2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
46 * There are three level of locking required by epoll :
50 * 3) ep->lock (spinlock)
52 * The acquire order is the one listed above, from 1 to 3.
53 * We need a spinlock (ep->lock) because we manipulate objects
54 * from inside the poll callback, that might be triggered from
55 * a wake_up() that in turn might be called from IRQ context.
56 * So we can't sleep inside the poll callback and hence we need
57 * a spinlock. During the event transfer loop (from kernel to
58 * user space) we could end up sleeping due a copy_to_user(), so
59 * we need a lock that will allow us to sleep. This lock is a
60 * mutex (ep->mtx). It is acquired during the event transfer loop,
61 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
62 * Then we also need a global mutex to serialize eventpoll_release_file()
64 * This mutex is acquired by ep_free() during the epoll file
65 * cleanup path and it is also acquired by eventpoll_release_file()
66 * if a file has been pushed inside an epoll set and it is then
67 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
68 * It is also acquired when inserting an epoll fd onto another epoll
69 * fd. We do this so that we walk the epoll tree and ensure that this
70 * insertion does not create a cycle of epoll file descriptors, which
71 * could lead to deadlock. We need a global mutex to prevent two
72 * simultaneous inserts (A into B and B into A) from racing and
73 * constructing a cycle without either insert observing that it is
75 * It is necessary to acquire multiple "ep->mtx"es at once in the
76 * case when one epoll fd is added to another. In this case, we
77 * always acquire the locks in the order of nesting (i.e. after
78 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
79 * before e2->mtx). Since we disallow cycles of epoll file
80 * descriptors, this ensures that the mutexes are well-ordered. In
81 * order to communicate this nesting to lockdep, when walking a tree
82 * of epoll file descriptors, we use the current recursion depth as
84 * It is possible to drop the "ep->mtx" and to use the global
85 * mutex "epmutex" (together with "ep->lock") to have it working,
86 * but having "ep->mtx" will make the interface more scalable.
87 * Events that require holding "epmutex" are very rare, while for
88 * normal operations the epoll private "ep->mtx" will guarantee
89 * a better scalability.
92 /* Epoll private bits inside the event mask */
93 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
95 /* Maximum number of nesting allowed inside epoll sets */
96 #define EP_MAX_NESTS 4
98 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
100 #define EP_UNACTIVE_PTR ((void *) -1L)
102 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
104 struct epoll_filefd
{
110 * Structure used to track possible nested calls, for too deep recursions
113 struct nested_call_node
{
114 struct list_head llink
;
120 * This structure is used as collector for nested calls, to check for
121 * maximum recursion dept and loop cycles.
123 struct nested_calls
{
124 struct list_head tasks_call_list
;
129 * Each file descriptor added to the eventpoll interface will
130 * have an entry of this type linked to the "rbr" RB tree.
133 /* RB tree node used to link this structure to the eventpoll RB tree */
136 /* List header used to link this structure to the eventpoll ready list */
137 struct list_head rdllink
;
140 * Works together "struct eventpoll"->ovflist in keeping the
141 * single linked chain of items.
145 /* The file descriptor information this item refers to */
146 struct epoll_filefd ffd
;
148 /* Number of active wait queue attached to poll operations */
151 /* List containing poll wait queues */
152 struct list_head pwqlist
;
154 /* The "container" of this item */
155 struct eventpoll
*ep
;
157 /* List header used to link this item to the "struct file" items list */
158 struct list_head fllink
;
160 /* wakeup_source used when EPOLLWAKEUP is set */
161 struct wakeup_source
*ws
;
163 /* The structure that describe the interested events and the source fd */
164 struct epoll_event event
;
168 * This structure is stored inside the "private_data" member of the file
169 * structure and represents the main data structure for the eventpoll
173 /* Protect the access to this structure */
177 * This mutex is used to ensure that files are not removed
178 * while epoll is using them. This is held during the event
179 * collection loop, the file cleanup path, the epoll file exit
180 * code and the ctl operations.
184 /* Wait queue used by sys_epoll_wait() */
185 wait_queue_head_t wq
;
187 /* Wait queue used by file->poll() */
188 wait_queue_head_t poll_wait
;
190 /* List of ready file descriptors */
191 struct list_head rdllist
;
193 /* RB tree root used to store monitored fd structs */
197 * This is a single linked list that chains all the "struct epitem" that
198 * happened while transferring ready events to userspace w/out
201 struct epitem
*ovflist
;
203 /* wakeup_source used when ep_scan_ready_list is running */
204 struct wakeup_source
*ws
;
206 /* The user that created the eventpoll descriptor */
207 struct user_struct
*user
;
211 /* used to optimize loop detection check */
213 struct list_head visited_list_link
;
216 /* Wait structure used by the poll hooks */
217 struct eppoll_entry
{
218 /* List header used to link this structure to the "struct epitem" */
219 struct list_head llink
;
221 /* The "base" pointer is set to the container "struct epitem" */
225 * Wait queue item that will be linked to the target file wait
230 /* The wait queue head that linked the "wait" wait queue item */
231 wait_queue_head_t
*whead
;
234 /* Wrapper struct used by poll queueing */
240 /* Used by the ep_send_events() function as callback private data */
241 struct ep_send_events_data
{
243 struct epoll_event __user
*events
;
247 * Configuration options available inside /proc/sys/fs/epoll/
249 /* Maximum number of epoll watched descriptors, per user */
250 static long max_user_watches __read_mostly
;
253 * This mutex is used to serialize ep_free() and eventpoll_release_file().
255 static DEFINE_MUTEX(epmutex
);
257 /* Used to check for epoll file descriptor inclusion loops */
258 static struct nested_calls poll_loop_ncalls
;
260 /* Used for safe wake up implementation */
261 static struct nested_calls poll_safewake_ncalls
;
263 /* Used to call file's f_op->poll() under the nested calls boundaries */
264 static struct nested_calls poll_readywalk_ncalls
;
266 /* Slab cache used to allocate "struct epitem" */
267 static struct kmem_cache
*epi_cache __read_mostly
;
269 /* Slab cache used to allocate "struct eppoll_entry" */
270 static struct kmem_cache
*pwq_cache __read_mostly
;
272 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
273 static LIST_HEAD(visited_list
);
276 * List of files with newly added links, where we may need to limit the number
277 * of emanating paths. Protected by the epmutex.
