2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
14 * Called after updating RLIMIT_CPU to set timer expiration if necessary.
16 void update_rlimit_cpu(unsigned long rlim_new
)
18 cputime_t cputime
= secs_to_cputime(rlim_new
);
19 struct signal_struct
*const sig
= current
->signal
;
21 if (cputime_eq(sig
->it
[CPUCLOCK_PROF
].expires
, cputime_zero
) ||
22 cputime_gt(sig
->it
[CPUCLOCK_PROF
].expires
, cputime
)) {
23 spin_lock_irq(¤t
->sighand
->siglock
);
24 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
25 spin_unlock_irq(¤t
->sighand
->siglock
);
29 static int check_clock(const clockid_t which_clock
)
32 struct task_struct
*p
;
33 const pid_t pid
= CPUCLOCK_PID(which_clock
);
35 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
41 read_lock(&tasklist_lock
);
42 p
= find_task_by_vpid(pid
);
43 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
44 same_thread_group(p
, current
) : thread_group_leader(p
))) {
47 read_unlock(&tasklist_lock
);
52 static inline union cpu_time_count
53 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
55 union cpu_time_count ret
;
56 ret
.sched
= 0; /* high half always zero when .cpu used */
57 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
58 ret
.sched
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
60 ret
.cpu
= timespec_to_cputime(tp
);
65 static void sample_to_timespec(const clockid_t which_clock
,
66 union cpu_time_count cpu
,
69 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
)
70 *tp
= ns_to_timespec(cpu
.sched
);
72 cputime_to_timespec(cpu
.cpu
, tp
);
75 static inline int cpu_time_before(const clockid_t which_clock
,
76 union cpu_time_count now
,
77 union cpu_time_count then
)
79 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
80 return now
.sched
< then
.sched
;
82 return cputime_lt(now
.cpu
, then
.cpu
);
85 static inline void cpu_time_add(const clockid_t which_clock
,
86 union cpu_time_count
*acc
,
87 union cpu_time_count val
)
89 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
90 acc
->sched
+= val
.sched
;
92 acc
->cpu
= cputime_add(acc
->cpu
, val
.cpu
);
95 static inline union cpu_time_count
cpu_time_sub(const clockid_t which_clock
,
96 union cpu_time_count a
,
97 union cpu_time_count b
)
99 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
102 a
.cpu
= cputime_sub(a
.cpu
, b
.cpu
);
108 * Divide and limit the result to res >= 1
110 * This is necessary to prevent signal delivery starvation, when the result of
111 * the division would be rounded down to 0.
113 static inline cputime_t
cputime_div_non_zero(cputime_t time
, unsigned long div
)
115 cputime_t res
= cputime_div(time
, div
);
117 return max_t(cputime_t
, res
, 1);
121 * Update expiry time from increment, and increase overrun count,
122 * given the current clock sample.
124 static void bump_cpu_timer(struct k_itimer
*timer
,
125 union cpu_time_count now
)
129 if (timer
->it
.cpu
.incr
.sched
== 0)
132 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
133 unsigned long long delta
, incr
;
135 if (now
.sched
< timer
->it
.cpu
.expires
.sched
)
137 incr
= timer
->it
.cpu
.incr
.sched
;
138 delta
= now
.sched
+ incr
- timer
->it
.cpu
.expires
.sched
;
139 /* Don't use (incr*2 < delta), incr*2 might overflow. */
140 for (i
= 0; incr
< delta
- incr
; i
++)
142 for (; i
>= 0; incr
>>= 1, i
--) {
145 timer
->it
.cpu
.expires
.sched
+= incr
;
146 timer
->it_overrun
+= 1 << i
;
150 cputime_t delta
, incr
;
152 if (cputime_lt(now
.cpu
, timer
->it
.cpu
.expires
.cpu
))
154 incr
= timer
->it
.cpu
.incr
.cpu
;
155 delta
= cputime_sub(cputime_add(now
.cpu
, incr
),
156 timer
->it
.cpu
.expires
.cpu
);
157 /* Don't use (incr*2 < delta), incr*2 might overflow. */
158 for (i
= 0; cputime_lt(incr
, cputime_sub(delta
, incr
)); i
++)
159 incr
= cputime_add(incr
, incr
);
160 for (; i
>= 0; incr
= cputime_halve(incr
), i
--) {
161 if (cputime_lt(delta
, incr
))
163 timer
->it
.cpu
.expires
.cpu
=
164 cputime_add(timer
->it
.cpu
.expires
.cpu
, incr
);
165 timer
->it_overrun
+= 1 << i
;
166 delta
= cputime_sub(delta
, incr
);
171 static inline cputime_t
prof_ticks(struct task_struct
*p
)
173 return cputime_add(p
->utime
, p
->stime
);
175 static inline cputime_t
virt_ticks(struct task_struct
*p
)
180 int posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
182 int error
= check_clock(which_clock
);
185 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
186 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
188 * If sched_clock is using a cycle counter, we
189 * don't have any idea of its true resolution
190 * exported, but it is much more than 1s/HZ.
198 int posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
201 * You can never reset a CPU clock, but we check for other errors
202 * in the call before failing with EPERM.
204 int error
= check_clock(which_clock
);
213 * Sample a per-thread clock for the given task.
