igb: Use dma_unmap_addr and dma_unmap_len defines
[linux-2.6/cjktty.git] / net / ipv4 / tcp.c
blob7b1e940393cf51aca7baacb5e3ec36d8e6428d67
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285 struct percpu_counter tcp_orphan_count;
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
288 int sysctl_tcp_wmem[3] __read_mostly;
289 int sysctl_tcp_rmem[3] __read_mostly;
291 EXPORT_SYMBOL(sysctl_tcp_rmem);
292 EXPORT_SYMBOL(sysctl_tcp_wmem);
294 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
298 * Current number of TCP sockets.
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
304 * TCP splice context
306 struct tcp_splice_state {
307 struct pipe_inode_info *pipe;
308 size_t len;
309 unsigned int flags;
313 * Pressure flag: try to collapse.
314 * Technical note: it is used by multiple contexts non atomically.
315 * All the __sk_mem_schedule() is of this nature: accounting
316 * is strict, actions are advisory and have some latency.
318 int tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL(tcp_memory_pressure);
321 void tcp_enter_memory_pressure(struct sock *sk)
323 if (!tcp_memory_pressure) {
324 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
325 tcp_memory_pressure = 1;
328 EXPORT_SYMBOL(tcp_enter_memory_pressure);
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
333 u8 res = 0;
335 if (seconds > 0) {
336 int period = timeout;
338 res = 1;
339 while (seconds > period && res < 255) {
340 res++;
341 timeout <<= 1;
342 if (timeout > rto_max)
343 timeout = rto_max;
344 period += timeout;
347 return res;
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
353 int period = 0;
355 if (retrans > 0) {
356 period = timeout;
357 while (--retrans) {
358 timeout <<= 1;
359 if (timeout > rto_max)
360 timeout = rto_max;
361 period += timeout;
364 return period;
367 /* Address-family independent initialization for a tcp_sock.
369 * NOTE: A lot of things set to zero explicitly by call to
370 * sk_alloc() so need not be done here.
372 void tcp_init_sock(struct sock *sk)
374 struct inet_connection_sock *icsk = inet_csk(sk);
375 struct tcp_sock *tp = tcp_sk(sk);
377 skb_queue_head_init(&tp->out_of_order_queue);
378 tcp_init_xmit_timers(sk);
379 tcp_prequeue_init(tp);
380 INIT_LIST_HEAD(&tp->tsq_node);
382 icsk->icsk_rto = TCP_TIMEOUT_INIT;
383 tp->mdev = TCP_TIMEOUT_INIT;
385 /* So many TCP implementations out there (incorrectly) count the
386 * initial SYN frame in their delayed-ACK and congestion control
387 * algorithms that we must have the following bandaid to talk
388 * efficiently to them. -DaveM
390 tp->snd_cwnd = TCP_INIT_CWND;
392 /* See draft-stevens-tcpca-spec-01 for discussion of the
393 * initialization of these values.
395 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
396 tp->snd_cwnd_clamp = ~0;
397 tp->mss_cache = TCP_MSS_DEFAULT;
399 tp->reordering = sysctl_tcp_reordering;
400 tcp_enable_early_retrans(tp);
401 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
403 sk->sk_state = TCP_CLOSE;
405 sk->sk_write_space = sk_stream_write_space;
406 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
408 icsk->icsk_sync_mss = tcp_sync_mss;
410 /* TCP Cookie Transactions */
411 if (sysctl_tcp_cookie_size > 0) {
412 /* Default, cookies without s_data_payload. */
413 tp->cookie_values =
414 kzalloc(sizeof(*tp->cookie_values),
415 sk->sk_allocation);
416 if (tp->cookie_values != NULL)
417 kref_init(&tp->cookie_values->kref);
419 /* Presumed zeroed, in order of appearance:
420 * cookie_in_always, cookie_out_never,
421 * s_data_constant, s_data_in, s_data_out
423 sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
426 local_bh_disable();
427 sock_update_memcg(sk);
428 sk_sockets_allocated_inc(sk);
429 local_bh_enable();
431 EXPORT_SYMBOL(tcp_init_sock);
434 * Wait for a TCP event.
436 * Note that we don't need to lock the socket, as the upper poll layers
437 * take care of normal races (between the test and the event) and we don't
438 * go look at any of the socket buffers directly.
440 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
442 unsigned int mask;
443 struct sock *sk = sock->sk;
444 const struct tcp_sock *tp = tcp_sk(sk);
446 sock_poll_wait(file, sk_sleep(sk), wait);
447 if (sk->sk_state == TCP_LISTEN)
448 return inet_csk_listen_poll(sk);
450 /* Socket is not locked. We are protected from async events
451 * by poll logic and correct handling of state changes
452 * made by other threads is impossible in any case.
455 mask = 0;
458 * POLLHUP is certainly not done right. But poll() doesn't
459 * have a notion of HUP in just one direction, and for a
460 * socket the read side is more interesting.
462 * Some poll() documentation says that POLLHUP is incompatible
463 * with the POLLOUT/POLLWR flags, so somebody should check this
464 * all. But careful, it tends to be safer to return too many
465 * bits than too few, and you can easily break real applications
466 * if you don't tell them that something has hung up!
468 * Check-me.
470 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
471 * our fs/select.c). It means that after we received EOF,
472 * poll always returns immediately, making impossible poll() on write()
473 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
474 * if and only if shutdown has been made in both directions.
475 * Actually, it is interesting to look how Solaris and DUX
476 * solve this dilemma. I would prefer, if POLLHUP were maskable,
477 * then we could set it on SND_SHUTDOWN. BTW examples given
478 * in Stevens' books assume exactly this behaviour, it explains
479 * why POLLHUP is incompatible with POLLOUT. --ANK
481 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
482 * blocking on fresh not-connected or disconnected socket. --ANK
484 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
485 mask |= POLLHUP;
486 if (sk->sk_shutdown & RCV_SHUTDOWN)
487 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
489 /* Connected or passive Fast Open socket? */
490 if (sk->sk_state != TCP_SYN_SENT &&
491 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
492 int target = sock_rcvlowat(sk, 0, INT_MAX);
494 if (tp->urg_seq == tp->copied_seq &&
495 !sock_flag(sk, SOCK_URGINLINE) &&
496 tp->urg_data)
497 target++;
499 /* Potential race condition. If read of tp below will
500 * escape above sk->sk_state, we can be illegally awaken
501 * in SYN_* states. */
502 if (tp->rcv_nxt - tp->copied_seq >= target)
503 mask |= POLLIN | POLLRDNORM;
505 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
506 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
507 mask |= POLLOUT | POLLWRNORM;
508 } else { /* send SIGIO later */
509 set_bit(SOCK_ASYNC_NOSPACE,
510 &sk->sk_socket->flags);
511 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
513 /* Race breaker. If space is freed after
514 * wspace test but before the flags are set,
515 * IO signal will be lost.
517 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
518 mask |= POLLOUT | POLLWRNORM;
520 } else
521 mask |= POLLOUT | POLLWRNORM;
523 if (tp->urg_data & TCP_URG_VALID)
524 mask |= POLLPRI;
526 /* This barrier is coupled with smp_wmb() in tcp_reset() */
527 smp_rmb();
528 if (sk->sk_err)
529 mask |= POLLERR;
531 return mask;
533 EXPORT_SYMBOL(tcp_poll);
535 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
537 struct tcp_sock *tp = tcp_sk(sk);
538 int answ;
540 switch (cmd) {
541 case SIOCINQ:
542 if (sk->sk_state == TCP_LISTEN)
543 return -EINVAL;
545 lock_sock(sk);
546 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
547 answ = 0;
548 else if (sock_flag(sk, SOCK_URGINLINE) ||
549 !tp->urg_data ||
550 before(tp->urg_seq, tp->copied_seq) ||
551 !before(tp->urg_seq, tp->rcv_nxt)) {
552 struct sk_buff *skb;
554 answ = tp->rcv_nxt - tp->copied_seq;
556 /* Subtract 1, if FIN is in queue. */
557 skb = skb_peek_tail(&sk->sk_receive_queue);
558 if (answ && skb)
559 answ -= tcp_hdr(skb)->fin;
560 } else
561 answ = tp->urg_seq - tp->copied_seq;
562 release_sock(sk);
563 break;
564 case SIOCATMARK:
565 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
566 break;
567 case SIOCOUTQ:
568 if (sk->sk_state == TCP_LISTEN)
569 return -EINVAL;
571 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
572 answ = 0;
573 else
574 answ = tp->write_seq - tp->snd_una;
575 break;
576 case SIOCOUTQNSD:
577 if (sk->sk_state == TCP_LISTEN)
578 return -EINVAL;
580 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
581 answ = 0;
582 else
583 answ = tp->write_seq - tp->snd_nxt;
584 break;
585 default:
586 return -ENOIOCTLCMD;
589 return put_user(answ, (int __user *)arg);
591 EXPORT_SYMBOL(tcp_ioctl);
593 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
595 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
596 tp->pushed_seq = tp->write_seq;
599 static inline bool forced_push(const struct tcp_sock *tp)
601 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
604 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
606 struct tcp_sock *tp = tcp_sk(sk);
607 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
609 skb->csum = 0;
610 tcb->seq = tcb->end_seq = tp->write_seq;
611 tcb->tcp_flags = TCPHDR_ACK;
612 tcb->sacked = 0;
613 skb_header_release(skb);
614 tcp_add_write_queue_tail(sk, skb);
615 sk->sk_wmem_queued += skb->truesize;
616 sk_mem_charge(sk, skb->truesize);
617 if (tp->nonagle & TCP_NAGLE_PUSH)
618 tp->nonagle &= ~TCP_NAGLE_PUSH;
621 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
623 if (flags & MSG_OOB)
624 tp->snd_up = tp->write_seq;
627 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
628 int nonagle)
630 if (tcp_send_head(sk)) {
631 struct tcp_sock *tp = tcp_sk(sk);
633 if (!(flags & MSG_MORE) || forced_push(tp))
634 tcp_mark_push(tp, tcp_write_queue_tail(sk));
636 tcp_mark_urg(tp, flags);
637 __tcp_push_pending_frames(sk, mss_now,
638 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
642 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
643 unsigned int offset, size_t len)
645 struct tcp_splice_state *tss = rd_desc->arg.data;
646 int ret;
648 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
649 tss->flags);
650 if (ret > 0)
651 rd_desc->count -= ret;
652 return ret;
655 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
657 /* Store TCP splice context information in read_descriptor_t. */
658 read_descriptor_t rd_desc = {
659 .arg.data = tss,
660 .count = tss->len,
663 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
667 * tcp_splice_read - splice data from TCP socket to a pipe
668 * @sock: socket to splice from
669 * @ppos: position (not valid)
670 * @pipe: pipe to splice to
671 * @len: number of bytes to splice
672 * @flags: splice modifier flags
674 * Description:
675 * Will read pages from given socket and fill them into a pipe.
678 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
679 struct pipe_inode_info *pipe, size_t len,
680 unsigned int flags)
682 struct sock *sk = sock->sk;
683 struct tcp_splice_state tss = {
684 .pipe = pipe,
685 .len = len,
686 .flags = flags,
688 long timeo;
689 ssize_t spliced;
690 int ret;
692 sock_rps_record_flow(sk);
694 * We can't seek on a socket input
696 if (unlikely(*ppos))
697 return -ESPIPE;
699 ret = spliced = 0;
701 lock_sock(sk);
703 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
704 while (tss.len) {
705 ret = __tcp_splice_read(sk, &tss);
706 if (ret < 0)
707 break;
708 else if (!ret) {
709 if (spliced)
710 break;
711 if (sock_flag(sk, SOCK_DONE))
712 break;
713 if (sk->sk_err) {
714 ret = sock_error(sk);
715 break;
717 if (sk->sk_shutdown & RCV_SHUTDOWN)
718 break;
719 if (sk->sk_state == TCP_CLOSE) {
721 * This occurs when user tries to read
722 * from never connected socket.
