPI struct prior
964 * to freeing the q_vector.
966 static void igb_free_q_vectors(struct igb_adapter
*adapter
)
970 for (v_idx
= 0; v_idx
< adapter
->num_q_vectors
; v_idx
++) {
971 struct igb_q_vector
*q_vector
= adapter
->q_vector
[v_idx
];
972 adapter
->q_vector
[v_idx
] = NULL
;
975 netif_napi_del(&q_vector
->napi
);
978 adapter
->num_q_vectors
= 0;
982 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
984 * This function resets the device so that it has 0 rx queues, tx queues, and
985 * MSI-X interrupts allocated.
987 static void igb_clear_interrupt_scheme(struct igb_adapter
*adapter
)
989 igb_free_queues(adapter
);
990 igb_free_q_vectors(adapter
);
991 igb_reset_interrupt_capability(adapter
);
995 * igb_set_interrupt_capability - set MSI or MSI-X if supported
997 * Attempt to configure interrupts using the best available
998 * capabilities of the hardware and kernel.
1000 static int igb_set_interrupt_capability(struct igb_adapter
*adapter
)
1005 /* Number of supported queues. */
1006 adapter
->num_rx_queues
= adapter
->rss_queues
;
1007 if (adapter
->vfs_allocated_count
)
1008 adapter
->num_tx_queues
= 1;
1010 adapter
->num_tx_queues
= adapter
->rss_queues
;
1012 /* start with one vector for every rx queue */
1013 numvecs
= adapter
->num_rx_queues
;
1015 /* if tx handler is separate add 1 for every tx queue */
1016 if (!(adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
))
1017 numvecs
+= adapter
->num_tx_queues
;
1019 /* store the number of vectors reserved for queues */
1020 adapter
->num_q_vectors
= numvecs
;
1022 /* add 1 vector for link status interrupts */
1024 adapter
->msix_entries
= kcalloc(numvecs
, sizeof(struct msix_entry
),
1027 if (!adapter
->msix_entries
)
1030 for (i
= 0; i
< numvecs
; i
++)
1031 adapter
->msix_entries
[i
].entry
= i
;
1033 err
= pci_enable_msix(adapter
->pdev
,
1034 adapter
->msix_entries
,
1039 igb_reset_interrupt_capability(adapter
);
1041 /* If we can't do MSI-X, try MSI */
1043 #ifdef CONFIG_PCI_IOV
1044 /* disable SR-IOV for non MSI-X configurations */
1045 if (adapter
->vf_data
) {
1046 struct e1000_hw
*hw
= &adapter
->hw
;
1047 /* disable iov and allow time for transactions to clear */
1048 pci_disable_sriov(adapter
->pdev
);
1051 kfree(adapter
->vf_data
);
1052 adapter
->vf_data
= NULL
;
1053 wr32(E1000_IOVCTL
, E1000_IOVCTL_REUSE_VFQ
);
1056 dev_info(&adapter
->pdev
->dev
, "IOV Disabled\n");
1059 adapter
->vfs_allocated_count
= 0;
1060 adapter
->rss_queues
= 1;
1061 adapter
->flags
|= IGB_FLAG_QUEUE_PAIRS
;
1062 adapter
->num_rx_queues
= 1;
1063 adapter
->num_tx_queues
= 1;
1064 adapter
->num_q_vectors
= 1;
1065 if (!pci_enable_msi(adapter
->pdev
))
1066 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
1068 /* Notify the stack of the (possibly) reduced queue counts. */
1070 netif_set_real_num_tx_queues(adapter
->netdev
, adapter
->num_tx_queues
);
1071 err
= netif_set_real_num_rx_queues(adapter
->netdev
,
1072 adapter
->num_rx_queues
);
1078 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1079 * @adapter: board private structure to initialize
1081 * We allocate one q_vector per queue interrupt. If allocation fails we
1084 static int igb_alloc_q_vectors(struct igb_adapter
*adapter
)
1086 struct igb_q_vector
*q_vector
;
1087 struct e1000_hw
*hw
= &adapter
->hw
;
1090 for (v_idx
= 0; v_idx
< adapter
->num_q_vectors
; v_idx
++) {
1091 q_vector
= kzalloc(sizeof(struct igb_q_vector
),
1095 q_vector
->adapter
= adapter
;
1096 q_vector
->itr_register
= hw
->hw_addr
+ E1000_EITR(0);
1097 q_vector
->itr_val
= IGB_START_ITR
;
1098 netif_napi_add(adapter
->netdev
, &q_vector
->napi
, igb_poll
, 64);
1099 adapter
->q_vector
[v_idx
] = q_vector
;
1105 igb_free_q_vectors(adapter
);
1109 static void igb_map_rx_ring_to_vector(struct igb_adapter
*adapter
,
1110 int ring_idx
, int v_idx
)
1112 struct igb_q_vector
*q_vector
= adapter
->q_vector
[v_idx
];
1114 q_vector
->rx
.ring
= adapter
->rx_ring
[ring_idx
];
1115 q_vector
->rx
.ring
->q_vector
= q_vector
;
1116 q_vector
->rx
.count
++;
1117 q_vector
->itr_val
= adapter
->rx_itr_setting
;
1118 if (q_vector
->itr_val
&& q_vector
->itr_val
<= 3)
1119 q_vector
->itr_val
= IGB_START_ITR
;
1122 static void igb_map_tx_ring_to_vector(struct igb_adapter
*adapter
,
1123 int ring_idx
, int v_idx
)
1125 struct igb_q_vector
*q_vector
= adapter
->q_vector
[v_idx
];
1127 q_vector
->tx
.ring
= adapter
->tx_ring
[ring_idx
];
1128 q_vector
->tx
.ring
->q_vector
= q_vector
;
1129 q_vector
->tx
.count
++;
1130 q_vector
->itr_val
= adapter
->tx_itr_setting
;
1131 q_vector
->tx
.work_limit
= adapter
->tx_work_limit
;
1132 if (q_vector
->itr_val
&& q_vector
->itr_val
<= 3)
1133 q_vector
->itr_val
= IGB_START_ITR
;
1137 * igb_map_ring_to_vector - maps allocated queues to vectors
1139 * This function maps the recently allocated queues to vectors.
1141 static int igb_map_ring_to_vector(struct igb_adapter
*adapter
)
1146 if ((adapter
->num_q_vectors
< adapter
->num_rx_queues
) ||
1147 (adapter
->num_q_vectors
< adapter
->num_tx_queues
))
1150 if (adapter
->num_q_vectors
>=
1151 (adapter
->num_rx_queues
+ adapter
->num_tx_queues
)) {
1152 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1153 igb_map_rx_ring_to_vector(adapter
, i
, v_idx
++);
1154 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1155 igb_map_tx_ring_to_vector(adapter
, i
, v_idx
++);
1157 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1158 if (i
< adapter
->num_tx_queues
)
1159 igb_map_tx_ring_to_vector(adapter
, i
, v_idx
);
1160 igb_map_rx_ring_to_vector(adapter
, i
, v_idx
++);
1162 for (; i
< adapter
->num_tx_queues
; i
++)
1163 igb_map_tx_ring_to_vector(adapter
, i
, v_idx
++);
1169 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1171 * This function initializes the interrupts and allocates all of the queues.
1173 static int igb_init_interrupt_scheme(struct igb_adapter
*adapter
)
1175 struct pci_dev
*pdev
= adapter
->pdev
;
1178 err
= igb_set_interrupt_capability(adapter
);
1182 err
= igb_alloc_q_vectors(adapter
);
1184 dev_err(&pdev
->dev
, "Unable to allocate memory for vectors\n");
1185 goto err_alloc_q_vectors
;
1188 err
= igb_alloc_queues(adapter
);
1190 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
1191 goto err_alloc_queues
;
1194 err
= igb_map_ring_to_vector(adapter
);
1196 dev_err(&pdev
->dev
, "Invalid q_vector to ring mapping\n");
1197 goto err_map_queues
;
1203 igb_free_queues(adapter
);
1205 igb_free_q_vectors(adapter
);
1206 err_alloc_q_vectors
:
1207 igb_reset_interrupt_capability(adapter
);
1212 * igb_request_irq - initialize interrupts
1214 * Attempts to configure interrupts using the best available
1215 * capabilities of the hardware and kernel.
1217 static int igb_request_irq(struct igb_adapter
*adapter
)
1219 struct net_device
*netdev
= adapter
->netdev
;
1220 struct pci_dev
*pdev
= adapter
->pdev
;
1223 if (adapter
->msix_entries
) {
1224 err
= igb_request_msix(adapter
);
1227 /* fall back to MSI */
1228 igb_clear_interrupt_scheme(adapter
);
1229 if (!pci_enable_msi(pdev
))
1230 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
1231 igb_free_all_tx_resources(adapter
);
1232 igb_free_all_rx_resources(adapter
);
1233 adapter
->num_tx_queues
= 1;
1234 adapter
->num_rx_queues
= 1;
1235 adapter
->num_q_vectors
= 1;
1236 err
= igb_alloc_q_vectors(adapter
);
1239 "Unable to allocate memory for vectors\n");
1242 err
= igb_alloc_queues(adapter
);
1245 "Unable to allocate memory for queues\n");
1246 igb_free_q_vectors(adapter
);
1249 igb_setup_all_tx_resources(adapter
);
1250 igb_setup_all_rx_resources(adapter
);
1253 igb_assign_vector(adapter
->q_vector
[0], 0);
1255 if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
1256 err
= request_irq(pdev
->irq
, igb_intr_msi
, 0,
1257 netdev
->name
, adapter
);
1261 /* fall back to legacy interrupts */
1262 igb_reset_interrupt_capability(adapter
);
1263 adapter
->flags
&= ~IGB_FLAG_HAS_MSI
;
1266 err
= request_irq(pdev
->irq
, igb_intr
, IRQF_SHARED
,
1267 netdev
->name
, adapter
);
1270 dev_err(&pdev
->dev
, "Error %d getting interrupt\n",
1277 static void igb_free_irq(struct igb_adapter
*adapter
)
1279 if (adapter
->msix_entries
) {
1282 free_irq(adapter
->msix_entries
[vector
++].vector
, adapter
);
1284 for (i
= 0; i
< adapter
->num_q_vectors
; i
++)
1285 free_irq(adapter
->msix_entries
[vector
++].vector
,
1286 adapter
->q_vector
[i
]);
1288 free_irq(adapter
->pdev
->irq
, adapter
);
1293 * igb_irq_disable - Mask off interrupt generation on the NIC
1294 * @adapter: board private structure
1296 static void igb_irq_disable(struct igb_adapter
*adapter
)
1298 struct e1000_hw
*hw
= &adapter
->hw
;
1301 * we need to be careful when disabling interrupts. The VFs are also
1302 * mapped into these registers and so clearing the bits can cause
1303 * issues on the VF drivers so we only need to clear what we set
1305 if (adapter
->msix_entries
) {
1306 u32 regval
= rd32(E1000_EIAM
);
1307 wr32(E1000_EIAM
, regval
& ~adapter
->eims_enable_mask
);
1308 wr32(E1000_EIMC
, adapter
->eims_enable_mask
);
1309 regval
= rd32(E1000_EIAC
);
1310 wr32(E1000_EIAC
, regval
& ~adapter
->eims_enable_mask
);
1314 wr32(E1000_IMC
, ~0);
1316 if (adapter
->msix_entries
) {
1318 for (i
= 0; i
< adapter
->num_q_vectors
; i
++)
1319 synchronize_irq(adapter
->msix_entries
[i
].vector
);
1321 synchronize_irq(adapter
->pdev
->irq
);
1326 * igb_irq_enable - Enable default interrupt generation settings
1327 * @adapter: board private structure
1329 static void igb_irq_enable(struct igb_adapter
*adapter
)
1331 struct e1000_hw
*hw
= &adapter
->hw
;
1333 if (adapter
->msix_entries
) {
1334 u32 ims
= E1000_IMS_LSC
| E1000_IMS_DOUTSYNC
| E1000_IMS_DRSTA
;
1335 u32 regval
= rd32(E1000_EIAC
);
1336 wr32(E1000_EIAC
, regval
| adapter
->eims_enable_mask
);
1337 regval
= rd32(E1000_EIAM
);
1338 wr32(E1000_EIAM
, regval
| adapter
->eims_enable_mask
);
1339 wr32(E1000_EIMS
, adapter
->eims_enable_mask
);
1340 if (adapter
->vfs_allocated_count
) {
1341 wr32(E1000_MBVFIMR
, 0xFF);
1342 ims
|= E1000_IMS_VMMB
;
1344 wr32(E1000_IMS
, ims
);
1346 wr32(E1000_IMS
, IMS_ENABLE_MASK
|
1348 wr32(E1000_IAM
, IMS_ENABLE_MASK
|
1353 static void igb_update_mng_vlan(struct igb_adapter
*adapter
)
1355 struct e1000_hw
*hw
= &adapter
->hw
;
1356 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
1357 u16 old_vid
= adapter
->mng_vlan_id
;
1359 if (hw
->mng_cookie
.status
& E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
1360 /* add VID to filter table */
1361 igb_vfta_set(hw
, vid
, true);
1362 adapter
->mng_vlan_id
= vid
;
1364 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
1367 if ((old_vid
!= (u16
)IGB_MNG_VLAN_NONE
) &&
1369 !test_bit(old_vid
, adapter
->active_vlans
)) {
1370 /* remove VID from filter table */
1371 igb_vfta_set(hw
, old_vid
, false);
1376 * igb_release_hw_control - release control of the h/w to f/w
1377 * @adapter: address of board private structure
1379 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1380 * For ASF and Pass Through versions of f/w this means that the
1381 * driver is no longer loaded.
1384 static void igb_release_hw_control(struct igb_adapter
*adapter
)
1386 struct e1000_hw
*hw
= &adapter
->hw
;
1389 /* Let firmware take over control of h/w */
1390 ctrl_ext
= rd32(E1000_CTRL_EXT
);
1391 wr32(E1000_CTRL_EXT
,
1392 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
1396 * igb_get_hw_control - get control of the h/w from f/w
1397 * @adapter: address of board private structure
1399 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1400 * For ASF and Pass Through versions of f/w this means that
1401 * the driver is loaded.
1404 static void igb_get_hw_control(struct igb_adapter
*adapter
)
1406 struct e1000_hw
*hw
= &adapter
->hw
;
1409 /* Let firmware know the driver has taken over */
1410 ctrl_ext
= rd32(E1000_CTRL_EXT
);
1411 wr32(E1000_CTRL_EXT
,
1412 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
1416 * igb_configure - configure the hardware for RX and TX
1417 * @adapter: private board structure
1419 static void igb_configure(struct igb_adapter
*adapter
)
1421 struct net_device
*netdev
= adapter
->netdev
;
1424 igb_get_hw_control(adapter
);
1425 igb_set_rx_mode(netdev
);
1427 igb_restore_vlan(adapter
);
1429 igb_setup_tctl(adapter
);
1430 igb_setup_mrqc(adapter
);
1431 igb_setup_rctl(adapter
);
1433 igb_configure_tx(adapter
);
1434 igb_configure_rx(adapter
);
1436 igb_rx_fifo_flush_82575(&adapter
->hw
);
1438 /* call igb_desc_unused which always leaves
1439 * at least 1 descriptor unused to make sure
1440 * next_to_use != next_to_clean */
1441 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1442 struct igb_ring
*ring
= adapter
->rx_ring
[i
];
1443 igb_alloc_rx_buffers(ring
, igb_desc_unused(ring
));
1448 * igb_power_up_link - Power up the phy/serdes link
1449 * @adapter: address of board private structure
1451 void igb_power_up_link(struct igb_adapter
*adapter
)
1453 igb_reset_phy(&adapter
->hw
);
1455 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)
1456 igb_power_up_phy_copper(&adapter
->hw
);
1458 igb_power_up_serdes_link_82575(&adapter
->hw
);
1462 * igb_power_down_link - Power down the phy/serdes link
1463 * @adapter: address of board private structure
1465 static void igb_power_down_link(struct igb_adapter
*adapter
)
1467 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)
1468 igb_power_down_phy_copper_82575(&adapter
->hw
);
1470 igb_shutdown_serdes_link_82575(&adapter
->hw
);
1474 * igb_up - Open the interface and prepare it to handle traffic
1475 * @adapter: board private structure
1477 int igb_up(struct igb_adapter
*adapter
)
1479 struct e1000_hw
*hw
= &adapter
->hw
;
1482 /* hardware has been reset, we need to reload some things */
1483 igb_configure(adapter
);
1485 clear_bit(__IGB_DOWN
, &adapter
->state
);
1487 for (i
= 0; i
< adapter
->num_q_vectors
; i
++)
1488 napi_enable(&(adapter
->q_vector
[i
]->napi
));
1490 if (adapter
->msix_entries
)
1491 igb_configure_msix(adapter
);
1493 igb_assign_vector(adapter
->q_vector
[0], 0);
1495 /* Clear any pending interrupts. */
1497 igb_irq_enable(adapter
);
1499 /* notify VFs that reset has been completed */
1500 if (adapter
->vfs_allocated_count
) {
1501 u32 reg_data
= rd32(E1000_CTRL_EXT
);
1502 reg_data
|= E1000_CTRL_EXT_PFRSTD
;
1503 wr32(E1000_CTRL_EXT
, reg_data
);
1506 netif_tx_start_all_queues(adapter
->netdev
);
1508 /* start the watchdog. */
1509 hw
->mac
.get_link_status
= 1;
1510 schedule_work(&adapter
->watchdog_task
);
1515 void igb_down(struct igb_adapter
*adapter
)
1517 struct net_device
*netdev
= adapter
->netdev
;
1518 struct e1000_hw
*hw
= &adapter
->hw
;
1522 /* signal that we're down so the interrupt handler does not
1523 * reschedule our watchdog timer */
1524 set_bit(__IGB_DOWN
, &adapter
->state
);
1526 /* disable receives in the hardware */
1527 rctl
= rd32(E1000_RCTL
);
1528 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
1529 /* flush and sleep below */
1531 netif_tx_stop_all_queues(netdev
);
1533 /* disable transmits in the hardware */
1534 tctl
= rd32(E1000_TCTL
);
1535 tctl
&= ~E1000_TCTL_EN
;
1536 wr32(E1000_TCTL
, tctl
);
1537 /* flush both disables and wait for them to finish */
1541 for (i
= 0; i
< adapter
->num_q_vectors
; i
++)
1542 napi_disable(&(adapter
->q_vector
[i
]->napi
));
1544 igb_irq_disable(adapter
);
1546 del_timer_sync(&adapter
->watchdog_timer
);
1547 del_timer_sync(&adapter
->phy_info_timer
);
1549 netif_carrier_off(netdev
);
1551 /* record the stats before reset*/
1552 spin_lock(&adapter
->stats64_lock
);
1553 igb_update_stats(adapter
, &adapter
->stats64
);
1554 spin_unlock(&adapter
->stats64_lock
);
1556 adapter
->link_speed
= 0;
1557 adapter
->link_duplex
= 0;
1559 if (!pci_channel_offline(adapter
->pdev
))
1561 igb_clean_all_tx_rings(adapter
);
1562 igb_clean_all_rx_rings(adapter
);
1563 #ifdef CONFIG_IGB_DCA
1565 /* since we reset the hardware DCA settings were cleared */
1566 igb_setup_dca(adapter
);
1570 void igb_reinit_locked(struct igb_adapter
*adapter
)
1572 WARN_ON(in_interrupt());
1573 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
1577 clear_bit(__IGB_RESETTING
, &adapter
->state
);
1580 void igb_reset(struct igb_adapter
*adapter
)
1582 struct pci_dev
*pdev
= adapter
->pdev
;
1583 struct e1000_hw
*hw
= &adapter
->hw
;
1584 struct e1000_mac_info
*mac
= &hw
->mac
;
1585 struct e1000_fc_info
*fc
= &hw
->fc
;
1586 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
1589 /* Repartition Pba for greater than 9k mtu
1590 * To take effect CTRL.RST is required.
1592 switch (mac
->type
) {
1595 pba
= rd32(E1000_RXPBS
);
1596 pba
= igb_rxpbs_adjust_82580(pba
);
1599 pba
= rd32(E1000_RXPBS
);
1600 pba
&= E1000_RXPBS_SIZE_MASK_82576
;
1606 pba
= E1000_PBA_34K
;
1610 if ((adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
1611 (mac
->type
< e1000_82576
)) {
1612 /* adjust PBA for jumbo frames */
1613 wr32(E1000_PBA
, pba
);
1615 /* To maintain wire speed transmits, the Tx FIFO should be
1616 * large enough to accommodate two full transmit packets,
1617 * rounded up to the next 1KB and expressed in KB. Likewise,
1618 * the Rx FIFO should be large enough to accommodate at least
1619 * one full receive packet and is similarly rounded up and
1620 * expressed in KB. */
1621 pba
= rd32(E1000_PBA
);
1622 /* upper 16 bits has Tx packet buffer allocation size in KB */
1623 tx_space
= pba
>> 16;
1624 /* lower 16 bits has Rx packet buffer allocation size in KB */
1626 /* the tx fifo also stores 16 bytes of information about the tx
1627 * but don't include ethernet FCS because hardware appends it */
1628 min_tx_space
= (adapter
->max_frame_size
+
1629 sizeof(union e1000_adv_tx_desc
) -
1631 min_tx_space
= ALIGN(min_tx_space
, 1024);
1632 min_tx_space
>>= 10;
1633 /* software strips receive CRC, so leave room for it */
1634 min_rx_space
= adapter
->max_frame_size
;
1635 min_rx_space
= ALIGN(min_rx_space
, 1024);
1636 min_rx_space
>>= 10;
1638 /* If current Tx allocation is less than the min Tx FIFO size,
1639 * and the min Tx FIFO size is less than the current Rx FIFO
1640 * allocation, take space away from current Rx allocation */
1641 if (tx_space
< min_tx_space
&&
1642 ((min_tx_space
- tx_space
) < pba
)) {
1643 pba
= pba
- (min_tx_space
- tx_space
);
1645 /* if short on rx space, rx wins and must trump tx
1647 if (pba
< min_rx_space
)
1650 wr32(E1000_PBA
, pba
);
1653 /* flow control settings */
1654 /* The high water mark must be low enough to fit one full frame
1655 * (or the size used for early receive) above it in the Rx FIFO.
1656 * Set it to the lower of:
1657 * - 90% of the Rx FIFO size, or
1658 * - the full Rx FIFO size minus one full frame */
1659 hwm
= min(((pba
<< 10) * 9 / 10),
1660 ((pba
<< 10) - 2 * adapter
->max_frame_size
));
1662 fc
->high_water
= hwm
& 0xFFF0; /* 16-byte granularity */
1663 fc
->low_water
= fc
->high_water
- 16;
1664 fc
->pause_time
= 0xFFFF;
1666 fc
->current_mode
= fc
->requested_mode
;
1668 /* disable receive for all VFs and wait one second */
1669 if (adapter
->vfs_allocated_count
) {
1671 for (i
= 0 ; i
< adapter
->vfs_allocated_count
; i
++)
1672 adapter
->vf_data
[i
].flags
&= IGB_VF_FLAG_PF_SET_MAC
;
1674 /* ping all the active vfs to let them know we are going down */
1675 igb_ping_all_vfs(adapter
);
1677 /* disable transmits and receives */
1678 wr32(E1000_VFRE
, 0);
1679 wr32(E1000_VFTE
, 0);
1682 /* Allow time for pending master requests to run */
1683 hw
->mac
.ops
.reset_hw(hw
);
1686 if (hw
->mac
.ops
.init_hw(hw
))
1687 dev_err(&pdev
->dev
, "Hardware Error\n");
1690 * Flow control settings reset on hardware reset, so guarantee flow
1691 * control is off when forcing speed.
1693 if (!hw
->mac
.autoneg
)
1694 igb_force_mac_fc(hw
);
1696 igb_init_dmac(adapter
, pba
);
1697 if (!netif_running(adapter
->netdev
))
1698 igb_power_down_link(adapter
);
1700 igb_update_mng_vlan(adapter
);
1702 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1703 wr32(E1000_VET
, ETHERNET_IEEE_VLAN_TYPE
);
1705 #ifdef CONFIG_IGB_PTP
1706 /* Re-enable PTP, where applicable. */
1707 igb_ptp_reset(adapter
);
1708 #endif /* CONFIG_IGB_PTP */
1710 igb_get_phy_info(hw
);
1713 static netdev_features_t
igb_fix_features(struct net_device
*netdev
,
1714 netdev_features_t features
)
1717 * Since there is no support for separate rx/tx vlan accel
1718 * enable/disable make sure tx flag is always in same state as rx.