279 static LIST_HEAD(tfile_check_list
);
283 #include <linux/sysctl.h>
286 static long long_max
= LONG_MAX
;
288 ctl_table epoll_table
[] = {
290 .procname
= "max_user_watches",
291 .data
= &max_user_watches
,
292 .maxlen
= sizeof(max_user_watches
),
294 .proc_handler
= proc_doulongvec_minmax
,
300 #endif /* CONFIG_SYSCTL */
302 static const struct file_operations eventpoll_fops
;
304 static inline int is_file_epoll(struct file
*f
)
306 return f
->f_op
== &eventpoll_fops
;
309 /* Setup the structure that is used as key for the RB tree */
310 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
311 struct file
*file
, int fd
)
317 /* Compare RB tree keys */
318 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
319 struct epoll_filefd
*p2
)
321 return (p1
->file
> p2
->file
? +1:
322 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
325 /* Tells us if the item is currently linked */
326 static inline int ep_is_linked(struct list_head
*p
)
328 return !list_empty(p
);
331 static inline struct eppoll_entry
*ep_pwq_from_wait(wait_queue_t
*p
)
333 return container_of(p
, struct eppoll_entry
, wait
);
336 /* Get the "struct epitem" from a wait queue pointer */
337 static inline struct epitem
*ep_item_from_wait(wait_queue_t
*p
)
339 return container_of(p
, struct eppoll_entry
, wait
)->base
;
342 /* Get the "struct epitem" from an epoll queue wrapper */
343 static inline struct epitem
*ep_item_from_epqueue(poll_table
*p
)
345 return container_of(p
, struct ep_pqueue
, pt
)->epi
;
348 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
349 static inline int ep_op_has_event(int op
)
351 return op
!= EPOLL_CTL_DEL
;
354 /* Initialize the poll safe wake up structure */
355 static void ep_nested_calls_init(struct nested_calls
*ncalls
)
357 INIT_LIST_HEAD(&ncalls
->tasks_call_list
);
358 spin_lock_init(&ncalls
->lock
);
362 * ep_events_available - Checks if ready events might be available.
364 * @ep: Pointer to the eventpoll context.
366 * Returns: Returns a value different than zero if ready events are available,
369 static inline int ep_events_available(struct eventpoll
*ep
)
371 return !list_empty(&ep
->rdllist
) || ep
->ovflist
!= EP_UNACTIVE_PTR
;
375 * ep_call_nested - Perform a bound (possibly) nested call, by checking
376 * that the recursion limit is not exceeded, and that
377 * the same nested call (by the meaning of same cookie) is
380 * @ncalls: Pointer to the nested_calls structure to be used for this call.
381 * @max_nests: Maximum number of allowed nesting calls.
382 * @nproc: Nested call core function pointer.
383 * @priv: Opaque data to be passed to the @nproc callback.
384 * @cookie: Cookie to be used to identify this nested call.
385 * @ctx: This instance context.
387 * Returns: Returns the code returned by the @nproc callback, or -1 if
388 * the maximum recursion limit has been exceeded.
390 static int ep_call_nested(struct nested_calls
*ncalls
, int max_nests
,
391 int (*nproc
)(void *, void *, int), void *priv
,
392 void *cookie
, void *ctx
)
394 int error
, call_nests
= 0;
396 struct list_head
*lsthead
= &ncalls
->tasks_call_list
;
397 struct nested_call_node
*tncur
;
398 struct nested_call_node tnode
;
400 spin_lock_irqsave(&ncalls
->lock
, flags
);
403 * Try to see if the current task is already inside this wakeup call.
404 * We use a list here, since the population inside this set is always
407 list_for_each_entry(tncur
, lsthead
, llink
) {
408 if (tncur
->ctx
== ctx
&&
409 (tncur
->cookie
== cookie
|| ++call_nests
> max_nests
)) {
411 * Ops ... loop detected or maximum nest level reached.
412 * We abort this wake by breaking the cycle itself.
419 /* Add the current task and cookie to the list */
421 tnode
.cookie
= cookie
;
422 list_add(&tnode
.llink
, lsthead
);
424 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
426 /* Call the nested function */
427 error
= (*nproc
)(priv
, cookie
, call_nests
);
429 /* Remove the current task from the list */
430 spin_lock_irqsave(&ncalls
->lock
, flags
);
431 list_del(&tnode
.llink
);
433 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
439 * As described in commit 0ccf831cb lockdep: annotate epoll
440 * the use of wait queues used by epoll is done in a very controlled
441 * manner. Wake ups can nest inside each other, but are never done
442 * with the same locking. For example:
445 * efd1 = epoll_create();
446 * efd2 = epoll_create();
447 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
448 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
450 * When a packet arrives to the device underneath "dfd", the net code will
451 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
452 * callback wakeup entry on that queue, and the wake_up() performed by the
453 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
454 * (efd1) notices that it may have some event ready, so it needs to wake up
455 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
456 * that ends up in another wake_up(), after having checked about the
457 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
458 * avoid stack blasting.
460 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
461 * this special case of epoll.
463 #ifdef CONFIG_DEBUG_LOCK_ALLOC
464 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
465 unsigned long events
, int subclass
)
469 spin_lock_irqsave_nested(&wqueue
->lock
, flags
, subclass
);
470 wake_up_locked_poll(wqueue
, events
);
471 spin_unlock_irqrestore(&wqueue
->lock
, flags
);
474 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
475 unsigned long events
, int subclass
)
477 wake_up_poll(wqueue
, events
);
481 static int ep_poll_wakeup_proc(void *priv
, void *cookie
, int call_nests
)
483 ep_wake_up_nested((wait_queue_head_t
*) cookie
, POLLIN
,
489 * Perform a safe wake up of the poll wait list. The problem is that
490 * with the new callback'd wake up system, it is possible that the
491 * poll callback is reentered from inside the call to wake_up() done
492 * on the poll wait queue head. The rule is that we cannot reenter the
493 * wake up code from the same task more than EP_MAX_NESTS times,
494 * and we cannot reenter the same wait queue head at all. This will
495 * enable to have a hierarchy of epoll file descriptor of no more than
498 static void ep_poll_safewake(wait_queue_head_t
*wq
)
500 int this_cpu
= get_cpu();
502 ep_call_nested(&poll_safewake_ncalls
, EP_MAX_NESTS
,
503 ep_poll_wakeup_proc
, NULL
, wq
, (void *) (long) this_cpu
);
508 static void ep_remove_wait_queue(struct eppoll_entry
*pwq
)
510 wait_queue_head_t
*whead
;
513 /* If it is cleared by POLLFREE, it should be rcu-safe */
514 whead
= rcu_dereference(pwq
->whead
);
516 remove_wait_queue(whead
, &pwq
->wait
);
521 * This function unregisters poll callbacks from the associated file
522 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
525 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
527 struct list_head
*lsthead
= &epi
->pwqlist
;
528 struct eppoll_entry
*pwq
;
530 while (!list_empty(lsthead
)) {
531 pwq
= list_first_entry(lsthead
, struct eppoll_entry
, llink
);
533 list_del(&pwq
->llink
);
534 ep_remove_wait_queue(pwq
);
535 kmem_cache_free(pwq_cache
, pwq
);
540 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
541 * the scan code, to call f_op->poll(). Also allows for
542 * O(NumReady) performance.