724 if (!sock_flag(sk, SOCK_DONE))
725 ret = -ENOTCONN;
726 break;
728 if (!timeo) {
729 ret = -EAGAIN;
730 break;
732 sk_wait_data(sk, &timeo);
733 if (signal_pending(current)) {
734 ret = sock_intr_errno(timeo);
735 break;
737 continue;
739 tss.len -= ret;
740 spliced += ret;
742 if (!timeo)
743 break;
744 release_sock(sk);
745 lock_sock(sk);
747 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
748 (sk->sk_shutdown & RCV_SHUTDOWN) ||
749 signal_pending(current))
750 break;
753 release_sock(sk);
755 if (spliced)
756 return spliced;
758 return ret;
760 EXPORT_SYMBOL(tcp_splice_read);
762 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
764 struct sk_buff *skb;
766 /* The TCP header must be at least 32-bit aligned. */
767 size = ALIGN(size, 4);
769 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
770 if (skb) {
771 if (sk_wmem_schedule(sk, skb->truesize)) {
772 skb_reserve(skb, sk->sk_prot->max_header);
774 * Make sure that we have exactly size bytes
775 * available to the caller, no more, no less.
777 skb->avail_size = size;
778 return skb;
780 __kfree_skb(skb);
781 } else {
782 sk->sk_prot->enter_memory_pressure(sk);
783 sk_stream_moderate_sndbuf(sk);
785 return NULL;
788 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
789 int large_allowed)
791 struct tcp_sock *tp = tcp_sk(sk);
792 u32 xmit_size_goal, old_size_goal;
794 xmit_size_goal = mss_now;
796 if (large_allowed && sk_can_gso(sk)) {
797 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
798 inet_csk(sk)->icsk_af_ops->net_header_len -
799 inet_csk(sk)->icsk_ext_hdr_len -
800 tp->tcp_header_len);
802 /* TSQ : try to have two TSO segments in flight */
803 xmit_size_goal = min_t(u32, xmit_size_goal,
804 sysctl_tcp_limit_output_bytes >> 1);
806 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
808 /* We try hard to avoid divides here */
809 old_size_goal = tp->xmit_size_goal_segs * mss_now;
811 if (likely(old_size_goal <= xmit_size_goal &&
812 old_size_goal + mss_now > xmit_size_goal)) {
813 xmit_size_goal = old_size_goal;
814 } else {
815 tp->xmit_size_goal_segs =
816 min_t(u16, xmit_size_goal / mss_now,
817 sk->sk_gso_max_segs);
818 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
822 return max(xmit_size_goal, mss_now);
825 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
827 int mss_now;
829 mss_now = tcp_current_mss(sk);
830 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
832 return mss_now;
835 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
836 size_t psize, int flags)
838 struct tcp_sock *tp = tcp_sk(sk);
839 int mss_now, size_goal;
840 int err;
841 ssize_t copied;
842 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
844 /* Wait for a connection to finish. One exception is TCP Fast Open
845 * (passive side) where data is allowed to be sent before a connection
846 * is fully established.
848 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
849 !tcp_passive_fastopen(sk)) {
850 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
851 goto out_err;
854 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
856 mss_now = tcp_send_mss(sk, &size_goal, flags);
857 copied = 0;
859 err = -EPIPE;
860 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
861 goto out_err;
863 while (psize > 0) {
864 struct sk_buff *skb = tcp_write_queue_tail(sk);
865 struct page *page = pages[poffset / PAGE_SIZE];
866 int copy, i;
867 int offset = poffset % PAGE_SIZE;
868 int size = min_t(size_t, psize, PAGE_SIZE - offset);
869 bool can_coalesce;
871 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
872 new_segment:
873 if (!sk_stream_memory_free(sk))
874 goto wait_for_sndbuf;
876 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
877 if (!skb)
878 goto wait_for_memory;
880 skb_entail(sk, skb);
881 copy = size_goal;
884 if (copy > size)
885 copy = size;
887 i = skb_shinfo(skb)->nr_frags;
888 can_coalesce = skb_can_coalesce(skb, i, page, offset);
889 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
890 tcp_mark_push(tp, skb);
891 goto new_segment;
893 if (!sk_wmem_schedule(sk, copy))
894 goto wait_for_memory;
896 if (can_coalesce) {
897 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
898 } else {
899 get_page(page);
900 skb_fill_page_desc(skb, i, page, offset, copy);
903 skb->len += copy;
904 skb->data_len += copy;
905 skb->truesize += copy;
906 sk->sk_wmem_queued += copy;
907 sk_mem_charge(sk, copy);
908 skb->ip_summed = CHECKSUM_PARTIAL;
909 tp->write_seq += copy;
910 TCP_SKB_CB(skb)->end_seq += copy;
911 skb_shinfo(skb)->gso_segs = 0;
913 if (!copied)
914 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
916 copied += copy;
917 poffset += copy;
918 if (!(psize -= copy))
919 goto out;
921 if (skb->len < size_goal || (flags & MSG_OOB))
922 continue;
924 if (forced_push(tp)) {
925 tcp_mark_push(tp, skb);
926 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
927 } else if (skb == tcp_send_head(sk))
928 tcp_push_one(sk, mss_now);
929 continue;
931 wait_for_sndbuf:
932 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
933 wait_for_memory:
934 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
936 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
937 goto do_error;
939 mss_now = tcp_send_mss(sk, &size_goal, flags);
942 out:
943 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
944 tcp_push(sk, flags, mss_now, tp->nonagle);
945 return copied;
947 do_error:
948 if (copied)
949 goto out;
950 out_err:
951 return sk_stream_error(sk, flags, err);
954 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
955 size_t size, int flags)
957 ssize_t res;
959 if (!(sk->sk_route_caps & NETIF_F_SG) ||
960 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
961 return sock_no_sendpage(sk->sk_socket, page, offset, size,
962 flags);
964 lock_sock(sk);
965 res = do_tcp_sendpages(sk, &page, offset, size, flags);
966 release_sock(sk);
967 return res;
969 EXPORT_SYMBOL(tcp_sendpage);
971 static inline int select_size(const struct sock *sk, bool sg)
973 const struct tcp_sock *tp = tcp_sk(sk);
974 int tmp = tp->mss_cache;
976 if (sg) {
977 if (sk_can_gso(sk)) {
978 /* Small frames wont use a full page:
979 * Payload will immediately follow tcp header.
981 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
982 } else {
983 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
985 if (tmp >= pgbreak &&
986 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
987 tmp = pgbreak;
991 return tmp;
994 void tcp_free_fastopen_req(struct tcp_sock *tp)
996 if (tp->fastopen_req != NULL) {
997 kfree(tp->fastopen_req);
998 tp->fastopen_req = NULL;
1002 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
1004 struct tcp_sock *tp = tcp_sk(sk);
1005 int err, flags;
1007 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1008 return -EOPNOTSUPP;
1009 if (tp->fastopen_req != NULL)
1010 return -EALREADY; /* Another Fast Open is in progress */
1012 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1013 sk->sk_allocation);
1014 if (unlikely(tp->fastopen_req == NULL))
1015 return -ENOBUFS;
1016 tp->fastopen_req->data = msg;
1018 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1019 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1020 msg->msg_namelen, flags);
1021 *size = tp->fastopen_req->copied;
1022 tcp_free_fastopen_req(tp);
1023 return err;
1026 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1027 size_t size)
1029 struct iovec *iov;
1030 struct tcp_sock *tp = tcp_sk(sk);
1031 struct sk_buff *skb;
1032 int iovlen, flags, err, copied = 0;
1033 int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1034 bool sg;
1035 long timeo;
1037 lock_sock(sk);
1039 flags = msg->msg_flags;
1040 if (flags & MSG_FASTOPEN) {
1041 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1042 if (err == -EINPROGRESS && copied_syn > 0)
1043 goto out;
1044 else if (err)
1045 goto out_err;
1046 offset = copied_syn;
1049 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1051 /* Wait for a connection to finish. One exception is TCP Fast Open
1052 * (passive side) where data is allowed to be sent before a connection
1053 * is fully established.
1055 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1056 !tcp_passive_fastopen(sk)) {
1057 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1058 goto do_error;
1061 if (unlikely(tp->repair)) {
1062 if (tp->repair_queue == TCP_RECV_QUEUE) {
1063 copied = tcp_send_rcvq(sk, msg, size);
1064 goto out;
1067 err = -EINVAL;
1068 if (tp->repair_queue == TCP_NO_QUEUE)
1069 goto out_err;
1071 /* 'common' sending to sendq */
1074 /* This should be in poll */
1075 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1077 mss_now = tcp_send_mss(sk, &size_goal, flags);
1079 /* Ok commence sending. */
1080 iovlen = msg->msg_iovlen;
1081 iov = msg->msg_iov;
1082 copied = 0;
1084 err = -EPIPE;
1085 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1086 goto out_err;
1088 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1090 while (--iovlen >= 0) {
1091 size_t seglen = iov->iov_len;
1092 unsigned char __user *from = iov->iov_base;
1094 iov++;
1095 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */
1096 if (offset >= seglen) {
1097 offset -= seglen;
1098 continue;
1100 seglen -= offset;
1101 from += offset;
1102 offset = 0;
1105 while (seglen > 0) {
1106 int copy = 0;
1107 int max = size_goal;
1109 skb = tcp_write_queue_tail(sk);
1110 if (tcp_send_head(sk)) {
1111 if (skb->ip_summed == CHECKSUM_NONE)
1112 max = mss_now;
1113 copy = max - skb->len;
1116 if (copy <= 0) {
1117 new_segment:
1118 /* Allocate new segment. If the interface is SG,
1119 * allocate skb fitting to single page.
1121 if (!sk_stream_memory_free(sk))
1122 goto wait_for_sndbuf;
1124 skb = sk_stream_alloc_skb(sk,
1125 select_size(sk, sg),
1126 sk->sk_allocation);
1127 if (!skb)
1128 goto wait_for_memory;
1131 * Check whether we can use HW checksum.
1133 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1134 skb->ip_summed = CHECKSUM_PARTIAL;
1136 skb_entail(sk, skb);
1137 copy = size_goal;
1138 max = size_goal;
1141 /* Try to append data to the end of skb. */
1142 if (copy > seglen)
1143 copy = seglen;
1145 /* Where to copy to? */
1146 if (skb_availroom(skb) > 0) {
1147 /* We have some space in skb head. Superb! */
1148 copy = min_t(int, copy, skb_availroom(skb));
1149 err = skb_add_data_nocache(sk, skb, from, copy);
1150 if (err)
1151 goto do_fault;
1152 } else {
1153 bool merge = false;
1154 int i = skb_shinfo(skb)->nr_frags;
1155 struct page *page = sk->sk_sndmsg_page;
1156 int off;
1158 if (page && page_count(page) == 1)
1159 sk->sk_sndmsg_off = 0;
1161 off = sk->sk_sndmsg_off;
1163 if (skb_can_coalesce(skb, i, page, off) &&
1164 off != PAGE_SIZE) {
1165 /* We can extend the last page
1166 * fragment. */
1167 merge = true;
1168 } else if (i == MAX_SKB_FRAGS || !sg) {
1169 /* Need to add new fragment and cannot
1170 * do this because interface is non-SG,
1171 * or because all the page slots are
1172 * busy. */
1173 tcp_mark_push(tp, skb);
1174 goto new_segment;
1175 } else if (page) {
1176 if (off == PAGE_SIZE) {
1177 put_page(page);
1178 sk->sk_sndmsg_page = page = NULL;
1179 off = 0;
1181 } else
1182 off = 0;
1184 if (copy > PAGE_SIZE - off)
1185 copy = PAGE_SIZE - off;
1187 if (!sk_wmem_schedule(sk, copy))
1188 goto wait_for_memory;
1190 if (!page) {
1191 /* Allocate new cache page. */
1192 if (!(page = sk_stream_alloc_page(sk)))
1193 goto wait_for_memory;
1196 /* Time to copy data. We are close to
1197 * the end! */
1198 err = skb_copy_to_page_nocache(sk, from, skb,
1199 page, off, copy);
1200 if (err) {
1201 /* If this page was new, give it to the
1202 * socket so it does not get leaked.