1720 if (features
& NETIF_F_HW_VLAN_RX
)
1721 features
|= NETIF_F_HW_VLAN_TX
;
1723 features
&= ~NETIF_F_HW_VLAN_TX
;
1728 static int igb_set_features(struct net_device
*netdev
,
1729 netdev_features_t features
)
1731 netdev_features_t changed
= netdev
->features
^ features
;
1732 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1734 if (changed
& NETIF_F_HW_VLAN_RX
)
1735 igb_vlan_mode(netdev
, features
);
1737 if (!(changed
& NETIF_F_RXALL
))
1740 netdev
->features
= features
;
1742 if (netif_running(netdev
))
1743 igb_reinit_locked(adapter
);
1750 static const struct net_device_ops igb_netdev_ops
= {
1751 .ndo_open
= igb_open
,
1752 .ndo_stop
= igb_close
,
1753 .ndo_start_xmit
= igb_xmit_frame
,
1754 .ndo_get_stats64
= igb_get_stats64
,
1755 .ndo_set_rx_mode
= igb_set_rx_mode
,
1756 .ndo_set_mac_address
= igb_set_mac
,
1757 .ndo_change_mtu
= igb_change_mtu
,
1758 .ndo_do_ioctl
= igb_ioctl
,
1759 .ndo_tx_timeout
= igb_tx_timeout
,
1760 .ndo_validate_addr
= eth_validate_addr
,
1761 .ndo_vlan_rx_add_vid
= igb_vlan_rx_add_vid
,
1762 .ndo_vlan_rx_kill_vid
= igb_vlan_rx_kill_vid
,
1763 .ndo_set_vf_mac
= igb_ndo_set_vf_mac
,
1764 .ndo_set_vf_vlan
= igb_ndo_set_vf_vlan
,
1765 .ndo_set_vf_tx_rate
= igb_ndo_set_vf_bw
,
1766 .ndo_get_vf_config
= igb_ndo_get_vf_config
,
1767 #ifdef CONFIG_NET_POLL_CONTROLLER
1768 .ndo_poll_controller
= igb_netpoll
,
1770 .ndo_fix_features
= igb_fix_features
,
1771 .ndo_set_features
= igb_set_features
,
1775 * igb_set_fw_version - Configure version string for ethtool
1776 * @adapter: adapter struct
1779 void igb_set_fw_version(struct igb_adapter
*adapter
)
1781 struct e1000_hw
*hw
= &adapter
->hw
;
1782 u16 eeprom_verh
, eeprom_verl
, comb_verh
, comb_verl
, comb_offset
;
1783 u16 major
, build
, patch
, fw_version
;
1786 hw
->nvm
.ops
.read(hw
, 5, 1, &fw_version
);
1787 if (adapter
->hw
.mac
.type
!= e1000_i211
) {
1788 hw
->nvm
.ops
.read(hw
, NVM_ETRACK_WORD
, 1, &eeprom_verh
);
1789 hw
->nvm
.ops
.read(hw
, (NVM_ETRACK_WORD
+ 1), 1, &eeprom_verl
);
1790 etrack_id
= (eeprom_verh
<< IGB_ETRACK_SHIFT
) | eeprom_verl
;
1792 /* combo image version needs to be found */
1793 hw
->nvm
.ops
.read(hw
, NVM_COMB_VER_PTR
, 1, &comb_offset
);
1794 if ((comb_offset
!= 0x0) &&
1795 (comb_offset
!= IGB_NVM_VER_INVALID
)) {
1796 hw
->nvm
.ops
.read(hw
, (NVM_COMB_VER_OFF
+ comb_offset
1797 + 1), 1, &comb_verh
);
1798 hw
->nvm
.ops
.read(hw
, (NVM_COMB_VER_OFF
+ comb_offset
),
1801 /* Only display Option Rom if it exists and is valid */
1802 if ((comb_verh
&& comb_verl
) &&
1803 ((comb_verh
!= IGB_NVM_VER_INVALID
) &&
1804 (comb_verl
!= IGB_NVM_VER_INVALID
))) {
1805 major
= comb_verl
>> IGB_COMB_VER_SHFT
;
1806 build
= (comb_verl
<< IGB_COMB_VER_SHFT
) |
1807 (comb_verh
>> IGB_COMB_VER_SHFT
);
1808 patch
= comb_verh
& IGB_COMB_VER_MASK
;
1809 snprintf(adapter
->fw_version
,
1810 sizeof(adapter
->fw_version
),
1811 "%d.%d%d, 0x%08x, %d.%d.%d",
1812 (fw_version
& IGB_MAJOR_MASK
) >>
1814 (fw_version
& IGB_MINOR_MASK
) >>
1816 (fw_version
& IGB_BUILD_MASK
),
1817 etrack_id
, major
, build
, patch
);
1821 snprintf(adapter
->fw_version
, sizeof(adapter
->fw_version
),
1823 (fw_version
& IGB_MAJOR_MASK
) >> IGB_MAJOR_SHIFT
,
1824 (fw_version
& IGB_MINOR_MASK
) >> IGB_MINOR_SHIFT
,
1825 (fw_version
& IGB_BUILD_MASK
), etrack_id
);
1827 snprintf(adapter
->fw_version
, sizeof(adapter
->fw_version
),
1829 (fw_version
& IGB_MAJOR_MASK
) >> IGB_MAJOR_SHIFT
,
1830 (fw_version
& IGB_MINOR_MASK
) >> IGB_MINOR_SHIFT
,
1831 (fw_version
& IGB_BUILD_MASK
));
1838 * igb_probe - Device Initialization Routine
1839 * @pdev: PCI device information struct
1840 * @ent: entry in igb_pci_tbl
1842 * Returns 0 on success, negative on failure
1844 * igb_probe initializes an adapter identified by a pci_dev structure.
1845 * The OS initialization, configuring of the adapter private structure,
1846 * and a hardware reset occur.
1848 static int __devinit
igb_probe(struct pci_dev
*pdev
,
1849 const struct pci_device_id
*ent
)
1851 struct net_device
*netdev
;
1852 struct igb_adapter
*adapter
;
1853 struct e1000_hw
*hw
;
1854 u16 eeprom_data
= 0;
1856 static int global_quad_port_a
; /* global quad port a indication */
1857 const struct e1000_info
*ei
= igb_info_tbl
[ent
->driver_data
];
1858 unsigned long mmio_start
, mmio_len
;
1859 int err
, pci_using_dac
;
1860 u16 eeprom_apme_mask
= IGB_EEPROM_APME
;
1861 u8 part_str
[E1000_PBANUM_LENGTH
];
1863 /* Catch broken hardware that put the wrong VF device ID in
1864 * the PCIe SR-IOV capability.
1866 if (pdev
->is_virtfn
) {
1867 WARN(1, KERN_ERR
"%s (%hx:%hx) should not be a VF!\n",
1868 pci_name(pdev
), pdev
->vendor
, pdev
->device
);
1872 err
= pci_enable_device_mem(pdev
);
1877 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
1879 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
1883 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1885 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1887 dev_err(&pdev
->dev
, "No usable DMA "
1888 "configuration, aborting\n");
1894 err
= pci_request_selected_regions(pdev
, pci_select_bars(pdev
,
1900 pci_enable_pcie_error_reporting(pdev
);
1902 pci_set_master(pdev
);
1903 pci_save_state(pdev
);
1906 netdev
= alloc_etherdev_mq(sizeof(struct igb_adapter
),
1909 goto err_alloc_etherdev
;
1911 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
1913 pci_set_drvdata(pdev
, netdev
);
1914 adapter
= netdev_priv(netdev
);
1915 adapter
->netdev
= netdev
;
1916 adapter
->pdev
= pdev
;
1919 adapter
->msg_enable
= netif_msg_init(debug
, DEFAULT_MSG_ENABLE
);
1921 mmio_start
= pci_resource_start(pdev
, 0);
1922 mmio_len
= pci_resource_len(pdev
, 0);
1925 hw
->hw_addr
= ioremap(mmio_start
, mmio_len
);
1929 netdev
->netdev_ops
= &igb_netdev_ops
;
1930 igb_set_ethtool_ops(netdev
);
1931 netdev
->watchdog_timeo
= 5 * HZ
;
1933 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1935 netdev
->mem_start
= mmio_start
;
1936 netdev
->mem_end
= mmio_start
+ mmio_len
;
1938 /* PCI config space info */
1939 hw
->vendor_id
= pdev
->vendor
;
1940 hw
->device_id
= pdev
->device
;
1941 hw
->revision_id
= pdev
->revision
;
1942 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1943 hw
->subsystem_device_id
= pdev
->subsystem_device
;
1945 /* Copy the default MAC, PHY and NVM function pointers */
1946 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
1947 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
1948 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
1949 /* Initialize skew-specific constants */
1950 err
= ei
->get_invariants(hw
);
1954 /* setup the private structure */
1955 err
= igb_sw_init(adapter
);
1959 igb_get_bus_info_pcie(hw
);
1961 hw
->phy
.autoneg_wait_to_complete
= false;
1963 /* Copper options */
1964 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1965 hw
->phy
.mdix
= AUTO_ALL_MODES
;
1966 hw
->phy
.disable_polarity_correction
= false;
1967 hw
->phy
.ms_type
= e1000_ms_hw_default
;
1970 if (igb_check_reset_block(hw
))
1971 dev_info(&pdev
->dev
,
1972 "PHY reset is blocked due to SOL/IDER session.\n");
1975 * features is initialized to 0 in allocation, it might have bits
1976 * set by igb_sw_init so we should use an or instead of an
1979 netdev
->features
|= NETIF_F_SG
|
1986 NETIF_F_HW_VLAN_RX
|
1989 /* copy netdev features into list of user selectable features */
1990 netdev
->hw_features
|= netdev
->features
;
1991 netdev
->hw_features
|= NETIF_F_RXALL
;
1993 /* set this bit last since it cannot be part of hw_features */
1994 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
1996 netdev
->vlan_features
|= NETIF_F_TSO
|
2002 netdev
->priv_flags
|= IFF_SUPP_NOFCS
;
2004 if (pci_using_dac
) {
2005 netdev
->features
|= NETIF_F_HIGHDMA
;
2006 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
2009 if (hw
->mac
.type
>= e1000_82576
) {
2010 netdev
->hw_features
|= NETIF_F_SCTP_CSUM
;
2011 netdev
->features
|= NETIF_F_SCTP_CSUM
;
2014 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
2016 adapter
->en_mng_pt
= igb_enable_mng_pass_thru(hw
);
2018 /* before reading the NVM, reset the controller to put the device in a
2019 * known good starting state */
2020 hw
->mac
.ops
.reset_hw(hw
);
2023 * make sure the NVM is good , i211 parts have special NVM that
2024 * doesn't contain a checksum
2026 if (hw
->mac
.type
!= e1000_i211
) {
2027 if (hw
->nvm
.ops
.validate(hw
) < 0) {
2028 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
2034 /* copy the MAC address out of the NVM */
2035 if (hw
->mac
.ops
.read_mac_addr(hw
))
2036 dev_err(&pdev
->dev
, "NVM Read Error\n");
2038 memcpy(netdev
->dev_addr
, hw
->mac
.addr
, netdev
->addr_len
);
2039 memcpy(netdev
->perm_addr
, hw
->mac
.addr
, netdev
->addr_len
);
2041 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
2042 dev_err(&pdev
->dev
, "Invalid MAC Address\n");
2047 /* get firmware version for ethtool -i */
2048 igb_set_fw_version(adapter
);
2050 setup_timer(&adapter
->watchdog_timer
, igb_watchdog
,
2051 (unsigned long) adapter
);
2052 setup_timer(&adapter
->phy_info_timer
, igb_update_phy_info
,
2053 (unsigned long) adapter
);
2055 INIT_WORK(&adapter
->reset_task
, igb_reset_task
);
2056 INIT_WORK(&adapter
->watchdog_task
, igb_watchdog_task
);
2058 /* Initialize link properties that are user-changeable */
2059 adapter
->fc_autoneg
= true;
2060 hw
->mac
.autoneg
= true;
2061 hw
->phy
.autoneg_advertised
= 0x2f;
2063 hw
->fc
.requested_mode
= e1000_fc_default
;
2064 hw
->fc
.current_mode
= e1000_fc_default
;
2066 igb_validate_mdi_setting(hw
);
2068 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2069 * enable the ACPI Magic Packet filter
2072 if (hw
->bus
.func
== 0)
2073 hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
2074 else if (hw
->mac
.type
>= e1000_82580
)
2075 hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_A
+
2076 NVM_82580_LAN_FUNC_OFFSET(hw
->bus
.func
), 1,
2078 else if (hw
->bus
.func
== 1)
2079 hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
2081 if (eeprom_data
& eeprom_apme_mask
)
2082 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
2084 /* now that we have the eeprom settings, apply the special cases where
2085 * the eeprom may be wrong or the board simply won't support wake on
2086 * lan on a particular port */
2087 switch (pdev
->device
) {
2088 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
2089 adapter
->eeprom_wol
= 0;
2091 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
2092 case E1000_DEV_ID_82576_FIBER
:
2093 case E1000_DEV_ID_82576_SERDES
:
2094 /* Wake events only supported on port A for dual fiber
2095 * regardless of eeprom setting */
2096 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
)
2097 adapter
->eeprom_wol
= 0;
2099 case E1000_DEV_ID_82576_QUAD_COPPER
:
2100 case E1000_DEV_ID_82576_QUAD_COPPER_ET2
:
2101 /* if quad port adapter, disable WoL on all but port A */
2102 if (global_quad_port_a
!= 0)
2103 adapter
->eeprom_wol
= 0;
2105 adapter
->flags
|= IGB_FLAG_QUAD_PORT_A
;
2106 /* Reset for multiple quad port adapters */
2107 if (++global_quad_port_a
== 4)
2108 global_quad_port_a
= 0;
2112 /* initialize the wol settings based on the eeprom settings */
2113 adapter
->wol
= adapter
->eeprom_wol
;
2114 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
2116 /* reset the hardware with the new settings */
2119 /* let the f/w know that the h/w is now under the control of the
2121 igb_get_hw_control(adapter
);
2123 strcpy(netdev
->name
, "eth%d");
2124 err
= register_netdev(netdev
);
2128 /* carrier off reporting is important to ethtool even BEFORE open */
2129 netif_carrier_off(netdev
);
2131 #ifdef CONFIG_IGB_DCA
2132 if (dca_add_requester(&pdev
->dev
) == 0) {
2133 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
2134 dev_info(&pdev
->dev
, "DCA enabled\n");
2135 igb_setup_dca(adapter
);
2140 #ifdef CONFIG_IGB_PTP
2141 /* do hw tstamp init after resetting */
2142 igb_ptp_init(adapter
);
2143 #endif /* CONFIG_IGB_PTP */
2145 dev_info(&pdev
->dev
, "Intel(R) Gigabit Ethernet Network Connection\n");
2146 /* print bus type/speed/width info */
2147 dev_info(&pdev
->dev
, "%s: (PCIe:%s:%s) %pM\n",
2149 ((hw
->bus
.speed
== e1000_bus_speed_2500
) ? "2.5Gb/s" :
2150 (hw
->bus
.speed
== e1000_bus_speed_5000
) ? "5.0Gb/s" :
2152 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
2153 (hw
->bus
.width
== e1000_bus_width_pcie_x2
) ? "Width x2" :
2154 (hw
->bus
.width
== e1000_bus_width_pcie_x1
) ? "Width x1" :
2158 ret_val
= igb_read_part_string(hw
, part_str
, E1000_PBANUM_LENGTH
);
2160 strcpy(part_str
, "Unknown");
2161 dev_info(&pdev
->dev
, "%s: PBA No: %s\n", netdev
->name
, part_str
);
2162 dev_info(&pdev
->dev
,
2163 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2164 adapter
->msix_entries
? "MSI-X" :
2165 (adapter
->flags
& IGB_FLAG_HAS_MSI
) ? "MSI" : "legacy",
2166 adapter
->num_rx_queues
, adapter
->num_tx_queues
);
2167 switch (hw
->mac
.type
) {
2171 igb_set_eee_i350(hw
);
2177 pm_runtime_put_noidle(&pdev
->dev
);
2181 igb_release_hw_control(adapter
);
2183 if (!igb_check_reset_block(hw
))
2186 if (hw
->flash_address
)
2187 iounmap(hw
->flash_address
);
2189 igb_clear_interrupt_scheme(adapter
);
2190 iounmap(hw
->hw_addr
);
2192 free_netdev(netdev
);
2194 pci_release_selected_regions(pdev
,
2195 pci_select_bars(pdev
, IORESOURCE_MEM
));
2198 pci_disable_device(pdev
);
2203 * igb_remove - Device Removal Routine
2204 * @pdev: PCI device information struct
2206 * igb_remove is called by the PCI subsystem to alert the driver
2207 * that it should release a PCI device. The could be caused by a
2208 * Hot-Plug event, or because the driver is going to be removed from
2211 static void __devexit
igb_remove(struct pci_dev
*pdev
)
2213 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2214 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2215 struct e1000_hw
*hw
= &adapter
->hw
;
2217 pm_runtime_get_noresume(&pdev
->dev
);
2218 #ifdef CONFIG_IGB_PTP
2219 igb_ptp_stop(adapter
);
2220 #endif /* CONFIG_IGB_PTP */
2223 * The watchdog timer may be rescheduled, so explicitly
2224 * disable watchdog from being rescheduled.
2226 set_bit(__IGB_DOWN
, &adapter
->state
);
2227 del_timer_sync(&adapter
->watchdog_timer
);
2228 del_timer_sync(&adapter
->phy_info_timer
);
2230 cancel_work_sync(&adapter
->reset_task
);
2231 cancel_work_sync(&adapter
->watchdog_task
);
2233 #ifdef CONFIG_IGB_DCA
2234 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
2235 dev_info(&pdev
->dev
, "DCA disabled\n");
2236 dca_remove_requester(&pdev
->dev
);
2237 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
2238 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_DISABLE
);
2242 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2243 * would have already happened in close and is redundant. */
2244 igb_release_hw_control(adapter
);
2246 unregister_netdev(netdev
);
2248 igb_clear_interrupt_scheme(adapter
);
2250 #ifdef CONFIG_PCI_IOV
2251 /* reclaim resources allocated to VFs */
2252 if (adapter
->vf_data
) {
2253 /* disable iov and allow time for transactions to clear */
2254 if (igb_vfs_are_assigned(adapter
)) {
2255 dev_info(&pdev
->dev
, "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2257 pci_disable_sriov(pdev
);
2261 kfree(adapter
->vf_data
);
2262 adapter
->vf_data
= NULL
;
2263 wr32(E1000_IOVCTL
, E1000_IOVCTL_REUSE_VFQ
);
2266 dev_info(&pdev
->dev
, "IOV Disabled\n");
2270 iounmap(hw
->hw_addr
);
2271 if (hw
->flash_address
)
2272 iounmap(hw
->flash_address
);
2273 pci_release_selected_regions(pdev
,
2274 pci_select_bars(pdev
, IORESOURCE_MEM
));
2276 kfree(adapter
->shadow_vfta
);
2277 free_netdev(netdev
);
2279 pci_disable_pcie_error_reporting(pdev
);
2281 pci_disable_device(pdev
);
2285 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2286 * @adapter: board private structure to initialize
2288 * This function initializes the vf specific data storage and then attempts to
2289 * allocate the VFs. The reason for ordering it this way is because it is much
2290 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2291 * the memory for the VFs.
2293 static void __devinit
igb_probe_vfs(struct igb_adapter
* adapter
)
2295 #ifdef CONFIG_PCI_IOV
2296 struct pci_dev
*pdev
= adapter
->pdev
;
2297 struct e1000_hw
*hw
= &adapter
->hw
;
2298 int old_vfs
= pci_num_vf(adapter
->pdev
);
2301 /* Virtualization features not supported on i210 family. */
2302 if ((hw
->mac
.type
== e1000_i210
) || (hw
->mac
.type
== e1000_i211
))
2306 dev_info(&pdev
->dev
, "%d pre-allocated VFs found - override "
2307 "max_vfs setting of %d\n", old_vfs
, max_vfs
);
2308 adapter
->vfs_allocated_count
= old_vfs
;
2311 if (!adapter
->vfs_allocated_count
)
2314 adapter
->vf_data
= kcalloc(adapter
->vfs_allocated_count
,
2315 sizeof(struct vf_data_storage
), GFP_KERNEL
);
2317 /* if allocation failed then we do not support SR-IOV */
2318 if (!adapter
->vf_data
) {
2319 adapter
->vfs_allocated_count
= 0;
2320 dev_err(&pdev
->dev
, "Unable to allocate memory for VF "
2326 if (pci_enable_sriov(pdev
, adapter
->vfs_allocated_count
))
2329 dev_info(&pdev
->dev
, "%d VFs allocated\n",
2330 adapter
->vfs_allocated_count
);
2331 for (i
= 0; i
< adapter
->vfs_allocated_count
; i
++)
2332 igb_vf_configure(adapter
, i
);
2334 /* DMA Coalescing is not supported in IOV mode. */
2335 adapter
->flags
&= ~IGB_FLAG_DMAC
;
2338 kfree(adapter
->vf_data
);
2339 adapter
->vf_data
= NULL
;
2340 adapter
->vfs_allocated_count
= 0;
2343 #endif /* CONFIG_PCI_IOV */
2347 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2348 * @adapter: board private structure to initialize
2350 * igb_sw_init initializes the Adapter private data structure.
2351 * Fields are initialized based on PCI device information and
2352 * OS network device settings (MTU size).
2354 static int __devinit
igb_sw_init(struct igb_adapter
*adapter
)
2356 struct e1000_hw
*hw
= &adapter
->hw
;
2357 struct net_device
*netdev
= adapter
->netdev
;
2358 struct pci_dev
*pdev
= adapter
->pdev
;
2361 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->bus
.pci_cmd_word
);
2363 /* set default ring sizes */
2364 adapter
->tx_ring_count
= IGB_DEFAULT_TXD
;
2365 adapter
->rx_ring_count
= IGB_DEFAULT_RXD
;
2367 /* set default ITR values */
2368 adapter
->rx_itr_setting
= IGB_DEFAULT_ITR
;
2369 adapter
->tx_itr_setting
= IGB_DEFAULT_ITR
;
2371 /* set default work limits */
2372 adapter
->tx_work_limit
= IGB_DEFAULT_TX_WORK
;
2374 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
+
2376 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
2378 spin_lock_init(&adapter
->stats64_lock
);
2379 #ifdef CONFIG_PCI_IOV
2380 switch (hw
->mac
.type
) {
2384 dev_warn(&pdev
->dev
,
2385 "Maximum of 7 VFs per PF, using max\n");
2386 adapter
->vfs_allocated_count
= 7;
2388 adapter
->vfs_allocated_count
= max_vfs
;
2393 #endif /* CONFIG_PCI_IOV */
2395 /* Determine the maximum number of RSS queues supported. */
2396 switch (hw
->mac
.type
) {
2398 max_rss_queues
= IGB_MAX_RX_QUEUES_I211
;
2402 max_rss_queues
= IGB_MAX_RX_QUEUES_82575
;
2405 /* I350 cannot do RSS and SR-IOV at the same time */
2406 if (!!adapter
->vfs_allocated_count
) {
2412 if (!!adapter
->vfs_allocated_count
) {
2419 max_rss_queues
= IGB_MAX_RX_QUEUES
;
2423 adapter
->rss_queues
= min_t(u32
, max_rss_queues
, num_online_cpus());
2425 /* Determine if we need to pair queues. */
2426 switch (hw
->mac
.type
) {
2429 /* Device supports enough interrupts without queue pairing. */
2433 * If VFs are going to be allocated with RSS queues then we
2434 * should pair the queues in order to conserve interrupts due
2435 * to limited supply.
2437 if ((adapter
->rss_queues
> 1) &&
2438 (adapter
->vfs_allocated_count
> 6))
2439 adapter
->flags
|= IGB_FLAG_QUEUE_PAIRS
;
2446 * If rss_queues > half of max_rss_queues, pair the queues in
2447 * order to conserve interrupts due to limited supply.
2449 if (adapter
->rss_queues
> (max_rss_queues
/ 2))
2450 adapter
->flags
|= IGB_FLAG_QUEUE_PAIRS
;
2454 /* Setup and initialize a copy of the hw vlan table array */
2455 adapter
->shadow_vfta
= kzalloc(sizeof(u32
) *
2456 E1000_VLAN_FILTER_TBL_SIZE
,
2459 /* This call may decrease the number of queues */
2460 if (igb_init_interrupt_scheme(adapter
)) {
2461 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
2465 igb_probe_vfs(adapter
);
2467 /* Explicitly disable IRQ since the NIC can be in any state. */
2468 igb_irq_disable(adapter
);
2470 if (hw
->mac
.type
>= e1000_i350
)
2471 adapter
->flags
&= ~IGB_FLAG_DMAC
;
2473 set_bit(__IGB_DOWN
, &adapter
->state
);
2478 * igb_open - Called when a network interface is made active
2479 * @netdev: network interface device structure
2481 * Returns 0 on success, negative value on failure
2483 * The open entry point is called when a network interface is made
2484 * active by the system (IFF_UP). At this point all resources needed
2485 * for transmit and receive operations are allocated, the interrupt
2486 * handler is registered with the OS, the watchdog timer is started,
2487 * and the stack is notified that the interface is ready.
2489 static int __igb_open(struct net_device
*netdev
, bool resuming
)
2491 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2492 struct e1000_hw
*hw
= &adapter
->hw
;
2493 struct pci_dev
*pdev
= adapter
->pdev
;
2497 /* disallow open during test */
2498 if (test_bit(__IGB_TESTING
, &adapter
->state
)) {
2504 pm_runtime_get_sync(&pdev
->dev
);
2506 netif_carrier_off(netdev
);
2508 /* allocate transmit descriptors */
2509 err
= igb_setup_all_tx_resources(adapter
);
2513 /* allocate receive descriptors */
2514 err
= igb_setup_all_rx_resources(adapter
);
2518 igb_power_up_link(adapter
);
2520 /* before we allocate an interrupt, we must be ready to handle it.
2521 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2522 * as soon as we call pci_request_irq, so we have to setup our
2523 * clean_rx handler before we do so. */
2524 igb_configure(adapter
);
2526 err
= igb_request_irq(adapter
);
2530 /* From here on the code is the same as igb_up() */
2531 clear_bit(__IGB_DOWN
, &adapter
->state
);
2533 for (i
= 0; i
< adapter
->num_q_vectors
; i
++)
2534 napi_enable(&(adapter
->q_vector
[i
]->napi
));
2536 /* Clear any pending interrupts. */
2539 igb_irq_enable(adapter
);
2541 /* notify VFs that reset has been completed */
2542 if (adapter
->vfs_allocated_count
) {
2543 u32 reg_data
= rd32(E1000_CTRL_EXT
);
2544 reg_data
|= E1000_CTRL_EXT_PFRSTD
;
2545 wr32(E1000_CTRL_EXT
, reg_data
);
2548 netif_tx_start_all_queues(netdev
);
2551 pm_runtime_put(&pdev
->dev
);
2553 /* start the watchdog. */
2554 hw
->mac
.get_link_status
= 1;
2555 schedule_work(&adapter
->watchdog_task
);
2560 igb_release_hw_control(adapter
);
2561 igb_power_down_link(adapter
);
2562 igb_free_all_rx_resources(adapter
);
2564 igb_free_all_tx_resources(adapter
);
2568 pm_runtime_put(&pdev
->dev
);
2573 static int igb_open(struct net_device
*netdev
)
2575 return __igb_open(netdev
, false);
2579 * igb_close - Disables a network interface
2580 * @netdev: network interface device structure
2582 * Returns 0, this is not allowed to fail
2584 * The close entry point is called when an interface is de-activated
2585 * by the OS. The hardware is still under the driver's control, but
2586 * needs to be disabled. A global MAC reset is issued to stop the
2587 * hardware, and all transmit and receive resources are freed.