215 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
216 union cpu_time_count
*cpu
)
218 switch (CPUCLOCK_WHICH(which_clock
)) {
222 cpu
->cpu
= prof_ticks(p
);
225 cpu
->cpu
= virt_ticks(p
);
228 cpu
->sched
= task_sched_runtime(p
);
234 void thread_group_cputime(struct task_struct
*tsk
, struct task_cputime
*times
)
236 struct sighand_struct
*sighand
;
237 struct signal_struct
*sig
;
238 struct task_struct
*t
;
240 *times
= INIT_CPUTIME
;
243 sighand
= rcu_dereference(tsk
->sighand
);
251 times
->utime
= cputime_add(times
->utime
, t
->utime
);
252 times
->stime
= cputime_add(times
->stime
, t
->stime
);
253 times
->sum_exec_runtime
+= t
->se
.sum_exec_runtime
;
258 times
->utime
= cputime_add(times
->utime
, sig
->utime
);
259 times
->stime
= cputime_add(times
->stime
, sig
->stime
);
260 times
->sum_exec_runtime
+= sig
->sum_sched_runtime
;
265 static void update_gt_cputime(struct task_cputime
*a
, struct task_cputime
*b
)
267 if (cputime_gt(b
->utime
, a
->utime
))
270 if (cputime_gt(b
->stime
, a
->stime
))
273 if (b
->sum_exec_runtime
> a
->sum_exec_runtime
)
274 a
->sum_exec_runtime
= b
->sum_exec_runtime
;
277 void thread_group_cputimer(struct task_struct
*tsk
, struct task_cputime
*times
)
279 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
280 struct task_cputime sum
;
283 spin_lock_irqsave(&cputimer
->lock
, flags
);
284 if (!cputimer
->running
) {
285 cputimer
->running
= 1;
287 * The POSIX timer interface allows for absolute time expiry
288 * values through the TIMER_ABSTIME flag, therefore we have
289 * to synchronize the timer to the clock every time we start
292 thread_group_cputime(tsk
, &sum
);
293 update_gt_cputime(&cputimer
->cputime
, &sum
);
295 *times
= cputimer
->cputime
;
296 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
300 * Sample a process (thread group) clock for the given group_leader task.
301 * Must be called with tasklist_lock held for reading.
303 static int cpu_clock_sample_group(const clockid_t which_clock
,
304 struct task_struct
*p
,
305 union cpu_time_count
*cpu
)
307 struct task_cputime cputime
;
309 switch (CPUCLOCK_WHICH(which_clock
)) {
313 thread_group_cputime(p
, &cputime
);
314 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
317 thread_group_cputime(p
, &cputime
);
318 cpu
->cpu
= cputime
.utime
;
321 cpu
->sched
= thread_group_sched_runtime(p
);
328 int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
330 const pid_t pid
= CPUCLOCK_PID(which_clock
);
332 union cpu_time_count rtn
;
336 * Special case constant value for our own clocks.
337 * We don't have to do any lookup to find ourselves.
339 if (CPUCLOCK_PERTHREAD(which_clock
)) {
341 * Sampling just ourselves we can do with no locking.
343 error
= cpu_clock_sample(which_clock
,
346 read_lock(&tasklist_lock
);
347 error
= cpu_clock_sample_group(which_clock
,
349 read_unlock(&tasklist_lock
);
353 * Find the given PID, and validate that the caller
354 * should be able to see it.
356 struct task_struct
*p
;
358 p
= find_task_by_vpid(pid
);
360 if (CPUCLOCK_PERTHREAD(which_clock
)) {
361 if (same_thread_group(p
, current
)) {
362 error
= cpu_clock_sample(which_clock
,
366 read_lock(&tasklist_lock
);
367 if (thread_group_leader(p
) && p
->signal
) {
369 cpu_clock_sample_group(which_clock
,
372 read_unlock(&tasklist_lock
);
380 sample_to_timespec(which_clock
, rtn
, tp
);
386 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
387 * This is called from sys_timer_create with the new timer already locked.
389 int posix_cpu_timer_create(struct k_itimer
*new_timer
)
392 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
393 struct task_struct
*p
;
395 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
398 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
399 new_timer
->it
.cpu
.incr
.sched
= 0;
400 new_timer
->it
.cpu
.expires
.sched
= 0;
402 read_lock(&tasklist_lock
);
403 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
407 p
= find_task_by_vpid(pid
);
408 if (p
&& !same_thread_group(p
, current
))
413 p
= current
->group_leader
;
415 p
= find_task_by_vpid(pid
);
416 if (p
&& !thread_group_leader(p
))
420 new_timer
->it
.cpu
.task
= p
;
426 read_unlock(&tasklist_lock
);
432 * Clean up a CPU-clock timer that is about to be destroyed.
433 * This is called from timer deletion with the timer already locked.
434 * If we return TIMER_RETRY, it's necessary to release the timer's lock
435 * and try again. (This happens when the timer is in the middle of firing.)
437 int posix_cpu_timer_del(struct k_itimer
*timer
)
439 struct task_struct
*p
= timer
->it
.cpu
.task
;
442 if (likely(p
!= NULL
)) {
443 read_lock(&tasklist_lock
);
444 if (unlikely(p
->signal
== NULL
)) {
446 * We raced with the reaping of the task.
447 * The deletion should have cleared us off the list.
449 BUG_ON(!list_empty(&timer
->it
.cpu
.entry
));
451 spin_lock(&p
->sighand
->siglock
);
452 if (timer
->it
.cpu
.firing
)
455 list_del(&timer
->it
.cpu
.entry
);
456 spin_unlock(&p
->sighand
->siglock
);
458 read_unlock(&tasklist_lock
);
468 * Clean out CPU timers still ticking when a thread exited. The task
469 * pointer is cleared, and the expiry time is replaced with the residual
470 * time for later timer_gettime calls to return.
471 * This must be called with the siglock held.