544 * @ep: Pointer to the epoll private data structure.
545 * @sproc: Pointer to the scan callback.
546 * @priv: Private opaque data passed to the @sproc callback.
547 * @depth: The current depth of recursive f_op->poll calls.
549 * Returns: The same integer error code returned by the @sproc callback.
551 static int ep_scan_ready_list(struct eventpoll
*ep
,
552 int (*sproc
)(struct eventpoll
*,
553 struct list_head
*, void *),
557 int error
, pwake
= 0;
559 struct epitem
*epi
, *nepi
;
563 * We need to lock this because we could be hit by
564 * eventpoll_release_file() and epoll_ctl().
566 mutex_lock_nested(&ep
->mtx
, depth
);
569 * Steal the ready list, and re-init the original one to the
570 * empty list. Also, set ep->ovflist to NULL so that events
571 * happening while looping w/out locks, are not lost. We cannot
572 * have the poll callback to queue directly on ep->rdllist,
573 * because we want the "sproc" callback to be able to do it
576 spin_lock_irqsave(&ep
->lock
, flags
);
577 list_splice_init(&ep
->rdllist
, &txlist
);
579 spin_unlock_irqrestore(&ep
->lock
, flags
);
582 * Now call the callback function.
584 error
= (*sproc
)(ep
, &txlist
, priv
);
586 spin_lock_irqsave(&ep
->lock
, flags
);
588 * During the time we spent inside the "sproc" callback, some
589 * other events might have been queued by the poll callback.
590 * We re-insert them inside the main ready-list here.
592 for (nepi
= ep
->ovflist
; (epi
= nepi
) != NULL
;
593 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
595 * We need to check if the item is already in the list.
596 * During the "sproc" callback execution time, items are
597 * queued into ->ovflist but the "txlist" might already
598 * contain them, and the list_splice() below takes care of them.
600 if (!ep_is_linked(&epi
->rdllink
)) {
601 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
602 __pm_stay_awake(epi
->ws
);
606 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
607 * releasing the lock, events will be queued in the normal way inside
610 ep
->ovflist
= EP_UNACTIVE_PTR
;
613 * Quickly re-inject items left on "txlist".
615 list_splice(&txlist
, &ep
->rdllist
);
618 if (!list_empty(&ep
->rdllist
)) {
620 * Wake up (if active) both the eventpoll wait list and
621 * the ->poll() wait list (delayed after we release the lock).
623 if (waitqueue_active(&ep
->wq
))
624 wake_up_locked(&ep
->wq
);
625 if (waitqueue_active(&ep
->poll_wait
))
628 spin_unlock_irqrestore(&ep
->lock
, flags
);
630 mutex_unlock(&ep
->mtx
);
632 /* We have to call this outside the lock */
634 ep_poll_safewake(&ep
->poll_wait
);
640 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
641 * all the associated resources. Must be called with "mtx" held.
643 static int ep_remove(struct eventpoll
*ep
, struct epitem
*epi
)
646 struct file
*file
= epi
->ffd
.file
;
649 * Removes poll wait queue hooks. We _have_ to do this without holding
650 * the "ep->lock" otherwise a deadlock might occur. This because of the
651 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
652 * queue head lock when unregistering the wait queue. The wakeup callback
653 * will run by holding the wait queue head lock and will call our callback
654 * that will try to get "ep->lock".
656 ep_unregister_pollwait(ep
, epi
);
658 /* Remove the current item from the list of epoll hooks */
659 spin_lock(&file
->f_lock
);
660 if (ep_is_linked(&epi
->fllink
))
661 list_del_init(&epi
->fllink
);
662 spin_unlock(&file
->f_lock
);
664 rb_erase(&epi
->rbn
, &ep
->rbr
);
666 spin_lock_irqsave(&ep
->lock
, flags
);
667 if (ep_is_linked(&epi
->rdllink
))
668 list_del_init(&epi
->rdllink
);
669 spin_unlock_irqrestore(&ep
->lock
, flags
);
671 wakeup_source_unregister(epi
->ws
);
673 /* At this point it is safe to free the eventpoll item */
674 kmem_cache_free(epi_cache
, epi
);
676 atomic_long_dec(&ep
->user
->epoll_watches
);
681 static void ep_free(struct eventpoll
*ep
)
686 /* We need to release all tasks waiting for these file */
687 if (waitqueue_active(&ep
->poll_wait
))
688 ep_poll_safewake(&ep
->poll_wait
);
691 * We need to lock this because we could be hit by
692 * eventpoll_release_file() while we're freeing the "struct eventpoll".
693 * We do not need to hold "ep->mtx" here because the epoll file
694 * is on the way to be removed and no one has references to it
695 * anymore. The only hit might come from eventpoll_release_file() but
696 * holding "epmutex" is sufficient here.
698 mutex_lock(&epmutex
);
701 * Walks through the whole tree by unregistering poll callbacks.
703 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
704 epi
= rb_entry(rbp
, struct epitem
, rbn
);
706 ep_unregister_pollwait(ep
, epi
);
710 * Walks through the whole tree by freeing each "struct epitem". At this
711 * point we are sure no poll callbacks will be lingering around, and also by
712 * holding "epmutex" we can be sure that no file cleanup code will hit
713 * us during this operation. So we can avoid the lock on "ep->lock".
715 while ((rbp
= rb_first(&ep
->rbr
)) != NULL
) {
716 epi
= rb_entry(rbp
, struct epitem
, rbn
);
720 mutex_unlock(&epmutex
);
721 mutex_destroy(&ep
->mtx
);
723 wakeup_source_unregister(ep
->ws
);
727 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
729 struct eventpoll
*ep
= file
->private_data
;
737 static int ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
740 struct epitem
*epi
, *tmp
;
743 init_poll_funcptr(&pt
, NULL
);
744 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
745 pt
._key
= epi
->event
.events
;
746 if (epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, &pt
) &
748 return POLLIN
| POLLRDNORM
;
751 * Item has been dropped into the ready list by the poll
752 * callback, but it's not actually ready, as far as
753 * caller requested events goes. We can remove it here.