2589 static int __igb_close(struct net_device
*netdev
, bool suspending
)
2591 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2592 struct pci_dev
*pdev
= adapter
->pdev
;
2594 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
2597 pm_runtime_get_sync(&pdev
->dev
);
2600 igb_free_irq(adapter
);
2602 igb_free_all_tx_resources(adapter
);
2603 igb_free_all_rx_resources(adapter
);
2606 pm_runtime_put_sync(&pdev
->dev
);
2610 static int igb_close(struct net_device
*netdev
)
2612 return __igb_close(netdev
, false);
2616 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2617 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2619 * Return 0 on success, negative on failure
2621 int igb_setup_tx_resources(struct igb_ring
*tx_ring
)
2623 struct device
*dev
= tx_ring
->dev
;
2626 size
= sizeof(struct igb_tx_buffer
) * tx_ring
->count
;
2628 tx_ring
->tx_buffer_info
= vzalloc(size
);
2629 if (!tx_ring
->tx_buffer_info
)
2632 /* round up to nearest 4K */
2633 tx_ring
->size
= tx_ring
->count
* sizeof(union e1000_adv_tx_desc
);
2634 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
2636 tx_ring
->desc
= dma_alloc_coherent(dev
,
2643 tx_ring
->next_to_use
= 0;
2644 tx_ring
->next_to_clean
= 0;
2649 vfree(tx_ring
->tx_buffer_info
);
2650 tx_ring
->tx_buffer_info
= NULL
;
2651 dev_err(dev
, "Unable to allocate memory for the Tx descriptor ring\n");
2656 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2657 * (Descriptors) for all queues
2658 * @adapter: board private structure
2660 * Return 0 on success, negative on failure
2662 static int igb_setup_all_tx_resources(struct igb_adapter
*adapter
)
2664 struct pci_dev
*pdev
= adapter
->pdev
;
2667 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
2668 err
= igb_setup_tx_resources(adapter
->tx_ring
[i
]);
2671 "Allocation for Tx Queue %u failed\n", i
);
2672 for (i
--; i
>= 0; i
--)
2673 igb_free_tx_resources(adapter
->tx_ring
[i
]);
2682 * igb_setup_tctl - configure the transmit control registers
2683 * @adapter: Board private structure
2685 void igb_setup_tctl(struct igb_adapter
*adapter
)
2687 struct e1000_hw
*hw
= &adapter
->hw
;
2690 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2691 wr32(E1000_TXDCTL(0), 0);
2693 /* Program the Transmit Control Register */
2694 tctl
= rd32(E1000_TCTL
);
2695 tctl
&= ~E1000_TCTL_CT
;
2696 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2697 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2699 igb_config_collision_dist(hw
);
2701 /* Enable transmits */
2702 tctl
|= E1000_TCTL_EN
;
2704 wr32(E1000_TCTL
, tctl
);
2708 * igb_configure_tx_ring - Configure transmit ring after Reset
2709 * @adapter: board private structure
2710 * @ring: tx ring to configure
2712 * Configure a transmit ring after a reset.
2714 void igb_configure_tx_ring(struct igb_adapter
*adapter
,
2715 struct igb_ring
*ring
)
2717 struct e1000_hw
*hw
= &adapter
->hw
;
2719 u64 tdba
= ring
->dma
;
2720 int reg_idx
= ring
->reg_idx
;
2722 /* disable the queue */
2723 wr32(E1000_TXDCTL(reg_idx
), 0);
2727 wr32(E1000_TDLEN(reg_idx
),
2728 ring
->count
* sizeof(union e1000_adv_tx_desc
));
2729 wr32(E1000_TDBAL(reg_idx
),
2730 tdba
& 0x00000000ffffffffULL
);
2731 wr32(E1000_TDBAH(reg_idx
), tdba
>> 32);
2733 ring
->tail
= hw
->hw_addr
+ E1000_TDT(reg_idx
);
2734 wr32(E1000_TDH(reg_idx
), 0);
2735 writel(0, ring
->tail
);
2737 txdctl
|= IGB_TX_PTHRESH
;
2738 txdctl
|= IGB_TX_HTHRESH
<< 8;
2739 txdctl
|= IGB_TX_WTHRESH
<< 16;
2741 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
2742 wr32(E1000_TXDCTL(reg_idx
), txdctl
);
2746 * igb_configure_tx - Configure transmit Unit after Reset
2747 * @adapter: board private structure
2749 * Configure the Tx unit of the MAC after a reset.
2751 static void igb_configure_tx(struct igb_adapter
*adapter
)
2755 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2756 igb_configure_tx_ring(adapter
, adapter
->tx_ring
[i
]);
2760 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2761 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2763 * Returns 0 on success, negative on failure
2765 int igb_setup_rx_resources(struct igb_ring
*rx_ring
)
2767 struct device
*dev
= rx_ring
->dev
;
2770 size
= sizeof(struct igb_rx_buffer
) * rx_ring
->count
;
2772 rx_ring
->rx_buffer_info
= vzalloc(size
);
2773 if (!rx_ring
->rx_buffer_info
)
2777 /* Round up to nearest 4K */
2778 rx_ring
->size
= rx_ring
->count
* sizeof(union e1000_adv_rx_desc
);
2779 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2781 rx_ring
->desc
= dma_alloc_coherent(dev
,
2788 rx_ring
->next_to_alloc
= 0;
2789 rx_ring
->next_to_clean
= 0;
2790 rx_ring
->next_to_use
= 0;
2795 vfree(rx_ring
->rx_buffer_info
);
2796 rx_ring
->rx_buffer_info
= NULL
;
2797 dev_err(dev
, "Unable to allocate memory for the Rx descriptor ring\n");
2802 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2803 * (Descriptors) for all queues
2804 * @adapter: board private structure
2806 * Return 0 on success, negative on failure
2808 static int igb_setup_all_rx_resources(struct igb_adapter
*adapter
)
2810 struct pci_dev
*pdev
= adapter
->pdev
;
2813 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2814 err
= igb_setup_rx_resources(adapter
->rx_ring
[i
]);
2817 "Allocation for Rx Queue %u failed\n", i
);
2818 for (i
--; i
>= 0; i
--)
2819 igb_free_rx_resources(adapter
->rx_ring
[i
]);
2828 * igb_setup_mrqc - configure the multiple receive queue control registers
2829 * @adapter: Board private structure
2831 static void igb_setup_mrqc(struct igb_adapter
*adapter
)
2833 struct e1000_hw
*hw
= &adapter
->hw
;
2835 u32 j
, num_rx_queues
, shift
= 0;
2836 static const u32 rsskey
[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
2837 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
2838 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
2841 /* Fill out hash function seeds */
2842 for (j
= 0; j
< 10; j
++)
2843 wr32(E1000_RSSRK(j
), rsskey
[j
]);
2845 num_rx_queues
= adapter
->rss_queues
;
2847 switch (hw
->mac
.type
) {
2852 /* 82576 supports 2 RSS queues for SR-IOV */
2853 if (adapter
->vfs_allocated_count
) {
2863 * Populate the indirection table 4 entries at a time. To do this
2864 * we are generating the results for n and n+2 and then interleaving
2865 * those with the results with n+1 and n+3.
2867 for (j
= 0; j
< 32; j
++) {
2868 /* first pass generates n and n+2 */
2869 u32 base
= ((j
* 0x00040004) + 0x00020000) * num_rx_queues
;
2870 u32 reta
= (base
& 0x07800780) >> (7 - shift
);
2872 /* second pass generates n+1 and n+3 */
2873 base
+= 0x00010001 * num_rx_queues
;
2874 reta
|= (base
& 0x07800780) << (1 + shift
);
2876 wr32(E1000_RETA(j
), reta
);
2880 * Disable raw packet checksumming so that RSS hash is placed in
2881 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2882 * offloads as they are enabled by default
2884 rxcsum
= rd32(E1000_RXCSUM
);
2885 rxcsum
|= E1000_RXCSUM_PCSD
;
2887 if (adapter
->hw
.mac
.type
>= e1000_82576
)
2888 /* Enable Receive Checksum Offload for SCTP */
2889 rxcsum
|= E1000_RXCSUM_CRCOFL
;
2891 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2892 wr32(E1000_RXCSUM
, rxcsum
);
2894 * Generate RSS hash based on TCP port numbers and/or
2895 * IPv4/v6 src and dst addresses since UDP cannot be
2896 * hashed reliably due to IP fragmentation
2899 mrqc
= E1000_MRQC_RSS_FIELD_IPV4
|
2900 E1000_MRQC_RSS_FIELD_IPV4_TCP
|
2901 E1000_MRQC_RSS_FIELD_IPV6
|
2902 E1000_MRQC_RSS_FIELD_IPV6_TCP
|
2903 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
;
2905 /* If VMDq is enabled then we set the appropriate mode for that, else
2906 * we default to RSS so that an RSS hash is calculated per packet even
2907 * if we are only using one queue */
2908 if (adapter
->vfs_allocated_count
) {
2909 if (hw
->mac
.type
> e1000_82575
) {
2910 /* Set the default pool for the PF's first queue */
2911 u32 vtctl
= rd32(E1000_VT_CTL
);
2912 vtctl
&= ~(E1000_VT_CTL_DEFAULT_POOL_MASK
|
2913 E1000_VT_CTL_DISABLE_DEF_POOL
);
2914 vtctl
|= adapter
->vfs_allocated_count
<<
2915 E1000_VT_CTL_DEFAULT_POOL_SHIFT
;
2916 wr32(E1000_VT_CTL
, vtctl
);
2918 if (adapter
->rss_queues
> 1)
2919 mrqc
|= E1000_MRQC_ENABLE_VMDQ_RSS_2Q
;
2921 mrqc
|= E1000_MRQC_ENABLE_VMDQ
;
2923 if (hw
->mac
.type
!= e1000_i211
)
2924 mrqc
|= E1000_MRQC_ENABLE_RSS_4Q
;
2926 igb_vmm_control(adapter
);
2928 wr32(E1000_MRQC
, mrqc
);
2932 * igb_setup_rctl - configure the receive control registers
2933 * @adapter: Board private structure
2935 void igb_setup_rctl(struct igb_adapter
*adapter
)
2937 struct e1000_hw
*hw
= &adapter
->hw
;
2940 rctl
= rd32(E1000_RCTL
);
2942 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
2943 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
2945 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_RDMTS_HALF
|
2946 (hw
->mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
2949 * enable stripping of CRC. It's unlikely this will break BMC
2950 * redirection as it did with e1000. Newer features require
2951 * that the HW strips the CRC.
2953 rctl
|= E1000_RCTL_SECRC
;
2955 /* disable store bad packets and clear size bits. */
2956 rctl
&= ~(E1000_RCTL_SBP
| E1000_RCTL_SZ_256
);
2958 /* enable LPE to prevent packets larger than max_frame_size */
2959 rctl
|= E1000_RCTL_LPE
;
2961 /* disable queue 0 to prevent tail write w/o re-config */
2962 wr32(E1000_RXDCTL(0), 0);
2964 /* Attention!!! For SR-IOV PF driver operations you must enable
2965 * queue drop for all VF and PF queues to prevent head of line blocking
2966 * if an un-trusted VF does not provide descriptors to hardware.
2968 if (adapter
->vfs_allocated_count
) {
2969 /* set all queue drop enable bits */
2970 wr32(E1000_QDE
, ALL_QUEUES
);
2973 /* This is useful for sniffing bad packets. */
2974 if (adapter
->netdev
->features
& NETIF_F_RXALL
) {
2975 /* UPE and MPE will be handled by normal PROMISC logic
2976 * in e1000e_set_rx_mode */
2977 rctl
|= (E1000_RCTL_SBP
| /* Receive bad packets */
2978 E1000_RCTL_BAM
| /* RX All Bcast Pkts */
2979 E1000_RCTL_PMCF
); /* RX All MAC Ctrl Pkts */
2981 rctl
&= ~(E1000_RCTL_VFE
| /* Disable VLAN filter */
2982 E1000_RCTL_DPF
| /* Allow filtered pause */
2983 E1000_RCTL_CFIEN
); /* Dis VLAN CFIEN Filter */
2984 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
2985 * and that breaks VLANs.
2989 wr32(E1000_RCTL
, rctl
);
2992 static inline int igb_set_vf_rlpml(struct igb_adapter
*adapter
, int size
,
2995 struct e1000_hw
*hw
= &adapter
->hw
;
2998 /* if it isn't the PF check to see if VFs are enabled and
2999 * increase the size to support vlan tags */
3000 if (vfn
< adapter
->vfs_allocated_count
&&
3001 adapter
->vf_data
[vfn
].vlans_enabled
)
3002 size
+= VLAN_TAG_SIZE
;
3004 vmolr
= rd32(E1000_VMOLR(vfn
));
3005 vmolr
&= ~E1000_VMOLR_RLPML_MASK
;
3006 vmolr
|= size
| E1000_VMOLR_LPE
;
3007 wr32(E1000_VMOLR(vfn
), vmolr
);
3013 * igb_rlpml_set - set maximum receive packet size
3014 * @adapter: board private structure
3016 * Configure maximum receivable packet size.
3018 static void igb_rlpml_set(struct igb_adapter
*adapter
)
3020 u32 max_frame_size
= adapter
->max_frame_size
;
3021 struct e1000_hw
*hw
= &adapter
->hw
;
3022 u16 pf_id
= adapter
->vfs_allocated_count
;
3025 igb_set_vf_rlpml(adapter
, max_frame_size
, pf_id
);
3027 * If we're in VMDQ or SR-IOV mode, then set global RLPML
3028 * to our max jumbo frame size, in case we need to enable
3029 * jumbo frames on one of the rings later.
3030 * This will not pass over-length frames into the default
3031 * queue because it's gated by the VMOLR.RLPML.
3033 max_frame_size
= MAX_JUMBO_FRAME_SIZE
;
3036 wr32(E1000_RLPML
, max_frame_size
);
3039 static inline void igb_set_vmolr(struct igb_adapter
*adapter
,
3042 struct e1000_hw
*hw
= &adapter
->hw
;
3046 * This register exists only on 82576 and newer so if we are older then
3047 * we should exit and do nothing
3049 if (hw
->mac
.type
< e1000_82576
)
3052 vmolr
= rd32(E1000_VMOLR(vfn
));
3053 vmolr
|= E1000_VMOLR_STRVLAN
; /* Strip vlan tags */
3055 vmolr
|= E1000_VMOLR_AUPE
; /* Accept untagged packets */
3057 vmolr
&= ~(E1000_VMOLR_AUPE
); /* Tagged packets ONLY */
3059 /* clear all bits that might not be set */
3060 vmolr
&= ~(E1000_VMOLR_BAM
| E1000_VMOLR_RSSE
);
3062 if (adapter
->rss_queues
> 1 && vfn
== adapter
->vfs_allocated_count
)
3063 vmolr
|= E1000_VMOLR_RSSE
; /* enable RSS */
3065 * for VMDq only allow the VFs and pool 0 to accept broadcast and
3068 if (vfn
<= adapter
->vfs_allocated_count
)
3069 vmolr
|= E1000_VMOLR_BAM
; /* Accept broadcast */
3071 wr32(E1000_VMOLR(vfn
), vmolr
);
3075 * igb_configure_rx_ring - Configure a receive ring after Reset
3076 * @adapter: board private structure
3077 * @ring: receive ring to be configured
3079 * Configure the Rx unit of the MAC after a reset.
3081 void igb_configure_rx_ring(struct igb_adapter
*adapter
,
3082 struct igb_ring
*ring
)
3084 struct e1000_hw
*hw
= &adapter
->hw
;
3085 u64 rdba
= ring
->dma
;
3086 int reg_idx
= ring
->reg_idx
;
3087 u32 srrctl
= 0, rxdctl
= 0;
3089 /* disable the queue */
3090 wr32(E1000_RXDCTL(reg_idx
), 0);
3092 /* Set DMA base address registers */
3093 wr32(E1000_RDBAL(reg_idx
),
3094 rdba
& 0x00000000ffffffffULL
);
3095 wr32(E1000_RDBAH(reg_idx
), rdba
>> 32);
3096 wr32(E1000_RDLEN(reg_idx
),
3097 ring
->count
* sizeof(union e1000_adv_rx_desc
));
3099 /* initialize head and tail */
3100 ring
->tail
= hw
->hw_addr
+ E1000_RDT(reg_idx
);
3101 wr32(E1000_RDH(reg_idx
), 0);
3102 writel(0, ring
->tail
);
3104 /* set descriptor configuration */
3105 srrctl
= IGB_RX_HDR_LEN
<< E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
3106 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3107 srrctl
|= IGB_RXBUFFER_16384
>> E1000_SRRCTL_BSIZEPKT_SHIFT
;
3109 srrctl
|= (PAGE_SIZE
/ 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT
;
3111 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
3112 #ifdef CONFIG_IGB_PTP
3113 if (hw
->mac
.type
>= e1000_82580
)
3114 srrctl
|= E1000_SRRCTL_TIMESTAMP
;
3115 #endif /* CONFIG_IGB_PTP */
3116 /* Only set Drop Enable if we are supporting multiple queues */
3117 if (adapter
->vfs_allocated_count
|| adapter
->num_rx_queues
> 1)
3118 srrctl
|= E1000_SRRCTL_DROP_EN
;
3120 wr32(E1000_SRRCTL(reg_idx
), srrctl
);
3122 /* set filtering for VMDQ pools */
3123 igb_set_vmolr(adapter
, reg_idx
& 0x7, true);
3125 rxdctl
|= IGB_RX_PTHRESH
;
3126 rxdctl
|= IGB_RX_HTHRESH
<< 8;
3127 rxdctl
|= IGB_RX_WTHRESH
<< 16;
3129 /* enable receive descriptor fetching */
3130 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
3131 wr32(E1000_RXDCTL(reg_idx
), rxdctl
);
3135 * igb_configure_rx - Configure receive Unit after Reset
3136 * @adapter: board private structure
3138 * Configure the Rx unit of the MAC after a reset.
3140 static void igb_configure_rx(struct igb_adapter
*adapter
)
3144 /* set UTA to appropriate mode */
3145 igb_set_uta(adapter
);
3147 /* set the correct pool for the PF default MAC address in entry 0 */
3148 igb_rar_set_qsel(adapter
, adapter
->hw
.mac
.addr
, 0,
3149 adapter
->vfs_allocated_count
);
3151 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3152 * the Base and Length of the Rx Descriptor Ring */
3153 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
3154 igb_configure_rx_ring(adapter
, adapter
->rx_ring
[i
]);
3158 * igb_free_tx_resources - Free Tx Resources per Queue
3159 * @tx_ring: Tx descriptor ring for a specific queue
3161 * Free all transmit software resources
3163 void igb_free_tx_resources(struct igb_ring
*tx_ring
)
3165 igb_clean_tx_ring(tx_ring
);
3167 vfree(tx_ring
->tx_buffer_info
);
3168 tx_ring
->tx_buffer_info
= NULL
;
3170 /* if not set, then don't free */
3174 dma_free_coherent(tx_ring
->dev
, tx_ring
->size
,
3175 tx_ring
->desc
, tx_ring
->dma
);
3177 tx_ring
->desc
= NULL
;
3181 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3182 * @adapter: board private structure
3184 * Free all transmit software resources
3186 static void igb_free_all_tx_resources(struct igb_adapter
*adapter
)
3190 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
3191 igb_free_tx_resources(adapter
->tx_ring
[i
]);
3194 void igb_unmap_and_free_tx_resource(struct igb_ring
*ring
,
3195 struct igb_tx_buffer
*tx_buffer
)
3197 if (tx_buffer
->skb
) {
3198 dev_kfree_skb_any(tx_buffer
->skb
);
3199 if (dma_unmap_len(tx_buffer
, len
))
3200 dma_unmap_single(ring
->dev
,
3201 dma_unmap_addr(tx_buffer
, dma
),
3202 dma_unmap_len(tx_buffer
, len
),
3204 } else if (dma_unmap_len(tx_buffer
, len
)) {
3205 dma_unmap_page(ring
->dev
,
3206 dma_unmap_addr(tx_buffer
, dma
),
3207 dma_unmap_len(tx_buffer
, len
),
3210 tx_buffer
->next_to_watch
= NULL
;
3211 tx_buffer
->skb
= NULL
;
3212 dma_unmap_len_set(tx_buffer
, len
, 0);
3213 /* buffer_info must be completely set up in the transmit path */
3217 * igb_clean_tx_ring - Free Tx Buffers
3218 * @tx_ring: ring to be cleaned
3220 static void igb_clean_tx_ring(struct igb_ring
*tx_ring
)
3222 struct igb_tx_buffer
*buffer_info
;
3226 if (!tx_ring
->tx_buffer_info
)
3228 /* Free all the Tx ring sk_buffs */
3230 for (i
= 0; i
< tx_ring
->count
; i
++) {
3231 buffer_info
= &tx_ring
->tx_buffer_info
[i
];
3232 igb_unmap_and_free_tx_resource(tx_ring
, buffer_info
);
3235 netdev_tx_reset_queue(txring_txq(tx_ring
));
3237 size
= sizeof(struct igb_tx_buffer
) * tx_ring
->count
;
3238 memset(tx_ring
->tx_buffer_info
, 0, size
);
3240 /* Zero out the descriptor ring */
3241 memset(tx_ring
->desc
, 0, tx_ring
->size
);
3243 tx_ring
->next_to_use
= 0;
3244 tx_ring
->next_to_clean
= 0;
3248 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3249 * @adapter: board private structure
3251 static void igb_clean_all_tx_rings(struct igb_adapter
*adapter
)
3255 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
3256 igb_clean_tx_ring(adapter
->tx_ring
[i
]);
3260 * igb_free_rx_resources - Free Rx Resources
3261 * @rx_ring: ring to clean the resources from
3263 * Free all receive software resources
3265 void igb_free_rx_resources(struct igb_ring
*rx_ring
)
3267 igb_clean_rx_ring(rx_ring
);
3269 vfree(rx_ring
->rx_buffer_info
);
3270 rx_ring
->rx_buffer_info
= NULL
;
3272 /* if not set, then don't free */
3276 dma_free_coherent(rx_ring
->dev
, rx_ring
->size
,
3277 rx_ring
->desc
, rx_ring
->dma
);
3279 rx_ring
->desc
= NULL
;
3283 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3284 * @adapter: board private structure
3286 * Free all receive software resources
3288 static void igb_free_all_rx_resources(struct igb_adapter
*adapter
)
3292 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
3293 igb_free_rx_resources(adapter
->rx_ring
[i
]);
3297 * igb_clean_rx_ring - Free Rx Buffers per Queue
3298 * @rx_ring: ring to free buffers from
3300 static void igb_clean_rx_ring(struct igb_ring
*rx_ring
)
3306 dev_kfree_skb(rx_ring
->skb
);
3307 rx_ring
->skb
= NULL
;
3309 if (!rx_ring
->rx_buffer_info
)
3312 /* Free all the Rx ring sk_buffs */
3313 for (i
= 0; i
< rx_ring
->count
; i
++) {
3314 struct igb_rx_buffer
*buffer_info
= &rx_ring
->rx_buffer_info
[i
];
3316 if (!buffer_info
->page
)
3319 dma_unmap_page(rx_ring
->dev
,
3323 __free_page(buffer_info
->page
);
3325 buffer_info
->page
= NULL
;
3328 size
= sizeof(struct igb_rx_buffer
) * rx_ring
->count
;
3329 memset(rx_ring
->rx_buffer_info
, 0, size
);
3331 /* Zero out the descriptor ring */
3332 memset(rx_ring
->desc
, 0, rx_ring
->size
);
3334 rx_ring
->next_to_alloc
= 0;
3335 rx_ring
->next_to_clean
= 0;
3336 rx_ring
->next_to_use
= 0;
3340 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3341 * @adapter: board private structure
3343 static void igb_clean_all_rx_rings(struct igb_adapter
*adapter
)
3347 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
3348 igb_clean_rx_ring(adapter
->rx_ring
[i
]);
3352 * igb_set_mac - Change the Ethernet Address of the NIC
3353 * @netdev: network interface device structure
3354 * @p: pointer to an address structure
3356 * Returns 0 on success, negative on failure
3358 static int igb_set_mac(struct net_device
*netdev
, void *p
)
3360 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3361 struct e1000_hw
*hw
= &adapter
->hw
;
3362 struct sockaddr
*addr
= p
;
3364 if (!is_valid_ether_addr(addr
->sa_data
))
3365 return -EADDRNOTAVAIL
;
3367 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
3368 memcpy(hw
->mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
3370 /* set the correct pool for the new PF MAC address in entry 0 */
3371 igb_rar_set_qsel(adapter
, hw
->mac
.addr
, 0,
3372 adapter
->vfs_allocated_count
);
3378 * igb_write_mc_addr_list - write multicast addresses to MTA
3379 * @netdev: network interface device structure
3381 * Writes multicast address list to the MTA hash table.
3382 * Returns: -ENOMEM on failure
3383 * 0 on no addresses written
3384 * X on writing X addresses to MTA
3386 static int igb_write_mc_addr_list(struct net_device
*netdev
)
3388 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3389 struct e1000_hw
*hw
= &adapter
->hw
;
3390 struct netdev_hw_addr
*ha
;
3394 if (netdev_mc_empty(netdev
)) {
3395 /* nothing to program, so clear mc list */
3396 igb_update_mc_addr_list(hw
, NULL
, 0);
3397 igb_restore_vf_multicasts(adapter
);
3401 mta_list
= kzalloc(netdev_mc_count(netdev
) * 6, GFP_ATOMIC
);
3405 /* The shared function expects a packed array of only addresses. */
3407 netdev_for_each_mc_addr(ha
, netdev
)
3408 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
3410 igb_update_mc_addr_list(hw
, mta_list
, i
);
3413 return netdev_mc_count(netdev
);
3417 * igb_write_uc_addr_list - write unicast addresses to RAR table
3418 * @netdev: network interface device structure
3420 * Writes unicast address list to the RAR table.