473 static void cleanup_timers(struct list_head
*head
,
474 cputime_t utime
, cputime_t stime
,
475 unsigned long long sum_exec_runtime
)
477 struct cpu_timer_list
*timer
, *next
;
478 cputime_t ptime
= cputime_add(utime
, stime
);
480 list_for_each_entry_safe(timer
, next
, head
, entry
) {
481 list_del_init(&timer
->entry
);
482 if (cputime_lt(timer
->expires
.cpu
, ptime
)) {
483 timer
->expires
.cpu
= cputime_zero
;
485 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
491 list_for_each_entry_safe(timer
, next
, head
, entry
) {
492 list_del_init(&timer
->entry
);
493 if (cputime_lt(timer
->expires
.cpu
, utime
)) {
494 timer
->expires
.cpu
= cputime_zero
;
496 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
502 list_for_each_entry_safe(timer
, next
, head
, entry
) {
503 list_del_init(&timer
->entry
);
504 if (timer
->expires
.sched
< sum_exec_runtime
) {
505 timer
->expires
.sched
= 0;
507 timer
->expires
.sched
-= sum_exec_runtime
;
513 * These are both called with the siglock held, when the current thread
514 * is being reaped. When the final (leader) thread in the group is reaped,
515 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
517 void posix_cpu_timers_exit(struct task_struct
*tsk
)
519 cleanup_timers(tsk
->cpu_timers
,
520 tsk
->utime
, tsk
->stime
, tsk
->se
.sum_exec_runtime
);
523 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
525 struct signal_struct
*const sig
= tsk
->signal
;
527 cleanup_timers(tsk
->signal
->cpu_timers
,
528 cputime_add(tsk
->utime
, sig
->utime
),
529 cputime_add(tsk
->stime
, sig
->stime
),
530 tsk
->se
.sum_exec_runtime
+ sig
->sum_sched_runtime
);
533 static void clear_dead_task(struct k_itimer
*timer
, union cpu_time_count now
)
536 * That's all for this thread or process.
537 * We leave our residual in expires to be reported.
539 put_task_struct(timer
->it
.cpu
.task
);
540 timer
->it
.cpu
.task
= NULL
;
541 timer
->it
.cpu
.expires
= cpu_time_sub(timer
->it_clock
,
542 timer
->it
.cpu
.expires
,
546 static inline int expires_gt(cputime_t expires
, cputime_t new_exp
)
548 return cputime_eq(expires
, cputime_zero
) ||
549 cputime_gt(expires
, new_exp
);
552 static inline int expires_le(cputime_t expires
, cputime_t new_exp
)
554 return !cputime_eq(expires
, cputime_zero
) &&
555 cputime_le(expires
, new_exp
);
558 * Insert the timer on the appropriate list before any timers that
559 * expire later. This must be called with the tasklist_lock held
560 * for reading, and interrupts disabled.
562 static void arm_timer(struct k_itimer
*timer
, union cpu_time_count now
)
564 struct task_struct
*p
= timer
->it
.cpu
.task
;
565 struct list_head
*head
, *listpos
;
566 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
567 struct cpu_timer_list
*next
;
570 head
= (CPUCLOCK_PERTHREAD(timer
->it_clock
) ?
571 p
->cpu_timers
: p
->signal
->cpu_timers
);
572 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
574 BUG_ON(!irqs_disabled());
575 spin_lock(&p
->sighand
->siglock
);
578 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
579 list_for_each_entry(next
, head
, entry
) {
580 if (next
->expires
.sched
> nt
->expires
.sched
)
582 listpos
= &next
->entry
;
585 list_for_each_entry(next
, head
, entry
) {
586 if (cputime_gt(next
->expires
.cpu
, nt
->expires
.cpu
))
588 listpos
= &next
->entry
;
591 list_add(&nt
->entry
, listpos
);
593 if (listpos
== head
) {
595 * We are the new earliest-expiring timer.
596 * If we are a thread timer, there can always
597 * be a process timer telling us to stop earlier.
600 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
601 union cpu_time_count
*exp
= &nt
->expires
;
603 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
607 if (expires_gt(p
->cputime_expires
.prof_exp
,
609 p
->cputime_expires
.prof_exp
= exp
->cpu
;
612 if (expires_gt(p
->cputime_expires
.virt_exp
,
614 p
->cputime_expires
.virt_exp
= exp
->cpu
;
617 if (p
->cputime_expires
.sched_exp
== 0 ||
618 p
->cputime_expires
.sched_exp
> exp
->sched
)
619 p
->cputime_expires
.sched_exp
=
624 struct signal_struct
*const sig
= p
->signal
;
625 union cpu_time_count
*exp
= &timer
->it
.cpu
.expires
;
628 * For a process timer, set the cached expiration time.
630 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
634 if (expires_le(sig
->it
[CPUCLOCK_VIRT
].expires
,
637 sig
->cputime_expires
.virt_exp
= exp
->cpu
;
640 if (expires_le(sig
->it
[CPUCLOCK_PROF
].expires
,
643 i
= sig
->rlim
[RLIMIT_CPU
].rlim_cur
;
644 if (i
!= RLIM_INFINITY
&&
645 i
<= cputime_to_secs(exp
->cpu
))
647 sig
->cputime_expires
.prof_exp
= exp
->cpu
;
650 sig
->cputime_expires
.sched_exp
= exp
->sched
;
656 spin_unlock(&p
->sighand
->siglock
);
660 * The timer is locked, fire it and arrange for its reload.
662 static void cpu_timer_fire(struct k_itimer
*timer
)
664 if (unlikely(timer
->sigq
== NULL
)) {
666 * This a special case for clock_nanosleep,
667 * not a normal timer from sys_timer_create.
669 wake_up_process(timer
->it_process
);
670 timer
->it
.cpu
.expires
.sched
= 0;
671 } else if (timer
->it
.cpu
.incr
.sched
== 0) {
673 * One-shot timer. Clear it as soon as it's fired.
675 posix_timer_event(timer
, 0);
676 timer
->it
.cpu
.expires
.sched
= 0;
677 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
679 * The signal did not get queued because the signal
680 * was ignored, so we won't get any callback to
681 * reload the timer. But we need to keep it
682 * ticking in case the signal is deliverable next time.