756 list_del_init(&epi
->rdllink
);
763 static int ep_poll_readyevents_proc(void *priv
, void *cookie
, int call_nests
)
765 return ep_scan_ready_list(priv
, ep_read_events_proc
, NULL
, call_nests
+ 1);
768 static unsigned int ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
771 struct eventpoll
*ep
= file
->private_data
;
773 /* Insert inside our poll wait queue */
774 poll_wait(file
, &ep
->poll_wait
, wait
);
777 * Proceed to find out if wanted events are really available inside
778 * the ready list. This need to be done under ep_call_nested()
779 * supervision, since the call to f_op->poll() done on listed files
780 * could re-enter here.
782 pollflags
= ep_call_nested(&poll_readywalk_ncalls
, EP_MAX_NESTS
,
783 ep_poll_readyevents_proc
, ep
, ep
, current
);
785 return pollflags
!= -1 ? pollflags
: 0;
788 #ifdef CONFIG_PROC_FS
789 static int ep_show_fdinfo(struct seq_file
*m
, struct file
*f
)
791 struct eventpoll
*ep
= f
->private_data
;
795 mutex_lock(&ep
->mtx
);
796 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
797 struct epitem
*epi
= rb_entry(rbp
, struct epitem
, rbn
);
799 ret
= seq_printf(m
, "tfd: %8d events: %8x data: %16llx\n",
800 epi
->ffd
.fd
, epi
->event
.events
,
801 (long long)epi
->event
.data
);
805 mutex_unlock(&ep
->mtx
);
811 /* File callbacks that implement the eventpoll file behaviour */
812 static const struct file_operations eventpoll_fops
= {
813 #ifdef CONFIG_PROC_FS
814 .show_fdinfo
= ep_show_fdinfo
,
816 .release
= ep_eventpoll_release
,
817 .poll
= ep_eventpoll_poll
,
818 .llseek
= noop_llseek
,
822 * This is called from eventpoll_release() to unlink files from the eventpoll
823 * interface. We need to have this facility to cleanup correctly files that are
824 * closed without being removed from the eventpoll interface.
826 void eventpoll_release_file(struct file
*file
)
828 struct list_head
*lsthead
= &file
->f_ep_links
;
829 struct eventpoll
*ep
;
833 * We don't want to get "file->f_lock" because it is not
834 * necessary. It is not necessary because we're in the "struct file"
835 * cleanup path, and this means that no one is using this file anymore.
836 * So, for example, epoll_ctl() cannot hit here since if we reach this
837 * point, the file counter already went to zero and fget() would fail.
838 * The only hit might come from ep_free() but by holding the mutex
839 * will correctly serialize the operation. We do need to acquire
840 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
841 * from anywhere but ep_free().
843 * Besides, ep_remove() acquires the lock, so we can't hold it here.
845 mutex_lock(&epmutex
);
847 while (!list_empty(lsthead
)) {
848 epi
= list_first_entry(lsthead
, struct epitem
, fllink
);
851 list_del_init(&epi
->fllink
);
852 mutex_lock_nested(&ep
->mtx
, 0);
854 mutex_unlock(&ep
->mtx
);
857 mutex_unlock(&epmutex
);
860 static int ep_alloc(struct eventpoll
**pep
)
863 struct user_struct
*user
;
864 struct eventpoll
*ep
;
866 user
= get_current_user();
868 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
872 spin_lock_init(&ep
->lock
);
873 mutex_init(&ep
->mtx
);
874 init_waitqueue_head(&ep
->wq
);
875 init_waitqueue_head(&ep
->poll_wait
);
876 INIT_LIST_HEAD(&ep
->rdllist
);
878 ep
->ovflist
= EP_UNACTIVE_PTR
;
891 * Search the file inside the eventpoll tree. The RB tree operations
892 * are protected by the "mtx" mutex, and ep_find() must be called with
895 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
899 struct epitem
*epi
, *epir
= NULL
;
900 struct epoll_filefd ffd
;
902 ep_set_ffd(&ffd
, file
, fd
);
903 for (rbp
= ep
->rbr
.rb_node
; rbp
; ) {
904 epi
= rb_entry(rbp
, struct epitem
, rbn
);
905 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
920 * This is the callback that is passed to the wait queue wakeup
921 * mechanism. It is called by the stored file descriptors when they
922 * have events to report.
924 static int ep_poll_callback(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
928 struct epitem
*epi
= ep_item_from_wait(wait
);
929 struct eventpoll
*ep
= epi
->ep
;
931 if ((unsigned long)key
& POLLFREE
) {
932 ep_pwq_from_wait(wait
)->whead
= NULL
;
934 * whead = NULL above can race with ep_remove_wait_queue()
935 * which can do another remove_wait_queue() after us, so we
936 * can't use __remove_wait_queue(). whead->lock is held by
939 list_del_init(&wait
->task_list
);
942 spin_lock_irqsave(&ep
->lock
, flags
);
945 * If the event mask does not contain any poll(2) event, we consider the
946 * descriptor to be disabled. This condition is likely the effect of the
947 * EPOLLONESHOT bit that disables the descriptor when an event is received,
948 * until the next EPOLL_CTL_MOD will be issued.
950 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
954 * Check the events coming with the callback. At this stage, not
955 * every device reports the events in the "key" parameter of the
956 * callback. We need to be able to handle both cases here, hence the
957 * test for "key" != NULL before the event match test.
959 if (key
&& !((unsigned long) key
& epi
->event
.events
))
963 * If we are transferring events to userspace, we can hold no locks
964 * (because we're accessing user memory, and because of linux f_op->poll()
965 * semantics). All the events that happen during that period of time are
966 * chained in ep->ovflist and requeued later on.
968 if (unlikely(ep
->ovflist
!= EP_UNACTIVE_PTR
)) {
969 if (epi
->next
== EP_UNACTIVE_PTR
) {
970 epi
->next
= ep
->ovflist
;
974 * Activate ep->ws since epi->ws may get
975 * deactivated at any time.
977 __pm_stay_awake(ep
->ws
);
984 /* If this file is already in the ready list we exit soon */
985 if (!ep_is_linked(&epi
->rdllink
)) {
986 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
987 __pm_stay_awake(epi
->ws
);
991 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
994 if (waitqueue_active(&ep
->wq
))
995 wake_up_locked(&ep
->wq
);
996 if (waitqueue_active(&ep
->poll_wait
))
1000 spin_unlock_irqrestore(&ep
->lock
, flags
);
1002 /* We have to call this outside the lock */
1004 ep_poll_safewake(&ep
->poll_wait
);
1010 * This is the callback that is used to add our wait queue to the
1011 * target file wakeup lists.