3421 * Returns: -ENOMEM on failure/insufficient address space
3422 * 0 on no addresses written
3423 * X on writing X addresses to the RAR table
3425 static int igb_write_uc_addr_list(struct net_device
*netdev
)
3427 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3428 struct e1000_hw
*hw
= &adapter
->hw
;
3429 unsigned int vfn
= adapter
->vfs_allocated_count
;
3430 unsigned int rar_entries
= hw
->mac
.rar_entry_count
- (vfn
+ 1);
3433 /* return ENOMEM indicating insufficient memory for addresses */
3434 if (netdev_uc_count(netdev
) > rar_entries
)
3437 if (!netdev_uc_empty(netdev
) && rar_entries
) {
3438 struct netdev_hw_addr
*ha
;
3440 netdev_for_each_uc_addr(ha
, netdev
) {
3443 igb_rar_set_qsel(adapter
, ha
->addr
,
3449 /* write the addresses in reverse order to avoid write combining */
3450 for (; rar_entries
> 0 ; rar_entries
--) {
3451 wr32(E1000_RAH(rar_entries
), 0);
3452 wr32(E1000_RAL(rar_entries
), 0);
3460 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3461 * @netdev: network interface device structure
3463 * The set_rx_mode entry point is called whenever the unicast or multicast
3464 * address lists or the network interface flags are updated. This routine is
3465 * responsible for configuring the hardware for proper unicast, multicast,
3466 * promiscuous mode, and all-multi behavior.
3468 static void igb_set_rx_mode(struct net_device
*netdev
)
3470 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3471 struct e1000_hw
*hw
= &adapter
->hw
;
3472 unsigned int vfn
= adapter
->vfs_allocated_count
;
3473 u32 rctl
, vmolr
= 0;
3476 /* Check for Promiscuous and All Multicast modes */
3477 rctl
= rd32(E1000_RCTL
);
3479 /* clear the effected bits */
3480 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
| E1000_RCTL_VFE
);
3482 if (netdev
->flags
& IFF_PROMISC
) {
3483 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3484 vmolr
|= (E1000_VMOLR_ROPE
| E1000_VMOLR_MPME
);
3486 if (netdev
->flags
& IFF_ALLMULTI
) {
3487 rctl
|= E1000_RCTL_MPE
;
3488 vmolr
|= E1000_VMOLR_MPME
;
3491 * Write addresses to the MTA, if the attempt fails
3492 * then we should just turn on promiscuous mode so
3493 * that we can at least receive multicast traffic
3495 count
= igb_write_mc_addr_list(netdev
);
3497 rctl
|= E1000_RCTL_MPE
;
3498 vmolr
|= E1000_VMOLR_MPME
;
3500 vmolr
|= E1000_VMOLR_ROMPE
;
3504 * Write addresses to available RAR registers, if there is not
3505 * sufficient space to store all the addresses then enable
3506 * unicast promiscuous mode
3508 count
= igb_write_uc_addr_list(netdev
);
3510 rctl
|= E1000_RCTL_UPE
;
3511 vmolr
|= E1000_VMOLR_ROPE
;
3513 rctl
|= E1000_RCTL_VFE
;
3515 wr32(E1000_RCTL
, rctl
);
3518 * In order to support SR-IOV and eventually VMDq it is necessary to set
3519 * the VMOLR to enable the appropriate modes. Without this workaround
3520 * we will have issues with VLAN tag stripping not being done for frames
3521 * that are only arriving because we are the default pool
3523 if ((hw
->mac
.type
< e1000_82576
) || (hw
->mac
.type
> e1000_i350
))
3526 vmolr
|= rd32(E1000_VMOLR(vfn
)) &
3527 ~(E1000_VMOLR_ROPE
| E1000_VMOLR_MPME
| E1000_VMOLR_ROMPE
);
3528 wr32(E1000_VMOLR(vfn
), vmolr
);
3529 igb_restore_vf_multicasts(adapter
);
3532 static void igb_check_wvbr(struct igb_adapter
*adapter
)
3534 struct e1000_hw
*hw
= &adapter
->hw
;
3537 switch (hw
->mac
.type
) {
3540 if (!(wvbr
= rd32(E1000_WVBR
)))
3547 adapter
->wvbr
|= wvbr
;
3550 #define IGB_STAGGERED_QUEUE_OFFSET 8
3552 static void igb_spoof_check(struct igb_adapter
*adapter
)
3559 for(j
= 0; j
< adapter
->vfs_allocated_count
; j
++) {
3560 if (adapter
->wvbr
& (1 << j
) ||
3561 adapter
->wvbr
& (1 << (j
+ IGB_STAGGERED_QUEUE_OFFSET
))) {
3562 dev_warn(&adapter
->pdev
->dev
,
3563 "Spoof event(s) detected on VF %d\n", j
);
3566 (1 << (j
+ IGB_STAGGERED_QUEUE_OFFSET
)));
3571 /* Need to wait a few seconds after link up to get diagnostic information from
3573 static void igb_update_phy_info(unsigned long data
)
3575 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
3576 igb_get_phy_info(&adapter
->hw
);
3580 * igb_has_link - check shared code for link and determine up/down
3581 * @adapter: pointer to driver private info
3583 bool igb_has_link(struct igb_adapter
*adapter
)
3585 struct e1000_hw
*hw
= &adapter
->hw
;
3586 bool link_active
= false;
3589 /* get_link_status is set on LSC (link status) interrupt or
3590 * rx sequence error interrupt. get_link_status will stay
3591 * false until the e1000_check_for_link establishes link
3592 * for copper adapters ONLY
3594 switch (hw
->phy
.media_type
) {
3595 case e1000_media_type_copper
:
3596 if (hw
->mac
.get_link_status
) {
3597 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3598 link_active
= !hw
->mac
.get_link_status
;
3603 case e1000_media_type_internal_serdes
:
3604 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3605 link_active
= hw
->mac
.serdes_has_link
;
3608 case e1000_media_type_unknown
:
3615 static bool igb_thermal_sensor_event(struct e1000_hw
*hw
, u32 event
)
3618 u32 ctrl_ext
, thstat
;
3620 /* check for thermal sensor event on i350 copper only */
3621 if (hw
->mac
.type
== e1000_i350
) {
3622 thstat
= rd32(E1000_THSTAT
);
3623 ctrl_ext
= rd32(E1000_CTRL_EXT
);
3625 if ((hw
->phy
.media_type
== e1000_media_type_copper
) &&
3626 !(ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_SGMII
)) {
3627 ret
= !!(thstat
& event
);
3635 * igb_watchdog - Timer Call-back
3636 * @data: pointer to adapter cast into an unsigned long
3638 static void igb_watchdog(unsigned long data
)
3640 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
3641 /* Do the rest outside of interrupt context */
3642 schedule_work(&adapter
->watchdog_task
);
3645 static void igb_watchdog_task(struct work_struct
*work
)
3647 struct igb_adapter
*adapter
= container_of(work
,
3650 struct e1000_hw
*hw
= &adapter
->hw
;
3651 struct net_device
*netdev
= adapter
->netdev
;
3655 link
= igb_has_link(adapter
);
3657 /* Cancel scheduled suspend requests. */
3658 pm_runtime_resume(netdev
->dev
.parent
);
3660 if (!netif_carrier_ok(netdev
)) {
3662 hw
->mac
.ops
.get_speed_and_duplex(hw
,
3663 &adapter
->link_speed
,
3664 &adapter
->link_duplex
);
3666 ctrl
= rd32(E1000_CTRL
);
3667 /* Links status message must follow this format */
3668 printk(KERN_INFO
"igb: %s NIC Link is Up %d Mbps %s "
3669 "Duplex, Flow Control: %s\n",
3671 adapter
->link_speed
,
3672 adapter
->link_duplex
== FULL_DUPLEX
?
3674 (ctrl
& E1000_CTRL_TFCE
) &&
3675 (ctrl
& E1000_CTRL_RFCE
) ? "RX/TX" :
3676 (ctrl
& E1000_CTRL_RFCE
) ? "RX" :
3677 (ctrl
& E1000_CTRL_TFCE
) ? "TX" : "None");
3679 /* check for thermal sensor event */
3680 if (igb_thermal_sensor_event(hw
,
3681 E1000_THSTAT_LINK_THROTTLE
)) {
3682 netdev_info(netdev
, "The network adapter link "
3683 "speed was downshifted because it "
3687 /* adjust timeout factor according to speed/duplex */
3688 adapter
->tx_timeout_factor
= 1;
3689 switch (adapter
->link_speed
) {
3691 adapter
->tx_timeout_factor
= 14;
3694 /* maybe add some timeout factor ? */
3698 netif_carrier_on(netdev
);
3700 igb_ping_all_vfs(adapter
);
3701 igb_check_vf_rate_limit(adapter
);
3703 /* link state has changed, schedule phy info update */
3704 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3705 mod_timer(&adapter
->phy_info_timer
,
3706 round_jiffies(jiffies
+ 2 * HZ
));
3709 if (netif_carrier_ok(netdev
)) {
3710 adapter
->link_speed
= 0;
3711 adapter
->link_duplex
= 0;
3713 /* check for thermal sensor event */
3714 if (igb_thermal_sensor_event(hw
,
3715 E1000_THSTAT_PWR_DOWN
)) {
3716 netdev_err(netdev
, "The network adapter was "
3717 "stopped because it overheated\n");
3720 /* Links status message must follow this format */
3721 printk(KERN_INFO
"igb: %s NIC Link is Down\n",
3723 netif_carrier_off(netdev
);
3725 igb_ping_all_vfs(adapter
);
3727 /* link state has changed, schedule phy info update */
3728 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3729 mod_timer(&adapter
->phy_info_timer
,
3730 round_jiffies(jiffies
+ 2 * HZ
));
3732 pm_schedule_suspend(netdev
->dev
.parent
,
3737 spin_lock(&adapter
->stats64_lock
);
3738 igb_update_stats(adapter
, &adapter
->stats64
);
3739 spin_unlock(&adapter
->stats64_lock
);
3741 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
3742 struct igb_ring
*tx_ring
= adapter
->tx_ring
[i
];
3743 if (!netif_carrier_ok(netdev
)) {
3744 /* We've lost link, so the controller stops DMA,
3745 * but we've got queued Tx work that's never going
3746 * to get done, so reset controller to flush Tx.
3747 * (Do the reset outside of interrupt context). */
3748 if (igb_desc_unused(tx_ring
) + 1 < tx_ring
->count
) {
3749 adapter
->tx_timeout_count
++;
3750 schedule_work(&adapter
->reset_task
);
3751 /* return immediately since reset is imminent */
3756 /* Force detection of hung controller every watchdog period */
3757 set_bit(IGB_RING_FLAG_TX_DETECT_HANG
, &tx_ring
->flags
);
3760 /* Cause software interrupt to ensure rx ring is cleaned */
3761 if (adapter
->msix_entries
) {
3763 for (i
= 0; i
< adapter
->num_q_vectors
; i
++)
3764 eics
|= adapter
->q_vector
[i
]->eims_value
;
3765 wr32(E1000_EICS
, eics
);
3767 wr32(E1000_ICS
, E1000_ICS_RXDMT0
);
3770 igb_spoof_check(adapter
);
3772 /* Reset the timer */
3773 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3774 mod_timer(&adapter
->watchdog_timer
,
3775 round_jiffies(jiffies
+ 2 * HZ
));
3778 enum latency_range
{
3782 latency_invalid
= 255
3786 * igb_update_ring_itr - update the dynamic ITR value based on packet size
3788 * Stores a new ITR value based on strictly on packet size. This
3789 * algorithm is less sophisticated than that used in igb_update_itr,
3790 * due to the difficulty of synchronizing statistics across multiple
3791 * receive rings. The divisors and thresholds used by this function
3792 * were determined based on theoretical maximum wire speed and testing
3793 * data, in order to minimize response time while increasing bulk
3795 * This functionality is controlled by the InterruptThrottleRate module
3796 * parameter (see igb_param.c)
3797 * NOTE: This function is called only when operating in a multiqueue
3798 * receive environment.
3799 * @q_vector: pointer to q_vector
3801 static void igb_update_ring_itr(struct igb_q_vector
*q_vector
)
3803 int new_val
= q_vector
->itr_val
;
3804 int avg_wire_size
= 0;
3805 struct igb_adapter
*adapter
= q_vector
->adapter
;
3806 unsigned int packets
;
3808 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3809 * ints/sec - ITR timer value of 120 ticks.
3811 if (adapter
->link_speed
!= SPEED_1000
) {
3812 new_val
= IGB_4K_ITR
;
3816 packets
= q_vector
->rx
.total_packets
;
3818 avg_wire_size
= q_vector
->rx
.total_bytes
/ packets
;
3820 packets
= q_vector
->tx
.total_packets
;
3822 avg_wire_size
= max_t(u32
, avg_wire_size
,
3823 q_vector
->tx
.total_bytes
/ packets
);
3825 /* if avg_wire_size isn't set no work was done */
3829 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3830 avg_wire_size
+= 24;
3832 /* Don't starve jumbo frames */
3833 avg_wire_size
= min(avg_wire_size
, 3000);
3835 /* Give a little boost to mid-size frames */
3836 if ((avg_wire_size
> 300) && (avg_wire_size
< 1200))
3837 new_val
= avg_wire_size
/ 3;
3839 new_val
= avg_wire_size
/ 2;
3841 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3842 if (new_val
< IGB_20K_ITR
&&
3843 ((q_vector
->rx
.ring
&& adapter
->rx_itr_setting
== 3) ||
3844 (!q_vector
->rx
.ring
&& adapter
->tx_itr_setting
== 3)))
3845 new_val
= IGB_20K_ITR
;
3848 if (new_val
!= q_vector
->itr_val
) {
3849 q_vector
->itr_val
= new_val
;
3850 q_vector
->set_itr
= 1;
3853 q_vector
->rx
.total_bytes
= 0;
3854 q_vector
->rx
.total_packets
= 0;
3855 q_vector
->tx
.total_bytes
= 0;
3856 q_vector
->tx
.total_packets
= 0;
3860 * igb_update_itr - update the dynamic ITR value based on statistics
3861 * Stores a new ITR value based on packets and byte
3862 * counts during the last interrupt. The advantage of per interrupt
3863 * computation is faster updates and more accurate ITR for the current
3864 * traffic pattern. Constants in this function were computed
3865 * based on theoretical maximum wire speed and thresholds were set based
3866 * on testing data as well as attempting to minimize response time
3867 * while increasing bulk throughput.
3868 * this functionality is controlled by the InterruptThrottleRate module
3869 * parameter (see igb_param.c)
3870 * NOTE: These calculations are only valid when operating in a single-
3871 * queue environment.
3872 * @q_vector: pointer to q_vector
3873 * @ring_container: ring info to update the itr for
3875 static void igb_update_itr(struct igb_q_vector
*q_vector
,
3876 struct igb_ring_container
*ring_container
)
3878 unsigned int packets
= ring_container
->total_packets
;
3879 unsigned int bytes
= ring_container
->total_bytes
;
3880 u8 itrval
= ring_container
->itr
;
3882 /* no packets, exit with status unchanged */
3887 case lowest_latency
:
3888 /* handle TSO and jumbo frames */
3889 if (bytes
/packets
> 8000)
3890 itrval
= bulk_latency
;
3891 else if ((packets
< 5) && (bytes
> 512))
3892 itrval
= low_latency
;
3894 case low_latency
: /* 50 usec aka 20000 ints/s */
3895 if (bytes
> 10000) {
3896 /* this if handles the TSO accounting */
3897 if (bytes
/packets
> 8000) {
3898 itrval
= bulk_latency
;
3899 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
3900 itrval
= bulk_latency
;
3901 } else if ((packets
> 35)) {
3902 itrval
= lowest_latency
;
3904 } else if (bytes
/packets
> 2000) {
3905 itrval
= bulk_latency
;
3906 } else if (packets
<= 2 && bytes
< 512) {
3907 itrval
= lowest_latency
;
3910 case bulk_latency
: /* 250 usec aka 4000 ints/s */
3911 if (bytes
> 25000) {
3913 itrval
= low_latency
;
3914 } else if (bytes
< 1500) {
3915 itrval
= low_latency
;
3920 /* clear work counters since we have the values we need */
3921 ring_container
->total_bytes
= 0;
3922 ring_container
->total_packets
= 0;
3924 /* write updated itr to ring container */
3925 ring_container
->itr
= itrval
;
3928 static void igb_set_itr(struct igb_q_vector
*q_vector
)
3930 struct igb_adapter
*adapter
= q_vector
->adapter
;
3931 u32 new_itr
= q_vector
->itr_val
;
3934 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3935 if (adapter
->link_speed
!= SPEED_1000
) {
3937 new_itr
= IGB_4K_ITR
;
3941 igb_update_itr(q_vector
, &q_vector
->tx
);
3942 igb_update_itr(q_vector
, &q_vector
->rx
);
3944 current_itr
= max(q_vector
->rx
.itr
, q_vector
->tx
.itr
);
3946 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3947 if (current_itr
== lowest_latency
&&
3948 ((q_vector
->rx
.ring
&& adapter
->rx_itr_setting
== 3) ||
3949 (!q_vector
->rx
.ring
&& adapter
->tx_itr_setting
== 3)))
3950 current_itr
= low_latency
;
3952 switch (current_itr
) {
3953 /* counts and packets in update_itr are dependent on these numbers */
3954 case lowest_latency
:
3955 new_itr
= IGB_70K_ITR
; /* 70,000 ints/sec */
3958 new_itr
= IGB_20K_ITR
; /* 20,000 ints/sec */
3961 new_itr
= IGB_4K_ITR
; /* 4,000 ints/sec */
3968 if (new_itr
!= q_vector
->itr_val
) {
3969 /* this attempts to bias the interrupt rate towards Bulk
3970 * by adding intermediate steps when interrupt rate is
3972 new_itr
= new_itr
> q_vector
->itr_val
?
3973 max((new_itr
* q_vector
->itr_val
) /
3974 (new_itr
+ (q_vector
->itr_val
>> 2)),
3977 /* Don't write the value here; it resets the adapter's
3978 * internal timer, and causes us to delay far longer than
3979 * we should between interrupts. Instead, we write the ITR
3980 * value at the beginning of the next interrupt so the timing
3981 * ends up being correct.
3983 q_vector
->itr_val
= new_itr
;
3984 q_vector
->set_itr
= 1;
3988 static void igb_tx_ctxtdesc(struct igb_ring
*tx_ring
, u32 vlan_macip_lens
,
3989 u32 type_tucmd
, u32 mss_l4len_idx
)
3991 struct e1000_adv_tx_context_desc
*context_desc
;
3992 u16 i
= tx_ring
->next_to_use
;
3994 context_desc
= IGB_TX_CTXTDESC(tx_ring
, i
);
3997 tx_ring
->next_to_use
= (i
< tx_ring
->count
) ? i
: 0;
3999 /* set bits to identify this as an advanced context descriptor */
4000 type_tucmd
|= E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
;
4002 /* For 82575, context index must be unique per ring. */
4003 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX
, &tx_ring
->flags
))
4004 mss_l4len_idx
|= tx_ring
->reg_idx
<< 4;
4006 context_desc
->vlan_macip_lens
= cpu_to_le32(vlan_macip_lens
);
4007 context_desc
->seqnum_seed
= 0;
4008 context_desc
->type_tucmd_mlhl
= cpu_to_le32(type_tucmd
);
4009 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
4012 static int igb_tso(struct igb_ring
*tx_ring
,
4013 struct igb_tx_buffer
*first
,
4016 struct sk_buff
*skb
= first
->skb
;
4017 u32 vlan_macip_lens
, type_tucmd
;
4018 u32 mss_l4len_idx
, l4len
;
4020 if (!skb_is_gso(skb
))
4023 if (skb_header_cloned(skb
)) {
4024 int err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
4029 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4030 type_tucmd
= E1000_ADVTXD_TUCMD_L4T_TCP
;
4032 if (first
->protocol
== __constant_htons(ETH_P_IP
)) {
4033 struct iphdr
*iph
= ip_hdr(skb
);
4036 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
4040 type_tucmd
|= E1000_ADVTXD_TUCMD_IPV4
;
4041 first
->tx_flags
|= IGB_TX_FLAGS_TSO
|
4044 } else if (skb_is_gso_v6(skb
)) {
4045 ipv6_hdr(skb
)->payload_len
= 0;
4046 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
4047 &ipv6_hdr(skb
)->daddr
,
4049 first
->tx_flags
|= IGB_TX_FLAGS_TSO
|
4053 /* compute header lengths */
4054 l4len
= tcp_hdrlen(skb
);
4055 *hdr_len
= skb_transport_offset(skb
) + l4len
;
4057 /* update gso size and bytecount with header size */
4058 first
->gso_segs
= skb_shinfo(skb
)->gso_segs
;
4059 first
->bytecount
+= (first
->gso_segs
- 1) * *hdr_len
;
4062 mss_l4len_idx
= l4len
<< E1000_ADVTXD_L4LEN_SHIFT
;
4063 mss_l4len_idx
|= skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
;
4065 /* VLAN MACLEN IPLEN */
4066 vlan_macip_lens
= skb_network_header_len(skb
);
4067 vlan_macip_lens
|= skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
;
4068 vlan_macip_lens
|= first
->tx_flags
& IGB_TX_FLAGS_VLAN_MASK
;
4070 igb_tx_ctxtdesc(tx_ring
, vlan_macip_lens
, type_tucmd
, mss_l4len_idx
);
4075 static void igb_tx_csum(struct igb_ring
*tx_ring
, struct igb_tx_buffer
*first
)
4077 struct sk_buff
*skb
= first
->skb
;
4078 u32 vlan_macip_lens
= 0;
4079 u32 mss_l4len_idx
= 0;
4082 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
4083 if (!(first
->tx_flags
& IGB_TX_FLAGS_VLAN
))
4087 switch (first
->protocol
) {
4088 case __constant_htons(ETH_P_IP
):
4089 vlan_macip_lens
|= skb_network_header_len(skb
);
4090 type_tucmd
|= E1000_ADVTXD_TUCMD_IPV4
;
4091 l4_hdr
= ip_hdr(skb
)->protocol
;
4093 case __constant_htons(ETH_P_IPV6
):
4094 vlan_macip_lens
|= skb_network_header_len(skb
);
4095 l4_hdr
= ipv6_hdr(skb
)->nexthdr
;
4098 if (unlikely(net_ratelimit())) {
4099 dev_warn(tx_ring
->dev
,
4100 "partial checksum but proto=%x!\n",
4108 type_tucmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
4109 mss_l4len_idx
= tcp_hdrlen(skb
) <<
4110 E1000_ADVTXD_L4LEN_SHIFT
;
4113 type_tucmd
|= E1000_ADVTXD_TUCMD_L4T_SCTP
;
4114 mss_l4len_idx
= sizeof(struct sctphdr
) <<
4115 E1000_ADVTXD_L4LEN_SHIFT
;
4118 mss_l4len_idx
= sizeof(struct udphdr
) <<
4119 E1000_ADVTXD_L4LEN_SHIFT
;
4122 if (unlikely(net_ratelimit())) {
4123 dev_warn(tx_ring
->dev
,
4124 "partial checksum but l4 proto=%x!\n",
4130 /* update TX checksum flag */
4131 first
->tx_flags
|= IGB_TX_FLAGS_CSUM
;
4134 vlan_macip_lens
|= skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
;
4135 vlan_macip_lens
|= first
->tx_flags
& IGB_TX_FLAGS_VLAN_MASK
;
4137 igb_tx_ctxtdesc(tx_ring
, vlan_macip_lens
, type_tucmd
, mss_l4len_idx
);
4140 static __le32
igb_tx_cmd_type(u32 tx_flags
)
4142 /* set type for advanced descriptor with frame checksum insertion */
4143 __le32 cmd_type
= cpu_to_le32(E1000_ADVTXD_DTYP_DATA
|
4144 E1000_ADVTXD_DCMD_IFCS
|
4145 E1000_ADVTXD_DCMD_DEXT
);
4147 /* set HW vlan bit if vlan is present */
4148 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
4149 cmd_type
|= cpu_to_le32(E1000_ADVTXD_DCMD_VLE
);
4151 #ifdef CONFIG_IGB_PTP
4152 /* set timestamp bit if present */
4153 if (unlikely(tx_flags
& IGB_TX_FLAGS_TSTAMP
))
4154 cmd_type
|= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP
);
4155 #endif /* CONFIG_IGB_PTP */
4157 /* set segmentation bits for TSO */
4158 if (tx_flags
& IGB_TX_FLAGS_TSO
)
4159 cmd_type
|= cpu_to_le32(E1000_ADVTXD_DCMD_TSE
);
4164 static void igb_tx_olinfo_status(struct igb_ring
*tx_ring
,
4165 union e1000_adv_tx_desc
*tx_desc
,
4166 u32 tx_flags
, unsigned int paylen
)
4168 u32 olinfo_status
= paylen
<< E1000_ADVTXD_PAYLEN_SHIFT
;
4170 /* 82575 requires a unique index per ring if any offload is enabled */
4171 if ((tx_flags
& (IGB_TX_FLAGS_CSUM
| IGB_TX_FLAGS_VLAN
)) &&
4172 test_bit(IGB_RING_FLAG_TX_CTX_IDX
, &tx_ring
->flags
))
4173 olinfo_status
|= tx_ring
->reg_idx
<< 4;
4175 /* insert L4 checksum */
4176 if (tx_flags
& IGB_TX_FLAGS_CSUM
) {
4177 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
4179 /* insert IPv4 checksum */
4180 if (tx_flags
& IGB_TX_FLAGS_IPV4
)
4181 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
4184 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
4188 * The largest size we can write to the descriptor is 65535. In order to
4189 * maintain a power of two alignment we have to limit ourselves to 32K.