684 posix_cpu_timer_schedule(timer
);
689 * Sample a process (thread group) timer for the given group_leader task.
690 * Must be called with tasklist_lock held for reading.
692 static int cpu_timer_sample_group(const clockid_t which_clock
,
693 struct task_struct
*p
,
694 union cpu_time_count
*cpu
)
696 struct task_cputime cputime
;
698 thread_group_cputimer(p
, &cputime
);
699 switch (CPUCLOCK_WHICH(which_clock
)) {
703 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
706 cpu
->cpu
= cputime
.utime
;
709 cpu
->sched
= cputime
.sum_exec_runtime
+ task_delta_exec(p
);
716 * Guts of sys_timer_settime for CPU timers.
717 * This is called with the timer locked and interrupts disabled.
718 * If we return TIMER_RETRY, it's necessary to release the timer's lock
719 * and try again. (This happens when the timer is in the middle of firing.)
721 int posix_cpu_timer_set(struct k_itimer
*timer
, int flags
,
722 struct itimerspec
*new, struct itimerspec
*old
)
724 struct task_struct
*p
= timer
->it
.cpu
.task
;
725 union cpu_time_count old_expires
, new_expires
, val
;
728 if (unlikely(p
== NULL
)) {
730 * Timer refers to a dead task's clock.
735 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
737 read_lock(&tasklist_lock
);
739 * We need the tasklist_lock to protect against reaping that
740 * clears p->signal. If p has just been reaped, we can no
741 * longer get any information about it at all.
743 if (unlikely(p
->signal
== NULL
)) {
744 read_unlock(&tasklist_lock
);
746 timer
->it
.cpu
.task
= NULL
;
751 * Disarm any old timer after extracting its expiry time.
753 BUG_ON(!irqs_disabled());
756 spin_lock(&p
->sighand
->siglock
);
757 old_expires
= timer
->it
.cpu
.expires
;
758 if (unlikely(timer
->it
.cpu
.firing
)) {
759 timer
->it
.cpu
.firing
= -1;
762 list_del_init(&timer
->it
.cpu
.entry
);
763 spin_unlock(&p
->sighand
->siglock
);
766 * We need to sample the current value to convert the new
767 * value from to relative and absolute, and to convert the
768 * old value from absolute to relative. To set a process
769 * timer, we need a sample to balance the thread expiry
770 * times (in arm_timer). With an absolute time, we must
771 * check if it's already passed. In short, we need a sample.
773 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
774 cpu_clock_sample(timer
->it_clock
, p
, &val
);
776 cpu_timer_sample_group(timer
->it_clock
, p
, &val
);
780 if (old_expires
.sched
== 0) {
781 old
->it_value
.tv_sec
= 0;
782 old
->it_value
.tv_nsec
= 0;
785 * Update the timer in case it has
786 * overrun already. If it has,
787 * we'll report it as having overrun
788 * and with the next reloaded timer
789 * already ticking, though we are
790 * swallowing that pending
791 * notification here to install the
794 bump_cpu_timer(timer
, val
);
795 if (cpu_time_before(timer
->it_clock
, val
,
796 timer
->it
.cpu
.expires
)) {
797 old_expires
= cpu_time_sub(
799 timer
->it
.cpu
.expires
, val
);
800 sample_to_timespec(timer
->it_clock
,
804 old
->it_value
.tv_nsec
= 1;
805 old
->it_value
.tv_sec
= 0;
812 * We are colliding with the timer actually firing.
813 * Punt after filling in the timer's old value, and
814 * disable this firing since we are already reporting
815 * it as an overrun (thanks to bump_cpu_timer above).
817 read_unlock(&tasklist_lock
);
821 if (new_expires
.sched
!= 0 && !(flags
& TIMER_ABSTIME
)) {
822 cpu_time_add(timer
->it_clock
, &new_expires
, val
);
826 * Install the new expiry time (or zero).
827 * For a timer with no notification action, we don't actually
828 * arm the timer (we'll just fake it for timer_gettime).
830 timer
->it
.cpu
.expires
= new_expires
;
831 if (new_expires
.sched
!= 0 &&
832 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
833 cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
834 arm_timer(timer
, val
);
837 read_unlock(&tasklist_lock
);
840 * Install the new reload setting, and
841 * set up the signal and overrun bookkeeping.
843 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
847 * This acts as a modification timestamp for the timer,
848 * so any automatic reload attempt will punt on seeing
849 * that we have reset the timer manually.
851 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
853 timer
->it_overrun_last
= 0;
854 timer
->it_overrun
= -1;
856 if (new_expires
.sched
!= 0 &&
857 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
858 !cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
860 * The designated time already passed, so we notify
861 * immediately, even if the thread never runs to
862 * accumulate more time on this clock.
864 cpu_timer_fire(timer
);
870 sample_to_timespec(timer
->it_clock
,
871 timer
->it
.cpu
.incr
, &old
->it_interval
);
876 void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
878 union cpu_time_count now
;
879 struct task_struct
*p
= timer
->it
.cpu
.task
;
883 * Easy part: convert the reload time.
885 sample_to_timespec(timer
->it_clock
,
886 timer
->it
.cpu
.incr
, &itp
->it_interval
);
888 if (timer
->it
.cpu
.expires
.sched
== 0) { /* Timer not armed at all. */
889 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
893 if (unlikely(p
== NULL
)) {
895 * This task already died and the timer will never fire.
896 * In this case, expires is actually the dead value.
899 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
905 * Sample the clock to take the difference with the expiry time.
907 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
908 cpu_clock_sample(timer
->it_clock
, p
, &now
);
909 clear_dead
= p
->exit_state
;
911 read_lock(&tasklist_lock
);
912 if (unlikely(p
->signal
== NULL
)) {
914 * The process has been reaped.