1013 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
1016 struct epitem
*epi
= ep_item_from_epqueue(pt
);
1017 struct eppoll_entry
*pwq
;
1019 if (epi
->nwait
>= 0 && (pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
))) {
1020 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
1023 add_wait_queue(whead
, &pwq
->wait
);
1024 list_add_tail(&pwq
->llink
, &epi
->pwqlist
);
1027 /* We have to signal that an error occurred */
1032 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
1035 struct rb_node
**p
= &ep
->rbr
.rb_node
, *parent
= NULL
;
1036 struct epitem
*epic
;
1040 epic
= rb_entry(parent
, struct epitem
, rbn
);
1041 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
1043 p
= &parent
->rb_right
;
1045 p
= &parent
->rb_left
;
1047 rb_link_node(&epi
->rbn
, parent
, p
);
1048 rb_insert_color(&epi
->rbn
, &ep
->rbr
);
1053 #define PATH_ARR_SIZE 5
1055 * These are the number paths of length 1 to 5, that we are allowing to emanate
1056 * from a single file of interest. For example, we allow 1000 paths of length
1057 * 1, to emanate from each file of interest. This essentially represents the
1058 * potential wakeup paths, which need to be limited in order to avoid massive
1059 * uncontrolled wakeup storms. The common use case should be a single ep which
1060 * is connected to n file sources. In this case each file source has 1 path
1061 * of length 1. Thus, the numbers below should be more than sufficient. These
1062 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1063 * and delete can't add additional paths. Protected by the epmutex.
1065 static const int path_limits
[PATH_ARR_SIZE
] = { 1000, 500, 100, 50, 10 };
1066 static int path_count
[PATH_ARR_SIZE
];
1068 static int path_count_inc(int nests
)
1070 /* Allow an arbitrary number of depth 1 paths */
1074 if (++path_count
[nests
] > path_limits
[nests
])
1079 static void path_count_init(void)
1083 for (i
= 0; i
< PATH_ARR_SIZE
; i
++)
1087 static int reverse_path_check_proc(void *priv
, void *cookie
, int call_nests
)
1090 struct file
*file
= priv
;
1091 struct file
*child_file
;
1094 list_for_each_entry(epi
, &file
->f_ep_links
, fllink
) {
1095 child_file
= epi
->ep
->file
;
1096 if (is_file_epoll(child_file
)) {
1097 if (list_empty(&child_file
->f_ep_links
)) {
1098 if (path_count_inc(call_nests
)) {
1103 error
= ep_call_nested(&poll_loop_ncalls
,
1105 reverse_path_check_proc
,
1106 child_file
, child_file
,
1112 printk(KERN_ERR
"reverse_path_check_proc: "
1113 "file is not an ep!\n");
1120 * reverse_path_check - The tfile_check_list is list of file *, which have
1121 * links that are proposed to be newly added. We need to
1122 * make sure that those added links don't add too many
1123 * paths such that we will spend all our time waking up
1124 * eventpoll objects.
1126 * Returns: Returns zero if the proposed links don't create too many paths,
1129 static int reverse_path_check(void)
1132 struct file
*current_file
;
1134 /* let's call this for all tfiles */
1135 list_for_each_entry(current_file
, &tfile_check_list
, f_tfile_llink
) {
1137 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1138 reverse_path_check_proc
, current_file
,
1139 current_file
, current
);
1146 static int ep_create_wakeup_source(struct epitem
*epi
)
1151 epi
->ep
->ws
= wakeup_source_register("eventpoll");
1156 name
= epi
->ffd
.file
->f_path
.dentry
->d_name
.name
;
1157 epi
->ws
= wakeup_source_register(name
);
1164 static void ep_destroy_wakeup_source(struct epitem
*epi
)
1166 wakeup_source_unregister(epi
->ws
);
1171 * Must be called with "mtx" held.
1173 static int ep_insert(struct eventpoll
*ep
, struct epoll_event
*event
,
1174 struct file
*tfile
, int fd
)
1176 int error
, revents
, pwake
= 0;
1177 unsigned long flags
;
1180 struct ep_pqueue epq
;
1182 user_watches
= atomic_long_read(&ep
->user
->epoll_watches
);
1183 if (unlikely(user_watches
>= max_user_watches
))
1185 if (!(epi
= kmem_cache_alloc(epi_cache
, GFP_KERNEL
)))
1188 /* Item initialization follow here ... */
1189 INIT_LIST_HEAD(&epi
->rdllink
);
1190 INIT_LIST_HEAD(&epi
->fllink
);
1191 INIT_LIST_HEAD(&epi
->pwqlist
);
1193 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
1194 epi
->event
= *event
;
1196 epi
->next
= EP_UNACTIVE_PTR
;
1197 if (epi
->event
.events
& EPOLLWAKEUP
) {
1198 error
= ep_create_wakeup_source(epi
);
1200 goto error_create_wakeup_source
;
1205 /* Initialize the poll table using the queue callback */
1207 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
1208 epq
.pt
._key
= event
->events
;
1211 * Attach the item to the poll hooks and get current event bits.
1212 * We can safely use the file* here because its usage count has
1213 * been increased by the caller of this function. Note that after
1214 * this operation completes, the poll callback can start hitting
1217 revents
= tfile
->f_op
->poll(tfile
, &epq
.pt
);
1220 * We have to check if something went wrong during the poll wait queue
1221 * install process. Namely an allocation for a wait queue failed due
1222 * high memory pressure.
1226 goto error_unregister
;
1228 /* Add the current item to the list of active epoll hook for this file */
1229 spin_lock(&tfile
->f_lock
);
1230 list_add_tail(&epi
->fllink
, &tfile
->f_ep_links
);
1231 spin_unlock(&tfile
->f_lock
);
1234 * Add the current item to the RB tree. All RB tree operations are
1235 * protected by "mtx", and ep_insert() is called with "mtx" held.
