switch fuse
[linux-2.6/cjktty.git] / mm / hugetlb.c
blob85855240933d7cf195ce1548faa75d8120c21478
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
41 __initdata LIST_HEAD(huge_boot_pages);
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 static DEFINE_SPINLOCK(hugetlb_lock);
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
65 * down_write(&mm->mmap_sem);
66 * or
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
70 struct file_region {
71 struct list_head link;
72 long from;
73 long to;
76 static long region_add(struct list_head *head, long f, long t)
78 struct file_region *rg, *nrg, *trg;
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg, head, link)
82 if (f <= rg->to)
83 break;
85 /* Round our left edge to the current segment if it encloses us. */
86 if (f > rg->from)
87 f = rg->from;
89 /* Check for and consume any regions we now overlap with. */
90 nrg = rg;
91 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92 if (&rg->link == head)
93 break;
94 if (rg->from > t)
95 break;
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
100 if (rg->to > t)
101 t = rg->to;
102 if (rg != nrg) {
103 list_del(&rg->link);
104 kfree(rg);
107 nrg->from = f;
108 nrg->to = t;
109 return 0;
112 static long region_chg(struct list_head *head, long f, long t)
114 struct file_region *rg, *nrg;
115 long chg = 0;
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg, head, link)
119 if (f <= rg->to)
120 break;
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg->link == head || t < rg->from) {
126 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127 if (!nrg)
128 return -ENOMEM;
129 nrg->from = f;
130 nrg->to = f;
131 INIT_LIST_HEAD(&nrg->link);
132 list_add(&nrg->link, rg->link.prev);
134 return t - f;
137 /* Round our left edge to the current segment if it encloses us. */
138 if (f > rg->from)
139 f = rg->from;
140 chg = t - f;
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg, rg->link.prev, link) {
144 if (&rg->link == head)
145 break;
146 if (rg->from > t)
147 return chg;
149 /* We overlap with this area, if it extends futher than
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
152 if (rg->to > t) {
153 chg += rg->to - t;
154 t = rg->to;
156 chg -= rg->to - rg->from;
158 return chg;
161 static long region_truncate(struct list_head *head, long end)
163 struct file_region *rg, *trg;
164 long chg = 0;
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg, head, link)
168 if (end <= rg->to)
169 break;
170 if (&rg->link == head)
171 return 0;
173 /* If we are in the middle of a region then adjust it. */
174 if (end > rg->from) {
175 chg = rg->to - end;
176 rg->to = end;
177 rg = list_entry(rg->link.next, typeof(*rg), link);
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182 if (&rg->link == head)
183 break;
184 chg += rg->to - rg->from;
185 list_del(&rg->link);
186 kfree(rg);
188 return chg;
191 static long region_count(struct list_head *head, long f, long t)
193 struct file_region *rg;
194 long chg = 0;
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg, head, link) {
198 int seg_from;
199 int seg_to;
201 if (rg->to <= f)
202 continue;
203 if (rg->from >= t)
204 break;
206 seg_from = max(rg->from, f);
207 seg_to = min(rg->to, t);
209 chg += seg_to - seg_from;
212 return chg;
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
219 static pgoff_t vma_hugecache_offset(struct hstate *h,
220 struct vm_area_struct *vma, unsigned long address)
222 return ((address - vma->vm_start) >> huge_page_shift(h)) +
223 (vma->vm_pgoff >> huge_page_order(h));
226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227 unsigned long address)
229 return vma_hugecache_offset(hstate_vma(vma), vma, address);
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
238 struct hstate *hstate;
240 if (!is_vm_hugetlb_page(vma))
241 return PAGE_SIZE;
243 hstate = hstate_vma(vma);
245 return 1UL << (hstate->order + PAGE_SHIFT);
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
258 return vma_kernel_pagesize(vma);
260 #endif
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
267 #define HPAGE_RESV_OWNER (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
290 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
292 return (unsigned long)vma->vm_private_data;
295 static void set_vma_private_data(struct vm_area_struct *vma,
296 unsigned long value)
298 vma->vm_private_data = (void *)value;
301 struct resv_map {
302 struct kref refs;
303 struct list_head regions;
306 static struct resv_map *resv_map_alloc(void)
308 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309 if (!resv_map)
310 return NULL;
312 kref_init(&resv_map->refs);
313 INIT_LIST_HEAD(&resv_map->regions);
315 return resv_map;
318 static void resv_map_release(struct kref *ref)
320 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map->regions, 0);
324 kfree(resv_map);
327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
330 if (!(vma->vm_flags & VM_MAYSHARE))
331 return (struct resv_map *)(get_vma_private_data(vma) &
332 ~HPAGE_RESV_MASK);
333 return NULL;
336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
341 set_vma_private_data(vma, (get_vma_private_data(vma) &
342 HPAGE_RESV_MASK) | (unsigned long)map);
345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
347 VM_BUG_ON(!is_vm_hugetlb_page(vma));
348 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
350 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
355 VM_BUG_ON(!is_vm_hugetlb_page(vma));
357 return (get_vma_private_data(vma) & flag) != 0;
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate *h,
362 struct vm_area_struct *vma)
364 if (vma->vm_flags & VM_NORESERVE)
365 return;
367 if (vma->vm_flags & VM_MAYSHARE) {
368 /* Shared mappings always use reserves */
369 h->resv_huge_pages--;
370 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
372 * Only the process that called mmap() has reserves for
373 * private mappings.