915 * We can't even collect a sample any more.
916 * Call the timer disarmed, nothing else to do.
919 timer
->it
.cpu
.task
= NULL
;
920 timer
->it
.cpu
.expires
.sched
= 0;
921 read_unlock(&tasklist_lock
);
924 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
925 clear_dead
= (unlikely(p
->exit_state
) &&
926 thread_group_empty(p
));
928 read_unlock(&tasklist_lock
);
931 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
932 if (timer
->it
.cpu
.incr
.sched
== 0 &&
933 cpu_time_before(timer
->it_clock
,
934 timer
->it
.cpu
.expires
, now
)) {
936 * Do-nothing timer expired and has no reload,
937 * so it's as if it was never set.
939 timer
->it
.cpu
.expires
.sched
= 0;
940 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
944 * Account for any expirations and reloads that should
947 bump_cpu_timer(timer
, now
);
950 if (unlikely(clear_dead
)) {
952 * We've noticed that the thread is dead, but
953 * not yet reaped. Take this opportunity to
956 clear_dead_task(timer
, now
);
960 if (cpu_time_before(timer
->it_clock
, now
, timer
->it
.cpu
.expires
)) {
961 sample_to_timespec(timer
->it_clock
,
962 cpu_time_sub(timer
->it_clock
,
963 timer
->it
.cpu
.expires
, now
),
967 * The timer should have expired already, but the firing
968 * hasn't taken place yet. Say it's just about to expire.
970 itp
->it_value
.tv_nsec
= 1;
971 itp
->it_value
.tv_sec
= 0;
976 * Check for any per-thread CPU timers that have fired and move them off
977 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
978 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
980 static void check_thread_timers(struct task_struct
*tsk
,
981 struct list_head
*firing
)
984 struct list_head
*timers
= tsk
->cpu_timers
;
985 struct signal_struct
*const sig
= tsk
->signal
;
988 tsk
->cputime_expires
.prof_exp
= cputime_zero
;
989 while (!list_empty(timers
)) {
990 struct cpu_timer_list
*t
= list_first_entry(timers
,
991 struct cpu_timer_list
,
993 if (!--maxfire
|| cputime_lt(prof_ticks(tsk
), t
->expires
.cpu
)) {
994 tsk
->cputime_expires
.prof_exp
= t
->expires
.cpu
;
998 list_move_tail(&t
->entry
, firing
);
1003 tsk
->cputime_expires
.virt_exp
= cputime_zero
;
1004 while (!list_empty(timers
)) {
1005 struct cpu_timer_list
*t
= list_first_entry(timers
,
1006 struct cpu_timer_list
,
1008 if (!--maxfire
|| cputime_lt(virt_ticks(tsk
), t
->expires
.cpu
)) {
1009 tsk
->cputime_expires
.virt_exp
= t
->expires
.cpu
;
1013 list_move_tail(&t
->entry
, firing
);
1018 tsk
->cputime_expires
.sched_exp
= 0;
1019 while (!list_empty(timers
)) {
1020 struct cpu_timer_list
*t
= list_first_entry(timers
,
1021 struct cpu_timer_list
,
1023 if (!--maxfire
|| tsk
->se
.sum_exec_runtime
< t
->expires
.sched
) {
1024 tsk
->cputime_expires
.sched_exp
= t
->expires
.sched
;
1028 list_move_tail(&t
->entry
, firing
);
1032 * Check for the special case thread timers.
1034 if (sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
!= RLIM_INFINITY
) {
1035 unsigned long hard
= sig
->rlim
[RLIMIT_RTTIME
].rlim_max
;
1036 unsigned long *soft
= &sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
;
1038 if (hard
!= RLIM_INFINITY
&&
1039 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
1041 * At the hard limit, we just die.
1042 * No need to calculate anything else now.
1044 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1047 if (tsk
->rt
.timeout
> DIV_ROUND_UP(*soft
, USEC_PER_SEC
/HZ
)) {
1049 * At the soft limit, send a SIGXCPU every second.
1051 if (sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
1052 < sig
->rlim
[RLIMIT_RTTIME
].rlim_max
) {
1053 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
+=
1057 "RT Watchdog Timeout: %s[%d]\n",
1058 tsk
->comm
, task_pid_nr(tsk
));
1059 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1064 static void stop_process_timers(struct task_struct
*tsk
)
1066 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
1067 unsigned long flags
;
1069 if (!cputimer
->running
)
1072 spin_lock_irqsave(&cputimer
->lock
, flags
);
1073 cputimer
->running
= 0;
1074 spin_unlock_irqrestore(&cputimer
->lock
, flags
);
1077 static u32 onecputick
;
1079 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
1080 cputime_t
*expires
, cputime_t cur_time
, int signo
)
1082 if (cputime_eq(it
->expires
, cputime_zero
))
1085 if (cputime_ge(cur_time
, it
->expires
)) {
1086 if (!cputime_eq(it
->incr
, cputime_zero
)) {
1087 it
->expires
= cputime_add(it
->expires
, it
->incr
);
1088 it
->error
+= it
->incr_error
;
1089 if (it
->error
>= onecputick
) {
1090 it
->expires
= cputime_sub(it
->expires
,
1092 it
->error
-= onecputick
;
1095 it
->expires
= cputime_zero
;
1098 trace_itimer_expire(signo
== SIGPROF
?
1099 ITIMER_PROF
: ITIMER_VIRTUAL
,
1100 tsk
->signal
->leader_pid
, cur_time
);
1101 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
1104 if (!cputime_eq(it
->expires
, cputime_zero
) &&
1105 (cputime_eq(*expires
, cputime_zero
) ||
1106 cputime_lt(it
->expires
, *expires
))) {
1107 *expires
= it
->expires
;
1112 * Check for any per-thread CPU timers that have fired and move them
1113 * off the tsk->*_timers list onto the firing list. Per-thread timers
1114 * have already been taken off.