4191 #define IGB_MAX_TXD_PWR 15
4192 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
4194 static void igb_tx_map(struct igb_ring
*tx_ring
,
4195 struct igb_tx_buffer
*first
,
4198 struct sk_buff
*skb
= first
->skb
;
4199 struct igb_tx_buffer
*tx_buffer
;
4200 union e1000_adv_tx_desc
*tx_desc
;
4202 struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[0];
4203 unsigned int data_len
= skb
->data_len
;
4204 unsigned int size
= skb_headlen(skb
);
4205 unsigned int paylen
= skb
->len
- hdr_len
;
4207 u32 tx_flags
= first
->tx_flags
;
4208 u16 i
= tx_ring
->next_to_use
;
4210 tx_desc
= IGB_TX_DESC(tx_ring
, i
);
4212 igb_tx_olinfo_status(tx_ring
, tx_desc
, tx_flags
, paylen
);
4213 cmd_type
= igb_tx_cmd_type(tx_flags
);
4215 dma
= dma_map_single(tx_ring
->dev
, skb
->data
, size
, DMA_TO_DEVICE
);
4216 if (dma_mapping_error(tx_ring
->dev
, dma
))
4219 /* record length, and DMA address */
4220 dma_unmap_len_set(first
, len
, size
);
4221 dma_unmap_addr_set(first
, dma
, dma
);
4222 tx_desc
->read
.buffer_addr
= cpu_to_le64(dma
);
4225 while (unlikely(size
> IGB_MAX_DATA_PER_TXD
)) {
4226 tx_desc
->read
.cmd_type_len
=
4227 cmd_type
| cpu_to_le32(IGB_MAX_DATA_PER_TXD
);
4231 if (i
== tx_ring
->count
) {
4232 tx_desc
= IGB_TX_DESC(tx_ring
, 0);
4236 dma
+= IGB_MAX_DATA_PER_TXD
;
4237 size
-= IGB_MAX_DATA_PER_TXD
;
4239 tx_desc
->read
.olinfo_status
= 0;
4240 tx_desc
->read
.buffer_addr
= cpu_to_le64(dma
);
4243 if (likely(!data_len
))
4246 tx_desc
->read
.cmd_type_len
= cmd_type
| cpu_to_le32(size
);
4250 if (i
== tx_ring
->count
) {
4251 tx_desc
= IGB_TX_DESC(tx_ring
, 0);
4255 size
= skb_frag_size(frag
);
4258 dma
= skb_frag_dma_map(tx_ring
->dev
, frag
, 0,
4259 size
, DMA_TO_DEVICE
);
4260 if (dma_mapping_error(tx_ring
->dev
, dma
))
4263 tx_buffer
= &tx_ring
->tx_buffer_info
[i
];
4264 dma_unmap_len_set(tx_buffer
, len
, size
);
4265 dma_unmap_addr_set(tx_buffer
, dma
, dma
);
4267 tx_desc
->read
.olinfo_status
= 0;
4268 tx_desc
->read
.buffer_addr
= cpu_to_le64(dma
);
4273 netdev_tx_sent_queue(txring_txq(tx_ring
), first
->bytecount
);
4275 /* write last descriptor with RS and EOP bits */
4276 cmd_type
|= cpu_to_le32(size
) | cpu_to_le32(IGB_TXD_DCMD
);
4277 if (unlikely(skb
->no_fcs
))
4278 cmd_type
&= ~(cpu_to_le32(E1000_ADVTXD_DCMD_IFCS
));
4279 tx_desc
->read
.cmd_type_len
= cmd_type
;
4281 /* set the timestamp */
4282 first
->time_stamp
= jiffies
;
4285 * Force memory writes to complete before letting h/w know there
4286 * are new descriptors to fetch. (Only applicable for weak-ordered
4287 * memory model archs, such as IA-64).
4289 * We also need this memory barrier to make certain all of the
4290 * status bits have been updated before next_to_watch is written.
4294 /* set next_to_watch value indicating a packet is present */
4295 first
->next_to_watch
= tx_desc
;
4298 if (i
== tx_ring
->count
)
4301 tx_ring
->next_to_use
= i
;
4303 writel(i
, tx_ring
->tail
);
4305 /* we need this if more than one processor can write to our tail
4306 * at a time, it syncronizes IO on IA64/Altix systems */
4312 dev_err(tx_ring
->dev
, "TX DMA map failed\n");
4314 /* clear dma mappings for failed tx_buffer_info map */
4316 tx_buffer
= &tx_ring
->tx_buffer_info
[i
];
4317 igb_unmap_and_free_tx_resource(tx_ring
, tx_buffer
);
4318 if (tx_buffer
== first
)
4325 tx_ring
->next_to_use
= i
;
4328 static int __igb_maybe_stop_tx(struct igb_ring
*tx_ring
, const u16 size
)
4330 struct net_device
*netdev
= tx_ring
->netdev
;
4332 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
4334 /* Herbert's original patch had:
4335 * smp_mb__after_netif_stop_queue();
4336 * but since that doesn't exist yet, just open code it. */
4339 /* We need to check again in a case another CPU has just
4340 * made room available. */
4341 if (igb_desc_unused(tx_ring
) < size
)
4345 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
4347 u64_stats_update_begin(&tx_ring
->tx_syncp2
);
4348 tx_ring
->tx_stats
.restart_queue2
++;
4349 u64_stats_update_end(&tx_ring
->tx_syncp2
);
4354 static inline int igb_maybe_stop_tx(struct igb_ring
*tx_ring
, const u16 size
)
4356 if (igb_desc_unused(tx_ring
) >= size
)
4358 return __igb_maybe_stop_tx(tx_ring
, size
);
4361 netdev_tx_t
igb_xmit_frame_ring(struct sk_buff
*skb
,
4362 struct igb_ring
*tx_ring
)
4364 #ifdef CONFIG_IGB_PTP
4365 struct igb_adapter
*adapter
= netdev_priv(tx_ring
->netdev
);
4366 #endif /* CONFIG_IGB_PTP */
4367 struct igb_tx_buffer
*first
;
4370 __be16 protocol
= vlan_get_protocol(skb
);
4373 /* need: 1 descriptor per page,
4374 * + 2 desc gap to keep tail from touching head,
4375 * + 1 desc for skb->data,
4376 * + 1 desc for context descriptor,
4377 * otherwise try next time */
4378 if (igb_maybe_stop_tx(tx_ring
, skb_shinfo(skb
)->nr_frags
+ 4)) {
4379 /* this is a hard error */
4380 return NETDEV_TX_BUSY
;
4383 /* record the location of the first descriptor for this packet */
4384 first
= &tx_ring
->tx_buffer_info
[tx_ring
->next_to_use
];
4386 first
->bytecount
= skb
->len
;
4387 first
->gso_segs
= 1;
4389 #ifdef CONFIG_IGB_PTP
4390 if (unlikely((skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
4391 !(adapter
->ptp_tx_skb
))) {
4392 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
4393 tx_flags
|= IGB_TX_FLAGS_TSTAMP
;
4395 adapter
->ptp_tx_skb
= skb_get(skb
);
4396 if (adapter
->hw
.mac
.type
== e1000_82576
)
4397 schedule_work(&adapter
->ptp_tx_work
);
4399 #endif /* CONFIG_IGB_PTP */
4401 if (vlan_tx_tag_present(skb
)) {
4402 tx_flags
|= IGB_TX_FLAGS_VLAN
;
4403 tx_flags
|= (vlan_tx_tag_get(skb
) << IGB_TX_FLAGS_VLAN_SHIFT
);
4406 /* record initial flags and protocol */
4407 first
->tx_flags
= tx_flags
;
4408 first
->protocol
= protocol
;
4410 tso
= igb_tso(tx_ring
, first
, &hdr_len
);
4414 igb_tx_csum(tx_ring
, first
);
4416 igb_tx_map(tx_ring
, first
, hdr_len
);
4418 /* Make sure there is space in the ring for the next send. */
4419 igb_maybe_stop_tx(tx_ring
, MAX_SKB_FRAGS
+ 4);
4421 return NETDEV_TX_OK
;
4424 igb_unmap_and_free_tx_resource(tx_ring
, first
);
4426 return NETDEV_TX_OK
;
4429 static inline struct igb_ring
*igb_tx_queue_mapping(struct igb_adapter
*adapter
,
4430 struct sk_buff
*skb
)
4432 unsigned int r_idx
= skb
->queue_mapping
;
4434 if (r_idx
>= adapter
->num_tx_queues
)
4435 r_idx
= r_idx
% adapter
->num_tx_queues
;
4437 return adapter
->tx_ring
[r_idx
];
4440 static netdev_tx_t
igb_xmit_frame(struct sk_buff
*skb
,
4441 struct net_device
*netdev
)
4443 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4445 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
4446 dev_kfree_skb_any(skb
);
4447 return NETDEV_TX_OK
;
4450 if (skb
->len
<= 0) {
4451 dev_kfree_skb_any(skb
);
4452 return NETDEV_TX_OK
;
4456 * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4457 * in order to meet this minimum size requirement.
4459 if (unlikely(skb
->len
< 17)) {
4460 if (skb_pad(skb
, 17 - skb
->len
))
4461 return NETDEV_TX_OK
;
4463 skb_set_tail_pointer(skb
, 17);
4466 return igb_xmit_frame_ring(skb
, igb_tx_queue_mapping(adapter
, skb
));
4470 * igb_tx_timeout - Respond to a Tx Hang
4471 * @netdev: network interface device structure
4473 static void igb_tx_timeout(struct net_device
*netdev
)
4475 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4476 struct e1000_hw
*hw
= &adapter
->hw
;
4478 /* Do the reset outside of interrupt context */
4479 adapter
->tx_timeout_count
++;
4481 if (hw
->mac
.type
>= e1000_82580
)
4482 hw
->dev_spec
._82575
.global_device_reset
= true;
4484 schedule_work(&adapter
->reset_task
);
4486 (adapter
->eims_enable_mask
& ~adapter
->eims_other
));
4489 static void igb_reset_task(struct work_struct
*work
)
4491 struct igb_adapter
*adapter
;
4492 adapter
= container_of(work
, struct igb_adapter
, reset_task
);
4495 netdev_err(adapter
->netdev
, "Reset adapter\n");
4496 igb_reinit_locked(adapter
);
4500 * igb_get_stats64 - Get System Network Statistics
4501 * @netdev: network interface device structure
4502 * @stats: rtnl_link_stats64 pointer
4505 static struct rtnl_link_stats64
*igb_get_stats64(struct net_device
*netdev
,
4506 struct rtnl_link_stats64
*stats
)
4508 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4510 spin_lock(&adapter
->stats64_lock
);
4511 igb_update_stats(adapter
, &adapter
->stats64
);
4512 memcpy(stats
, &adapter
->stats64
, sizeof(*stats
));
4513 spin_unlock(&adapter
->stats64_lock
);
4519 * igb_change_mtu - Change the Maximum Transfer Unit
4520 * @netdev: network interface device structure
4521 * @new_mtu: new value for maximum frame size
4523 * Returns 0 on success, negative on failure
4525 static int igb_change_mtu(struct net_device
*netdev
, int new_mtu
)
4527 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4528 struct pci_dev
*pdev
= adapter
->pdev
;
4529 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
+ VLAN_HLEN
;
4531 if ((new_mtu
< 68) || (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
4532 dev_err(&pdev
->dev
, "Invalid MTU setting\n");
4536 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4537 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
4538 dev_err(&pdev
->dev
, "MTU > 9216 not supported.\n");
4542 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
4545 /* igb_down has a dependency on max_frame_size */
4546 adapter
->max_frame_size
= max_frame
;
4548 if (netif_running(netdev
))
4551 dev_info(&pdev
->dev
, "changing MTU from %d to %d\n",
4552 netdev
->mtu
, new_mtu
);
4553 netdev
->mtu
= new_mtu
;
4555 if (netif_running(netdev
))
4560 clear_bit(__IGB_RESETTING
, &adapter
->state
);
4566 * igb_update_stats - Update the board statistics counters
4567 * @adapter: board private structure
4570 void igb_update_stats(struct igb_adapter
*adapter
,
4571 struct rtnl_link_stats64
*net_stats
)
4573 struct e1000_hw
*hw
= &adapter
->hw
;
4574 struct pci_dev
*pdev
= adapter
->pdev
;
4580 u64 _bytes
, _packets
;
4582 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4585 * Prevent stats update while adapter is being reset, or if the pci
4586 * connection is down.
4588 if (adapter
->link_speed
== 0)
4590 if (pci_channel_offline(pdev
))
4595 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
4596 u32 rqdpc
= rd32(E1000_RQDPC(i
));
4597 struct igb_ring
*ring
= adapter
->rx_ring
[i
];
4600 ring
->rx_stats
.drops
+= rqdpc
;
4601 net_stats
->rx_fifo_errors
+= rqdpc
;
4605 start
= u64_stats_fetch_begin_bh(&ring
->rx_syncp
);
4606 _bytes
= ring
->rx_stats
.bytes
;
4607 _packets
= ring
->rx_stats
.packets
;
4608 } while (u64_stats_fetch_retry_bh(&ring
->rx_syncp
, start
));
4610 packets
+= _packets
;
4613 net_stats
->rx_bytes
= bytes
;
4614 net_stats
->rx_packets
= packets
;
4618 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
4619 struct igb_ring
*ring
= adapter
->tx_ring
[i
];
4621 start
= u64_stats_fetch_begin_bh(&ring
->tx_syncp
);
4622 _bytes
= ring
->tx_stats
.bytes
;
4623 _packets
= ring
->tx_stats
.packets
;
4624 } while (u64_stats_fetch_retry_bh(&ring
->tx_syncp
, start
));
4626 packets
+= _packets
;
4628 net_stats
->tx_bytes
= bytes
;
4629 net_stats
->tx_packets
= packets
;
4631 /* read stats registers */
4632 adapter
->stats
.crcerrs
+= rd32(E1000_CRCERRS
);
4633 adapter
->stats
.gprc
+= rd32(E1000_GPRC
);
4634 adapter
->stats
.gorc
+= rd32(E1000_GORCL
);
4635 rd32(E1000_GORCH
); /* clear GORCL */
4636 adapter
->stats
.bprc
+= rd32(E1000_BPRC
);
4637 adapter
->stats
.mprc
+= rd32(E1000_MPRC
);
4638 adapter
->stats
.roc
+= rd32(E1000_ROC
);
4640 adapter
->stats
.prc64
+= rd32(E1000_PRC64
);
4641 adapter
->stats
.prc127
+= rd32(E1000_PRC127
);
4642 adapter
->stats
.prc255
+= rd32(E1000_PRC255
);
4643 adapter
->stats
.prc511
+= rd32(E1000_PRC511
);
4644 adapter
->stats
.prc1023
+= rd32(E1000_PRC1023
);
4645 adapter
->stats
.prc1522
+= rd32(E1000_PRC1522
);
4646 adapter
->stats
.symerrs
+= rd32(E1000_SYMERRS
);
4647 adapter
->stats
.sec
+= rd32(E1000_SEC
);
4649 mpc
= rd32(E1000_MPC
);
4650 adapter
->stats
.mpc
+= mpc
;
4651 net_stats
->rx_fifo_errors
+= mpc
;
4652 adapter
->stats
.scc
+= rd32(E1000_SCC
);
4653 adapter
->stats
.ecol
+= rd32(E1000_ECOL
);
4654 adapter
->stats
.mcc
+= rd32(E1000_MCC
);
4655 adapter
->stats
.latecol
+= rd32(E1000_LATECOL
);
4656 adapter
->stats
.dc
+= rd32(E1000_DC
);
4657 adapter
->stats
.rlec
+= rd32(E1000_RLEC
);
4658 adapter
->stats
.xonrxc
+= rd32(E1000_XONRXC
);
4659 adapter
->stats
.xontxc
+= rd32(E1000_XONTXC
);
4660 adapter
->stats
.xoffrxc
+= rd32(E1000_XOFFRXC
);
4661 adapter
->stats
.xofftxc
+= rd32(E1000_XOFFTXC
);
4662 adapter
->stats
.fcruc
+= rd32(E1000_FCRUC
);
4663 adapter
->stats
.gptc
+= rd32(E1000_GPTC
);
4664 adapter
->stats
.gotc
+= rd32(E1000_GOTCL
);
4665 rd32(E1000_GOTCH
); /* clear GOTCL */
4666 adapter
->stats
.rnbc
+= rd32(E1000_RNBC
);
4667 adapter
->stats
.ruc
+= rd32(E1000_RUC
);
4668 adapter
->stats
.rfc
+= rd32(E1000_RFC
);
4669 adapter
->stats
.rjc
+= rd32(E1000_RJC
);
4670 adapter
->stats
.tor
+= rd32(E1000_TORH
);
4671 adapter
->stats
.tot
+= rd32(E1000_TOTH
);
4672 adapter
->stats
.tpr
+= rd32(E1000_TPR
);
4674 adapter
->stats
.ptc64
+= rd32(E1000_PTC64
);
4675 adapter
->stats
.ptc127
+= rd32(E1000_PTC127
);
4676 adapter
->stats
.ptc255
+= rd32(E1000_PTC255
);
4677 adapter
->stats
.ptc511
+= rd32(E1000_PTC511
);
4678 adapter
->stats
.ptc1023
+= rd32(E1000_PTC1023
);
4679 adapter
->stats
.ptc1522
+= rd32(E1000_PTC1522
);
4681 adapter
->stats
.mptc
+= rd32(E1000_MPTC
);
4682 adapter
->stats
.bptc
+= rd32(E1000_BPTC
);
4684 adapter
->stats
.tpt
+= rd32(E1000_TPT
);
4685 adapter
->stats
.colc
+= rd32(E1000_COLC
);
4687 adapter
->stats
.algnerrc
+= rd32(E1000_ALGNERRC
);
4688 /* read internal phy specific stats */
4689 reg
= rd32(E1000_CTRL_EXT
);
4690 if (!(reg
& E1000_CTRL_EXT_LINK_MODE_MASK
)) {
4691 adapter
->stats
.rxerrc
+= rd32(E1000_RXERRC
);
4693 /* this stat has invalid values on i210/i211 */
4694 if ((hw
->mac
.type
!= e1000_i210
) &&
4695 (hw
->mac
.type
!= e1000_i211
))
4696 adapter
->stats
.tncrs
+= rd32(E1000_TNCRS
);
4699 adapter
->stats
.tsctc
+= rd32(E1000_TSCTC
);
4700 adapter
->stats
.tsctfc
+= rd32(E1000_TSCTFC
);
4702 adapter
->stats
.iac
+= rd32(E1000_IAC
);
4703 adapter
->stats
.icrxoc
+= rd32(E1000_ICRXOC
);
4704 adapter
->stats
.icrxptc
+= rd32(E1000_ICRXPTC
);
4705 adapter
->stats
.icrxatc
+= rd32(E1000_ICRXATC
);
4706 adapter
->stats
.ictxptc
+= rd32(E1000_ICTXPTC
);
4707 adapter
->stats
.ictxatc
+= rd32(E1000_ICTXATC
);
4708 adapter
->stats
.ictxqec
+= rd32(E1000_ICTXQEC
);
4709 adapter
->stats
.ictxqmtc
+= rd32(E1000_ICTXQMTC
);
4710 adapter
->stats
.icrxdmtc
+= rd32(E1000_ICRXDMTC
);
4712 /* Fill out the OS statistics structure */
4713 net_stats
->multicast
= adapter
->stats
.mprc
;
4714 net_stats
->collisions
= adapter
->stats
.colc
;
4718 /* RLEC on some newer hardware can be incorrect so build
4719 * our own version based on RUC and ROC */
4720 net_stats
->rx_errors
= adapter
->stats
.rxerrc
+
4721 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
4722 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
4723 adapter
->stats
.cexterr
;
4724 net_stats
->rx_length_errors
= adapter
->stats
.ruc
+
4726 net_stats
->rx_crc_errors
= adapter
->stats
.crcerrs
;
4727 net_stats
->rx_frame_errors
= adapter
->stats
.algnerrc
;
4728 net_stats
->rx_missed_errors
= adapter
->stats
.mpc
;
4731 net_stats
->tx_errors
= adapter
->stats
.ecol
+
4732 adapter
->stats
.latecol
;
4733 net_stats
->tx_aborted_errors
= adapter
->stats
.ecol
;
4734 net_stats
->tx_window_errors
= adapter
->stats
.latecol
;
4735 net_stats
->tx_carrier_errors
= adapter
->stats
.tncrs
;
4737 /* Tx Dropped needs to be maintained elsewhere */
4740 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
4741 if ((adapter
->link_speed
== SPEED_1000
) &&
4742 (!igb_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
4743 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
4744 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
4748 /* Management Stats */
4749 adapter
->stats
.mgptc
+= rd32(E1000_MGTPTC
);
4750 adapter
->stats
.mgprc
+= rd32(E1000_MGTPRC
);
4751 adapter
->stats
.mgpdc
+= rd32(E1000_MGTPDC
);
4754 reg
= rd32(E1000_MANC
);
4755 if (reg
& E1000_MANC_EN_BMC2OS
) {
4756 adapter
->stats
.o2bgptc
+= rd32(E1000_O2BGPTC
);
4757 adapter
->stats
.o2bspc
+= rd32(E1000_O2BSPC
);
4758 adapter
->stats
.b2ospc
+= rd32(E1000_B2OSPC
);
4759 adapter
->stats
.b2ogprc
+= rd32(E1000_B2OGPRC
);
4763 static irqreturn_t
igb_msix_other(int irq
, void *data
)
4765 struct igb_adapter
*adapter
= data
;
4766 struct e1000_hw
*hw
= &adapter
->hw
;
4767 u32 icr
= rd32(E1000_ICR
);
4768 /* reading ICR causes bit 31 of EICR to be cleared */
4770 if (icr
& E1000_ICR_DRSTA
)
4771 schedule_work(&adapter
->reset_task
);
4773 if (icr
& E1000_ICR_DOUTSYNC
) {
4774 /* HW is reporting DMA is out of sync */
4775 adapter
->stats
.doosync
++;
4776 /* The DMA Out of Sync is also indication of a spoof event
4777 * in IOV mode. Check the Wrong VM Behavior register to
4778 * see if it is really a spoof event. */
4779 igb_check_wvbr(adapter
);
4782 /* Check for a mailbox event */
4783 if (icr
& E1000_ICR_VMMB
)
4784 igb_msg_task(adapter
);
4786 if (icr
& E1000_ICR_LSC
) {
4787 hw
->mac
.get_link_status
= 1;
4788 /* guard against interrupt when we're going down */
4789 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
4790 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
4793 #ifdef CONFIG_IGB_PTP
4794 if (icr
& E1000_ICR_TS
) {
4795 u32 tsicr
= rd32(E1000_TSICR
);
4797 if (tsicr
& E1000_TSICR_TXTS
) {
4798 /* acknowledge the interrupt */
4799 wr32(E1000_TSICR
, E1000_TSICR_TXTS
);
4800 /* retrieve hardware timestamp */
4801 schedule_work(&adapter
->ptp_tx_work
);
4804 #endif /* CONFIG_IGB_PTP */
4806 wr32(E1000_EIMS
, adapter
->eims_other
);
4811 static void igb_write_itr(struct igb_q_vector
*q_vector
)
4813 struct igb_adapter
*adapter
= q_vector
->adapter
;
4814 u32 itr_val
= q_vector
->itr_val
& 0x7FFC;
4816 if (!q_vector
->set_itr
)
4822 if (adapter
->hw
.mac