1237 ep_rbtree_insert(ep
, epi
);
1239 /* now check if we've created too many backpaths */
1241 if (reverse_path_check())
1242 goto error_remove_epi
;
1244 /* We have to drop the new item inside our item list to keep track of it */
1245 spin_lock_irqsave(&ep
->lock
, flags
);
1247 /* If the file is already "ready" we drop it inside the ready list */
1248 if ((revents
& event
->events
) && !ep_is_linked(&epi
->rdllink
)) {
1249 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1250 __pm_stay_awake(epi
->ws
);
1252 /* Notify waiting tasks that events are available */
1253 if (waitqueue_active(&ep
->wq
))
1254 wake_up_locked(&ep
->wq
);
1255 if (waitqueue_active(&ep
->poll_wait
))
1259 spin_unlock_irqrestore(&ep
->lock
, flags
);
1261 atomic_long_inc(&ep
->user
->epoll_watches
);
1263 /* We have to call this outside the lock */
1265 ep_poll_safewake(&ep
->poll_wait
);
1270 spin_lock(&tfile
->f_lock
);
1271 if (ep_is_linked(&epi
->fllink
))
1272 list_del_init(&epi
->fllink
);
1273 spin_unlock(&tfile
->f_lock
);
1275 rb_erase(&epi
->rbn
, &ep
->rbr
);
1278 ep_unregister_pollwait(ep
, epi
);
1281 * We need to do this because an event could have been arrived on some
1282 * allocated wait queue. Note that we don't care about the ep->ovflist
1283 * list, since that is used/cleaned only inside a section bound by "mtx".
1284 * And ep_insert() is called with "mtx" held.
1286 spin_lock_irqsave(&ep
->lock
, flags
);
1287 if (ep_is_linked(&epi
->rdllink
))
1288 list_del_init(&epi
->rdllink
);
1289 spin_unlock_irqrestore(&ep
->lock
, flags
);
1291 wakeup_source_unregister(epi
->ws
);
1293 error_create_wakeup_source
:
1294 kmem_cache_free(epi_cache
, epi
);
1300 * Modify the interest event mask by dropping an event if the new mask
1301 * has a match in the current file status. Must be called with "mtx" held.
1303 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
, struct epoll_event
*event
)
1306 unsigned int revents
;
1309 init_poll_funcptr(&pt
, NULL
);
1312 * Set the new event interest mask before calling f_op->poll();
1313 * otherwise we might miss an event that happens between the
1314 * f_op->poll() call and the new event set registering.
1316 epi
->event
.events
= event
->events
; /* need barrier below */
1317 pt
._key
= event
->events
;
1318 epi
->event
.data
= event
->data
; /* protected by mtx */
1319 if (epi
->event
.events
& EPOLLWAKEUP
) {
1321 ep_create_wakeup_source(epi
);
1322 } else if (epi
->ws
) {
1323 ep_destroy_wakeup_source(epi
);
1327 * The following barrier has two effects:
1329 * 1) Flush epi changes above to other CPUs. This ensures
1330 * we do not miss events from ep_poll_callback if an
1331 * event occurs immediately after we call f_op->poll().
1332 * We need this because we did not take ep->lock while
1333 * changing epi above (but ep_poll_callback does take
1336 * 2) We also need to ensure we do not miss _past_ events
1337 * when calling f_op->poll(). This barrier also
1338 * pairs with the barrier in wq_has_sleeper (see
1339 * comments for wq_has_sleeper).
1341 * This barrier will now guarantee ep_poll_callback or f_op->poll
1342 * (or both) will notice the readiness of an item.
1347 * Get current event bits. We can safely use the file* here because
1348 * its usage count has been increased by the caller of this function.
1350 revents
= epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, &pt
);
1353 * If the item is "hot" and it is not registered inside the ready
1354 * list, push it inside.
1356 if (revents
& event
->events
) {
1357 spin_lock_irq(&ep
->lock
);
1358 if (!ep_is_linked(&epi
->rdllink
)) {
1359 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1360 __pm_stay_awake(epi
->ws
);
1362 /* Notify waiting tasks that events are available */
1363 if (waitqueue_active(&ep
->wq
))
1364 wake_up_locked(&ep
->wq
);
1365 if (waitqueue_active(&ep
->poll_wait
))
1368 spin_unlock_irq(&ep
->lock
);
1371 /* We have to call this outside the lock */
1373 ep_poll_safewake(&ep
->poll_wait
);
1378 static int ep_send_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
1381 struct ep_send_events_data
*esed
= priv
;
1383 unsigned int revents
;
1385 struct epoll_event __user
*uevent
;
1388 init_poll_funcptr(&pt
, NULL
);
1391 * We can loop without lock because we are passed a task private list.
1392 * Items cannot vanish during the loop because ep_scan_ready_list() is
1393 * holding "mtx" during this call.
1395 for (eventcnt
= 0, uevent
= esed
->events
;
1396 !list_empty(head
) && eventcnt
< esed
->maxevents
;) {
1397 epi
= list_first_entry(head
, struct epitem
, rdllink
);
1400 * Activate ep->ws before deactivating epi->ws to prevent
1401 * triggering auto-suspend here (in case we reactive epi->ws
1404 * This could be rearranged to delay the deactivation of epi->ws
1405 * instead, but then epi->ws would temporarily be out of sync
1406 * with ep_is_linked().
1408 if (epi
->ws
&& epi
->ws
->active
)
1409 __pm_stay_awake(ep
->ws
);
1410 __pm_relax(epi
->ws
);
1411 list_del_init(&epi
->rdllink
);
1413 pt
._key
= epi
->event
.events
;
1414 revents
= epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, &pt
) &
1418 * If the event mask intersect the caller-requested one,
1419 * deliver the event to userspace. Again, ep_scan_ready_list()
1420 * is holding "mtx", so no operations coming from userspace
1421 * can change the item.
1424 if (__put_user(revents
, &uevent
->events
) ||
1425 __put_user(epi
->event
.data
, &uevent
->data
)) {
1426 list_add(&epi
->rdllink
, head
);
1427 __pm_stay_awake(epi
->ws
);
1428 return eventcnt
? eventcnt
: -EFAULT
;
1432 if (epi
->event
.events
& EPOLLONESHOT
)
1433 epi
->event
.events
&= EP_PRIVATE_BITS
;
1434 else if (!(epi
->event
.events
& EPOLLET
)) {
1436 * If this file has been added with Level
1437 * Trigger mode, we need to insert back inside
1438 * the ready list, so that the next call to
1439 * epoll_wait() will check again the events
1440 * availability. At this point, no one can insert
1441 * into ep->rdllist besides us. The epoll_ctl()
1442 * callers are locked out by
1443 * ep_scan_ready_list() holding "mtx" and the
1444 * poll callback will queue them in ep->ovflist.