1204 if (!sk->sk_sndmsg_page) {
1205 sk->sk_sndmsg_page = page;
1206 sk->sk_sndmsg_off = 0;
1208 goto do_error;
1211 /* Update the skb. */
1212 if (merge) {
1213 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1214 } else {
1215 skb_fill_page_desc(skb, i, page, off, copy);
1216 if (sk->sk_sndmsg_page) {
1217 get_page(page);
1218 } else if (off + copy < PAGE_SIZE) {
1219 get_page(page);
1220 sk->sk_sndmsg_page = page;
1224 sk->sk_sndmsg_off = off + copy;
1227 if (!copied)
1228 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1230 tp->write_seq += copy;
1231 TCP_SKB_CB(skb)->end_seq += copy;
1232 skb_shinfo(skb)->gso_segs = 0;
1234 from += copy;
1235 copied += copy;
1236 if ((seglen -= copy) == 0 && iovlen == 0)
1237 goto out;
1239 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1240 continue;
1242 if (forced_push(tp)) {
1243 tcp_mark_push(tp, skb);
1244 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1245 } else if (skb == tcp_send_head(sk))
1246 tcp_push_one(sk, mss_now);
1247 continue;
1249 wait_for_sndbuf:
1250 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1251 wait_for_memory:
1252 if (copied && likely(!tp->repair))
1253 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1255 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1256 goto do_error;
1258 mss_now = tcp_send_mss(sk, &size_goal, flags);
1262 out:
1263 if (copied && likely(!tp->repair))
1264 tcp_push(sk, flags, mss_now, tp->nonagle);
1265 release_sock(sk);
1266 return copied + copied_syn;
1268 do_fault:
1269 if (!skb->len) {
1270 tcp_unlink_write_queue(skb, sk);
1271 /* It is the one place in all of TCP, except connection
1272 * reset, where we can be unlinking the send_head.
1274 tcp_check_send_head(sk, skb);
1275 sk_wmem_free_skb(sk, skb);
1278 do_error:
1279 if (copied + copied_syn)
1280 goto out;
1281 out_err:
1282 err = sk_stream_error(sk, flags, err);
1283 release_sock(sk);
1284 return err;
1286 EXPORT_SYMBOL(tcp_sendmsg);
1289 * Handle reading urgent data. BSD has very simple semantics for
1290 * this, no blocking and very strange errors 8)
1293 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1295 struct tcp_sock *tp = tcp_sk(sk);
1297 /* No URG data to read. */
1298 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1299 tp->urg_data == TCP_URG_READ)
1300 return -EINVAL; /* Yes this is right ! */
1302 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1303 return -ENOTCONN;
1305 if (tp->urg_data & TCP_URG_VALID) {
1306 int err = 0;
1307 char c = tp->urg_data;
1309 if (!(flags & MSG_PEEK))
1310 tp->urg_data = TCP_URG_READ;
1312 /* Read urgent data. */
1313 msg->msg_flags |= MSG_OOB;
1315 if (len > 0) {
1316 if (!(flags & MSG_TRUNC))
1317 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1318 len = 1;
1319 } else
1320 msg->msg_flags |= MSG_TRUNC;
1322 return err ? -EFAULT : len;
1325 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1326 return 0;
1328 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1329 * the available implementations agree in this case:
1330 * this call should never block, independent of the
1331 * blocking state of the socket.
1332 * Mike <pall@rz.uni-karlsruhe.de>
1334 return -EAGAIN;
1337 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1339 struct sk_buff *skb;
1340 int copied = 0, err = 0;
1342 /* XXX -- need to support SO_PEEK_OFF */
1344 skb_queue_walk(&sk->sk_write_queue, skb) {
1345 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1346 if (err)
1347 break;
1349 copied += skb->len;
1352 return err ?: copied;
1355 /* Clean up the receive buffer for full frames taken by the user,
1356 * then send an ACK if necessary. COPIED is the number of bytes
1357 * tcp_recvmsg has given to the user so far, it speeds up the
1358 * calculation of whether or not we must ACK for the sake of
1359 * a window update.
1361 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1363 struct tcp_sock *tp = tcp_sk(sk);
1364 bool time_to_ack = false;
1366 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1368 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1369 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1370 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1372 if (inet_csk_ack_scheduled(sk)) {
1373 const struct inet_connection_sock *icsk = inet_csk(sk);
1374 /* Delayed ACKs frequently hit locked sockets during bulk
1375 * receive. */
1376 if (icsk->icsk_ack.blocked ||
1377 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1378 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1380 * If this read emptied read buffer, we send ACK, if
1381 * connection is not bidirectional, user drained
1382 * receive buffer and there was a small segment
1383 * in queue.
1385 (copied > 0 &&
1386 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1387 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1388 !icsk->icsk_ack.pingpong)) &&
1389 !atomic_read(&sk->sk_rmem_alloc)))
1390 time_to_ack = true;
1393 /* We send an ACK if we can now advertise a non-zero window
1394 * which has been raised "significantly".
1396 * Even if window raised up to infinity, do not send window open ACK
1397 * in states, where we will not receive more. It is useless.
1399 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1400 __u32 rcv_window_now = tcp_receive_window(tp);
1402 /* Optimize, __tcp_select_window() is not cheap. */
1403 if (2*rcv_window_now <= tp->window_clamp) {
1404 __u32 new_window = __tcp_select_window(sk);
1406 /* Send ACK now, if this read freed lots of space
1407 * in our buffer. Certainly, new_window is new window.
1408 * We can advertise it now, if it is not less than current one.
1409 * "Lots" means "at least twice" here.
1411 if (new_window && new_window >= 2 * rcv_window_now)
1412 time_to_ack = true;
1415 if (time_to_ack)
1416 tcp_send_ack(sk);
1419 static void tcp_prequeue_process(struct sock *sk)
1421 struct sk_buff *skb;
1422 struct tcp_sock *tp = tcp_sk(sk);
1424 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1426 /* RX process wants to run with disabled BHs, though it is not
1427 * necessary */
1428 local_bh_disable();
1429 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1430 sk_backlog_rcv(sk, skb);
1431 local_bh_enable();
1433 /* Clear memory counter. */
1434 tp->ucopy.memory = 0;
1437 #ifdef CONFIG_NET_DMA
1438 static void tcp_service_net_dma(struct sock *sk, bool wait)
1440 dma_cookie_t done, used;
1441 dma_cookie_t last_issued;
1442 struct tcp_sock *tp = tcp_sk(sk);
1444 if (!tp->ucopy.dma_chan)
1445 return;
1447 last_issued = tp->ucopy.dma_cookie;
1448 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1450 do {
1451 if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1452 last_issued, &done,
1453 &used) == DMA_SUCCESS) {
1454 /* Safe to free early-copied skbs now */
1455 __skb_queue_purge(&sk->sk_async_wait_queue);
1456 break;
1457 } else {
1458 struct sk_buff *skb;
1459 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1460 (dma_async_is_complete(skb->dma_cookie, done,
1461 used) == DMA_SUCCESS)) {
1462 __skb_dequeue(&sk->sk_async_wait_queue);
1463 kfree_skb(skb);
1466 } while (wait);
1468 #endif
1470 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1472 struct sk_buff *skb;
1473 u32 offset;
1475 skb_queue_walk(&sk->sk_receive_queue, skb) {
1476 offset = seq - TCP_SKB_CB(skb)->seq;
1477 if (tcp_hdr(skb)->syn)
1478 offset--;
1479 if (offset < skb->len || tcp_hdr(skb)->fin) {
1480 *off = offset;
1481 return skb;
1484 return NULL;
1488 * This routine provides an alternative to tcp_recvmsg() for routines
1489 * that would like to handle copying from skbuffs directly in 'sendfile'
1490 * fashion.
1491 * Note:
1492 * - It is assumed that the socket was locked by the caller.
1493 * - The routine does not block.
1494 * - At present, there is no support for reading OOB data
1495 * or for 'peeking' the socket using this routine
1496 * (although both would be easy to implement).
1498 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1499 sk_read_actor_t recv_actor)
1501 struct sk_buff *skb;
1502 struct tcp_sock *tp = tcp_sk(sk);
1503 u32 seq = tp->copied_seq;
1504 u32 offset;
1505 int copied = 0;
1507 if (sk->sk_state == TCP_LISTEN)
1508 return -ENOTCONN;
1509 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1510 if (offset < skb->len) {
1511 int used;
1512 size_t len;
1514 len = skb->len - offset;
1515 /* Stop reading if we hit a patch of urgent data */
1516 if (tp->urg_data) {
1517 u32 urg_offset = tp->urg_seq - seq;
1518 if (urg_offset < len)
1519 len = urg_offset;
1520 if (!len)
1521 break;
1523 used = recv_actor(desc, skb, offset, len);
1524 if (used < 0) {
1525 if (!copied)
1526 copied = used;
1527 break;
1528 } else if (used <= len) {
1529 seq += used;
1530 copied += used;
1531 offset += used;
1534 * If recv_actor drops the lock (e.g. TCP splice
1535 * receive) the skb pointer might be invalid when
1536 * getting here: tcp_collapse might have deleted it
1537 * while aggregating skbs from the socket queue.
1539 skb = tcp_recv_skb(sk, seq-1, &offset);
1540 if (!skb || (offset+1 != skb->len))
1541 break;
1543 if (tcp_hdr(skb)->fin) {
1544 sk_eat_skb(sk, skb, false);
1545 ++seq;
1546 break;
1548 sk_eat_skb(sk, skb, false);
1549 if (!desc->count)
1550 break;
1551 tp->copied_seq = seq;
1553 tp->copied_seq = seq;
1555 tcp_rcv_space_adjust(sk);
1557 /* Clean up data we have read: This will do ACK frames. */
1558 if (copied > 0)
1559 tcp_cleanup_rbuf(sk, copied);
1560 return copied;
1562 EXPORT_SYMBOL(tcp_read_sock);
1565 * This routine copies from a sock struct into the user buffer.
1567 * Technical note: in 2.3 we work on _locked_ socket, so that
1568 * tricks with *seq access order and skb->users are not required.
1569 * Probably, code can be easily improved even more.
1572 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1573 size_t len, int nonblock, int flags, int *addr_len)
1575 struct tcp_sock *tp = tcp_sk(sk);
1576 int copied = 0;
1577 u32 peek_seq;
1578 u32 *seq;
1579 unsigned long used;
1580 int err;
1581 int target; /* Read at least this many bytes */
1582 long timeo;
1583 struct task_struct *user_recv = NULL;
1584 bool copied_early = false;
1585 struct sk_buff *skb;
1586 u32 urg_hole = 0;
1588 lock_sock(sk);
1590 err = -ENOTCONN;
1591 if (sk->sk_state == TCP_LISTEN)
1592 goto out;
1594 timeo = sock_rcvtimeo(sk, nonblock);
1596 /* Urgent data needs to be handled specially. */
1597 if (flags & MSG_OOB)
1598 goto recv_urg;
1600 if (unlikely(tp->repair)) {
1601 err = -EPERM;
1602 if (!(flags & MSG_PEEK))
1603 goto out;
1605 if (tp->repair_queue == TCP_SEND_QUEUE)
1606 goto recv_sndq;
1608 err = -EINVAL;
1609 if (tp->repair_queue == TCP_NO_QUEUE)
1610 goto out;
1612 /* 'common' recv queue MSG_PEEK-ing */
1615 seq = &tp->copied_seq;
1616 if (flags & MSG_PEEK) {
1617 peek_seq = tp->copied_seq;
1618 seq = &peek_seq;
1621 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1623 #ifdef CONFIG_NET_DMA
1624 tp->ucopy.dma_chan = NULL;
1625 preempt_disable();
1626 skb = skb_peek_tail(&sk->sk_receive_queue);
1628 int available = 0;
1630 if (skb)
1631 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1632 if ((available < target) &&
1633 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1634 !sysctl_tcp_low_latency &&
1635 net_dma_find_channel()) {
1636 preempt_enable_no_resched();
1637 tp->ucopy.pinned_list =
1638 dma_pin_iovec_pages(msg->msg_iov, len);
1639 } else {
1640 preempt_enable_no_resched();
1643 #endif
1645 do {
1646 u32 offset;
1648 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1649 if (tp->urg_data && tp->urg_seq == *seq) {
1650 if (copied)
1651 break;
1652 if (signal_pending(current)) {
1653 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1654 break;
1658 /* Next get a buffer. */
1660 skb_queue_walk(&sk->sk_receive_queue, skb) {
1661 /* Now that we have two receive queues this
1662 * shouldn't happen.