1116 static void check_process_timers(struct task_struct
*tsk
,
1117 struct list_head
*firing
)
1120 struct signal_struct
*const sig
= tsk
->signal
;
1121 cputime_t utime
, ptime
, virt_expires
, prof_expires
;
1122 unsigned long long sum_sched_runtime
, sched_expires
;
1123 struct list_head
*timers
= sig
->cpu_timers
;
1124 struct task_cputime cputime
;
1127 * Don't sample the current process CPU clocks if there are no timers.
1129 if (list_empty(&timers
[CPUCLOCK_PROF
]) &&
1130 cputime_eq(sig
->it
[CPUCLOCK_PROF
].expires
, cputime_zero
) &&
1131 sig
->rlim
[RLIMIT_CPU
].rlim_cur
== RLIM_INFINITY
&&
1132 list_empty(&timers
[CPUCLOCK_VIRT
]) &&
1133 cputime_eq(sig
->it
[CPUCLOCK_VIRT
].expires
, cputime_zero
) &&
1134 list_empty(&timers
[CPUCLOCK_SCHED
])) {
1135 stop_process_timers(tsk
);
1140 * Collect the current process totals.
1142 thread_group_cputimer(tsk
, &cputime
);
1143 utime
= cputime
.utime
;
1144 ptime
= cputime_add(utime
, cputime
.stime
);
1145 sum_sched_runtime
= cputime
.sum_exec_runtime
;
1147 prof_expires
= cputime_zero
;
1148 while (!list_empty(timers
)) {
1149 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1150 struct cpu_timer_list
,
1152 if (!--maxfire
|| cputime_lt(ptime
, tl
->expires
.cpu
)) {
1153 prof_expires
= tl
->expires
.cpu
;
1157 list_move_tail(&tl
->entry
, firing
);
1162 virt_expires
= cputime_zero
;
1163 while (!list_empty(timers
)) {
1164 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1165 struct cpu_timer_list
,
1167 if (!--maxfire
|| cputime_lt(utime
, tl
->expires
.cpu
)) {
1168 virt_expires
= tl
->expires
.cpu
;
1172 list_move_tail(&tl
->entry
, firing
);
1178 while (!list_empty(timers
)) {
1179 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1180 struct cpu_timer_list
,
1182 if (!--maxfire
|| sum_sched_runtime
< tl
->expires
.sched
) {
1183 sched_expires
= tl
->expires
.sched
;
1187 list_move_tail(&tl
->entry
, firing
);
1191 * Check for the special case process timers.
1193 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
], &prof_expires
, ptime
,
1195 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
], &virt_expires
, utime
,
1198 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1199 unsigned long psecs
= cputime_to_secs(ptime
);
1201 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1203 * At the hard limit, we just die.
1204 * No need to calculate anything else now.
1206 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1209 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_cur
) {
1211 * At the soft limit, send a SIGXCPU every second.
1213 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1214 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
1215 < sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1216 sig
->rlim
[RLIMIT_CPU
].rlim_cur
++;
1219 x
= secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1220 if (cputime_eq(prof_expires
, cputime_zero
) ||
1221 cputime_lt(x
, prof_expires
)) {
1226 if (!cputime_eq(prof_expires
, cputime_zero
) &&
1227 (cputime_eq(sig
->cputime_expires
.prof_exp
, cputime_zero
) ||
1228 cputime_gt(sig
->cputime_expires
.prof_exp
, prof_expires
)))
1229 sig
->cputime_expires
.prof_exp
= prof_expires
;
1230 if (!cputime_eq(virt_expires
, cputime_zero
) &&
1231 (cputime_eq(sig
->cputime_expires
.virt_exp
, cputime_zero
) ||
1232 cputime_gt(sig
->cputime_expires
.virt_exp
, virt_expires
)))
1233 sig
->cputime_expires
.virt_exp
= virt_expires
;
1234 if (sched_expires
!= 0 &&
1235 (sig
->cputime_expires
.sched_exp
== 0 ||
1236 sig
->cputime_expires
.sched_exp
> sched_expires
))
1237 sig
->cputime_expires
.sched_exp
= sched_expires
;
1241 * This is called from the signal code (via do_schedule_next_timer)
1242 * when the last timer signal was delivered and we have to reload the timer.
1244 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1246 struct task_struct
*p
= timer
->it
.cpu
.task
;
1247 union cpu_time_count now
;
1249 if (unlikely(p
== NULL
))
1251 * The task was cleaned up already, no future firings.
1256 * Fetch the current sample and update the timer's expiry time.
1258 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1259 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1260 bump_cpu_timer(timer
, now
);
1261 if (unlikely(p
->exit_state
)) {
1262 clear_dead_task(timer
, now
);
1265 read_lock(&tasklist_lock
); /* arm_timer needs it. */
1267 read_lock(&tasklist_lock
);
1268 if (unlikely(p
->signal
== NULL
)) {
1270 * The process has been reaped.
1271 * We can't even collect a sample any more.
1274 timer
->it
.cpu
.task
= p
= NULL
;
1275 timer
->it
.cpu
.expires
.sched
= 0;
1277 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1279 * We've noticed that the thread is dead, but
1280 * not yet reaped. Take this opportunity to
1281 * drop our task ref.
1283 clear_dead_task(timer
, now
);
1286 cpu_timer_sample_group(timer
->it_clock
, p
, &now
);
1287 bump_cpu_timer(timer
, now
);
1288 /* Leave the tasklist_lock locked for the call below. */
1292 * Now re-arm for the new expiry time.