375 h->resv_huge_pages--;
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
382 VM_BUG_ON(!is_vm_hugetlb_page(vma));
383 if (!(vma->vm_flags & VM_MAYSHARE))
384 vma->vm_private_data = (void *)0;
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct *vma)
390 if (vma->vm_flags & VM_MAYSHARE)
391 return 1;
392 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393 return 1;
394 return 0;
397 static void clear_gigantic_page(struct page *page,
398 unsigned long addr, unsigned long sz)
400 int i;
401 struct page *p = page;
403 might_sleep();
404 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
405 cond_resched();
406 clear_user_highpage(p, addr + i * PAGE_SIZE);
409 static void clear_huge_page(struct page *page,
410 unsigned long addr, unsigned long sz)
412 int i;
414 if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
415 clear_gigantic_page(page, addr, sz);
416 return;
419 might_sleep();
420 for (i = 0; i < sz/PAGE_SIZE; i++) {
421 cond_resched();
422 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
426 static void copy_user_gigantic_page(struct page *dst, struct page *src,
427 unsigned long addr, struct vm_area_struct *vma)
429 int i;
430 struct hstate *h = hstate_vma(vma);
431 struct page *dst_base = dst;
432 struct page *src_base = src;
434 for (i = 0; i < pages_per_huge_page(h); ) {
435 cond_resched();
436 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
438 i++;
439 dst = mem_map_next(dst, dst_base, i);
440 src = mem_map_next(src, src_base, i);
444 static void copy_user_huge_page(struct page *dst, struct page *src,
445 unsigned long addr, struct vm_area_struct *vma)
447 int i;
448 struct hstate *h = hstate_vma(vma);
450 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
451 copy_user_gigantic_page(dst, src, addr, vma);
452 return;
455 might_sleep();
456 for (i = 0; i < pages_per_huge_page(h); i++) {
457 cond_resched();
458 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
462 static void copy_gigantic_page(struct page *dst, struct page *src)
464 int i;
465 struct hstate *h = page_hstate(src);
466 struct page *dst_base = dst;
467 struct page *src_base = src;
469 for (i = 0; i < pages_per_huge_page(h); ) {
470 cond_resched();
471 copy_highpage(dst, src);
473 i++;
474 dst = mem_map_next(dst, dst_base, i);
475 src = mem_map_next(src, src_base, i);
479 void copy_huge_page(struct page *dst, struct page *src)
481 int i;
482 struct hstate *h = page_hstate(src);
484 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
485 copy_gigantic_page(dst, src);
486 return;
489 might_sleep();
490 for (i = 0; i < pages_per_huge_page(h); i++) {
491 cond_resched();
492 copy_highpage(dst + i, src + i);
496 static void enqueue_huge_page(struct hstate *h, struct page *page)
498 int nid = page_to_nid(page);
499 list_add(&page->lru, &h->hugepage_freelists[nid]);
500 h->free_huge_pages++;
501 h->free_huge_pages_node[nid]++;
504 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
506 struct page *page;
508 if (list_empty(&h->hugepage_freelists[nid]))
509 return NULL;
510 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
511 list_del(&page->lru);
512 set_page_refcounted(page);
513 h->free_huge_pages--;
514 h->free_huge_pages_node[nid]--;
515 return page;
518 static struct page *dequeue_huge_page_vma(struct hstate *h,
519 struct vm_area_struct *vma,
520 unsigned long address, int avoid_reserve)
522 struct page *page = NULL;
523 struct mempolicy *mpol;
524 nodemask_t *nodemask;
525 struct zonelist *zonelist;
526 struct zone *zone;
527 struct zoneref *z;
529 get_mems_allowed();
530 zonelist = huge_zonelist(vma, address,
531 htlb_alloc_mask, &mpol, &nodemask);
533 * A child process with MAP_PRIVATE mappings created by their parent