1446 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1447 __pm_stay_awake(epi
->ws
);
1455 static int ep_send_events(struct eventpoll
*ep
,
1456 struct epoll_event __user
*events
, int maxevents
)
1458 struct ep_send_events_data esed
;
1460 esed
.maxevents
= maxevents
;
1461 esed
.events
= events
;
1463 return ep_scan_ready_list(ep
, ep_send_events_proc
, &esed
, 0);
1466 static inline struct timespec
ep_set_mstimeout(long ms
)
1468 struct timespec now
, ts
= {
1469 .tv_sec
= ms
/ MSEC_PER_SEC
,
1470 .tv_nsec
= NSEC_PER_MSEC
* (ms
% MSEC_PER_SEC
),
1474 return timespec_add_safe(now
, ts
);
1478 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1481 * @ep: Pointer to the eventpoll context.
1482 * @events: Pointer to the userspace buffer where the ready events should be
1484 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1485 * @timeout: Maximum timeout for the ready events fetch operation, in
1486 * milliseconds. If the @timeout is zero, the function will not block,
1487 * while if the @timeout is less than zero, the function will block
1488 * until at least one event has been retrieved (or an error
1491 * Returns: Returns the number of ready events which have been fetched, or an
1492 * error code, in case of error.
1494 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1495 int maxevents
, long timeout
)
1497 int res
= 0, eavail
, timed_out
= 0;
1498 unsigned long flags
;
1501 ktime_t expires
, *to
= NULL
;
1504 struct timespec end_time
= ep_set_mstimeout(timeout
);
1506 slack
= select_estimate_accuracy(&end_time
);
1508 *to
= timespec_to_ktime(end_time
);
1509 } else if (timeout
== 0) {
1511 * Avoid the unnecessary trip to the wait queue loop, if the
1512 * caller specified a non blocking operation.
1515 spin_lock_irqsave(&ep
->lock
, flags
);
1520 spin_lock_irqsave(&ep
->lock
, flags
);
1522 if (!ep_events_available(ep
)) {
1524 * We don't have any available event to return to the caller.
1525 * We need to sleep here, and we will be wake up by
1526 * ep_poll_callback() when events will become available.
1528 init_waitqueue_entry(&wait
, current
);
1529 __add_wait_queue_exclusive(&ep
->wq
, &wait
);
1533 * We don't want to sleep if the ep_poll_callback() sends us
1534 * a wakeup in between. That's why we set the task state
1535 * to TASK_INTERRUPTIBLE before doing the checks.
1537 set_current_state(TASK_INTERRUPTIBLE
);
1538 if (ep_events_available(ep
) || timed_out
)
1540 if (signal_pending(current
)) {
1545 spin_unlock_irqrestore(&ep
->lock
, flags
);
1546 if (!schedule_hrtimeout_range(to
, slack
, HRTIMER_MODE_ABS
))
1549 spin_lock_irqsave(&ep
->lock
, flags
);
1551 __remove_wait_queue(&ep
->wq
, &wait
);
1553 set_current_state(TASK_RUNNING
);
1556 /* Is it worth to try to dig for events ? */
1557 eavail
= ep_events_available(ep
);
1559 spin_unlock_irqrestore(&ep
->lock
, flags
);
1562 * Try to transfer events to user space. In case we get 0 events and
1563 * there's still timeout left over, we go trying again in search of
1566 if (!res
&& eavail
&&
1567 !(res
= ep_send_events(ep
, events
, maxevents
)) && !timed_out
)
1574 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1575 * API, to verify that adding an epoll file inside another
1576 * epoll structure, does not violate the constraints, in
1577 * terms of closed loops, or too deep chains (which can
1578 * result in excessive stack usage).
1580 * @priv: Pointer to the epoll file to be currently checked.
1581 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1582 * data structure pointer.
1583 * @call_nests: Current dept of the @ep_call_nested() call stack.
1585 * Returns: Returns zero if adding the epoll @file inside current epoll
1586 * structure @ep does not violate the constraints, or -1 otherwise.
1588 static int ep_loop_check_proc(void *priv
, void *cookie
, int call_nests
)
1591 struct file
*file
= priv
;
1592 struct eventpoll
*ep
= file
->private_data
;
1593 struct eventpoll
*ep_tovisit
;
1594 struct rb_node
*rbp
;
1597 mutex_lock_nested(&ep
->mtx
, call_nests
+ 1);
1599 list_add(&ep
->visited_list_link
, &visited_list
);
1600 for (rbp
= rb_first(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1601 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1602 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
1603 ep_tovisit
= epi
->ffd
.file
->private_data
;
1604 if (ep_tovisit
->visited
)
1606 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1607 ep_loop_check_proc
, epi
->ffd
.file
,
1608 ep_tovisit
, current
);
1613 * If we've reached a file that is not associated with
1614 * an ep, then we need to check if the newly added
1615 * links are going to add too many wakeup paths. We do
1616 * this by adding it to the tfile_check_list, if it's
1617 * not already there, and calling reverse_path_check()
1618 * during ep_insert().
1620 if (list_empty(&epi
->ffd
.file
->f_tfile_llink
))
1621 list_add(&epi
->ffd
.file
->f_tfile_llink
,
1625 mutex_unlock(&ep
->mtx
);
1631 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1632 * another epoll file (represented by @ep) does not create
1633 * closed loops or too deep chains.
1635 * @ep: Pointer to the epoll private data structure.
1636 * @file: Pointer to the epoll file to be checked.
1638 * Returns: Returns zero if adding the epoll @file inside current epoll
1639 * structure @ep does not violate the constraints, or -1 otherwise.
1641 static int ep_loop_check(struct eventpoll
*ep
, struct file
*file
)
1644 struct eventpoll
*ep_cur
, *ep_next
;
1646 ret
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1647 ep_loop_check_proc
, file
, ep
, current
);
1648 /* clear visited list */
1649 list_for_each_entry_safe(ep_cur
, ep_next
, &visited_list
,
1650 visited_list_link
) {
1651 ep_cur
->visited
= 0;
1652 list_del(&ep_cur
->visited_list_link
);
1657 static void clear_tfile_check_list(void)
1661 /* first clear the tfile_check_list */
1662 while (!list_empty(&tfile_check_list
)) {
1663 file
= list_first_entry(&tfile_check_list
, struct file
,
1665 list_del_init(&file
->f_tfile_llink
);
1667 INIT_LIST_HEAD(&tfile_check_list
);
1671 * Open an eventpoll file descriptor.
1673 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
1676 struct eventpoll
*ep
= NULL
;
1679 /* Check the EPOLL_* constant for consistency. */
1680 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
1682 if (flags
& ~EPOLL_CLOEXEC
)
1685 * Create the internal data structure ("struct eventpoll").