1294 arm_timer(timer
, now
);
1297 read_unlock(&tasklist_lock
);
1300 timer
->it_overrun_last
= timer
->it_overrun
;
1301 timer
->it_overrun
= -1;
1302 ++timer
->it_requeue_pending
;
1306 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1308 * @cputime: The struct to compare.
1310 * Checks @cputime to see if all fields are zero. Returns true if all fields
1311 * are zero, false if any field is nonzero.
1313 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
1315 if (cputime_eq(cputime
->utime
, cputime_zero
) &&
1316 cputime_eq(cputime
->stime
, cputime_zero
) &&
1317 cputime
->sum_exec_runtime
== 0)
1323 * task_cputime_expired - Compare two task_cputime entities.
1325 * @sample: The task_cputime structure to be checked for expiration.
1326 * @expires: Expiration times, against which @sample will be checked.
1328 * Checks @sample against @expires to see if any field of @sample has expired.
1329 * Returns true if any field of the former is greater than the corresponding
1330 * field of the latter if the latter field is set. Otherwise returns false.
1332 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1333 const struct task_cputime
*expires
)
1335 if (!cputime_eq(expires
->utime
, cputime_zero
) &&
1336 cputime_ge(sample
->utime
, expires
->utime
))
1338 if (!cputime_eq(expires
->stime
, cputime_zero
) &&
1339 cputime_ge(cputime_add(sample
->utime
, sample
->stime
),
1342 if (expires
->sum_exec_runtime
!= 0 &&
1343 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1349 * fastpath_timer_check - POSIX CPU timers fast path.
1351 * @tsk: The task (thread) being checked.
1353 * Check the task and thread group timers. If both are zero (there are no
1354 * timers set) return false. Otherwise snapshot the task and thread group
1355 * timers and compare them with the corresponding expiration times. Return
1356 * true if a timer has expired, else return false.
1358 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1360 struct signal_struct
*sig
;
1362 /* tsk == current, ensure it is safe to use ->signal/sighand */
1363 if (unlikely(tsk
->exit_state
))
1366 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1367 struct task_cputime task_sample
= {
1368 .utime
= tsk
->utime
,
1369 .stime
= tsk
->stime
,
1370 .sum_exec_runtime
= tsk
->se
.sum_exec_runtime
1373 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1378 if (!task_cputime_zero(&sig
->cputime_expires
)) {
1379 struct task_cputime group_sample
;
1381 thread_group_cputimer(tsk
, &group_sample
);
1382 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1386 return sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
;
1390 * This is called from the timer interrupt handler. The irq handler has
1391 * already updated our counts. We need to check if any timers fire now.
1392 * Interrupts are disabled.
1394 void run_posix_cpu_timers(struct task_struct
*tsk
)
1397 struct k_itimer
*timer
, *next
;
1399 BUG_ON(!irqs_disabled());
1402 * The fast path checks that there are no expired thread or thread
1403 * group timers. If that's so, just return.
1405 if (!fastpath_timer_check(tsk
))
1408 spin_lock(&tsk
->sighand
->siglock
);
1410 * Here we take off tsk->signal->cpu_timers[N] and
1411 * tsk->cpu_timers[N] all the timers that are firing, and
1412 * put them on the firing list.
1414 check_thread_timers(tsk
, &firing
);
1415 check_process_timers(tsk
, &firing
);
1418 * We must release these locks before taking any timer's lock.
1419 * There is a potential race with timer deletion here, as the
1420 * siglock now protects our private firing list. We have set
1421 * the firing flag in each timer, so that a deletion attempt
1422 * that gets the timer lock before we do will give it up and
1423 * spin until we've taken care of that timer below.
1425 spin_unlock(&tsk
->sighand
->siglock
);
1428 * Now that all the timers on our list have the firing flag,
1429 * noone will touch their list entries but us. We'll take
1430 * each timer's lock before clearing its firing flag, so no
1431 * timer call will interfere.
1433 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1436 spin_lock(&timer
->it_lock
);
1437 list_del_init(&timer
->it
.cpu
.entry
);
1438 cpu_firing
= timer
->it
.cpu
.firing
;
1439 timer
->it
.cpu
.firing
= 0;
1441 * The firing flag is -1 if we collided with a reset
1442 * of the timer, which already reported this
1443 * almost-firing as an overrun. So don't generate an event.
1445 if (likely(cpu_firing
>= 0))
1446 cpu_timer_fire(timer
);
1447 spin_unlock(&timer
->it_lock
);
1452 * Set one of the process-wide special case CPU timers.
1453 * The tsk->sighand->siglock must be held by the caller.
1454 * The *newval argument is relative and we update it to be absolute, *oldval
1455 * is absolute and we update it to be relative.
1457 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1458 cputime_t
*newval
, cputime_t
*oldval
)
1460 union cpu_time_count now
;
1461 struct list_head
*head
;
1463 BUG_ON(clock_idx
== CPUCLOCK_SCHED
);
1464 cpu_timer_sample_group(clock_idx
, tsk
, &now
);
1467 if (!cputime_eq(*oldval
, cputime_zero
)) {
1468 if (cputime_le(*oldval
, now
.cpu
)) {
1469 /* Just about to fire. */
1470 *oldval
= cputime_one_jiffy
;
1472 *oldval
= cputime_sub(*oldval
, now
.cpu
);
1476 if (cputime_eq(*newval
, cputime_zero
))
1478 *newval
= cputime_add(*newval
, now
.cpu
);
1481 * If the RLIMIT_CPU timer will expire before the
1482 * ITIMER_PROF timer, we have nothing else to do.
1484 if (tsk
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
1485 < cputime_to_secs(*newval
))
1490 * Check whether there are any process timers already set to fire
1491 * before this one. If so, we don't have anything more to do.