.type
== e1000_82575
)
4823 itr_val
|= itr_val
<< 16;
4825 itr_val
|= E1000_EITR_CNT_IGNR
;
4827 writel(itr_val
, q_vector
->itr_register
);
4828 q_vector
->set_itr
= 0;
4831 static irqreturn_t
igb_msix_ring(int irq
, void *data
)
4833 struct igb_q_vector
*q_vector
= data
;
4835 /* Write the ITR value calculated from the previous interrupt. */
4836 igb_write_itr(q_vector
);
4838 napi_schedule(&q_vector
->napi
);
4843 #ifdef CONFIG_IGB_DCA
4844 static void igb_update_dca(struct igb_q_vector
*q_vector
)
4846 struct igb_adapter
*adapter
= q_vector
->adapter
;
4847 struct e1000_hw
*hw
= &adapter
->hw
;
4848 int cpu
= get_cpu();
4850 if (q_vector
->cpu
== cpu
)
4853 if (q_vector
->tx
.ring
) {
4854 int q
= q_vector
->tx
.ring
->reg_idx
;
4855 u32 dca_txctrl
= rd32(E1000_DCA_TXCTRL(q
));
4856 if (hw
->mac
.type
== e1000_82575
) {
4857 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK
;
4858 dca_txctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
);
4860 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK_82576
;
4861 dca_txctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
) <<
4862 E1000_DCA_TXCTRL_CPUID_SHIFT
;
4864 dca_txctrl
|= E1000_DCA_TXCTRL_DESC_DCA_EN
;
4865 wr32(E1000_DCA_TXCTRL(q
), dca_txctrl
);
4867 if (q_vector
->rx
.ring
) {
4868 int q
= q_vector
->rx
.ring
->reg_idx
;
4869 u32 dca_rxctrl
= rd32(E1000_DCA_RXCTRL(q
));
4870 if (hw
->mac
.type
== e1000_82575
) {
4871 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK
;
4872 dca_rxctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
);
4874 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK_82576
;
4875 dca_rxctrl
|= dca3_get_tag(&adapter
->pdev
->dev
, cpu
) <<
4876 E1000_DCA_RXCTRL_CPUID_SHIFT
;
4878 dca_rxctrl
|= E1000_DCA_RXCTRL_DESC_DCA_EN
;
4879 dca_rxctrl
|= E1000_DCA_RXCTRL_HEAD_DCA_EN
;
4880 dca_rxctrl
|= E1000_DCA_RXCTRL_DATA_DCA_EN
;
4881 wr32(E1000_DCA_RXCTRL(q
), dca_rxctrl
);
4883 q_vector
->cpu
= cpu
;
4888 static void igb_setup_dca(struct igb_adapter
*adapter
)
4890 struct e1000_hw
*hw
= &adapter
->hw
;
4893 if (!(adapter
->flags
& IGB_FLAG_DCA_ENABLED
))
4896 /* Always use CB2 mode, difference is masked in the CB driver. */
4897 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_CB2
);
4899 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
4900 adapter
->q_vector
[i
]->cpu
= -1;
4901 igb_update_dca(adapter
->q_vector
[i
]);
4905 static int __igb_notify_dca(struct device
*dev
, void *data
)
4907 struct net_device
*netdev
= dev_get_drvdata(dev
);
4908 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4909 struct pci_dev
*pdev
= adapter
->pdev
;
4910 struct e1000_hw
*hw
= &adapter
->hw
;
4911 unsigned long event
= *(unsigned long *)data
;
4914 case DCA_PROVIDER_ADD
:
4915 /* if already enabled, don't do it again */
4916 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
4918 if (dca_add_requester(dev
) == 0) {
4919 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
4920 dev_info(&pdev
->dev
, "DCA enabled\n");
4921 igb_setup_dca(adapter
);
4924 /* Fall Through since DCA is disabled. */
4925 case DCA_PROVIDER_REMOVE
:
4926 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
4927 /* without this a class_device is left
4928 * hanging around in the sysfs model */
4929 dca_remove_requester(dev
);
4930 dev_info(&pdev
->dev
, "DCA disabled\n");
4931 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
4932 wr32(E1000_DCA_CTRL
, E1000_DCA_CTRL_DCA_MODE_DISABLE
);
4940 static int igb_notify_dca(struct notifier_block
*nb
, unsigned long event
,
4945 ret_val
= driver_for_each_device(&igb_driver
.driver
, NULL
, &event
,
4948 return ret_val
? NOTIFY_BAD
: NOTIFY_DONE
;
4950 #endif /* CONFIG_IGB_DCA */
4952 #ifdef CONFIG_PCI_IOV
4953 static int igb_vf_configure(struct igb_adapter
*adapter
, int vf
)
4955 unsigned char mac_addr
[ETH_ALEN
];
4957 eth_random_addr(mac_addr
);
4958 igb_set_vf_mac(adapter
, vf
, mac_addr
);
4963 static bool igb_vfs_are_assigned(struct igb_adapter
*adapter
)
4965 struct pci_dev
*pdev
= adapter
->pdev
;
4966 struct pci_dev
*vfdev
;
4969 switch (adapter
->hw
.mac
.type
) {
4971 dev_id
= IGB_82576_VF_DEV_ID
;
4974 dev_id
= IGB_I350_VF_DEV_ID
;
4980 /* loop through all the VFs to see if we own any that are assigned */
4981 vfdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, dev_id
, NULL
);
4983 /* if we don't own it we don't care */
4984 if (vfdev
->is_virtfn
&& vfdev
->physfn
== pdev
) {
4985 /* if it is assigned we cannot release it */
4986 if (vfdev
->dev_flags
& PCI_DEV_FLAGS_ASSIGNED
)
4990 vfdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, dev_id
, vfdev
);
4997 static void igb_ping_all_vfs(struct igb_adapter
*adapter
)
4999 struct e1000_hw
*hw
= &adapter
->hw
;
5003 for (i
= 0 ; i
< adapter
->vfs_allocated_count
; i
++) {
5004 ping
= E1000_PF_CONTROL_MSG
;
5005 if (adapter
->vf_data
[i
].flags
& IGB_VF_FLAG_CTS
)
5006 ping
|= E1000_VT_MSGTYPE_CTS
;
5007 igb_write_mbx(hw
, &ping
, 1, i
);
5011 static int igb_set_vf_promisc(struct igb_adapter
*adapter
, u32
*msgbuf
, u32 vf
)
5013 struct e1000_hw
*hw
= &adapter
->hw
;
5014 u32 vmolr
= rd32(E1000_VMOLR(vf
));
5015 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
5017 vf_data
->flags
&= ~(IGB_VF_FLAG_UNI_PROMISC
|
5018 IGB_VF_FLAG_MULTI_PROMISC
);
5019 vmolr
&= ~(E1000_VMOLR_ROPE
| E1000_VMOLR_ROMPE
| E1000_VMOLR_MPME
);
5021 if (*msgbuf
& E1000_VF_SET_PROMISC_MULTICAST
) {
5022 vmolr
|= E1000_VMOLR_MPME
;
5023 vf_data
->flags
|= IGB_VF_FLAG_MULTI_PROMISC
;
5024 *msgbuf
&= ~E1000_VF_SET_PROMISC_MULTICAST
;
5027 * if we have hashes and we are clearing a multicast promisc
5028 * flag we need to write the hashes to the MTA as this step
5029 * was previously skipped
5031 if (vf_data
->num_vf_mc_hashes
> 30) {
5032 vmolr
|= E1000_VMOLR_MPME
;
5033 } else if (vf_data
->num_vf_mc_hashes
) {
5035 vmolr
|= E1000_VMOLR_ROMPE
;
5036 for (j
= 0; j
< vf_data
->num_vf_mc_hashes
; j
++)
5037 igb_mta_set(hw
, vf_data
->vf_mc_hashes
[j
]);
5041 wr32(E1000_VMOLR(vf
), vmolr
);
5043 /* there are flags left unprocessed, likely not supported */
5044 if (*msgbuf
& E1000_VT_MSGINFO_MASK
)
5051 static int igb_set_vf_multicasts(struct igb_adapter
*adapter
,
5052 u32
*msgbuf
, u32 vf
)
5054 int n
= (msgbuf
[0] & E1000_VT_MSGINFO_MASK
) >> E1000_VT_MSGINFO_SHIFT
;
5055 u16
*hash_list
= (u16
*)&msgbuf
[1];
5056 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
5059 /* salt away the number of multicast addresses assigned
5060 * to this VF for later use to restore when the PF multi cast
5063 vf_data
->num_vf_mc_hashes
= n
;
5065 /* only up to 30 hash values supported */
5069 /* store the hashes for later use */
5070 for (i
= 0; i
< n
; i
++)
5071 vf_data
->vf_mc_hashes
[i
] = hash_list
[i
];
5073 /* Flush and reset the mta with the new values */
5074 igb_set_rx_mode(adapter
->netdev
);
5079 static void igb_restore_vf_multicasts(struct igb_adapter
*adapter
)
5081 struct e1000_hw
*hw
= &adapter
->hw
;
5082 struct vf_data_storage
*vf_data
;
5085 for (i
= 0; i
< adapter
->vfs_allocated_count
; i
++) {
5086 u32 vmolr
= rd32(E1000_VMOLR(i
));
5087 vmolr
&= ~(E1000_VMOLR_ROMPE
| E1000_VMOLR_MPME
);
5089 vf_data
= &adapter
->vf_data
[i
];
5091 if ((vf_data
->num_vf_mc_hashes
> 30) ||
5092 (vf_data
->flags
& IGB_VF_FLAG_MULTI_PROMISC
)) {
5093 vmolr
|= E1000_VMOLR_MPME
;
5094 } else if (vf_data
->num_vf_mc_hashes
) {
5095 vmolr
|= E1000_VMOLR_ROMPE
;
5096 for (j
= 0; j
< vf_data
->num_vf_mc_hashes
; j
++)
5097 igb_mta_set(hw
, vf_data
->vf_mc_hashes
[j
]);
5099 wr32(E1000_VMOLR(i
), vmolr
);
5103 static void igb_clear_vf_vfta(struct igb_adapter
*adapter
, u32 vf
)
5105 struct e1000_hw
*hw
= &adapter
->hw
;
5106 u32 pool_mask
, reg
, vid
;
5109 pool_mask
= 1 << (E1000_VLVF_POOLSEL_SHIFT
+ vf
);
5111 /* Find the vlan filter for this id */
5112 for (i
= 0; i
< E1000_VLVF_ARRAY_SIZE
; i
++) {
5113 reg
= rd32(E1000_VLVF(i
));
5115 /* remove the vf from the pool */
5118 /* if pool is empty then remove entry from vfta */
5119 if (!(reg
& E1000_VLVF_POOLSEL_MASK
) &&
5120 (reg
& E1000_VLVF_VLANID_ENABLE
)) {
5122 vid
= reg
& E1000_VLVF_VLANID_MASK
;
5123 igb_vfta_set(hw
, vid
, false);
5126 wr32(E1000_VLVF(i
), reg
);
5129 adapter
->vf_data
[vf
].vlans_enabled
= 0;
5132 static s32
igb_vlvf_set(struct igb_adapter
*adapter
, u32 vid
, bool add
, u32 vf
)
5134 struct e1000_hw
*hw
= &adapter
->hw
;
5137 /* The vlvf table only exists on 82576 hardware and newer */
5138 if (hw
->mac
.type
< e1000_82576
)
5141 /* we only need to do this if VMDq is enabled */
5142 if (!adapter
->vfs_allocated_count
)
5145 /* Find the vlan filter for this id */
5146 for (i
= 0; i
< E1000_VLVF_ARRAY_SIZE
; i
++) {
5147 reg
= rd32(E1000_VLVF(i
));
5148 if ((reg
& E1000_VLVF_VLANID_ENABLE
) &&
5149 vid
== (reg
& E1000_VLVF_VLANID_MASK
))
5154 if (i
== E1000_VLVF_ARRAY_SIZE
) {
5155 /* Did not find a matching VLAN ID entry that was
5156 * enabled. Search for a free filter entry, i.e.
5157 * one without the enable bit set
5159 for (i
= 0; i
< E1000_VLVF_ARRAY_SIZE
; i
++) {
5160 reg
= rd32(E1000_VLVF(i
));
5161 if (!(reg
& E1000_VLVF_VLANID_ENABLE
))
5165 if (i
< E1000_VLVF_ARRAY_SIZE
) {
5166 /* Found an enabled/available entry */
5167 reg
|= 1 << (E1000_VLVF_POOLSEL_SHIFT
+ vf
);
5169 /* if !enabled we need to set this up in vfta */
5170 if (!(reg
& E1000_VLVF_VLANID_ENABLE
)) {
5171 /* add VID to filter table */
5172 igb_vfta_set(hw
, vid
, true);
5173 reg
|= E1000_VLVF_VLANID_ENABLE
;
5175 reg
&= ~E1000_VLVF_VLANID_MASK
;
5177 wr32(E1000_VLVF(i
), reg
);
5179 /* do not modify RLPML for PF devices */
5180 if (vf
>= adapter
->vfs_allocated_count
)
5183 if (!adapter
->vf_data
[vf
].vlans_enabled
) {
5185 reg
= rd32(E1000_VMOLR(vf
));
5186 size
= reg
& E1000_VMOLR_RLPML_MASK
;
5188 reg
&= ~E1000_VMOLR_RLPML_MASK
;
5190 wr32(E1000_VMOLR(vf
), reg
);
5193 adapter
->vf_data
[vf
].vlans_enabled
++;
5196 if (i
< E1000_VLVF_ARRAY_SIZE
) {
5197 /* remove vf from the pool */
5198 reg
&= ~(1 << (E1000_VLVF_POOLSEL_SHIFT
+ vf
));
5199 /* if pool is empty then remove entry from vfta */
5200 if (!(reg
& E1000_VLVF_POOLSEL_MASK
)) {
5202 igb_vfta_set(hw
, vid
, false);
5204 wr32(E1000_VLVF(i
), reg
);
5206 /* do not modify RLPML for PF devices */
5207 if (vf
>= adapter
->vfs_allocated_count
)
5210 adapter
->vf_data
[vf
].vlans_enabled
--;
5211 if (!adapter
->vf_data
[vf
].vlans_enabled
) {
5213 reg
= rd32(E1000_VMOLR(vf
));
5214 size
= reg
& E1000_VMOLR_RLPML_MASK
;
5216 reg
&= ~E1000_VMOLR_RLPML_MASK
;
5218 wr32(E1000_VMOLR(vf
), reg
);
5225 static void igb_set_vmvir(struct igb_adapter
*adapter
, u32 vid
, u32 vf
)
5227 struct e1000_hw
*hw
= &adapter
->hw
;
5230 wr32(E1000_VMVIR(vf
), (vid
| E1000_VMVIR_VLANA_DEFAULT
));
5232 wr32(E1000_VMVIR(vf
), 0);
5235 static int igb_ndo_set_vf_vlan(struct net_device
*netdev
,
5236 int vf
, u16 vlan
, u8 qos
)
5239 struct igb_adapter
*adapter
= netdev_priv(netdev
);
5241 if ((vf
>= adapter
->vfs_allocated_count
) || (vlan
> 4095) || (qos
> 7))
5244 err
= igb_vlvf_set(adapter
, vlan
, !!vlan
, vf
);
5247 igb_set_vmvir(adapter
, vlan
| (qos
<< VLAN_PRIO_SHIFT
), vf
);
5248 igb_set_vmolr(adapter
, vf
, !vlan
);
5249 adapter
->vf_data
[vf
].pf_vlan
= vlan
;
5250 adapter
->vf_data
[vf
].pf_qos
= qos
;
5251 dev_info(&adapter
->pdev
->dev
,
5252 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan
, qos
, vf
);
5253 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
5254 dev_warn(&adapter
->pdev
->dev
,
5255 "The VF VLAN has been set,"
5256 " but the PF device is not up.\n");
5257 dev_warn(&adapter
->pdev
->dev
,
5258 "Bring the PF device up before"
5259 " attempting to use the VF device.\n");
5262 igb_vlvf_set(adapter
, adapter
->vf_data
[vf
].pf_vlan
,
5264 igb_set_vmvir(adapter
, vlan
, vf
);
5265 igb_set_vmolr(adapter
, vf
, true);
5266 adapter
->vf_data
[vf
].pf_vlan
= 0;
5267 adapter
->vf_data
[vf
].pf_qos
= 0;
5273 static int igb_set_vf_vlan(struct igb_adapter
*adapter
, u32
*msgbuf
, u32 vf
)
5275 int add
= (msgbuf
[0] & E1000_VT_MSGINFO_MASK
) >> E1000_VT_MSGINFO_SHIFT
;
5276 int vid
= (msgbuf
[1] & E1000_VLVF_VLANID_MASK
);
5278 return igb_vlvf_set(adapter
, vid
, add
, vf
);
5281 static inline void igb_vf_reset(struct igb_adapter
*adapter
, u32 vf
)
5283 /* clear flags - except flag that indicates PF has set the MAC */
5284 adapter
->vf_data
[vf
].flags
&= IGB_VF_FLAG_PF_SET_MAC
;
5285 adapter
->vf_data
[vf
].last_nack
= jiffies
;
5287 /* reset offloads to defaults */
5288 igb_set_vmolr(adapter
, vf
, true);
5290 /* reset vlans for device */
5291 igb_clear_vf_vfta(adapter
, vf
);
5292 if (adapter
->vf_data
[vf
].pf_vlan
)
5293 igb_ndo_set_vf_vlan(adapter
->netdev
, vf
,
5294 adapter
->vf_data
[vf
].pf_vlan
,
5295 adapter
->vf_data
[vf
].pf_qos
);
5297 igb_clear_vf_vfta(adapter
, vf
);
5299 /* reset multicast table array for vf */
5300 adapter
->vf_data
[vf
].num_vf_mc_hashes
= 0;
5302 /* Flush and reset the mta with the new values */
5303 igb_set_rx_mode(adapter
->netdev
);
5306 static void igb_vf_reset_event(struct igb_adapter
*adapter
, u32 vf
)
5308 unsigned char *vf_mac
= adapter
->vf_data
[vf
].vf_mac_addresses
;
5310 /* generate a new mac address as we were hotplug removed/added */
5311 if (!(adapter
->vf_data
[vf
].flags
& IGB_VF_FLAG_PF_SET_MAC
))
5312 eth_random_addr(vf_mac
);
5314 /* process remaining reset events */
5315 igb_vf_reset(adapter
, vf
);
5318 static void igb_vf_reset_msg(struct igb_adapter
*adapter
, u32 vf
)
5320 struct e1000_hw
*hw
= &adapter
->hw
;
5321 unsigned char *vf_mac
= adapter
->vf_data
[vf
].vf_mac_addresses
;
5322 int rar_entry
= hw
->mac
.rar_entry_count
- (vf
+ 1);
5324 u8
*addr
= (u8
*)(&msgbuf
[1]);
5326 /* process all the same items cleared in a function level reset */
5327 igb_vf_reset(adapter
, vf
);
5329 /* set vf mac address */
5330 igb_rar_set_qsel(adapter
, vf_mac
, rar_entry
, vf
);
5332 /* enable transmit and receive for vf */
5333 reg
= rd32(E1000_VFTE
);
5334 wr32(E1000_VFTE
, reg
| (1 << vf
));
5335 reg
= rd32(E1000_VFRE
);
5336 wr32(E1000_VFRE
, reg
| (1 << vf
));
5338 adapter
->vf_data
[vf
].flags
|= IGB_VF_FLAG_CTS
;
5340 /* reply to reset with ack and vf mac address */
5341 msgbuf
[0] = E1000_VF_RESET
| E1000_VT_MSGTYPE_ACK
;
5342 memcpy(addr
, vf_mac
, 6);
5343 igb_write_mbx(hw
, msgbuf
, 3, vf
);
5346 static int igb_set_vf_mac_addr(struct igb_adapter
*adapter
, u32
*msg
, int vf
)
5349 * The VF MAC Address is stored in a packed array of bytes
5350 * starting at the second 32 bit word of the msg array
5352 unsigned char *addr
= (char *)&msg
[1];
5355 if (is_valid_ether_addr(addr
))
5356 err
= igb_set_vf_mac(adapter
, vf
, addr
);
5361 static void igb_rcv_ack_from_vf(struct igb_adapter
*adapter
, u32 vf
)
5363 struct e1000_hw
*hw
= &adapter
->hw
;
5364 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
5365 u32 msg
= E1000_VT_MSGTYPE_NACK
;
5367 /* if device isn't clear to send it shouldn't be reading either */
5368 if (!(vf_data
->flags
& IGB_VF_FLAG_CTS
) &&
5369 time_after(jiffies
, vf_data
->last_nack
+ (2 * HZ
))) {
5370 igb_write_mbx(hw
, &msg
, 1, vf
);
5371 vf_data
->last_nack
= jiffies
;
5375 static void igb_rcv_msg_from_vf(struct igb_adapter
*adapter
, u32 vf
)
5377 struct pci_dev
*pdev
= adapter
->pdev
;
5378 u32 msgbuf
[E1000_VFMAILBOX_SIZE
];
5379 struct e1000_hw
*hw
= &adapter
->hw
;
5380 struct vf_data_storage
*vf_data
= &adapter
->vf_data
[vf
];
5383 retval
= igb_read_mbx(hw
, msgbuf
, E1000_VFMAILBOX_SIZE
, vf
);
5386 /* if receive failed revoke VF CTS stats and restart init */
5387 dev_err(&pdev
->dev
, "Error receiving message from VF\n");
5388 vf_data
->flags
&= ~IGB_VF_FLAG_CTS
;
5389 if (!time_after(jiffies
, vf_data
->last_nack
+ (2 * HZ
)))
5394 /* this is a message we already processed, do nothing */
5395 if (msgbuf
[0] & (E1000_VT_MSGTYPE_ACK
| E1000_VT_MSGTYPE_NACK
))
5399 * until the vf completes a reset it should not be
5400 * allowed to start any configuration.
5403 if (msgbuf
[0] == E1000_VF_RESET
) {
5404 igb_vf_reset_msg(adapter
, vf
);
5408 if (!(vf_data
->flags
& IGB_VF_FLAG_CTS
)) {
5409 if (!time_after(jiffies
, vf_data
->last_nack
+ (2 * HZ
)))
5415 switch ((msgbuf
[0] & 0xFFFF)) {
5416 case E1000_VF_SET_MAC_ADDR
:
5418 if (!(vf_data
->flags
& IGB_VF_FLAG_PF_SET_MAC
))
5419 retval
= igb_set_vf_mac_addr(adapter
, msgbuf
, vf
);
5421 dev_warn(&pdev
->dev
,
5422 "VF %d attempted to override administratively "
5423 "set MAC address\nReload the VF driver to "
5424 "resume operations\n", vf
);
5426 case E1000_VF_SET_PROMISC
:
5427 retval
= igb_set_vf_promisc(adapter
, msgbuf
, vf
);
5429 case E1000_VF_SET_MULTICAST
:
5430 retval
= igb_set_vf_multicasts(adapter
, msgbuf
, vf
);
5432 case E1000_VF_SET_LPE
:
5433 retval
= igb_set_vf_rlpml(adapter
, msgbuf
[1], vf
);
5435 case E1000_VF_SET_VLAN
:
5437 if (vf_data
->pf_vlan
)
5438 dev_warn(&pdev
->dev
,
5439 "VF %d attempted to override administratively "
5440 "set VLAN tag\nReload the VF driver to "
5441 "resume operations\n", vf
);
5443 retval
= igb_set_vf_vlan(adapter
, msgbuf
, vf
);
5446 dev_err(&pdev
->dev
, "Unhandled Msg %08x\n", msgbuf
[0]);
5451 msgbuf
[0] |= E1000_VT_MSGTYPE_CTS
;
5453 /* notify the VF of the results of what it sent us */
5455 msgbuf
[0] |= E1000_VT_MSGTYPE_NACK
;
5457 msgbuf
[0] |= E1000_VT_MSGTYPE_ACK
;
5459 igb_write_mbx(hw
, msgbuf
, 1, vf
);
5462 static void igb_msg_task(struct igb_adapter
*adapter
)
5464 struct e1000_hw
*hw
= &adapter
->hw
;
5467 for (vf
= 0; vf
< adapter
->vfs_allocated_count
; vf
++) {
5468 /* process any reset requests */
5469 if (!igb_check_for_rst(hw
, vf
))
5470 igb_vf_reset_event(adapter
, vf
);
5472 /* process any messages pending */
5473 if (!igb_check_for_msg(hw
, vf
))
5474 igb_rcv_msg_from_vf(adapter
, vf
);
5476 /* process any acks */
5477 if (!igb_check_for_ack(hw
, vf
))
5478 igb_rcv_ack_from_vf(adapter
, vf
);
5483 * igb_set_uta - Set unicast filter table address
5484 * @adapter: board private structure
5486 * The unicast table address is a register array of 32-bit registers.