1664 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1665 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1666 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1667 flags))
1668 break;
1670 offset = *seq - TCP_SKB_CB(skb)->seq;
1671 if (tcp_hdr(skb)->syn)
1672 offset--;
1673 if (offset < skb->len)
1674 goto found_ok_skb;
1675 if (tcp_hdr(skb)->fin)
1676 goto found_fin_ok;
1677 WARN(!(flags & MSG_PEEK),
1678 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1679 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1682 /* Well, if we have backlog, try to process it now yet. */
1684 if (copied >= target && !sk->sk_backlog.tail)
1685 break;
1687 if (copied) {
1688 if (sk->sk_err ||
1689 sk->sk_state == TCP_CLOSE ||
1690 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1691 !timeo ||
1692 signal_pending(current))
1693 break;
1694 } else {
1695 if (sock_flag(sk, SOCK_DONE))
1696 break;
1698 if (sk->sk_err) {
1699 copied = sock_error(sk);
1700 break;
1703 if (sk->sk_shutdown & RCV_SHUTDOWN)
1704 break;
1706 if (sk->sk_state == TCP_CLOSE) {
1707 if (!sock_flag(sk, SOCK_DONE)) {
1708 /* This occurs when user tries to read
1709 * from never connected socket.
1711 copied = -ENOTCONN;
1712 break;
1714 break;
1717 if (!timeo) {
1718 copied = -EAGAIN;
1719 break;
1722 if (signal_pending(current)) {
1723 copied = sock_intr_errno(timeo);
1724 break;
1728 tcp_cleanup_rbuf(sk, copied);
1730 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1731 /* Install new reader */
1732 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1733 user_recv = current;
1734 tp->ucopy.task = user_recv;
1735 tp->ucopy.iov = msg->msg_iov;
1738 tp->ucopy.len = len;
1740 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1741 !(flags & (MSG_PEEK | MSG_TRUNC)));
1743 /* Ugly... If prequeue is not empty, we have to
1744 * process it before releasing socket, otherwise
1745 * order will be broken at second iteration.
1746 * More elegant solution is required!!!
1748 * Look: we have the following (pseudo)queues:
1750 * 1. packets in flight
1751 * 2. backlog
1752 * 3. prequeue
1753 * 4. receive_queue
1755 * Each queue can be processed only if the next ones
1756 * are empty. At this point we have empty receive_queue.
1757 * But prequeue _can_ be not empty after 2nd iteration,
1758 * when we jumped to start of loop because backlog
1759 * processing added something to receive_queue.
1760 * We cannot release_sock(), because backlog contains
1761 * packets arrived _after_ prequeued ones.
1763 * Shortly, algorithm is clear --- to process all
1764 * the queues in order. We could make it more directly,
1765 * requeueing packets from backlog to prequeue, if
1766 * is not empty. It is more elegant, but eats cycles,
1767 * unfortunately.
1769 if (!skb_queue_empty(&tp->ucopy.prequeue))
1770 goto do_prequeue;
1772 /* __ Set realtime policy in scheduler __ */
1775 #ifdef CONFIG_NET_DMA
1776 if (tp->ucopy.dma_chan)
1777 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1778 #endif
1779 if (copied >= target) {
1780 /* Do not sleep, just process backlog. */
1781 release_sock(sk);
1782 lock_sock(sk);
1783 } else
1784 sk_wait_data(sk, &timeo);
1786 #ifdef CONFIG_NET_DMA
1787 tcp_service_net_dma(sk, false); /* Don't block */
1788 tp->ucopy.wakeup = 0;
1789 #endif
1791 if (user_recv) {
1792 int chunk;
1794 /* __ Restore normal policy in scheduler __ */
1796 if ((chunk = len - tp->ucopy.len) != 0) {
1797 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1798 len -= chunk;
1799 copied += chunk;
1802 if (tp->rcv_nxt == tp->copied_seq &&
1803 !skb_queue_empty(&tp->ucopy.prequeue)) {
1804 do_prequeue:
1805 tcp_prequeue_process(sk);
1807 if ((chunk = len - tp->ucopy.len) != 0) {
1808 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1809 len -= chunk;
1810 copied += chunk;
1814 if ((flags & MSG_PEEK) &&
1815 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1816 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1817 current->comm,
1818 task_pid_nr(current));
1819 peek_seq = tp->copied_seq;
1821 continue;
1823 found_ok_skb:
1824 /* Ok so how much can we use? */
1825 used = skb->len - offset;
1826 if (len < used)
1827 used = len;
1829 /* Do we have urgent data here? */
1830 if (tp->urg_data) {
1831 u32 urg_offset = tp->urg_seq - *seq;
1832 if (urg_offset < used) {
1833 if (!urg_offset) {
1834 if (!sock_flag(sk, SOCK_URGINLINE)) {
1835 ++*seq;
1836 urg_hole++;
1837 offset++;
1838 used--;
1839 if (!used)
1840 goto skip_copy;
1842 } else
1843 used = urg_offset;
1847 if (!(flags & MSG_TRUNC)) {
1848 #ifdef CONFIG_NET_DMA
1849 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1850 tp->ucopy.dma_chan = net_dma_find_channel();
1852 if (tp->ucopy.dma_chan) {
1853 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1854 tp->ucopy.dma_chan, skb, offset,
1855 msg->msg_iov, used,
1856 tp->ucopy.pinned_list);
1858 if (tp->ucopy.dma_cookie < 0) {
1860 pr_alert("%s: dma_cookie < 0\n",
1861 __func__);
1863 /* Exception. Bailout! */
1864 if (!copied)
1865 copied = -EFAULT;
1866 break;
1869 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1871 if ((offset + used) == skb->len)
1872 copied_early = true;
1874 } else
1875 #endif
1877 err = skb_copy_datagram_iovec(skb, offset,
1878 msg->msg_iov, used);
1879 if (err) {
1880 /* Exception. Bailout! */
1881 if (!copied)
1882 copied = -EFAULT;
1883 break;
1888 *seq += used;
1889 copied += used;
1890 len -= used;
1892 tcp_rcv_space_adjust(sk);
1894 skip_copy:
1895 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1896 tp->urg_data = 0;
1897 tcp_fast_path_check(sk);
1899 if (used + offset < skb->len)
1900 continue;
1902 if (tcp_hdr(skb)->fin)
1903 goto found_fin_ok;
1904 if (!(flags & MSG_PEEK)) {
1905 sk_eat_skb(sk, skb, copied_early);
1906 copied_early = false;
1908 continue;
1910 found_fin_ok:
1911 /* Process the FIN. */
1912 ++*seq;
1913 if (!(flags & MSG_PEEK)) {
1914 sk_eat_skb(sk, skb, copied_early);
1915 copied_early = false;
1917 break;
1918 } while (len > 0);
1920 if (user_recv) {
1921 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1922 int chunk;
1924 tp->ucopy.len = copied > 0 ? len : 0;
1926 tcp_prequeue_process(sk);
1928 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1929 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1930 len -= chunk;
1931 copied += chunk;
1935 tp->ucopy.task = NULL;
1936 tp->ucopy.len = 0;
1939 #ifdef CONFIG_NET_DMA
1940 tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1941 tp->ucopy.dma_chan = NULL;
1943 if (tp->ucopy.pinned_list) {
1944 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1945 tp->ucopy.pinned_list = NULL;
1947 #endif
1949 /* According to UNIX98, msg_name/msg_namelen are ignored
1950 * on connected socket. I was just happy when found this 8) --ANK
1953 /* Clean up data we have read: This will do ACK frames. */
1954 tcp_cleanup_rbuf(sk, copied);
1956 release_sock(sk);
1957 return copied;
1959 out:
1960 release_sock(sk);
1961 return err;
1963 recv_urg:
1964 err = tcp_recv_urg(sk, msg, len, flags);
1965 goto out;
1967 recv_sndq:
1968 err = tcp_peek_sndq(sk, msg, len);
1969 goto out;
1971 EXPORT_SYMBOL(tcp_recvmsg);
1973 void tcp_set_state(struct sock *sk, int state)
1975 int oldstate = sk->sk_state;
1977 switch (state) {
1978 case TCP_ESTABLISHED:
1979 if (oldstate != TCP_ESTABLISHED)
1980 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1981 break;
1983 case TCP_CLOSE:
1984 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1985 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1987 sk->sk_prot->unhash(sk);
1988 if (inet_csk(sk)->icsk_bind_hash &&
1989 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1990 inet_put_port(sk);
1991 /* fall through */
1992 default:
1993 if (oldstate == TCP_ESTABLISHED)
1994 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1997 /* Change state AFTER socket is unhashed to avoid closed
1998 * socket sitting in hash tables.
2000 sk->sk_state = state;
2002 #ifdef STATE_TRACE
2003 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2004 #endif
2006 EXPORT_SYMBOL_GPL(tcp_set_state);
2009 * State processing on a close. This implements the state shift for
2010 * sending our FIN frame. Note that we only send a FIN for some
2011 * states. A shutdown() may have already sent the FIN, or we may be
2012 * closed.
2015 static const unsigned char new_state[16] = {
2016 /* current state: new state: action: */
2017 /* (Invalid) */ TCP_CLOSE,
2018 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2019 /* TCP_SYN_SENT */ TCP_CLOSE,
2020 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2021 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
2022 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
2023 /* TCP_TIME_WAIT */ TCP_CLOSE,
2024 /* TCP_CLOSE */ TCP_CLOSE,
2025 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
2026 /* TCP_LAST_ACK */ TCP_LAST_ACK,
2027 /* TCP_LISTEN */ TCP_CLOSE,
2028 /* TCP_CLOSING */ TCP_CLOSING,
2031 static int tcp_close_state(struct sock *sk)
2033 int next = (int)new_state[sk->sk_state];
2034 int ns = next & TCP_STATE_MASK;
2036 tcp_set_state(sk, ns);
2038 return next & TCP_ACTION_FIN;
2042 * Shutdown the sending side of a connection. Much like close except
2043 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2046 void tcp_shutdown(struct sock *sk, int how)
2048 /* We need to grab some memory, and put together a FIN,
2049 * and then put it into the queue to be sent.
2050 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2052 if (!(how & SEND_SHUTDOWN))
2053 return;
2055 /* If we've already sent a FIN, or it's a closed state, skip this. */
2056 if ((1 << sk->sk_state) &
2057 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2058 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2059 /* Clear out any half completed packets. FIN if needed. */
2060 if (tcp_close_state(sk))
2061 tcp_send_fin(sk);
2064 EXPORT_SYMBOL(tcp_shutdown);
2066 bool tcp_check_oom(struct sock *sk, int shift)
2068 bool too_many_orphans, out_of_socket_memory;
2070 too_many_orphans = tcp_too_many_orphans(sk, shift);
2071 out_of_socket_memory = tcp_out_of_memory(sk);
2073 if (too_many_orphans)
2074 net_info_ratelimited("too many orphaned sockets\n");
2075 if (out_of_socket_memory)
2076 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2077 return too_many_orphans || out_of_socket_memory;
2080 void tcp_close(struct sock *sk, long timeout)
2082 struct sk_buff *skb;
2083 int data_was_unread = 0;
2084 int state;
2086 lock_sock(sk);
2087 sk->sk_shutdown = SHUTDOWN_MASK;
2089 if (sk->sk_state == TCP_LISTEN) {
2090 tcp_set_state(sk, TCP_CLOSE);
2092 /* Special case. */
2093 inet_csk_listen_stop(sk);
2095 goto adjudge_to_death;
2098 /* We need to flush the recv. buffs. We do this only on the
2099 * descriptor close, not protocol-sourced closes, because the
2100 * reader process may not have drained the data yet!