1493 head
= &tsk
->signal
->cpu_timers
[clock_idx
];
1494 if (list_empty(head
) ||
1495 cputime_ge(list_first_entry(head
,
1496 struct cpu_timer_list
, entry
)->expires
.cpu
,
1498 switch (clock_idx
) {
1500 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1503 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1509 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1510 struct timespec
*rqtp
, struct itimerspec
*it
)
1512 struct k_itimer timer
;
1516 * Set up a temporary timer and then wait for it to go off.
1518 memset(&timer
, 0, sizeof timer
);
1519 spin_lock_init(&timer
.it_lock
);
1520 timer
.it_clock
= which_clock
;
1521 timer
.it_overrun
= -1;
1522 error
= posix_cpu_timer_create(&timer
);
1523 timer
.it_process
= current
;
1525 static struct itimerspec zero_it
;
1527 memset(it
, 0, sizeof *it
);
1528 it
->it_value
= *rqtp
;
1530 spin_lock_irq(&timer
.it_lock
);
1531 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1533 spin_unlock_irq(&timer
.it_lock
);
1537 while (!signal_pending(current
)) {
1538 if (timer
.it
.cpu
.expires
.sched
== 0) {
1540 * Our timer fired and was reset.
1542 spin_unlock_irq(&timer
.it_lock
);
1547 * Block until cpu_timer_fire (or a signal) wakes us.
1549 __set_current_state(TASK_INTERRUPTIBLE
);
1550 spin_unlock_irq(&timer
.it_lock
);
1552 spin_lock_irq(&timer
.it_lock
);
1556 * We were interrupted by a signal.
1558 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1559 posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1560 spin_unlock_irq(&timer
.it_lock
);
1562 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1564 * It actually did fire already.
1569 error
= -ERESTART_RESTARTBLOCK
;
1575 int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1576 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1578 struct restart_block
*restart_block
=
1579 ¤t_thread_info()->restart_block
;
1580 struct itimerspec it
;
1584 * Diagnose required errors first.
1586 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1587 (CPUCLOCK_PID(which_clock
) == 0 ||
1588 CPUCLOCK_PID(which_clock
) == current
->pid
))
1591 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1593 if (error
== -ERESTART_RESTARTBLOCK
) {
1595 if (flags
& TIMER_ABSTIME
)
1596 return -ERESTARTNOHAND
;
1598 * Report back to the user the time still remaining.
1600 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1603 restart_block
->fn
= posix_cpu_nsleep_restart
;
1604 restart_block
->arg0
= which_clock
;
1605 restart_block
->arg1
= (unsigned long) rmtp
;
1606 restart_block
->arg2
= rqtp
->tv_sec
;
1607 restart_block
->arg3
= rqtp
->tv_nsec
;
1612 long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1614 clockid_t which_clock
= restart_block
->arg0
;
1615 struct timespec __user
*rmtp
;
1617 struct itimerspec it
;
1620 rmtp
= (struct timespec __user
*) restart_block
->arg1
;
1621 t
.tv_sec
= restart_block
->arg2
;
1622 t
.tv_nsec
= restart_block
->arg3
;
1624 restart_block
->fn
= do_no_restart_syscall
;
1625 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1627 if (error
== -ERESTART_RESTARTBLOCK
) {
1629 * Report back to the user the time still remaining.
1631 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1634 restart_block
->fn
= posix_cpu_nsleep_restart
;
1635 restart_block
->arg0
= which_clock
;
1636 restart_block
->arg1
= (unsigned long) rmtp
;
1637 restart_block
->arg2
= t
.tv_sec
;
1638 restart_block
->arg3
= t
.tv_nsec
;
1645 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1646 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1648 static int process_cpu_clock_getres(const clockid_t which_clock
,
1649 struct timespec
*tp
)
1651 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1653 static int process_cpu_clock_get(const clockid_t which_clock
,
1654 struct timespec
*tp
)
1656 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1658 static int process_cpu_timer_create(struct k_itimer
*timer
)
1660 timer
->it_clock
= PROCESS_CLOCK
;
1661 return posix_cpu_timer_create(timer
);
1663 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1664 struct timespec
*rqtp
,
1665 struct timespec __user
*rmtp
)
1667 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1669 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1673 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1674 struct timespec
*tp
)
1676 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1678 static int thread_cpu_clock_get(const clockid_t which_clock
,
1679 struct timespec
*tp
)
1681 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1683 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1685 timer
->it_clock
= THREAD_CLOCK
;
1686 return posix_cpu_timer_create(timer
);
1688 static int thread_cpu_nsleep(const clockid_t which_clock
, int flags
,
1689 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1693 static long thread_cpu_nsleep_restart(struct restart_block
*restart_block
)
1698 static __init
int init_posix_cpu_timers(void)
1700 struct k_clock process
= {
1701 .clock_getres
= process_cpu_clock_getres
,
1702 .clock_get
= process_cpu_clock_get
,
1703 .clock_set
= do_posix_clock_nosettime
,
1704 .timer_create
= process_cpu_timer_create
,
1705 .nsleep
= process_cpu_nsleep
,
1706 .nsleep_restart
= process_cpu_nsleep_restart
,
1708 struct k_clock thread
= {
1709 .clock_getres
= thread_cpu_clock_getres
,
1710 .clock_get
= thread_cpu_clock_get
,
1711 .clock_set
= do_posix_clock_nosettime
,
1712 .timer_create
= thread_cpu_timer_create
,
1713 .nsleep
= thread_cpu_nsleep
,
1714 .nsleep_restart
= thread_cpu_nsleep_restart
,
1718 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1719 register_posix_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1721 cputime_to_timespec(cputime_one_jiffy
, &ts
);
1722 onecputick
= ts
.tv_nsec
;
1723 WARN_ON(ts
.tv_sec
!= 0);
1727 __initcall(init_posix_cpu_timers
);