5487 * The table is meant to be used in a way similar to how the MTA is used
5488 * however due to certain limitations in the hardware it is necessary to
5489 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5490 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
5492 static void igb_set_uta(struct igb_adapter
*adapter
)
5494 struct e1000_hw
*hw
= &adapter
->hw
;
5497 /* The UTA table only exists on 82576 hardware and newer */
5498 if (hw
->mac
.type
< e1000_82576
)
5501 /* we only need to do this if VMDq is enabled */
5502 if (!adapter
->vfs_allocated_count
)
5505 for (i
= 0; i
< hw
->mac
.uta_reg_count
; i
++)
5506 array_wr32(E1000_UTA
, i
, ~0);
5510 * igb_intr_msi - Interrupt Handler
5511 * @irq: interrupt number
5512 * @data: pointer to a network interface device structure
5514 static irqreturn_t
igb_intr_msi(int irq
, void *data
)
5516 struct igb_adapter
*adapter
= data
;
5517 struct igb_q_vector
*q_vector
= adapter
->q_vector
[0];
5518 struct e1000_hw
*hw
= &adapter
->hw
;
5519 /* read ICR disables interrupts using IAM */
5520 u32 icr
= rd32(E1000_ICR
);
5522 igb_write_itr(q_vector
);
5524 if (icr
& E1000_ICR_DRSTA
)
5525 schedule_work(&adapter
->reset_task
);
5527 if (icr
& E1000_ICR_DOUTSYNC
) {
5528 /* HW is reporting DMA is out of sync */
5529 adapter
->stats
.doosync
++;
5532 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
5533 hw
->mac
.get_link_status
= 1;
5534 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
5535 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
5538 #ifdef CONFIG_IGB_PTP
5539 if (icr
& E1000_ICR_TS
) {
5540 u32 tsicr
= rd32(E1000_TSICR
);
5542 if (tsicr
& E1000_TSICR_TXTS
) {
5543 /* acknowledge the interrupt */
5544 wr32(E1000_TSICR
, E1000_TSICR_TXTS
);
5545 /* retrieve hardware timestamp */
5546 schedule_work(&adapter
->ptp_tx_work
);
5549 #endif /* CONFIG_IGB_PTP */
5551 napi_schedule(&q_vector
->napi
);
5557 * igb_intr - Legacy Interrupt Handler
5558 * @irq: interrupt number
5559 * @data: pointer to a network interface device structure
5561 static irqreturn_t
igb_intr(int irq
, void *data
)
5563 struct igb_adapter
*adapter
= data
;
5564 struct igb_q_vector
*q_vector
= adapter
->q_vector
[0];
5565 struct e1000_hw
*hw
= &adapter
->hw
;
5566 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5567 * need for the IMC write */
5568 u32 icr
= rd32(E1000_ICR
);
5570 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5571 * not set, then the adapter didn't send an interrupt */
5572 if (!(icr
& E1000_ICR_INT_ASSERTED
))
5575 igb_write_itr(q_vector
);
5577 if (icr
& E1000_ICR_DRSTA
)
5578 schedule_work(&adapter
->reset_task
);
5580 if (icr
& E1000_ICR_DOUTSYNC
) {
5581 /* HW is reporting DMA is out of sync */
5582 adapter
->stats
.doosync
++;
5585 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
5586 hw
->mac
.get_link_status
= 1;
5587 /* guard against interrupt when we're going down */
5588 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
5589 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
5592 #ifdef CONFIG_IGB_PTP
5593 if (icr
& E1000_ICR_TS
) {
5594 u32 tsicr
= rd32(E1000_TSICR
);
5596 if (tsicr
& E1000_TSICR_TXTS
) {
5597 /* acknowledge the interrupt */
5598 wr32(E1000_TSICR
, E1000_TSICR_TXTS
);
5599 /* retrieve hardware timestamp */
5600 schedule_work(&adapter
->ptp_tx_work
);
5603 #endif /* CONFIG_IGB_PTP */
5605 napi_schedule(&q_vector
->napi
);
5610 static void igb_ring_irq_enable(struct igb_q_vector
*q_vector
)
5612 struct igb_adapter
*adapter
= q_vector
->adapter
;
5613 struct e1000_hw
*hw
= &adapter
->hw
;
5615 if ((q_vector
->rx
.ring
&& (adapter
->rx_itr_setting
& 3)) ||
5616 (!q_vector
->rx
.ring
&& (adapter
->tx_itr_setting
& 3))) {
5617 if ((adapter
->num_q_vectors
== 1) && !adapter
->vf_data
)
5618 igb_set_itr(q_vector
);
5620 igb_update_ring_itr(q_vector
);
5623 if (!test_bit(__IGB_DOWN
, &adapter
->state
)) {
5624 if (adapter
->msix_entries
)
5625 wr32(E1000_EIMS
, q_vector
->eims_value
);
5627 igb_irq_enable(adapter
);
5632 * igb_poll - NAPI Rx polling callback
5633 * @napi: napi polling structure
5634 * @budget: count of how many packets we should handle
5636 static int igb_poll(struct napi_struct
*napi
, int budget
)
5638 struct igb_q_vector
*q_vector
= container_of(napi
,
5639 struct igb_q_vector
,
5641 bool clean_complete
= true;
5643 #ifdef CONFIG_IGB_DCA
5644 if (q_vector
->adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
5645 igb_update_dca(q_vector
);
5647 if (q_vector
->tx
.ring
)
5648 clean_complete
= igb_clean_tx_irq(q_vector
);
5650 if (q_vector
->rx
.ring
)
5651 clean_complete
&= igb_clean_rx_irq(q_vector
, budget
);
5653 /* If all work not completed, return budget and keep polling */
5654 if (!clean_complete
)
5657 /* If not enough Rx work done, exit the polling mode */
5658 napi_complete(napi
);
5659 igb_ring_irq_enable(q_vector
);
5665 * igb_clean_tx_irq - Reclaim resources after transmit completes
5666 * @q_vector: pointer to q_vector containing needed info
5668 * returns true if ring is completely cleaned
5670 static bool igb_clean_tx_irq(struct igb_q_vector
*q_vector
)
5672 struct igb_adapter
*adapter
= q_vector
->adapter
;
5673 struct igb_ring
*tx_ring
= q_vector
->tx
.ring
;
5674 struct igb_tx_buffer
*tx_buffer
;
5675 union e1000_adv_tx_desc
*tx_desc
;
5676 unsigned int total_bytes
= 0, total_packets
= 0;
5677 unsigned int budget
= q_vector
->tx
.work_limit
;
5678 unsigned int i
= tx_ring
->next_to_clean
;
5680 if (test_bit(__IGB_DOWN
, &adapter
->state
))
5683 tx_buffer
= &tx_ring
->tx_buffer_info
[i
];
5684 tx_desc
= IGB_TX_DESC(tx_ring
, i
);
5685 i
-= tx_ring
->count
;
5688 union e1000_adv_tx_desc
*eop_desc
= tx_buffer
->next_to_watch
;
5690 /* if next_to_watch is not set then there is no work pending */
5694 /* prevent any other reads prior to eop_desc */
5697 /* if DD is not set pending work has not been completed */
5698 if (!(eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)))
5701 /* clear next_to_watch to prevent false hangs */
5702 tx_buffer
->next_to_watch
= NULL
;
5704 /* update the statistics for this packet */
5705 total_bytes
+= tx_buffer
->bytecount
;
5706 total_packets
+= tx_buffer
->gso_segs
;
5709 dev_kfree_skb_any(tx_buffer
->skb
);
5711 /* unmap skb header data */
5712 dma_unmap_single(tx_ring
->dev
,
5713 dma_unmap_addr(tx_buffer
, dma
),
5714 dma_unmap_len(tx_buffer
, len
),
5717 /* clear tx_buffer data */
5718 tx_buffer
->skb
= NULL
;
5719 dma_unmap_len_set(tx_buffer
, len
, 0);
5721 /* clear last DMA location and unmap remaining buffers */
5722 while (tx_desc
!= eop_desc
) {
5727 i
-= tx_ring
->count
;
5728 tx_buffer
= tx_ring
->tx_buffer_info
;
5729 tx_desc
= IGB_TX_DESC(tx_ring
, 0);
5732 /* unmap any remaining paged data */
5733 if (dma_unmap_len(tx_buffer
, len
)) {
5734 dma_unmap_page(tx_ring
->dev
,
5735 dma_unmap_addr(tx_buffer
, dma
),
5736 dma_unmap_len(tx_buffer
, len
),
5738 dma_unmap_len_set(tx_buffer
, len
, 0);
5742 /* move us one more past the eop_desc for start of next pkt */
5747 i
-= tx_ring
->count
;
5748 tx_buffer
= tx_ring
->tx_buffer_info
;
5749 tx_desc
= IGB_TX_DESC(tx_ring
, 0);
5752 /* issue prefetch for next Tx descriptor */
5755 /* update budget accounting */
5757 } while (likely(budget
));
5759 netdev_tx_completed_queue(txring_txq(tx_ring
),
5760 total_packets
, total_bytes
);
5761 i
+= tx_ring
->count
;
5762 tx_ring
->next_to_clean
= i
;
5763 u64_stats_update_begin(&tx_ring
->tx_syncp
);
5764 tx_ring
->tx_stats
.bytes
+= total_bytes
;
5765 tx_ring
->tx_stats
.packets
+= total_packets
;
5766 u64_stats_update_end(&tx_ring
->tx_syncp
);
5767 q_vector
->tx
.total_bytes
+= total_bytes
;
5768 q_vector
->tx
.total_packets
+= total_packets
;
5770 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG
, &tx_ring
->flags
)) {
5771 struct e1000_hw
*hw
= &adapter
->hw
;
5773 /* Detect a transmit hang in hardware, this serializes the
5774 * check with the clearing of time_stamp and movement of i */
5775 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG
, &tx_ring
->flags
);
5776 if (tx_buffer
->next_to_watch
&&
5777 time_after(jiffies
, tx_buffer
->time_stamp
+
5778 (adapter
->tx_timeout_factor
* HZ
)) &&
5779 !(rd32(E1000_STATUS
) & E1000_STATUS_TXOFF
)) {
5781 /* detected Tx unit hang */
5782 dev_err(tx_ring
->dev
,
5783 "Detected Tx Unit Hang\n"
5787 " next_to_use <%x>\n"
5788 " next_to_clean <%x>\n"
5789 "buffer_info[next_to_clean]\n"
5790 " time_stamp <%lx>\n"
5791 " next_to_watch <%p>\n"
5793 " desc.status <%x>\n",
5794 tx_ring
->queue_index
,
5795 rd32(E1000_TDH(tx_ring
->reg_idx
)),
5796 readl(tx_ring
->tail
),
5797 tx_ring
->next_to_use
,
5798 tx_ring
->next_to_clean
,
5799 tx_buffer
->time_stamp
,
5800 tx_buffer
->next_to_watch
,
5802 tx_buffer
->next_to_watch
->wb
.status
);
5803 netif_stop_subqueue(tx_ring
->netdev
,
5804 tx_ring
->queue_index
);
5806 /* we are about to reset, no point in enabling stuff */
5811 if (unlikely(total_packets
&&
5812 netif_carrier_ok(tx_ring
->netdev
) &&
5813 igb_desc_unused(tx_ring
) >= IGB_TX_QUEUE_WAKE
)) {
5814 /* Make sure that anybody stopping the queue after this
5815 * sees the new next_to_clean.
5818 if (__netif_subqueue_stopped(tx_ring
->netdev
,
5819 tx_ring
->queue_index
) &&
5820 !(test_bit(__IGB_DOWN
, &adapter
->state
))) {
5821 netif_wake_subqueue(tx_ring
->netdev
,
5822 tx_ring
->queue_index
);
5824 u64_stats_update_begin(&tx_ring
->tx_syncp
);
5825 tx_ring
->tx_stats
.restart_queue
++;
5826 u64_stats_update_end(&tx_ring
->tx_syncp
);
5834 * igb_reuse_rx_page - page flip buffer and store it back on the ring
5835 * @rx_ring: rx descriptor ring to store buffers on
5836 * @old_buff: donor buffer to have page reused
5838 * Synchronizes page for reuse by the adapter
5840 static void igb_reuse_rx_page(struct igb_ring
*rx_ring
,
5841 struct igb_rx_buffer
*old_buff
)
5843 struct igb_rx_buffer
*new_buff
;
5844 u16 nta
= rx_ring
->next_to_alloc
;
5846 new_buff
= &rx_ring
->rx_buffer_info
[nta
];
5848 /* update, and store next to alloc */
5850 rx_ring
->next_to_alloc
= (nta
< rx_ring
->count
) ? nta
: 0;
5852 /* transfer page from old buffer to new buffer */
5853 memcpy(new_buff
, old_buff
, sizeof(struct igb_rx_buffer
));
5855 /* sync the buffer for use by the device */
5856 dma_sync_single_range_for_device(rx_ring
->dev
, old_buff
->dma
,
5857 old_buff
->page_offset
,
5863 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
5864 * @rx_ring: rx descriptor ring to transact packets on
5865 * @rx_buffer: buffer containing page to add
5866 * @rx_desc: descriptor containing length of buffer written by hardware
5867 * @skb: sk_buff to place the data into
5869 * This function will add the data contained in rx_buffer->page to the skb.
5870 * This is done either through a direct copy if the data in the buffer is
5871 * less than the skb header size, otherwise it will just attach the page as
5872 * a frag to the skb.
5874 * The function will then update the page offset if necessary and return
5875 * true if the buffer can be reused by the adapter.
5877 static bool igb_add_rx_frag(struct igb_ring
*rx_ring
,
5878 struct igb_rx_buffer
*rx_buffer
,
5879 union e1000_adv_rx_desc
*rx_desc
,
5880 struct sk_buff
*skb
)
5882 struct page
*page
= rx_buffer
->page
;
5883 unsigned int size
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
5885 if ((size
<= IGB_RX_HDR_LEN
) && !skb_is_nonlinear(skb
)) {
5886 unsigned char *va
= page_address(page
) + rx_buffer
->page_offset
;
5888 #ifdef CONFIG_IGB_PTP
5889 if (igb_test_staterr(rx_desc
, E1000_RXDADV_STAT_TSIP
)) {
5890 igb_ptp_rx_pktstamp(rx_ring
->q_vector
, va
, skb
);
5891 va
+= IGB_TS_HDR_LEN
;
5892 size
-= IGB_TS_HDR_LEN
;
5896 memcpy(__skb_put(skb
, size
), va
, ALIGN(size
, sizeof(long)));
5898 /* we can reuse buffer as-is, just make sure it is local */
5899 if (likely(page_to_nid(page
) == numa_node_id()))
5902 /* this page cannot be reused so discard it */
5907 skb_add_rx_frag(skb
, skb_shinfo(skb
)->nr_frags
, page
,
5908 rx_buffer
->page_offset
, size
, PAGE_SIZE
/ 2);
5910 /* avoid re-using remote pages */
5911 if (unlikely(page_to_nid(page
) != numa_node_id()))
5914 /* if we are only owner of page we can reuse it */
5915 if (unlikely(page_count(page
) != 1))
5918 /* flip page offset to other buffer */
5919 rx_buffer
->page_offset
^= PAGE_SIZE
/ 2;
5922 * since we are the only owner of the page and we need to
5923 * increment it, just set the value to 2 in order to avoid
5924 * an unnecessary locked operation
5926 atomic_set(&page
->_count
, 2);
5931 static inline void igb_rx_checksum(struct igb_ring
*ring
,
5932 union e1000_adv_rx_desc
*rx_desc
,
5933 struct sk_buff
*skb
)
5935 skb_checksum_none_assert(skb
);
5937 /* Ignore Checksum bit is set */
5938 if (igb_test_staterr(rx_desc
, E1000_RXD_STAT_IXSM
))
5941 /* Rx checksum disabled via ethtool */
5942 if (!(ring
->netdev
->features
& NETIF_F_RXCSUM
))
5945 /* TCP/UDP checksum error bit is set */
5946 if (igb_test_staterr(rx_desc
,
5947 E1000_RXDEXT_STATERR_TCPE
|
5948 E1000_RXDEXT_STATERR_IPE
)) {
5950 * work around errata with sctp packets where the TCPE aka
5951 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5952 * packets, (aka let the stack check the crc32c)
5954 if (!((skb
->len
== 60) &&
5955 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM
, &ring
->flags
))) {
5956 u64_stats_update_begin(&ring
->rx_syncp
);
5957 ring
->rx_stats
.csum_err
++;
5958 u64_stats_update_end(&ring
->rx_syncp
);
5960 /* let the stack verify checksum errors */
5963 /* It must be a TCP or UDP packet with a valid checksum */
5964 if (igb_test_staterr(rx_desc
, E1000_RXD_STAT_TCPCS
|
5965 E1000_RXD_STAT_UDPCS
))
5966 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
5968 dev_dbg(ring
->dev
, "cksum success: bits %08X\n",
5969 le32_to_cpu(rx_desc
->wb
.upper
.status_error
));
5972 static inline void igb_rx_hash(struct igb_ring
*ring
,
5973 union e1000_adv_rx_desc
*rx_desc
,
5974 struct sk_buff
*skb
)
5976 if (ring
->netdev
->features
& NETIF_F_RXHASH
)
5977 skb
->rxhash
= le32_to_cpu(rx_desc
->wb
.lower
.hi_dword
.rss
);
5981 * igb_get_headlen - determine size of header for LRO/GRO
5982 * @data: pointer to the start of the headers
5983 * @max_len: total length of section to find headers in
5985 * This function is meant to determine the length of headers that will
5986 * be recognized by hardware for LRO, and GRO offloads. The main
5987 * motivation of doing this is to only perform one pull for IPv4 TCP
5988 * packets so that we can do basic things like calculating the gso_size
5989 * based on the average data per packet.
5991 static unsigned int igb_get_headlen(unsigned char *data
,
5992 unsigned int max_len
)
5995 unsigned char *network
;
5998 struct vlan_hdr
*vlan
;
6001 struct ipv6hdr
*ipv6
;
6004 u8 nexthdr
= 0; /* default to not TCP */
6007 /* this should never happen, but better safe than sorry */
6008 if (max_len
< ETH_HLEN
)
6011 /* initialize network frame pointer */
6014 /* set first protocol and move network header forward */
6015 protocol
= hdr
.eth
->h_proto
;
6016 hdr
.network
+= ETH_HLEN
;
6018 /* handle any vlan tag if present */
6019 if (protocol
== __constant_htons(ETH_P_8021Q
)) {
6020 if ((hdr
.network
- data
) > (max_len
- VLAN_HLEN
))
6023 protocol
= hdr
.vlan
->h_vlan_encapsulated_proto
;
6024 hdr
.network
+= VLAN_HLEN
;
6027 /* handle L3 protocols */
6028 if (protocol
== __constant_htons(ETH_P_IP
)) {
6029 if ((hdr
.network
- data
) > (max_len
- sizeof(struct iphdr
)))
6032 /* access ihl as a u8 to avoid unaligned access on ia64 */
6033 hlen
= (hdr
.network
[0] & 0x0F) << 2;
6035 /* verify hlen meets minimum size requirements */
6036 if (hlen
< sizeof(struct iphdr
))
6037 return hdr
.network
- data
;
6039 /* record next protocol */
6040 nexthdr
= hdr
.ipv4
->protocol
;
6041 hdr
.network
+= hlen
;
6042 } else if (protocol
== __constant_htons(ETH_P_IPV6
)) {
6043 if ((hdr
.network
- data
) > (max_len
- sizeof(struct ipv6hdr
)))
6046 /* record next protocol */
6047 nexthdr
= hdr
.ipv6
->nexthdr
;
6048 hdr
.network
+= sizeof(struct ipv6hdr
);
6050 return hdr
.network
- data
;
6053 /* finally sort out TCP */
6054 if (nexthdr
== IPPROTO_TCP
) {
6055 if ((hdr
.network
- data
) > (max_len
- sizeof(struct tcphdr
)))
6058 /* access doff as a u8 to avoid unaligned access on ia64 */
6059 hlen
= (hdr
.network
[12] & 0xF0) >> 2;
6061 /* verify hlen meets minimum size requirements */
6062 if (hlen
< sizeof(struct tcphdr
))
6063 return hdr
.network
- data
;
6065 hdr
.network
+= hlen
;
6066 } else if (nexthdr
== IPPROTO_UDP
) {
6067 if ((hdr
.network
- data
) > (max_len
- sizeof(struct udphdr
)))
6070 hdr
.network
+= sizeof(struct udphdr
);
6074 * If everything has gone correctly hdr.network should be the
6075 * data section of the packet and will be the end of the header.
6076 * If not then it probably represents the end of the last recognized
6079 if ((hdr
.network
- data
) < max_len
)
6080 return hdr
.network
- data
;
6086 * igb_pull_tail - igb specific version of skb_pull_tail
6087 * @rx_ring: rx descriptor ring packet is being transacted on
6088 * @rx_desc: pointer to the EOP Rx descriptor
6089 * @skb: pointer to current skb being adjusted
6091 * This function is an igb specific version of __pskb_pull_tail. The
6092 * main difference between this version and the original function is that
6093 * this function can make several assumptions about the state of things
6094 * that allow for significant optimizations versus the standard function.
6095 * As a result we can do things like drop a frag and maintain an accurate
6096 * truesize for the skb.
6098 static void igb_pull_tail(struct igb_ring
*rx_ring
,
6099 union e1000_adv_rx_desc
*rx_desc
,
6100 struct sk_buff
*skb
)
6102 struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[0];
6104 unsigned int pull_len
;
6107 * it is valid to use page_address instead of kmap since we are
6108 * working with pages allocated out of the lomem pool per
6109 * alloc_page(GFP_ATOMIC)
6111 va
= skb_frag_address(frag
);
6113 #ifdef CONFIG_IGB_PTP
6114 if (igb_test_staterr(rx_desc
, E1000_RXDADV_STAT_TSIP
)) {
6115 /* retrieve timestamp from buffer */
6116 igb_ptp_rx_pktstamp(rx_ring
->q_vector
, va
, skb
);
6118 /* update pointers to remove timestamp header */
6119 skb_frag_size_sub(frag
, IGB_TS_HDR_LEN
);
6120 frag
->page_offset
+= IGB_TS_HDR_LEN
;
6121 skb
->data_len
-= IGB_TS_HDR_LEN
;
6122 skb
->len
-= IGB_TS_HDR_LEN
;
6124 /* move va to start of packet data */
6125 va
+= IGB_TS_HDR_LEN
;
6130 * we need the header to contain the greater of either ETH_HLEN or
6131 * 60 bytes if the skb->len is less than 60 for skb_pad.
6133 pull_len
= igb_get_headlen(va
, IGB_RX_HDR_LEN
);
6135 /* align pull length to size of long to optimize memcpy performance */
6136 skb_copy_to_linear_data(skb
, va
, ALIGN(pull_len
, sizeof(long)));
6138 /* update all of the pointers */
6139 skb_frag_size_sub(frag
, pull_len
);
6140 frag
->page_offset
+= pull_len
;
6141 skb
->data_len
-= pull_len
;
6142 skb
->tail
+= pull_len
;
6146 * igb_cleanup_headers - Correct corrupted or empty headers
6147 * @rx_ring: rx descriptor ring packet is being transacted on
6148 * @rx_desc: pointer to the EOP Rx descriptor
6149 * @skb: pointer to current skb being fixed
6151 * Address the case where we are pulling data in on pages only
6152 * and as such no data is present in the skb header.
6154 * In addition if skb is not at least 60 bytes we need to pad it so that
6155 * it is large enough to qualify as a valid Ethernet frame.
6157 * Returns true if an error was encountered and skb was freed.
6159 static bool igb_cleanup_headers(struct igb_ring
*rx_ring
,
6160 union e1000_adv_rx_desc
*rx_desc
,
6161 struct sk_buff
*skb
)
6164 if (unlikely((igb_test_staterr(rx_desc
,
6165 E1000_RXDEXT_ERR_FRAME_ERR_MASK
)))) {
6166 struct net_device
*netdev
= rx_ring
->netdev
;
6167 if (!(netdev
->features
& NETIF_F_RXALL
)) {
6168 dev_kfree_skb_any(skb
);
6173 /* place header in linear portion of buffer */
6174 if (skb_is_nonlinear(skb
))
6175 igb_pull_tail(rx_ring
, rx_desc
, skb
);
6177 /* if skb_pad returns an error the skb was freed */
6178 if (unlikely(skb
->len
< 60)) {
6179 int pad_len
= 60 - skb
->len
;
6181 if (skb_pad(skb
, pad_len
))
6183 __skb_put(skb
, pad_len
);
6190 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6191 * @rx_ring: rx descriptor ring packet is being transacted on
6192 * @rx_desc: pointer to the EOP Rx descriptor
6193 * @skb: pointer to current skb being populated
6195 * This function checks the ring, descriptor, and packet information in
6196 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6197 * other fields within the skb.
6199 static void igb_process_skb_fields(struct igb_ring
*rx_ring
,
6200 union e1000_adv_rx_desc
*rx_desc
,
6201 struct sk_buff
*skb
)
6203 struct net_device
*dev
= rx_ring
->netdev
;
6205 igb_rx_hash(rx_ring
, rx_desc
, skb
);
6207 igb_rx_checksum(rx_ring
, rx_desc
, skb
);
6209 #ifdef CONFIG_IGB_PTP
6210 igb_ptp_rx_hwtstamp(rx_ring
->q_vector
, rx_desc
, skb
);
6211 #endif /* CONFIG_IGB_PTP */
6213 if ((dev
->features
& NETIF_F_HW_VLAN_RX
) &&
6214 igb_test_staterr(rx_desc
, E1000_RXD_STAT_VP
)) {
6216 if (igb_test_staterr(rx_desc
, E1000_RXDEXT_STATERR_LB
) &&
6217 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP
, &rx_ring
->flags
))
6218 vid
= be16_to_cpu(rx_desc
->wb
.upper
.vlan
);
6220 vid
= le16_to_cpu(rx_desc
->wb
.upper
.vlan
);
6222 __vlan_hwaccel_put_tag(skb
, vid
);
6225 skb_record_rx_queue(skb
, rx_ring
->queue_index
);
6227 skb
->protocol
= eth_type_trans(skb
, rx_ring
->netdev
);
6230 static bool igb_clean_rx_irq(struct igb_q_vector
*q_vector
, int budget
)
6232 struct igb_ring
*rx_ring
= q_vector
->rx
.ring
;
6233 union e1000_adv_rx_desc
*rx_desc
;
6234 struct sk_buff
*skb
= rx_ring
->skb
;
6235 unsigned int total_bytes
= 0, total_packets
= 0;
6236 u16 cleaned_count
= igb_desc_unused(rx_ring
);
6237 u16 i
= rx_ring
->next_to_clean
;
6239 rx_desc
= IGB_RX_DESC(rx_ring
, i
);
6241 while (igb_test_staterr(rx_desc
, E1000_RXD_STAT_DD
)) {
6242 struct igb_rx_buffer
*buffer_info
= &rx_ring
->rx_buffer_info
[i
];
6244 union e1000_adv_rx_desc
*next_rxd
;
6247 if (i
== rx_ring
->count
)
6250 next_rxd
= IGB_RX_DESC(rx_ring
, i
);
6254 * This memory barrier is needed to keep us from reading
6255 * any other fields out of the rx_desc until we know the
6256 * RXD_STAT_DD bit is set
6260 page
= buffer_info
->page
;
6264 void *page_addr
= page_address(page
) +
6265 buffer_info
->page_offset
;
6267 /* prefetch first cache line of first page */
6268 prefetch(page_addr
);
6269 #if L1_CACHE_BYTES < 128
6270 prefetch(page_addr
+ L1_CACHE_BYTES
);
6273 /* allocate a skb to store the frags */
6274 skb
= netdev_alloc_skb_ip_align(rx_ring
->netdev
,
6276 if (unlikely(!skb
)) {
6277 rx_ring
->rx_stats
.alloc_failed
++;
6282 * we will be copying header into skb->data in
6283 * pskb_may_pull so it is in our interest to prefetch
6284 * it now to avoid a possible cache miss
6286 prefetchw(skb
->data
);
6289 /* we are reusing so sync this buffer for CPU use */
6290 dma_sync_single_range_for_cpu(rx_ring
->dev
,
6292 buffer_info
->page_offset
,
6296 /* pull page into skb */
6297 if (igb_add_rx_frag(rx_ring
, buffer_info
, rx_desc
, skb
)) {
6298 /* hand second half of page back to the ring */
6299 igb_reuse_rx_page(rx_ring
, buffer_info
);
6301 /* we are not reusing the buffer so unmap it */
6302 dma_unmap_page(rx_ring
->dev
, buffer_info
->dma
,
6303 PAGE_SIZE
, DMA_FROM_DEVICE
);
6306 /* clear contents of buffer_info */
6307 buffer_info
->page
= NULL
;
6309 if (!igb_test_staterr(rx_desc
, E1000_RXD_STAT_EOP
))
6312 /* verify the packet layout is correct */
6313 if (igb_cleanup_headers(rx_ring
, rx_desc
, skb
)) {
6318 /* probably a little skewed due to removing CRC */
6319 total_bytes
+= skb
->len
;
6322 /* populate checksum, timestamp, VLAN, and protocol */
6323 igb_process_skb_fields(rx_ring
, rx_desc
, skb
);
6325 napi_gro_receive(&q_vector
->napi
, skb
);
6327 /* reset skb pointer */
6336 /* return some buffers to hardware, one at a time is too slow */
6337 if (cleaned_count
>= IGB_RX_BUFFER_WRITE
) {
6338 igb_alloc_rx_buffers(rx_ring
, cleaned_count
);
6342 /* use prefetched values */
6346 /* place incomplete frames back on ring for completion */
6349 rx_ring
->next_to_clean
= i
;
6350 u64_stats_update_begin(&rx_ring
->rx_syncp
);
6351 rx_ring
->rx_stats
.packets
+= total_packets
;
6352 rx_ring
->rx_stats
.bytes
+= total_bytes
;
6353 u64_stats_update_end(&rx_ring
->rx_syncp
);
6354 q_vector
->rx
.total_packets
+= total_packets
;
6355 q_vector
->rx
.total_bytes
+= total_bytes
;
6358 igb_alloc_rx_buffers(rx_ring
, cleaned_count
);
6363 static bool igb_alloc_mapped_page(struct igb_ring
*rx_ring
,
6364 struct igb_rx_buffer
*bi
)
6366 struct page
*page
= bi
->page
;
6369 /* since we are recycling buffers we should seldom need to alloc */
6373 /* alloc new page for storage */
6374 page
= __skb_alloc_page(GFP_ATOMIC
| __GFP_COLD
, NULL
);
6375 if (unlikely(!page
)) {
6376 rx_ring
->rx_stats
.alloc_failed
++;
6380 /* map page for use */
6381 dma
= dma_map_page(rx_ring
->dev
, page
, 0, PAGE_SIZE
, DMA_FROM_DEVICE
);
6384 * if mapping failed free memory back to system since
6385 * there isn't much point in holding memory we can't use
6387 if (dma_mapping_error(rx_ring
->dev
, dma
)) {
6390 rx_ring
->rx_stats
.alloc_failed
++;
6396 bi
->page_offset
= 0;
6402 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6403 * @adapter: address of board private structure
6405 void igb_alloc_rx_buffers(struct igb_ring
*rx_ring
, u16 cleaned_count
)
6407 union e1000_adv_rx_desc
*rx_desc
;
6408 struct igb_rx_buffer
*bi
;
6409 u16 i
= rx_ring
->next_to_use
;
6415 rx_desc
= IGB_RX_DESC(rx_ring
, i
);
6416 bi
= &rx_ring
->rx_buffer_info
[i
];
6417 i
-= rx_ring
->count
;
6420 if (!igb_alloc_mapped_page(rx_ring
, bi
))
6424 * Refresh the desc even if buffer_addrs didn't change
6425 * because each write-back erases this info.