2102 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2103 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2104 tcp_hdr(skb)->fin;
2105 data_was_unread += len;
2106 __kfree_skb(skb);
2109 sk_mem_reclaim(sk);
2111 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2112 if (sk->sk_state == TCP_CLOSE)
2113 goto adjudge_to_death;
2115 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2116 * data was lost. To witness the awful effects of the old behavior of
2117 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2118 * GET in an FTP client, suspend the process, wait for the client to
2119 * advertise a zero window, then kill -9 the FTP client, wheee...
2120 * Note: timeout is always zero in such a case.
2122 if (unlikely(tcp_sk(sk)->repair)) {
2123 sk->sk_prot->disconnect(sk, 0);
2124 } else if (data_was_unread) {
2125 /* Unread data was tossed, zap the connection. */
2126 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2127 tcp_set_state(sk, TCP_CLOSE);
2128 tcp_send_active_reset(sk, sk->sk_allocation);
2129 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2130 /* Check zero linger _after_ checking for unread data. */
2131 sk->sk_prot->disconnect(sk, 0);
2132 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2133 } else if (tcp_close_state(sk)) {
2134 /* We FIN if the application ate all the data before
2135 * zapping the connection.
2138 /* RED-PEN. Formally speaking, we have broken TCP state
2139 * machine. State transitions:
2141 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2142 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2143 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2145 * are legal only when FIN has been sent (i.e. in window),
2146 * rather than queued out of window. Purists blame.
2148 * F.e. "RFC state" is ESTABLISHED,
2149 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2151 * The visible declinations are that sometimes
2152 * we enter time-wait state, when it is not required really
2153 * (harmless), do not send active resets, when they are
2154 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2155 * they look as CLOSING or LAST_ACK for Linux)
2156 * Probably, I missed some more holelets.
2157 * --ANK
2158 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2159 * in a single packet! (May consider it later but will
2160 * probably need API support or TCP_CORK SYN-ACK until
2161 * data is written and socket is closed.)
2163 tcp_send_fin(sk);
2166 sk_stream_wait_close(sk, timeout);
2168 adjudge_to_death:
2169 state = sk->sk_state;
2170 sock_hold(sk);
2171 sock_orphan(sk);
2173 /* It is the last release_sock in its life. It will remove backlog. */
2174 release_sock(sk);
2177 /* Now socket is owned by kernel and we acquire BH lock
2178 to finish close. No need to check for user refs.
2180 local_bh_disable();
2181 bh_lock_sock(sk);
2182 WARN_ON(sock_owned_by_user(sk));
2184 percpu_counter_inc(sk->sk_prot->orphan_count);
2186 /* Have we already been destroyed by a softirq or backlog? */
2187 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2188 goto out;
2190 /* This is a (useful) BSD violating of the RFC. There is a
2191 * problem with TCP as specified in that the other end could
2192 * keep a socket open forever with no application left this end.
2193 * We use a 3 minute timeout (about the same as BSD) then kill
2194 * our end. If they send after that then tough - BUT: long enough
2195 * that we won't make the old 4*rto = almost no time - whoops
2196 * reset mistake.
2198 * Nope, it was not mistake. It is really desired behaviour
2199 * f.e. on http servers, when such sockets are useless, but
2200 * consume significant resources. Let's do it with special
2201 * linger2 option. --ANK
2204 if (sk->sk_state == TCP_FIN_WAIT2) {
2205 struct tcp_sock *tp = tcp_sk(sk);
2206 if (tp->linger2 < 0) {
2207 tcp_set_state(sk, TCP_CLOSE);
2208 tcp_send_active_reset(sk, GFP_ATOMIC);
2209 NET_INC_STATS_BH(sock_net(sk),
2210 LINUX_MIB_TCPABORTONLINGER);
2211 } else {
2212 const int tmo = tcp_fin_time(sk);
2214 if (tmo > TCP_TIMEWAIT_LEN) {
2215 inet_csk_reset_keepalive_timer(sk,
2216 tmo - TCP_TIMEWAIT_LEN);
2217 } else {
2218 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2219 goto out;
2223 if (sk->sk_state != TCP_CLOSE) {
2224 sk_mem_reclaim(sk);
2225 if (tcp_check_oom(sk, 0)) {
2226 tcp_set_state(sk, TCP_CLOSE);
2227 tcp_send_active_reset(sk, GFP_ATOMIC);
2228 NET_INC_STATS_BH(sock_net(sk),
2229 LINUX_MIB_TCPABORTONMEMORY);
2233 if (sk->sk_state == TCP_CLOSE) {
2234 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2235 /* We could get here with a non-NULL req if the socket is
2236 * aborted (e.g., closed with unread data) before 3WHS
2237 * finishes.
2239 if (req != NULL)
2240 reqsk_fastopen_remove(sk, req, false);
2241 inet_csk_destroy_sock(sk);
2243 /* Otherwise, socket is reprieved until protocol close. */
2245 out:
2246 bh_unlock_sock(sk);
2247 local_bh_enable();
2248 sock_put(sk);
2250 EXPORT_SYMBOL(tcp_close);
2252 /* These states need RST on ABORT according to RFC793 */
2254 static inline bool tcp_need_reset(int state)
2256 return (1 << state) &
2257 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2258 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2261 int tcp_disconnect(struct sock *sk, int flags)
2263 struct inet_sock *inet = inet_sk(sk);
2264 struct inet_connection_sock *icsk = inet_csk(sk);
2265 struct tcp_sock *tp = tcp_sk(sk);
2266 int err = 0;
2267 int old_state = sk->sk_state;
2269 if (old_state != TCP_CLOSE)
2270 tcp_set_state(sk, TCP_CLOSE);
2272 /* ABORT function of RFC793 */
2273 if (old_state == TCP_LISTEN) {
2274 inet_csk_listen_stop(sk);
2275 } else if (unlikely(tp->repair)) {
2276 sk->sk_err = ECONNABORTED;
2277 } else if (tcp_need_reset(old_state) ||
2278 (tp->snd_nxt != tp->write_seq &&
2279 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2280 /* The last check adjusts for discrepancy of Linux wrt. RFC
2281 * states
2283 tcp_send_active_reset(sk, gfp_any());
2284 sk->sk_err = ECONNRESET;
2285 } else if (old_state == TCP_SYN_SENT)
2286 sk->sk_err = ECONNRESET;
2288 tcp_clear_xmit_timers(sk);
2289 __skb_queue_purge(&sk->sk_receive_queue);
2290 tcp_write_queue_purge(sk);
2291 __skb_queue_purge(&tp->out_of_order_queue);
2292 #ifdef CONFIG_NET_DMA
2293 __skb_queue_purge(&sk->sk_async_wait_queue);
2294 #endif
2296 inet->inet_dport = 0;
2298 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2299 inet_reset_saddr(sk);
2301 sk->sk_shutdown = 0;
2302 sock_reset_flag(sk, SOCK_DONE);
2303 tp->srtt = 0;
2304 if ((tp->write_seq += tp->max_window + 2) == 0)
2305 tp->write_seq = 1;
2306 icsk->icsk_backoff = 0;
2307 tp->snd_cwnd = 2;
2308 icsk->icsk_probes_out = 0;
2309 tp->packets_out = 0;
2310 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2311 tp->snd_cwnd_cnt = 0;
2312 tp->bytes_acked = 0;
2313 tp->window_clamp = 0;
2314 tcp_set_ca_state(sk, TCP_CA_Open);
2315 tcp_clear_retrans(tp);
2316 inet_csk_delack_init(sk);
2317 tcp_init_send_head(sk);
2318 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2319 __sk_dst_reset(sk);
2321 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2323 sk->sk_error_report(sk);
2324 return err;
2326 EXPORT_SYMBOL(tcp_disconnect);
2328 void tcp_sock_destruct(struct sock *sk)
2330 inet_sock_destruct(sk);
2332 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2335 static inline bool tcp_can_repair_sock(const struct sock *sk)
2337 return capable(CAP_NET_ADMIN) &&
2338 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2341 static int tcp_repair_options_est(struct tcp_sock *tp,
2342 struct tcp_repair_opt __user *optbuf, unsigned int len)
2344 struct tcp_repair_opt opt;
2346 while (len >= sizeof(opt)) {
2347 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2348 return -EFAULT;
2350 optbuf++;
2351 len -= sizeof(opt);
2353 switch (opt.opt_code) {
2354 case TCPOPT_MSS:
2355 tp->rx_opt.mss_clamp = opt.opt_val;
2356 break;
2357 case TCPOPT_WINDOW:
2358 if (opt.opt_val > 14)
2359 return -EFBIG;
2361 tp->rx_opt.snd_wscale = opt.opt_val;
2362 break;
2363 case TCPOPT_SACK_PERM:
2364 if (opt.opt_val != 0)
2365 return -EINVAL;
2367 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2368 if (sysctl_tcp_fack)
2369 tcp_enable_fack(tp);
2370 break;
2371 case TCPOPT_TIMESTAMP:
2372 if (opt.opt_val != 0)
2373 return -EINVAL;
2375 tp->rx_opt.tstamp_ok = 1;
2376 break;
2380 return 0;
2384 * Socket option code for TCP.
2386 static int do_tcp_setsockopt(struct sock *sk, int level,
2387 int optname, char __user *optval, unsigned int optlen)
2389 struct tcp_sock *tp = tcp_sk(sk);
2390 struct inet_connection_sock *icsk = inet_csk(sk);
2391 int val;
2392 int err = 0;
2394 /* These are data/string values, all the others are ints */
2395 switch (optname) {
2396 case TCP_CONGESTION: {
2397 char name[TCP_CA_NAME_MAX];
2399 if (optlen < 1)
2400 return -EINVAL;
2402 val = strncpy_from_user(name, optval,
2403 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2404 if (val < 0)
2405 return -EFAULT;
2406 name[val] = 0;
2408 lock_sock(sk);
2409 err = tcp_set_congestion_control(sk, name);
2410 release_sock(sk);
2411 return err;
2413 case TCP_COOKIE_TRANSACTIONS: {
2414 struct tcp_cookie_transactions ctd;
2415 struct tcp_cookie_values *cvp = NULL;
2417 if (sizeof(ctd) > optlen)
2418 return -EINVAL;
2419 if (copy_from_user(&ctd, optval, sizeof(ctd)))
2420 return -EFAULT;
2422 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2423 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2424 return -EINVAL;
2426 if (ctd.tcpct_cookie_desired == 0) {
2427 /* default to global value */
2428 } else if ((0x1 & ctd.tcpct_cookie_desired) ||
2429 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2430 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2431 return -EINVAL;
2434 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2435 /* Supercedes all other values */
2436 lock_sock(sk);
2437 if (tp->cookie_values != NULL) {
2438 kref_put(&tp->cookie_values->kref,
2439 tcp_cookie_values_release);
2440 tp->cookie_values = NULL;
2442 tp->rx_opt.cookie_in_always = 0; /* false */
2443 tp->rx_opt.cookie_out_never = 1; /* true */
2444 release_sock(sk);
2445 return err;
2448 /* Allocate ancillary memory before locking.
2450 if (ctd.tcpct_used > 0 ||
2451 (tp->cookie_values == NULL &&
2452 (sysctl_tcp_cookie_size > 0 ||
2453 ctd.tcpct_cookie_desired > 0 ||
2454 ctd.tcpct_s_data_desired > 0))) {
2455 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2456 GFP_KERNEL);
2457 if (cvp == NULL)
2458 return -ENOMEM;
2460 kref_init(&cvp->kref);
2462 lock_sock(sk);
2463 tp->rx_opt.cookie_in_always =
2464 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2465 tp->rx_opt.cookie_out_never = 0; /* false */
2467 if (tp->cookie_values != NULL) {
2468 if (cvp != NULL) {
2469 /* Changed values are recorded by a changed
2470 * pointer, ensuring the cookie will differ,
2471 * without separately hashing each value later.