534 * have no page reserves. This check ensures that reservations are
535 * not "stolen". The child may still get SIGKILLed
537 if (!vma_has_reserves(vma) &&
538 h->free_huge_pages - h->resv_huge_pages == 0)
539 goto err;
541 /* If reserves cannot be used, ensure enough pages are in the pool */
542 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
543 goto err;;
545 for_each_zone_zonelist_nodemask(zone, z, zonelist,
546 MAX_NR_ZONES - 1, nodemask) {
547 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
548 page = dequeue_huge_page_node(h, zone_to_nid(zone));
549 if (page) {
550 if (!avoid_reserve)
551 decrement_hugepage_resv_vma(h, vma);
552 break;
556 err:
557 mpol_cond_put(mpol);
558 put_mems_allowed();
559 return page;
562 static void update_and_free_page(struct hstate *h, struct page *page)
564 int i;
566 VM_BUG_ON(h->order >= MAX_ORDER);
568 h->nr_huge_pages--;
569 h->nr_huge_pages_node[page_to_nid(page)]--;
570 for (i = 0; i < pages_per_huge_page(h); i++) {
571 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
572 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
573 1 << PG_private | 1<< PG_writeback);
575 set_compound_page_dtor(page, NULL);
576 set_page_refcounted(page);
577 arch_release_hugepage(page);
578 __free_pages(page, huge_page_order(h));
581 struct hstate *size_to_hstate(unsigned long size)
583 struct hstate *h;
585 for_each_hstate(h) {
586 if (huge_page_size(h) == size)
587 return h;
589 return NULL;
592 static void free_huge_page(struct page *page)
595 * Can't pass hstate in here because it is called from the
596 * compound page destructor.
598 struct hstate *h = page_hstate(page);
599 int nid = page_to_nid(page);
600 struct address_space *mapping;
602 mapping = (struct address_space *) page_private(page);
603 set_page_private(page, 0);
604 page->mapping = NULL;
605 BUG_ON(page_count(page));
606 BUG_ON(page_mapcount(page));
607 INIT_LIST_HEAD(&page->lru);
609 spin_lock(&hugetlb_lock);
610 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
611 update_and_free_page(h, page);
612 h->surplus_huge_pages--;
613 h->surplus_huge_pages_node[nid]--;
614 } else {
615 enqueue_huge_page(h, page);
617 spin_unlock(&hugetlb_lock);
618 if (mapping)
619 hugetlb_put_quota(mapping, 1);
622 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
624 set_compound_page_dtor(page, free_huge_page);
625 spin_lock(&hugetlb_lock);
626 h->nr_huge_pages++;
627 h->nr_huge_pages_node[nid]++;
628 spin_unlock(&hugetlb_lock);
629 put_page(page); /* free it into the hugepage allocator */
632 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
634 int i;
635 int nr_pages = 1 << order;
636 struct page *p = page + 1;
638 /* we rely on prep_new_huge_page to set the destructor */
639 set_compound_order(page, order);
640 __SetPageHead(page);
641 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
642 __SetPageTail(p);
643 p->first_page = page;
647 int PageHuge(struct page *page)
649 compound_page_dtor *dtor;
651 if (!PageCompound(page))
652 return 0;
654 page = compound_head(page);
655 dtor = get_compound_page_dtor(page);
657 return dtor == free_huge_page;
660 EXPORT_SYMBOL_GPL(PageHuge);
662 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
664 struct page *page;
666 if (h->order >= MAX_ORDER)
667 return NULL;
669 page = alloc_pages_exact_node(nid,
670 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
671 __GFP_REPEAT|__GFP_NOWARN,
672 huge_page_order(h));
673 if (page) {
674 if (arch_prepare_hugepage(page)) {
675 __free_pages(page, huge_page_order(h));
676 return NULL;
678 prep_new_huge_page(h, page, nid);
681 return page;
685 * common helper functions for hstate_next_node_to_{alloc|free}.