6427 rx_desc
->read
.pkt_addr
= cpu_to_le64(bi
->dma
+ bi
->page_offset
);
6433 rx_desc
= IGB_RX_DESC(rx_ring
, 0);
6434 bi
= rx_ring
->rx_buffer_info
;
6435 i
-= rx_ring
->count
;
6438 /* clear the hdr_addr for the next_to_use descriptor */
6439 rx_desc
->read
.hdr_addr
= 0;
6442 } while (cleaned_count
);
6444 i
+= rx_ring
->count
;
6446 if (rx_ring
->next_to_use
!= i
) {
6447 /* record the next descriptor to use */
6448 rx_ring
->next_to_use
= i
;
6450 /* update next to alloc since we have filled the ring */
6451 rx_ring
->next_to_alloc
= i
;
6454 * Force memory writes to complete before letting h/w
6455 * know there are new descriptors to fetch. (Only
6456 * applicable for weak-ordered memory model archs,
6460 writel(i
, rx_ring
->tail
);
6470 static int igb_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
6472 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6473 struct mii_ioctl_data
*data
= if_mii(ifr
);
6475 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
6480 data
->phy_id
= adapter
->hw
.phy
.addr
;
6483 if (igb_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
6500 static int igb_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
6506 return igb_mii_ioctl(netdev
, ifr
, cmd
);
6507 #ifdef CONFIG_IGB_PTP
6509 return igb_ptp_hwtstamp_ioctl(netdev
, ifr
, cmd
);
6510 #endif /* CONFIG_IGB_PTP */
6516 s32
igb_read_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
6518 struct igb_adapter
*adapter
= hw
->back
;
6520 if (pcie_capability_read_word(adapter
->pdev
, reg
, value
))
6521 return -E1000_ERR_CONFIG
;
6526 s32
igb_write_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
6528 struct igb_adapter
*adapter
= hw
->back
;
6530 if (pcie_capability_write_word(adapter
->pdev
, reg
, *value
))
6531 return -E1000_ERR_CONFIG
;
6536 static void igb_vlan_mode(struct net_device
*netdev
, netdev_features_t features
)
6538 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6539 struct e1000_hw
*hw
= &adapter
->hw
;
6541 bool enable
= !!(features
& NETIF_F_HW_VLAN_RX
);
6544 /* enable VLAN tag insert/strip */
6545 ctrl
= rd32(E1000_CTRL
);
6546 ctrl
|= E1000_CTRL_VME
;
6547 wr32(E1000_CTRL
, ctrl
);
6549 /* Disable CFI check */
6550 rctl
= rd32(E1000_RCTL
);
6551 rctl
&= ~E1000_RCTL_CFIEN
;
6552 wr32(E1000_RCTL
, rctl
);
6554 /* disable VLAN tag insert/strip */
6555 ctrl
= rd32(E1000_CTRL
);
6556 ctrl
&= ~E1000_CTRL_VME
;
6557 wr32(E1000_CTRL
, ctrl
);
6560 igb_rlpml_set(adapter
);
6563 static int igb_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
6565 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6566 struct e1000_hw
*hw
= &adapter
->hw
;
6567 int pf_id
= adapter
->vfs_allocated_count
;
6569 /* attempt to add filter to vlvf array */
6570 igb_vlvf_set(adapter
, vid
, true, pf_id
);
6572 /* add the filter since PF can receive vlans w/o entry in vlvf */
6573 igb_vfta_set(hw
, vid
, true);
6575 set_bit(vid
, adapter
->active_vlans
);
6580 static int igb_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
6582 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6583 struct e1000_hw
*hw
= &adapter
->hw
;
6584 int pf_id
= adapter
->vfs_allocated_count
;
6587 /* remove vlan from VLVF table array */
6588 err
= igb_vlvf_set(adapter
, vid
, false, pf_id
);
6590 /* if vid was not present in VLVF just remove it from table */
6592 igb_vfta_set(hw
, vid
, false);
6594 clear_bit(vid
, adapter
->active_vlans
);
6599 static void igb_restore_vlan(struct igb_adapter
*adapter
)
6603 igb_vlan_mode(adapter
->netdev
, adapter
->netdev
->features
);
6605 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
6606 igb_vlan_rx_add_vid(adapter
->netdev
, vid
);
6609 int igb_set_spd_dplx(struct igb_adapter
*adapter
, u32 spd
, u8 dplx
)
6611 struct pci_dev
*pdev
= adapter
->pdev
;
6612 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
6616 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6617 * for the switch() below to work */
6618 if ((spd
& 1) || (dplx
& ~1))
6621 /* Fiber NIC's only allow 1000 Gbps Full duplex */
6622 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_internal_serdes
) &&
6623 spd
!= SPEED_1000
&&
6624 dplx
!= DUPLEX_FULL
)
6627 switch (spd
+ dplx
) {
6628 case SPEED_10
+ DUPLEX_HALF
:
6629 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
6631 case SPEED_10
+ DUPLEX_FULL
:
6632 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
6634 case SPEED_100
+ DUPLEX_HALF
:
6635 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
6637 case SPEED_100
+ DUPLEX_FULL
:
6638 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
6640 case SPEED_1000
+ DUPLEX_FULL
:
6642 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
6644 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
6649 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6650 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
6655 dev_err(&pdev
->dev
, "Unsupported Speed/Duplex configuration\n");
6659 static int __igb_shutdown(struct pci_dev
*pdev
, bool *enable_wake
,
6662 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6663 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6664 struct e1000_hw
*hw
= &adapter
->hw
;
6665 u32 ctrl
, rctl
, status
;
6666 u32 wufc
= runtime
? E1000_WUFC_LNKC
: adapter
->wol
;
6671 netif_device_detach(netdev
);
6673 if (netif_running(netdev
))
6674 __igb_close(netdev
, true);
6676 igb_clear_interrupt_scheme(adapter
);
6679 retval
= pci_save_state(pdev
);
6684 status
= rd32(E1000_STATUS
);
6685 if (status
& E1000_STATUS_LU
)
6686 wufc
&= ~E1000_WUFC_LNKC
;
6689 igb_setup_rctl(adapter
);
6690 igb_set_rx_mode(netdev
);
6692 /* turn on all-multi mode if wake on multicast is enabled */
6693 if (wufc
& E1000_WUFC_MC
) {
6694 rctl
= rd32(E1000_RCTL
);
6695 rctl
|= E1000_RCTL_MPE
;
6696 wr32(E1000_RCTL
, rctl
);
6699 ctrl
= rd32(E1000_CTRL
);
6700 /* advertise wake from D3Cold */
6701 #define E1000_CTRL_ADVD3WUC 0x00100000
6702 /* phy power management enable */
6703 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6704 ctrl
|= E1000_CTRL_ADVD3WUC
;
6705 wr32(E1000_CTRL
, ctrl
);
6707 /* Allow time for pending master requests to run */
6708 igb_disable_pcie_master(hw
);
6710 wr32(E1000_WUC
, E1000_WUC_PME_EN
);
6711 wr32(E1000_WUFC
, wufc
);
6714 wr32(E1000_WUFC
, 0);
6717 *enable_wake
= wufc
|| adapter
->en_mng_pt
;
6719 igb_power_down_link(adapter
);
6721 igb_power_up_link(adapter
);
6723 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6724 * would have already happened in close and is redundant. */
6725 igb_release_hw_control(adapter
);
6727 pci_disable_device(pdev
);
6733 #ifdef CONFIG_PM_SLEEP
6734 static int igb_suspend(struct device
*dev
)
6738 struct pci_dev
*pdev
= to_pci_dev(dev
);
6740 retval
= __igb_shutdown(pdev
, &wake
, 0);
6745 pci_prepare_to_sleep(pdev
);
6747 pci_wake_from_d3(pdev
, false);
6748 pci_set_power_state(pdev
, PCI_D3hot
);
6753 #endif /* CONFIG_PM_SLEEP */
6755 static int igb_resume(struct device
*dev
)
6757 struct pci_dev
*pdev
= to_pci_dev(dev
);
6758 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6759 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6760 struct e1000_hw
*hw
= &adapter
->hw
;
6763 pci_set_power_state(pdev
, PCI_D0
);
6764 pci_restore_state(pdev
);
6765 pci_save_state(pdev
);
6767 err
= pci_enable_device_mem(pdev
);
6770 "igb: Cannot enable PCI device from suspend\n");
6773 pci_set_master(pdev
);
6775 pci_enable_wake(pdev
, PCI_D3hot
, 0);
6776 pci_enable_wake(pdev
, PCI_D3cold
, 0);
6778 if (igb_init_interrupt_scheme(adapter
)) {
6779 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
6785 /* let the f/w know that the h/w is now under the control of the
6787 igb_get_hw_control(adapter
);
6789 wr32(E1000_WUS
, ~0);
6791 if (netdev
->flags
& IFF_UP
) {
6792 err
= __igb_open(netdev
, true);
6797 netif_device_attach(netdev
);
6801 #ifdef CONFIG_PM_RUNTIME
6802 static int igb_runtime_idle(struct device
*dev
)
6804 struct pci_dev
*pdev
= to_pci_dev(dev
);
6805 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6806 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6808 if (!igb_has_link(adapter
))
6809 pm_schedule_suspend(dev
, MSEC_PER_SEC
* 5);
6814 static int igb_runtime_suspend(struct device
*dev
)
6816 struct pci_dev
*pdev
= to_pci_dev(dev
);
6820 retval
= __igb_shutdown(pdev
, &wake
, 1);
6825 pci_prepare_to_sleep(pdev
);
6827 pci_wake_from_d3(pdev
, false);
6828 pci_set_power_state(pdev
, PCI_D3hot
);
6834 static int igb_runtime_resume(struct device
*dev
)
6836 return igb_resume(dev
);
6838 #endif /* CONFIG_PM_RUNTIME */
6841 static void igb_shutdown(struct pci_dev
*pdev
)
6845 __igb_shutdown(pdev
, &wake
, 0);
6847 if (system_state
== SYSTEM_POWER_OFF
) {
6848 pci_wake_from_d3(pdev
, wake
);
6849 pci_set_power_state(pdev
, PCI_D3hot
);
6853 #ifdef CONFIG_NET_POLL_CONTROLLER
6855 * Polling 'interrupt' - used by things like netconsole to send skbs
6856 * without having to re-enable interrupts. It's not called while
6857 * the interrupt routine is executing.
6859 static void igb_netpoll(struct net_device
*netdev
)
6861 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6862 struct e1000_hw
*hw
= &adapter
->hw
;
6863 struct igb_q_vector
*q_vector
;
6866 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
6867 q_vector
= adapter
->q_vector
[i
];
6868 if (adapter
->msix_entries
)
6869 wr32(E1000_EIMC
, q_vector
->eims_value
);
6871 igb_irq_disable(adapter
);
6872 napi_schedule(&q_vector
->napi
);
6875 #endif /* CONFIG_NET_POLL_CONTROLLER */
6878 * igb_io_error_detected - called when PCI error is detected
6879 * @pdev: Pointer to PCI device
6880 * @state: The current pci connection state
6882 * This function is called after a PCI bus error affecting
6883 * this device has been detected.
6885 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*pdev
,
6886 pci_channel_state_t state
)
6888 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6889 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6891 netif_device_detach(netdev
);
6893 if (state
== pci_channel_io_perm_failure
)
6894 return PCI_ERS_RESULT_DISCONNECT
;
6896 if (netif_running(netdev
))
6898 pci_disable_device(pdev
);
6900 /* Request a slot slot reset. */
6901 return PCI_ERS_RESULT_NEED_RESET
;
6905 * igb_io_slot_reset - called after the pci bus has been reset.
6906 * @pdev: Pointer to PCI device
6908 * Restart the card from scratch, as if from a cold-boot. Implementation
6909 * resembles the first-half of the igb_resume routine.
6911 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*pdev
)
6913 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6914 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6915 struct e1000_hw
*hw
= &adapter
->hw
;
6916 pci_ers_result_t result
;
6919 if (pci_enable_device_mem(pdev
)) {
6921 "Cannot re-enable PCI device after reset.\n");
6922 result
= PCI_ERS_RESULT_DISCONNECT
;
6924 pci_set_master(pdev
);
6925 pci_restore_state(pdev
);
6926 pci_save_state(pdev
);
6928 pci_enable_wake(pdev
, PCI_D3hot
, 0);
6929 pci_enable_wake(pdev
, PCI_D3cold
, 0);
6932 wr32(E1000_WUS
, ~0);
6933 result
= PCI_ERS_RESULT_RECOVERED
;
6936 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
6938 dev_err(&pdev
->dev
, "pci_cleanup_aer_uncorrect_error_status "
6939 "failed 0x%0x\n", err
);
6940 /* non-fatal, continue */
6947 * igb_io_resume - called when traffic can start flowing again.
6948 * @pdev: Pointer to PCI device
6950 * This callback is called when the error recovery driver tells us that
6951 * its OK to resume normal operation. Implementation resembles the
6952 * second-half of the igb_resume routine.
6954 static void igb_io_resume(struct pci_dev
*pdev
)
6956 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6957 struct igb_adapter
*adapter
= netdev_priv(netdev
);
6959 if (netif_running(netdev
)) {
6960 if (igb_up(adapter
)) {
6961 dev_err(&pdev
->dev
, "igb_up failed after reset\n");
6966 netif_device_attach(netdev
);
6968 /* let the f/w know that the h/w is now under the control of the
6970 igb_get_hw_control(adapter
);
6973 static void igb_rar_set_qsel(struct igb_adapter
*adapter
, u8
*addr
, u32 index
,
6976 u32 rar_low
, rar_high
;
6977 struct e1000_hw
*hw
= &adapter
->hw
;
6979 /* HW expects these in little endian so we reverse the byte order
6980 * from network order (big endian) to little endian
6982 rar_low
= ((u32
) addr
[0] | ((u32
) addr
[1] << 8) |
6983 ((u32
) addr
[2] << 16) | ((u32
) addr
[3] << 24));
6984 rar_high
= ((u32
) addr
[4] | ((u32
) addr
[5] << 8));
6986 /* Indicate to hardware the Address is Valid. */
6987 rar_high
|= E1000_RAH_AV
;
6989 if (hw
->mac
.type
== e1000_82575
)
6990 rar_high
|= E1000_RAH_POOL_1
* qsel
;
6992 rar_high
|= E1000_RAH_POOL_1
<< qsel
;
6994 wr32(E1000_RAL(index
), rar_low
);
6996 wr32(E1000_RAH(index
), rar_high
);
7000 static int igb_set_vf_mac(struct igb_adapter
*adapter
,
7001 int vf
, unsigned char *mac_addr
)
7003 struct e1000_hw
*hw
= &adapter
->hw
;
7004 /* VF MAC addresses start at end of receive addresses and moves
7005 * torwards the first, as a result a collision should not be possible */
7006 int rar_entry
= hw
->mac
.rar_entry_count
- (vf
+ 1);
7008 memcpy(adapter
->vf_data
[vf
].vf_mac_addresses
, mac_addr
, ETH_ALEN
);
7010 igb_rar_set_qsel(adapter
, mac_addr
, rar_entry
, vf
);
7015 static int igb_ndo_set_vf_mac(struct net_device
*netdev
, int vf
, u8
*mac
)
7017 struct igb_adapter
*adapter
= netdev_priv(netdev
);
7018 if (!is_valid_ether_addr(mac
) || (vf
>= adapter
->vfs_allocated_count
))
7020 adapter
->vf_data
[vf
].flags
|= IGB_VF_FLAG_PF_SET_MAC
;
7021 dev_info(&adapter
->pdev
->dev
, "setting MAC %pM on VF %d\n", mac
, vf
);
7022 dev_info(&adapter
->pdev
->dev
, "Reload the VF driver to make this"
7023 " change effective.");
7024 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
7025 dev_warn(&adapter
->pdev
->dev
, "The VF MAC address has been set,"
7026 " but the PF device is not up.\n");
7027 dev_warn(&adapter
->pdev
->dev
, "Bring the PF device up before"
7028 " attempting to use the VF device.\n");
7030 return igb_set_vf_mac(adapter
, vf
, mac
);
7033 static int igb_link_mbps(int internal_link_speed
)
7035 switch (internal_link_speed
) {
7045 static void igb_set_vf_rate_limit(struct e1000_hw
*hw
, int vf
, int tx_rate
,
7052 /* Calculate the rate factor values to set */
7053 rf_int
= link_speed
/ tx_rate
;
7054 rf_dec
= (link_speed
- (rf_int
* tx_rate
));
7055 rf_dec
= (rf_dec
* (1<<E1000_RTTBCNRC_RF_INT_SHIFT
)) / tx_rate
;
7057 bcnrc_val
= E1000_RTTBCNRC_RS_ENA
;
7058 bcnrc_val
|= ((rf_int
<<E1000_RTTBCNRC_RF_INT_SHIFT
) &
7059 E1000_RTTBCNRC_RF_INT_MASK
);
7060 bcnrc_val
|= (rf_dec
& E1000_RTTBCNRC_RF_DEC_MASK
);
7065 wr32(E1000_RTTDQSEL
, vf
); /* vf X uses queue X */
7067 * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7068 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7070 wr32(E1000_RTTBCNRM
, 0x14);
7071 wr32(E1000_RTTBCNRC
, bcnrc_val
);
7074 static void igb_check_vf_rate_limit(struct igb_adapter
*adapter
)
7076 int actual_link_speed
, i
;
7077 bool reset_rate
= false;
7079 /* VF TX rate limit was not set or not supported */
7080 if ((adapter
->vf_rate_link_speed
== 0) ||
7081 (adapter
->hw
.mac
.type
!= e1000_82576
))
7084 actual_link_speed
= igb_link_mbps(adapter
->link_speed
);
7085 if (actual_link_speed
!= adapter
->vf_rate_link_speed
) {
7087 adapter
->vf_rate_link_speed
= 0;
7088 dev_info(&adapter
->pdev
->dev
,
7089 "Link speed has been changed. VF Transmit "
7090 "rate is disabled\n");
7093 for (i
= 0; i
< adapter
->vfs_allocated_count
; i
++) {
7095 adapter
->vf_data
[i
].tx_rate
= 0;
7097 igb_set_vf_rate_limit(&adapter
->hw
, i
,
7098 adapter
->vf_data
[i
].tx_rate
,
7103 static int igb_ndo_set_vf_bw(struct net_device
*netdev
, int vf
, int tx_rate
)
7105 struct igb_adapter
*adapter
= netdev_priv(netdev
);
7106 struct e1000_hw
*hw
= &adapter
->hw
;
7107 int actual_link_speed
;
7109 if (hw
->mac
.type
!= e1000_82576
)
7112 actual_link_speed
= igb_link_mbps(adapter
->link_speed
);
7113 if ((vf
>= adapter
->vfs_allocated_count
) ||
7114 (!(rd32(E1000_STATUS
) & E1000_STATUS_LU
)) ||
7115 (tx_rate
< 0) || (tx_rate
> actual_link_speed
))
7118 adapter
->vf_rate_link_speed
= actual_link_speed
;
7119 adapter
->vf_data
[vf
].tx_rate
= (u16
)tx_rate
;
7120 igb_set_vf_rate_limit(hw
, vf
, tx_rate
, actual_link_speed
);
7125 static int igb_ndo_get_vf_config(struct net_device
*netdev
,
7126 int vf
, struct ifla_vf_info
*ivi
)
7128 struct igb_adapter
*adapter
= netdev_priv(netdev
);
7129 if (vf
>= adapter
->vfs_allocated_count
)
7132 memcpy(&ivi
->mac
, adapter
->vf_data
[vf
].vf_mac_addresses
, ETH_ALEN
);
7133 ivi
->tx_rate
= adapter
->vf_data
[vf
].tx_rate
;
7134 ivi
->vlan
= adapter
->vf_data
[vf
].pf_vlan
;
7135 ivi
->qos
= adapter
->vf_data
[vf
].pf_qos
;
7139 static void igb_vmm_control(struct igb_adapter
*adapter
)
7141 struct e1000_hw
*hw
= &adapter
->hw
;
7144 switch (hw
->mac
.type
) {
7149 /* replication is not supported for 82575 */
7152 /* notify HW that the MAC is adding vlan tags */
7153 reg
= rd32(E1000_DTXCTL
);
7154 reg
|= E1000_DTXCTL_VLAN_ADDED
;
7155 wr32(E1000_DTXCTL
, reg
);
7157 /* enable replication vlan tag stripping */
7158 reg
= rd32(E1000_RPLOLR
);
7159 reg
|= E1000_RPLOLR_STRVLAN
;
7160 wr32(E1000_RPLOLR
, reg
);
7162 /* none of the above registers are supported by i350 */
7166 if (adapter
->vfs_allocated_count
) {
7167 igb_vmdq_set_loopback_pf(hw
, true);
7168 igb_vmdq_set_replication_pf(hw
, true);
7169 igb_vmdq_set_anti_spoofing_pf(hw
, true,
7170 adapter
->vfs_allocated_count
);
7172 igb_vmdq_set_loopback_pf(hw
, false);
7173 igb_vmdq_set_replication_pf(hw
, false);
7177 static void igb_init_dmac(struct igb_adapter
*adapter
, u32 pba
)
7179 struct e1000_hw
*hw
= &adapter
->hw
;
7183 if (hw
->mac
.type
> e1000_82580
) {
7184 if (adapter
->flags
& IGB_FLAG_DMAC
) {
7187 /* force threshold to 0. */
7188 wr32(E1000_DMCTXTH
, 0);
7191 * DMA Coalescing high water mark needs to be greater
7192 * than the Rx threshold. Set hwm to PBA - max frame
7193 * size in 16B units, capping it at PBA - 6KB.
7195 hwm
= 64 * pba
- adapter
->max_frame_size
/ 16;
7196 if (hwm
< 64 * (pba
- 6))
7197 hwm
= 64 * (pba
- 6);
7198 reg
= rd32(E1000_FCRTC
);
7199 reg
&= ~E1000_FCRTC_RTH_COAL_MASK
;
7200 reg
|= ((hwm
<< E1000_FCRTC_RTH_COAL_SHIFT
)
7201 & E1000_FCRTC_RTH_COAL_MASK
);
7202 wr32(E1000_FCRTC
, reg
);
7205 * Set the DMA Coalescing Rx threshold to PBA - 2 * max
7206 * frame size, capping it at PBA - 10KB.
7208 dmac_thr
= pba
- adapter
->max_frame_size
/ 512;
7209 if (dmac_thr
< pba
- 10)
7210 dmac_thr
= pba
- 10;
7211 reg
= rd32(E1000_DMACR
);
7212 reg
&= ~E1000_DMACR_DMACTHR_MASK
;
7213 reg
|= ((dmac_thr
<< E1000_DMACR_DMACTHR_SHIFT
)
7214 & E1000_DMACR_DMACTHR_MASK
);
7216 /* transition to L0x or L1 if available..*/
7217 reg
|= (E1000_DMACR_DMAC_EN
| E1000_DMACR_DMAC_LX_MASK
);
7219 /* watchdog timer= +-1000 usec in 32usec intervals */
7222 /* Disable BMC-to-OS Watchdog Enable */
7223 reg
&= ~E1000_DMACR_DC_BMC2OSW_EN
;
7224 wr32(E1000_DMACR
, reg
);
7227 * no lower threshold to disable
7228 * coalescing(smart fifb)-UTRESH=0
7230 wr32(E1000_DMCRTRH
, 0);
7232 reg
= (IGB_DMCTLX_DCFLUSH_DIS
| 0x4);
7234 wr32(E1000_DMCTLX
, reg
);
7237 * free space in tx packet buffer to wake from
7240 wr32(E1000_DMCTXTH
, (IGB_MIN_TXPBSIZE
-
7241 (IGB_TX_BUF_4096
+ adapter
->max_frame_size
)) >> 6);
7244 * make low power state decision controlled
7247 reg
= rd32(E1000_PCIEMISC
);
7248 reg
&= ~E1000_PCIEMISC_LX_DECISION
;
7249 wr32(E1000_PCIEMISC
, reg
);
7250 } /* endif adapter->dmac is not disabled */
7251 } else if (hw
->mac
.type
== e1000_82580
) {
7252 u32 reg
= rd32(E1000_PCIEMISC
);
7253 wr32(E1000_PCIEMISC
, reg
& ~E1000_PCIEMISC_LX_DECISION
);
7254 wr32(E1000_DMACR
, 0);