2473 kref_put(&tp->cookie_values->kref,
2474 tcp_cookie_values_release);
2475 } else {
2476 cvp = tp->cookie_values;
2480 if (cvp != NULL) {
2481 cvp->cookie_desired = ctd.tcpct_cookie_desired;
2483 if (ctd.tcpct_used > 0) {
2484 memcpy(cvp->s_data_payload, ctd.tcpct_value,
2485 ctd.tcpct_used);
2486 cvp->s_data_desired = ctd.tcpct_used;
2487 cvp->s_data_constant = 1; /* true */
2488 } else {
2489 /* No constant payload data. */
2490 cvp->s_data_desired = ctd.tcpct_s_data_desired;
2491 cvp->s_data_constant = 0; /* false */
2494 tp->cookie_values = cvp;
2496 release_sock(sk);
2497 return err;
2499 default:
2500 /* fallthru */
2501 break;
2504 if (optlen < sizeof(int))
2505 return -EINVAL;
2507 if (get_user(val, (int __user *)optval))
2508 return -EFAULT;
2510 lock_sock(sk);
2512 switch (optname) {
2513 case TCP_MAXSEG:
2514 /* Values greater than interface MTU won't take effect. However
2515 * at the point when this call is done we typically don't yet
2516 * know which interface is going to be used */
2517 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2518 err = -EINVAL;
2519 break;
2521 tp->rx_opt.user_mss = val;
2522 break;
2524 case TCP_NODELAY:
2525 if (val) {
2526 /* TCP_NODELAY is weaker than TCP_CORK, so that
2527 * this option on corked socket is remembered, but
2528 * it is not activated until cork is cleared.
2530 * However, when TCP_NODELAY is set we make
2531 * an explicit push, which overrides even TCP_CORK
2532 * for currently queued segments.
2534 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2535 tcp_push_pending_frames(sk);
2536 } else {
2537 tp->nonagle &= ~TCP_NAGLE_OFF;
2539 break;
2541 case TCP_THIN_LINEAR_TIMEOUTS:
2542 if (val < 0 || val > 1)
2543 err = -EINVAL;
2544 else
2545 tp->thin_lto = val;
2546 break;
2548 case TCP_THIN_DUPACK:
2549 if (val < 0 || val > 1)
2550 err = -EINVAL;
2551 else
2552 tp->thin_dupack = val;
2553 if (tp->thin_dupack)
2554 tcp_disable_early_retrans(tp);
2555 break;
2557 case TCP_REPAIR:
2558 if (!tcp_can_repair_sock(sk))
2559 err = -EPERM;
2560 else if (val == 1) {
2561 tp->repair = 1;
2562 sk->sk_reuse = SK_FORCE_REUSE;
2563 tp->repair_queue = TCP_NO_QUEUE;
2564 } else if (val == 0) {
2565 tp->repair = 0;
2566 sk->sk_reuse = SK_NO_REUSE;
2567 tcp_send_window_probe(sk);
2568 } else
2569 err = -EINVAL;
2571 break;
2573 case TCP_REPAIR_QUEUE:
2574 if (!tp->repair)
2575 err = -EPERM;
2576 else if (val < TCP_QUEUES_NR)
2577 tp->repair_queue = val;
2578 else
2579 err = -EINVAL;
2580 break;
2582 case TCP_QUEUE_SEQ:
2583 if (sk->sk_state != TCP_CLOSE)
2584 err = -EPERM;
2585 else if (tp->repair_queue == TCP_SEND_QUEUE)
2586 tp->write_seq = val;
2587 else if (tp->repair_queue == TCP_RECV_QUEUE)
2588 tp->rcv_nxt = val;
2589 else
2590 err = -EINVAL;
2591 break;
2593 case TCP_REPAIR_OPTIONS:
2594 if (!tp->repair)
2595 err = -EINVAL;
2596 else if (sk->sk_state == TCP_ESTABLISHED)
2597 err = tcp_repair_options_est(tp,
2598 (struct tcp_repair_opt __user *)optval,
2599 optlen);
2600 else
2601 err = -EPERM;
2602 break;
2604 case TCP_CORK:
2605 /* When set indicates to always queue non-full frames.
2606 * Later the user clears this option and we transmit
2607 * any pending partial frames in the queue. This is
2608 * meant to be used alongside sendfile() to get properly
2609 * filled frames when the user (for example) must write
2610 * out headers with a write() call first and then use
2611 * sendfile to send out the data parts.
2613 * TCP_CORK can be set together with TCP_NODELAY and it is
2614 * stronger than TCP_NODELAY.
2616 if (val) {
2617 tp->nonagle |= TCP_NAGLE_CORK;
2618 } else {
2619 tp->nonagle &= ~TCP_NAGLE_CORK;
2620 if (tp->nonagle&TCP_NAGLE_OFF)
2621 tp->nonagle |= TCP_NAGLE_PUSH;
2622 tcp_push_pending_frames(sk);
2624 break;
2626 case TCP_KEEPIDLE:
2627 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2628 err = -EINVAL;
2629 else {
2630 tp->keepalive_time = val * HZ;
2631 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2632 !((1 << sk->sk_state) &
2633 (TCPF_CLOSE | TCPF_LISTEN))) {
2634 u32 elapsed = keepalive_time_elapsed(tp);
2635 if (tp->keepalive_time > elapsed)
2636 elapsed = tp->keepalive_time - elapsed;
2637 else
2638 elapsed = 0;
2639 inet_csk_reset_keepalive_timer(sk, elapsed);
2642 break;
2643 case TCP_KEEPINTVL:
2644 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2645 err = -EINVAL;
2646 else
2647 tp->keepalive_intvl = val * HZ;
2648 break;
2649 case TCP_KEEPCNT:
2650 if (val < 1 || val > MAX_TCP_KEEPCNT)
2651 err = -EINVAL;
2652 else
2653 tp->keepalive_probes = val;
2654 break;
2655 case TCP_SYNCNT:
2656 if (val < 1 || val > MAX_TCP_SYNCNT)
2657 err = -EINVAL;
2658 else
2659 icsk->icsk_syn_retries = val;
2660 break;
2662 case TCP_LINGER2:
2663 if (val < 0)
2664 tp->linger2 = -1;
2665 else if (val > sysctl_tcp_fin_timeout / HZ)
2666 tp->linger2 = 0;
2667 else
2668 tp->linger2 = val * HZ;
2669 break;
2671 case TCP_DEFER_ACCEPT:
2672 /* Translate value in seconds to number of retransmits */
2673 icsk->icsk_accept_queue.rskq_defer_accept =
2674 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2675 TCP_RTO_MAX / HZ);
2676 break;
2678 case TCP_WINDOW_CLAMP:
2679 if (!val) {
2680 if (sk->sk_state != TCP_CLOSE) {
2681 err = -EINVAL;
2682 break;
2684 tp->window_clamp = 0;
2685 } else
2686 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2687 SOCK_MIN_RCVBUF / 2 : val;
2688 break;
2690 case TCP_QUICKACK:
2691 if (!val) {
2692 icsk->icsk_ack.pingpong = 1;
2693 } else {
2694 icsk->icsk_ack.pingpong = 0;
2695 if ((1 << sk->sk_state) &
2696 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2697 inet_csk_ack_scheduled(sk)) {
2698 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2699 tcp_cleanup_rbuf(sk, 1);
2700 if (!(val & 1))
2701 icsk->icsk_ack.pingpong = 1;
2704 break;
2706 #ifdef CONFIG_TCP_MD5SIG
2707 case TCP_MD5SIG:
2708 /* Read the IP->Key mappings from userspace */
2709 err = tp->af_specific->md5_parse(sk, optval, optlen);
2710 break;
2711 #endif
2712 case TCP_USER_TIMEOUT:
2713 /* Cap the max timeout in ms TCP will retry/retrans
2714 * before giving up and aborting (ETIMEDOUT) a connection.
2716 if (val < 0)
2717 err = -EINVAL;
2718 else
2719 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2720 break;
2722 case TCP_FASTOPEN:
2723 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2724 TCPF_LISTEN)))
2725 err = fastopen_init_queue(sk, val);
2726 else
2727 err = -EINVAL;
2728 break;
2729 default:
2730 err = -ENOPROTOOPT;
2731 break;
2734 release_sock(sk);
2735 return err;
2738 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2739 unsigned int optlen)
2741 const struct inet_connection_sock *icsk = inet_csk(sk);
2743 if (level != SOL_TCP)
2744 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2745 optval, optlen);
2746 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2748 EXPORT_SYMBOL(tcp_setsockopt);
2750 #ifdef CONFIG_COMPAT
2751 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2752 char __user *optval, unsigned int optlen)
2754 if (level != SOL_TCP)
2755 return inet_csk_compat_setsockopt(sk, level, optname,
2756 optval, optlen);
2757 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2759 EXPORT_SYMBOL(compat_tcp_setsockopt);
2760 #endif
2762 /* Return information about state of tcp endpoint in API format. */
2763 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2765 const struct tcp_sock *tp = tcp_sk(sk);
2766 const struct inet_connection_sock *icsk = inet_csk(sk);
2767 u32 now = tcp_time_stamp;
2769 memset(info, 0, sizeof(*info));
2771 info->tcpi_state = sk->sk_state;
2772 info->tcpi_ca_state = icsk->icsk_ca_state;
2773 info->tcpi_retransmits = icsk->icsk_retransmits;
2774 info->tcpi_probes = icsk->icsk_probes_out;
2775 info->tcpi_backoff = icsk->icsk_backoff;
2777 if (tp->rx_opt.tstamp_ok)
2778 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2779 if (tcp_is_sack(tp))
2780 info->tcpi_options |= TCPI_OPT_SACK;
2781 if (tp->rx_opt.wscale_ok) {
2782 info->tcpi_options |= TCPI_OPT_WSCALE;
2783 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2784 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2787 if (tp->ecn_flags & TCP_ECN_OK)
2788 info->tcpi_options |= TCPI_OPT_ECN;
2789 if (tp->ecn_flags & TCP_ECN_SEEN)
2790 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2792 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2793 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2794 info->tcpi_snd_mss = tp->mss_cache;
2795 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2797 if (sk->sk_state == TCP_LISTEN) {
2798 info->tcpi_unacked = sk->sk_ack_backlog;
2799 info->tcpi_sacked = sk->sk_max_ack_backlog;
2800 } else {
2801 info->tcpi_unacked = tp->packets_out;
2802 info->tcpi_sacked = tp->sacked_out;
2804 info->tcpi_lost = tp->lost_out;
2805 info->tcpi_retrans = tp->retrans_out;
2806 info->tcpi_fackets = tp->fackets_out;
2808 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2809 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2810 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2812 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2813 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2814 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2815 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2816 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2817 info->tcpi_snd_cwnd = tp->snd_cwnd;
2818 info->tcpi_advmss = tp->advmss;
2819 info->tcpi_reordering = tp->reordering;
2821 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2822 info->tcpi_rcv_space = tp->rcvq_space.space;
2824 info->tcpi_total_retrans = tp->total_retrans;
2826 EXPORT_SYMBOL_GPL(tcp_get_info);
2828 static int do_tcp_getsockopt(struct sock *sk, int level,
2829 int optname, char __user *optval, int __user *optlen)
2831 struct inet_connection_sock *icsk = inet_csk(sk);
2832 struct tcp_sock *tp = tcp_sk(sk);
2833 int val, len;
2835 if (get_user(len, optlen))
2836 return -EFAULT;
2838 len = min_t(unsigned int, len, sizeof(int));
2840 if (len < 0)
2841 return -EINVAL;
2843 switch (optname) {
2844 case TCP_MAXSEG:
2845 val = tp->mss_cache;
2846 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2847 val = tp->rx_opt.user_mss;
2848 if (tp->repair)
2849 val = tp->rx_opt.mss_clamp;
2850 break;
2851 case TCP_NODELAY:
2852 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2853 break;
2854 case TCP_CORK:
2855 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2856 break;
2857 case TCP_KEEPIDLE:
2858 val = keepalive_time_when(tp) / HZ;
2859 break;
2860 case TCP_KEEPINTVL:
2861 val = keepalive_intvl_when(tp) / HZ;
2862 break;
2863 case TCP_KEEPCNT:
2864 val = keepalive_probes(tp);
2865 break;
2866 case TCP_SYNCNT:
2867 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2868 break;
2869 case TCP_LINGER2:
2870 val = tp->linger2;
2871 if (val >= 0)
2872 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2873 break;
2874 case TCP_DEFER_ACCEPT:
2875 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2876 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2877 break;
2878 case TCP_WINDOW_CLAMP:
2879 val = tp->window_clamp;
2880 break;
2881 case TCP_INFO: {
2882 struct tcp_info info;
2884 if (get_user(len, optlen))
2885 return -EFAULT;
2887 tcp_get_info(sk, &info);
2889 len = min_t(unsigned int, len, sizeof(info));
2890 if (put_user(len, optlen))
2891 return -EFAULT;
2892 if (copy_to_user(optval, &info, len))
2893 return -EFAULT;
2894 return 0;
2896 case TCP_QUICKACK:
2897 val = !icsk->icsk_ack.pingpong;
2898 break;
2900 case TCP_CONGESTION:
2901 if (get_user(len, optlen))
2902 return -EFAULT;
2903 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2904 if (put_user(len, optlen))
2905 return -EFAULT;
2906 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2907 return -EFAULT;
2908 return 0;
2910 case TCP_COOKIE_TRANSACTIONS: {
2911 struct tcp_cookie_transactions ctd;
2912 struct tcp_cookie_values *cvp = tp->cookie_values;
2914 if (get_user(len, optlen))
2915 return -EFAULT;
2916 if (len < sizeof(ctd))
2917 return -EINVAL;
2919 memset(&ctd, 0, sizeof(ctd));
2920 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2921 TCP_COOKIE_IN_ALWAYS : 0)
2922 | (tp->rx_opt.cookie_out_never ?