686 * We may have allocated or freed a huge page based on a different
687 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
688 * be outside of *nodes_allowed. Ensure that we use an allowed
689 * node for alloc or free.
691 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
693 nid = next_node(nid, *nodes_allowed);
694 if (nid == MAX_NUMNODES)
695 nid = first_node(*nodes_allowed);
696 VM_BUG_ON(nid >= MAX_NUMNODES);
698 return nid;
701 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
703 if (!node_isset(nid, *nodes_allowed))
704 nid = next_node_allowed(nid, nodes_allowed);
705 return nid;
709 * returns the previously saved node ["this node"] from which to
710 * allocate a persistent huge page for the pool and advance the
711 * next node from which to allocate, handling wrap at end of node
712 * mask.
714 static int hstate_next_node_to_alloc(struct hstate *h,
715 nodemask_t *nodes_allowed)
717 int nid;
719 VM_BUG_ON(!nodes_allowed);
721 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
722 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
724 return nid;
727 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
729 struct page *page;
730 int start_nid;
731 int next_nid;
732 int ret = 0;
734 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
735 next_nid = start_nid;
737 do {
738 page = alloc_fresh_huge_page_node(h, next_nid);
739 if (page) {
740 ret = 1;
741 break;
743 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
744 } while (next_nid != start_nid);
746 if (ret)
747 count_vm_event(HTLB_BUDDY_PGALLOC);
748 else
749 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
751 return ret;
755 * helper for free_pool_huge_page() - return the previously saved
756 * node ["this node"] from which to free a huge page. Advance the
757 * next node id whether or not we find a free huge page to free so
758 * that the next attempt to free addresses the next node.
760 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
762 int nid;
764 VM_BUG_ON(!nodes_allowed);
766 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
767 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
769 return nid;
773 * Free huge page from pool from next node to free.
774 * Attempt to keep persistent huge pages more or less
775 * balanced over allowed nodes.
776 * Called with hugetlb_lock locked.
778 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
779 bool acct_surplus)
781 int start_nid;
782 int next_nid;
783 int ret = 0;
785 start_nid = hstate_next_node_to_free(h, nodes_allowed);
786 next_nid = start_nid;
788 do {
790 * If we're returning unused surplus pages, only examine
791 * nodes with surplus pages.
793 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
794 !list_empty(&h->hugepage_freelists[next_nid])) {
795 struct page *page =
796 list_entry(h->hugepage_freelists[next_nid].next,
797 struct page, lru);
798 list_del(&page->lru);
799 h->free_huge_pages--;
800 h->free_huge_pages_node[next_nid]--;
801 if (acct_surplus) {
802 h->surplus_huge_pages--;
803 h->surplus_huge_pages_node[next_nid]--;
805 update_and_free_page(h, page);
806 ret = 1;
807 break;
809 next_nid = hstate_next_node_to_free(h, nodes_allowed);
810 } while (next_nid != start_nid);
812 return ret;
815 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
817 struct page *page;
818 unsigned int r_nid;
820 if (h->order >= MAX_ORDER)
821 return NULL;
824 * Assume we will successfully allocate the surplus page to
825 * prevent racing processes from causing the surplus to exceed
826 * overcommit
828 * This however introduces a different race, where a process B
829 * tries to grow the static hugepage pool while alloc_pages() is
830 * called by process A. B will only examine the per-node
831 * counters in determining if surplus huge pages can be
832 * converted to normal huge pages in adjust_pool_surplus(). A
833 * won't be able to increment the per-node counter, until the
834 * lock is dropped by B, but B doesn't drop hugetlb_lock until
835 * no more huge pages can be converted from surplus to normal
836 * state (and doesn't try to convert again). Thus, we have a
837 * case where a surplus huge page exists, the pool is grown, and
838 * the surplus huge page still exists after, even though it
839 * should just have been converted to a normal huge page. This
840 * does not leak memory, though, as the hugepage will be freed
841 * once it is out of use. It also does not allow the counters to
842 * go out of whack in adjust_pool_surplus() as we don't modify
843 * the node values until we've gotten the hugepage and only the
844 * per-node value is checked there.