1687 error
= ep_alloc(&ep
);
1691 * Creates all the items needed to setup an eventpoll file. That is,
1692 * a file structure and a free file descriptor.
1694 fd
= get_unused_fd_flags(O_RDWR
| (flags
& O_CLOEXEC
));
1699 file
= anon_inode_getfile("[eventpoll]", &eventpoll_fops
, ep
,
1700 O_RDWR
| (flags
& O_CLOEXEC
));
1702 error
= PTR_ERR(file
);
1706 fd_install(fd
, file
);
1716 SYSCALL_DEFINE1(epoll_create
, int, size
)
1721 return sys_epoll_create1(0);
1725 * The following function implements the controller interface for
1726 * the eventpoll file that enables the insertion/removal/change of
1727 * file descriptors inside the interest set.
1729 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
1730 struct epoll_event __user
*, event
)
1733 int did_lock_epmutex
= 0;
1734 struct file
*file
, *tfile
;
1735 struct eventpoll
*ep
;
1737 struct epoll_event epds
;
1740 if (ep_op_has_event(op
) &&
1741 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
1744 /* Get the "struct file *" for the eventpoll file */
1750 /* Get the "struct file *" for the target file */
1755 /* The target file descriptor must support poll */
1757 if (!tfile
->f_op
|| !tfile
->f_op
->poll
)
1758 goto error_tgt_fput
;
1760 /* Check if EPOLLWAKEUP is allowed */
1761 if ((epds
.events
& EPOLLWAKEUP
) && !capable(CAP_BLOCK_SUSPEND
))
1762 epds
.events
&= ~EPOLLWAKEUP
;
1765 * We have to check that the file structure underneath the file descriptor
1766 * the user passed to us _is_ an eventpoll file. And also we do not permit
1767 * adding an epoll file descriptor inside itself.
1770 if (file
== tfile
|| !is_file_epoll(file
))
1771 goto error_tgt_fput
;
1774 * At this point it is safe to assume that the "private_data" contains
1775 * our own data structure.
1777 ep
= file
->private_data
;
1780 * When we insert an epoll file descriptor, inside another epoll file
1781 * descriptor, there is the change of creating closed loops, which are
1782 * better be handled here, than in more critical paths. While we are
1783 * checking for loops we also determine the list of files reachable
1784 * and hang them on the tfile_check_list, so we can check that we
1785 * haven't created too many possible wakeup paths.
1787 * We need to hold the epmutex across both ep_insert and ep_remove
1788 * b/c we want to make sure we are looking at a coherent view of
1791 if (op
== EPOLL_CTL_ADD
|| op
== EPOLL_CTL_DEL
) {
1792 mutex_lock(&epmutex
);
1793 did_lock_epmutex
= 1;
1795 if (op
== EPOLL_CTL_ADD
) {
1796 if (is_file_epoll(tfile
)) {
1798 if (ep_loop_check(ep
, tfile
) != 0) {
1799 clear_tfile_check_list();
1800 goto error_tgt_fput
;
1803 list_add(&tfile
->f_tfile_llink
, &tfile_check_list
);
1806 mutex_lock_nested(&ep
->mtx
, 0);
1809 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1810 * above, we can be sure to be able to use the item looked up by
1811 * ep_find() till we release the mutex.
1813 epi
= ep_find(ep
, tfile
, fd
);
1819 epds
.events
|= POLLERR
| POLLHUP
;
1820 error
= ep_insert(ep
, &epds
, tfile
, fd
);
1823 clear_tfile_check_list();
1827 error
= ep_remove(ep
, epi
);
1833 epds
.events
|= POLLERR
| POLLHUP
;
1834 error
= ep_modify(ep
, epi
, &epds
);
1839 mutex_unlock(&ep
->mtx
);
1842 if (did_lock_epmutex
)
1843 mutex_unlock(&epmutex
);
1854 * Implement the event wait interface for the eventpoll file. It is the kernel
1855 * part of the user space epoll_wait(2).
1857 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
1858 int, maxevents
, int, timeout
)
1862 struct eventpoll
*ep
;
1864 /* The maximum number of event must be greater than zero */
1865 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
1868 /* Verify that the area passed by the user is writeable */
1869 if (!access_ok(VERIFY_WRITE
, events
, maxevents
* sizeof(struct epoll_event
)))
1872 /* Get the "struct file *" for the eventpoll file */
1878 * We have to check that the file structure underneath the fd
1879 * the user passed to us _is_ an eventpoll file.
1882 if (!is_file_epoll(f
.file
))
1886 * At this point it is safe to assume that the "private_data" contains
1887 * our own data structure.
1889 ep
= f
.file
->private_data
;
1891 /* Time to fish for events ... */
1892 error
= ep_poll(ep
, events
, maxevents
, timeout
);
1900 * Implement the event wait interface for the eventpoll file. It is the kernel
1901 * part of the user space epoll_pwait(2).
1903 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
1904 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
1908 sigset_t ksigmask
, sigsaved
;
1911 * If the caller wants a certain signal mask to be set during the wait,
1915 if (sigsetsize
!= sizeof(sigset_t
))
1917 if (copy_from_user(&ksigmask
, sigmask
, sizeof(ksigmask
)))
1919 sigdelsetmask(&ksigmask
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
1920 sigprocmask(SIG_SETMASK
, &ksigmask
, &sigsaved
);
1923 error
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
1926 * If we changed the signal mask, we need to restore the original one.
1927 * In case we've got a signal while waiting, we do not restore the
1928 * signal mask yet, and we allow do_signal() to deliver the signal on
1929 * the way back to userspace, before the signal mask is restored.
1932 if (error
== -EINTR
) {
1933 memcpy(¤t
->saved_sigmask
, &sigsaved
,
1935 set_restore_sigmask();
1937 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
1943 static int __init
eventpoll_init(void)
1949 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1951 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
1953 BUG_ON(max_user_watches
< 0);
1956 * Initialize the structure used to perform epoll file descriptor
1957 * inclusion loops checks.
1959 ep_nested_calls_init(&poll_loop_ncalls
);
1961 /* Initialize the structure used to perform safe poll wait head wake ups */
1962 ep_nested_calls_init(&poll_safewake_ncalls
);
1964 /* Initialize the structure used to perform file's f_op->poll() calls */
1965 ep_nested_calls_init(&poll_readywalk_ncalls
);
1967 /* Allocates slab cache used to allocate "struct epitem" items */
1968 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
1969 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
1971 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1972 pwq_cache
= kmem_cache_create("eventpoll_pwq",
1973 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
, NULL
);
1977 fs_initcall(eventpoll_init
);