2923 TCP_COOKIE_OUT_NEVER : 0);
2925 if (cvp != NULL) {
2926 ctd.tcpct_flags |= (cvp->s_data_in ?
2927 TCP_S_DATA_IN : 0)
2928 | (cvp->s_data_out ?
2929 TCP_S_DATA_OUT : 0);
2931 ctd.tcpct_cookie_desired = cvp->cookie_desired;
2932 ctd.tcpct_s_data_desired = cvp->s_data_desired;
2934 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2935 cvp->cookie_pair_size);
2936 ctd.tcpct_used = cvp->cookie_pair_size;
2939 if (put_user(sizeof(ctd), optlen))
2940 return -EFAULT;
2941 if (copy_to_user(optval, &ctd, sizeof(ctd)))
2942 return -EFAULT;
2943 return 0;
2945 case TCP_THIN_LINEAR_TIMEOUTS:
2946 val = tp->thin_lto;
2947 break;
2948 case TCP_THIN_DUPACK:
2949 val = tp->thin_dupack;
2950 break;
2952 case TCP_REPAIR:
2953 val = tp->repair;
2954 break;
2956 case TCP_REPAIR_QUEUE:
2957 if (tp->repair)
2958 val = tp->repair_queue;
2959 else
2960 return -EINVAL;
2961 break;
2963 case TCP_QUEUE_SEQ:
2964 if (tp->repair_queue == TCP_SEND_QUEUE)
2965 val = tp->write_seq;
2966 else if (tp->repair_queue == TCP_RECV_QUEUE)
2967 val = tp->rcv_nxt;
2968 else
2969 return -EINVAL;
2970 break;
2972 case TCP_USER_TIMEOUT:
2973 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2974 break;
2975 default:
2976 return -ENOPROTOOPT;
2979 if (put_user(len, optlen))
2980 return -EFAULT;
2981 if (copy_to_user(optval, &val, len))
2982 return -EFAULT;
2983 return 0;
2986 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2987 int __user *optlen)
2989 struct inet_connection_sock *icsk = inet_csk(sk);
2991 if (level != SOL_TCP)
2992 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2993 optval, optlen);
2994 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2996 EXPORT_SYMBOL(tcp_getsockopt);
2998 #ifdef CONFIG_COMPAT
2999 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3000 char __user *optval, int __user *optlen)
3002 if (level != SOL_TCP)
3003 return inet_csk_compat_getsockopt(sk, level, optname,
3004 optval, optlen);
3005 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3007 EXPORT_SYMBOL(compat_tcp_getsockopt);
3008 #endif
3010 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
3011 netdev_features_t features)
3013 struct sk_buff *segs = ERR_PTR(-EINVAL);
3014 struct tcphdr *th;
3015 unsigned int thlen;
3016 unsigned int seq;
3017 __be32 delta;
3018 unsigned int oldlen;
3019 unsigned int mss;
3021 if (!pskb_may_pull(skb, sizeof(*th)))
3022 goto out;
3024 th = tcp_hdr(skb);
3025 thlen = th->doff * 4;
3026 if (thlen < sizeof(*th))
3027 goto out;
3029 if (!pskb_may_pull(skb, thlen))
3030 goto out;
3032 oldlen = (u16)~skb->len;
3033 __skb_pull(skb, thlen);
3035 mss = skb_shinfo(skb)->gso_size;
3036 if (unlikely(skb->len <= mss))
3037 goto out;
3039 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
3040 /* Packet is from an untrusted source, reset gso_segs. */
3041 int type = skb_shinfo(skb)->gso_type;
3043 if (unlikely(type &
3044 ~(SKB_GSO_TCPV4 |
3045 SKB_GSO_DODGY |
3046 SKB_GSO_TCP_ECN |
3047 SKB_GSO_TCPV6 |
3048 0) ||
3049 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
3050 goto out;
3052 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
3054 segs = NULL;
3055 goto out;
3058 segs = skb_segment(skb, features);
3059 if (IS_ERR(segs))
3060 goto out;
3062 delta = htonl(oldlen + (thlen + mss));
3064 skb = segs;
3065 th = tcp_hdr(skb);
3066 seq = ntohl(th->seq);
3068 do {
3069 th->fin = th->psh = 0;
3071 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3072 (__force u32)delta));
3073 if (skb->ip_summed != CHECKSUM_PARTIAL)
3074 th->check =
3075 csum_fold(csum_partial(skb_transport_header(skb),
3076 thlen, skb->csum));
3078 seq += mss;
3079 skb = skb->next;
3080 th = tcp_hdr(skb);
3082 th->seq = htonl(seq);
3083 th->cwr = 0;
3084 } while (skb->next);
3086 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3087 skb->data_len);
3088 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3089 (__force u32)delta));
3090 if (skb->ip_summed != CHECKSUM_PARTIAL)
3091 th->check = csum_fold(csum_partial(skb_transport_header(skb),
3092 thlen, skb->csum));
3094 out:
3095 return segs;
3097 EXPORT_SYMBOL(tcp_tso_segment);
3099 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3101 struct sk_buff **pp = NULL;
3102 struct sk_buff *p;
3103 struct tcphdr *th;
3104 struct tcphdr *th2;
3105 unsigned int len;
3106 unsigned int thlen;
3107 __be32 flags;
3108 unsigned int mss = 1;
3109 unsigned int hlen;
3110 unsigned int off;
3111 int flush = 1;
3112 int i;
3114 off = skb_gro_offset(skb);
3115 hlen = off + sizeof(*th);
3116 th = skb_gro_header_fast(skb, off);
3117 if (skb_gro_header_hard(skb, hlen)) {
3118 th = skb_gro_header_slow(skb, hlen, off);
3119 if (unlikely(!th))
3120 goto out;
3123 thlen = th->doff * 4;
3124 if (thlen < sizeof(*th))
3125 goto out;
3127 hlen = off + thlen;
3128 if (skb_gro_header_hard(skb, hlen)) {
3129 th = skb_gro_header_slow(skb, hlen, off);
3130 if (unlikely(!th))
3131 goto out;
3134 skb_gro_pull(skb, thlen);
3136 len = skb_gro_len(skb);
3137 flags = tcp_flag_word(th);
3139 for (; (p = *head); head = &p->next) {
3140 if (!NAPI_GRO_CB(p)->same_flow)
3141 continue;
3143 th2 = tcp_hdr(p);
3145 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3146 NAPI_GRO_CB(p)->same_flow = 0;
3147 continue;
3150 goto found;
3153 goto out_check_final;
3155 found:
3156 flush = NAPI_GRO_CB(p)->flush;
3157 flush |= (__force int)(flags & TCP_FLAG_CWR);
3158 flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3159 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3160 flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3161 for (i = sizeof(*th); i < thlen; i += 4)
3162 flush |= *(u32 *)((u8 *)th + i) ^
3163 *(u32 *)((u8 *)th2 + i);
3165 mss = skb_shinfo(p)->gso_size;
3167 flush |= (len - 1) >= mss;
3168 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3170 if (flush || skb_gro_receive(head, skb)) {
3171 mss = 1;
3172 goto out_check_final;
3175 p = *head;
3176 th2 = tcp_hdr(p);
3177 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3179 out_check_final:
3180 flush = len < mss;
3181 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3182 TCP_FLAG_RST | TCP_FLAG_SYN |
3183 TCP_FLAG_FIN));
3185 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3186 pp = head;
3188 out:
3189 NAPI_GRO_CB(skb)->flush |= flush;
3191 return pp;
3193 EXPORT_SYMBOL(tcp_gro_receive);
3195 int tcp_gro_complete(struct sk_buff *skb)
3197 struct tcphdr *th = tcp_hdr(skb);
3199 skb->csum_start = skb_transport_header(skb) - skb->head;
3200 skb->csum_offset = offsetof(struct tcphdr, check);
3201 skb->ip_summed = CHECKSUM_PARTIAL;
3203 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3205 if (th->cwr)
3206 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3208 return 0;
3210 EXPORT_SYMBOL(tcp_gro_complete);
3212 #ifdef CONFIG_TCP_MD5SIG
3213 static unsigned long tcp_md5sig_users;
3214 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3215 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3217 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3219 int cpu;
3221 for_each_possible_cpu(cpu) {
3222 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3224 if (p->md5_desc.tfm)
3225 crypto_free_hash(p->md5_desc.tfm);
3227 free_percpu(pool);
3230 void tcp_free_md5sig_pool(void)
3232 struct tcp_md5sig_pool __percpu *pool = NULL;
3234 spin_lock_bh(&tcp_md5sig_pool_lock);
3235 if (--tcp_md5sig_users == 0) {
3236 pool = tcp_md5sig_pool;
3237 tcp_md5sig_pool = NULL;
3239 spin_unlock_bh(&tcp_md5sig_pool_lock);
3240 if (pool)
3241 __tcp_free_md5sig_pool(pool);
3243 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3245 static struct tcp_md5sig_pool __percpu *
3246 __tcp_alloc_md5sig_pool(struct sock *sk)
3248 int cpu;
3249 struct tcp_md5sig_pool __percpu *pool;
3251 pool = alloc_percpu(struct tcp_md5sig_pool);
3252 if (!pool)
3253 return NULL;
3255 for_each_possible_cpu(cpu) {
3256 struct crypto_hash *hash;
3258 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3259 if (!hash || IS_ERR(hash))
3260 goto out_free;
3262 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3264 return pool;
3265 out_free:
3266 __tcp_free_md5sig_pool(pool);
3267 return NULL;
3270 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3272 struct tcp_md5sig_pool __percpu *pool;
3273 bool alloc = false;
3275 retry:
3276 spin_lock_bh(&tcp_md5sig_pool_lock);
3277 pool = tcp_md5sig_pool;
3278 if (tcp_md5sig_users++ == 0) {
3279 alloc = true;
3280 spin_unlock_bh(&tcp_md5sig_pool_lock);
3281 } else if (!pool) {
3282 tcp_md5sig_users--;
3283 spin_unlock_bh(&tcp_md5sig_pool_lock);
3284 cpu_relax();
3285 goto retry;
3286 } else
3287 spin_unlock_bh(&tcp_md5sig_pool_lock);
3289 if (alloc) {
3290 /* we cannot hold spinlock here because this may sleep. */
3291 struct tcp_md5sig_pool __percpu *p;
3293 p = __tcp_alloc_md5sig_pool(sk);
3294 spin_lock_bh(&tcp_md5sig_pool_lock);
3295 if (!p) {
3296 tcp_md5sig_users--;
3297 spin_unlock_bh(&tcp_md5sig_pool_lock);
3298 return NULL;
3300 pool = tcp_md5sig_pool;
3301 if (pool) {
3302 /* oops, it has already been assigned. */
3303 spin_unlock_bh(&tcp_md5sig_pool_lock);
3304 __tcp_free_md5sig_pool(p);
3305 } else {
3306 tcp_md5sig_pool = pool = p;
3307 spin_unlock_bh(&tcp_md5sig_pool_lock);
3310 return pool;
3312 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3316 * tcp_get_md5sig_pool - get md5sig_pool for this user
3318 * We use percpu structure, so if we succeed, we exit with preemption
3319 * and BH disabled, to make sure another thread or softirq handling
3320 * wont try to get same context.
3322 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3324 struct tcp_md5sig_pool __percpu *p;
3326 local_bh_disable();
3328 spin_lock(&tcp_md5sig_pool_lock);
3329 p = tcp_md5sig_pool;
3330 if (p)
3331 tcp_md5sig_users++;
3332 spin_unlock(&tcp_md5sig_pool_lock);
3334 if (p)
3335 return this_cpu_ptr(p);
3337 local_bh_enable();
3338 return NULL;
3340 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3342 void tcp_put_md5sig_pool(void)
3344 local_bh_enable();
3345 tcp_free_md5sig_pool();
3347 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3349 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3350 const struct tcphdr *th)
3352 struct scatterlist sg;
3353 struct tcphdr hdr;
3354 int err;
3356 /* We are not allowed to change tcphdr, make a local copy */
3357 memcpy(&hdr, th, sizeof(hdr));
3358 hdr.check = 0;
3360 /* options aren't included in the hash */
3361 sg_init_one(&sg, &hdr, sizeof(hdr));
3362 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3363 return err;
3365 EXPORT_SYMBOL(tcp_md5_hash_header);
3367 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3368 const struct sk_buff *skb, unsigned int header_len)
3370 struct scatterlist sg;
3371 const struct tcphdr *tp = tcp_hdr(skb);
3372 struct hash_desc *desc = &hp->md5_desc;
3373 unsigned int i;
3374 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3375 skb_headlen(skb) - header_len : 0;
3376 const struct skb_shared_info *shi = skb_shinfo(skb);
3377 struct sk_buff *frag_iter;
3379 sg_init_table(&sg, 1);
3381 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3382 if (crypto_hash_update(desc, &sg, head_data_len))
3383 return 1;
3385 for (i = 0; i < shi->nr_frags; ++i) {
3386 const struct skb_frag_struct *f = &shi->frags[i];
3387 struct page *page = skb_frag_page(f);
3388 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3389 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3390 return 1;
3393 skb_walk_frags(skb, frag_iter)
3394 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3395 return 1;
3397 return 0;
3399 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3401 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3403 struct scatterlist sg;
3405 sg_init_one(&sg, key->key, key->keylen);
3406 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3408 EXPORT_SYMBOL(tcp_md5_hash_key);
3410 #endif
3412 /* Each Responder maintains up to two secret values concurrently for
3413 * efficient secret rollover. Each secret value has 4 states:
3415 * Generating. (tcp_secret_generating != tcp_secret_primary)
3416 * Generates new Responder-Cookies, but not yet used for primary
3417 * verification. This is a short-term state, typically lasting only
3418 * one round trip time (RTT).
3420 * Primary. (tcp_secret_generating == tcp_secret_primary)
3421 * Used both for generation and primary verification.
3423 * Retiring. (tcp_secret_retiring != tcp_secret_secondary)
3424 * Used for verification, until the first failure that can be
3425 * verified by the newer Generating secret. At that time, this
3426 * cookie's state is changed to Secondary, and the Generating
3427 * cookie's state is changed to Primary. This is a short-term state,
3428 * typically lasting only one round trip time (RTT).
3430 * Secondary. (tcp_secret_retiring == tcp_secret_secondary)
3431 * Used for secondary verification, after primary verification
3432 * failures. This state lasts no more than twice the Maximum Segment
3433 * Lifetime (2MSL). Then, the secret is discarded.
3435 struct tcp_cookie_secret {
3436 /* The secret is divided into two parts. The digest part is the
3437 * equivalent of previously hashing a secret and saving the state,
3438 * and serves as an initialization vector (IV). The message part
3439 * serves as the trailing secret.
3441 u32 secrets[COOKIE_WORKSPACE_WORDS];
3442 unsigned long expires;
3445 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3446 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3447 #define TCP_SECRET_LIFE (HZ * 600)
3449 static struct tcp_cookie_secret tcp_secret_one;
3450 static struct tcp_cookie_secret tcp_secret_two;
3452 /* Essentially a circular list, without dynamic allocation. */
3453 static struct tcp_cookie_secret *tcp_secret_generating;
3454 static struct tcp_cookie_secret *tcp_secret_primary;
3455 static struct tcp_cookie_secret *tcp_secret_retiring;
3456 static struct tcp_cookie_secret *tcp_secret_secondary;
3458 static DEFINE_SPINLOCK(tcp_secret_locker);
3460 /* Select a pseudo-random word in the cookie workspace.
3462 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3464 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3467 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3468 * Called in softirq context.
3469 * Returns: 0 for success.
3471 int tcp_cookie_generator(u32 *bakery)
3473 unsigned long jiffy = jiffies;
3475 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3476 spin_lock_bh(&tcp_secret_locker);
3477 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3478 /* refreshed by another */
3479 memcpy(bakery,
3480 &tcp_secret_generating->secrets[0],
3481 COOKIE_WORKSPACE_WORDS);
3482 } else {
3483 /* still needs refreshing */
3484 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3486 /* The first time, paranoia assumes that the
3487 * randomization function isn't as strong. But,
3488 * this secret initialization is delayed until
3489 * the last possible moment (packet arrival).
3490 * Although that time is observable, it is
3491 * unpredictably variable. Mash in the most
3492 * volatile clock bits available, and expire the
3493 * secret extra quickly.
3495 if (unlikely(tcp_secret_primary->expires ==
3496 tcp_secret_secondary->expires)) {
3497 struct timespec tv;
3499 getnstimeofday(&tv);
3500 bakery[COOKIE_DIGEST_WORDS+0] ^=
3501 (u32)tv.tv_nsec;
3503 tcp_secret_secondary->expires = jiffy
3504 + TCP_SECRET_1MSL
3505 + (0x0f & tcp_cookie_work(bakery, 0));
3506 } else {
3507 tcp_secret_secondary->expires = jiffy
3508 + TCP_SECRET_LIFE
3509 + (0xff & tcp_cookie_work(bakery, 1));
3510 tcp_secret_primary->expires = jiffy
3511 + TCP_SECRET_2MSL
3512 + (0x1f & tcp_cookie_work(bakery, 2));
3514 memcpy(&tcp_secret_secondary->secrets[0],
3515 bakery, COOKIE_WORKSPACE_WORDS);
3517 rcu_assign_pointer(tcp_secret_generating,
3518 tcp_secret_secondary);
3519 rcu_assign_pointer(tcp_secret_retiring,
3520 tcp_secret_primary);
3522 * Neither call_rcu() nor synchronize_rcu() needed.
3523 * Retiring data is not freed. It is replaced after
3524 * further (locked) pointer updates, and a quiet time
3525 * (minimum 1MSL, maximum LIFE - 2MSL).
3528 spin_unlock_bh(&tcp_secret_locker);
3529 } else {
3530 rcu_read_lock_bh();
3531 memcpy(bakery,
3532 &rcu_dereference(tcp_secret_generating)->secrets[0],
3533 COOKIE_WORKSPACE_WORDS);
3534 rcu_read_unlock_bh();
3536 return 0;
3538 EXPORT_SYMBOL(tcp_cookie_generator);
3540 void tcp_done(struct sock *sk)
3542 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3544 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3545 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3547 tcp_set_state(sk, TCP_CLOSE);
3548 tcp_clear_xmit_timers(sk);
3549 if (req != NULL)
3550 reqsk_fastopen_remove(sk, req, false);
3552 sk->sk_shutdown = SHUTDOWN_MASK;
3554 if (!sock_flag(sk, SOCK_DEAD))
3555 sk->sk_state_change(sk);
3556 else
3557 inet_csk_destroy_sock(sk);
3559 EXPORT_SYMBOL_GPL(tcp_done);
3561 extern struct tcp_congestion_ops tcp_reno;
3563 static __initdata unsigned long thash_entries;
3564 static int __init set_thash_entries(char *str)
3566 ssize_t ret;
3568 if (!str)
3569 return 0;
3571 ret = kstrtoul(str, 0, &thash_entries);
3572 if (ret)
3573 return 0;
3575 return 1;
3577 __setup("thash_entries=", set_thash_entries);
3579 void tcp_init_mem(struct net *net)
3581 unsigned long limit = nr_free_buffer_pages() / 8;
3582 limit = max(limit, 128UL);
3583 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3584 net->ipv4.sysctl_tcp_mem[1] = limit;
3585 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3588 void __init tcp_init(void)
3590 struct sk_buff *skb = NULL;
3591 unsigned long limit;
3592 int max_rshare, max_wshare, cnt;
3593 unsigned int i;
3594 unsigned long jiffy = jiffies;
3596 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3598 percpu_counter_init(&tcp_sockets_allocated, 0);
3599 percpu_counter_init(&tcp_orphan_count, 0);
3600 tcp_hashinfo.bind_bucket_cachep =
3601 kmem_cache_create("tcp_bind_bucket",
3602 sizeof(struct inet_bind_bucket), 0,
3603 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3605 /* Size and allocate the main established and bind bucket
3606 * hash tables.
3608 * The methodology is similar to that of the buffer cache.
3610 tcp_hashinfo.ehash =
3611 alloc_large_system_hash("TCP established",
3612 sizeof(struct inet_ehash_bucket),
3613 thash_entries,
3614 (totalram_pages >= 128 * 1024) ?
3615 13 : 15,
3617 NULL,
3618 &tcp_hashinfo.ehash_mask,
3620 thash_entries ? 0 : 512 * 1024);
3621 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3622 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3623 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3625 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3626 panic("TCP: failed to alloc ehash_locks");
3627 tcp_hashinfo.bhash =
3628 alloc_large_system_hash("TCP bind",
3629 sizeof(struct inet_bind_hashbucket),
3630 tcp_hashinfo.ehash_mask + 1,
3631 (totalram_pages >= 128 * 1024) ?
3632 13 : 15,
3634 &tcp_hashinfo.bhash_size,
3635 NULL,
3637 64 * 1024);
3638 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3639 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3640 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3641 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3645 cnt = tcp_hashinfo.ehash_mask + 1;
3647 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3648 sysctl_tcp_max_orphans = cnt / 2;
3649 sysctl_max_syn_backlog = max(128, cnt / 256);
3651 tcp_init_mem(&init_net);
3652 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3653 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3654 max_wshare = min(4UL*1024*1024, limit);
3655 max_rshare = min(6UL*1024*1024, limit);
3657 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3658 sysctl_tcp_wmem[1] = 16*1024;
3659 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3661 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3662 sysctl_tcp_rmem[1] = 87380;
3663 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3665 pr_info("Hash tables configured (established %u bind %u)\n",
3666 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3668 tcp_metrics_init();
3670 tcp_register_congestion_control(&tcp_reno);
3672 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3673 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3674 tcp_secret_one.expires = jiffy; /* past due */
3675 tcp_secret_two.expires = jiffy; /* past due */
3676 tcp_secret_generating = &tcp_secret_one;
3677 tcp_secret_primary = &tcp_secret_one;
3678 tcp_secret_retiring = &tcp_secret_two;
3679 tcp_secret_secondary = &tcp_secret_two;
3680 tcp_tasklet_init();