846 spin_lock(&hugetlb_lock);
847 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
848 spin_unlock(&hugetlb_lock);
849 return NULL;
850 } else {
851 h->nr_huge_pages++;
852 h->surplus_huge_pages++;
854 spin_unlock(&hugetlb_lock);
856 if (nid == NUMA_NO_NODE)
857 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
858 __GFP_REPEAT|__GFP_NOWARN,
859 huge_page_order(h));
860 else
861 page = alloc_pages_exact_node(nid,
862 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
863 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
865 if (page && arch_prepare_hugepage(page)) {
866 __free_pages(page, huge_page_order(h));
867 return NULL;
870 spin_lock(&hugetlb_lock);
871 if (page) {
872 r_nid = page_to_nid(page);
873 set_compound_page_dtor(page, free_huge_page);
875 * We incremented the global counters already
877 h->nr_huge_pages_node[r_nid]++;
878 h->surplus_huge_pages_node[r_nid]++;
879 __count_vm_event(HTLB_BUDDY_PGALLOC);
880 } else {
881 h->nr_huge_pages--;
882 h->surplus_huge_pages--;
883 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
885 spin_unlock(&hugetlb_lock);
887 return page;
891 * This allocation function is useful in the context where vma is irrelevant.
892 * E.g. soft-offlining uses this function because it only cares physical
893 * address of error page.
895 struct page *alloc_huge_page_node(struct hstate *h, int nid)
897 struct page *page;
899 spin_lock(&hugetlb_lock);
900 page = dequeue_huge_page_node(h, nid);
901 spin_unlock(&hugetlb_lock);
903 if (!page)
904 page = alloc_buddy_huge_page(h, nid);
906 return page;
910 * Increase the hugetlb pool such that it can accomodate a reservation
911 * of size 'delta'.
913 static int gather_surplus_pages(struct hstate *h, int delta)
915 struct list_head surplus_list;
916 struct page *page, *tmp;
917 int ret, i;
918 int needed, allocated;
920 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
921 if (needed <= 0) {
922 h->resv_huge_pages += delta;
923 return 0;
926 allocated = 0;
927 INIT_LIST_HEAD(&surplus_list);
929 ret = -ENOMEM;
930 retry:
931 spin_unlock(&hugetlb_lock);
932 for (i = 0; i < needed; i++) {
933 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
934 if (!page)
936 * We were not able to allocate enough pages to
937 * satisfy the entire reservation so we free what
938 * we've allocated so far.
940 goto free;
942 list_add(&page->lru, &surplus_list);
944 allocated += needed;
947 * After retaking hugetlb_lock, we need to recalculate 'needed'
948 * because either resv_huge_pages or free_huge_pages may have changed.
950 spin_lock(&hugetlb_lock);
951 needed = (h->resv_huge_pages + delta) -
952 (h->free_huge_pages + allocated);
953 if (needed > 0)
954 goto retry;
957 * The surplus_list now contains _at_least_ the number of extra pages
958 * needed to accomodate the reservation. Add the appropriate number
959 * of pages to the hugetlb pool and free the extras back to the buddy
960 * allocator. Commit the entire reservation here to prevent another
961 * process from stealing the pages as they are added to the pool but
962 * before they are reserved.
964 needed += allocated;
965 h->resv_huge_pages += delta;
966 ret = 0;
968 spin_unlock(&hugetlb_lock);
969 /* Free the needed pages to the hugetlb pool */
970 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
971 if ((--needed) < 0)
972 break;
973 list_del(&page->lru);
975 * This page is now managed by the hugetlb allocator and has
976 * no users -- drop the buddy allocator's reference.
978 put_page_testzero(page);
979 VM_BUG_ON(page_count(page));
980 enqueue_huge_page(h, page);
983 /* Free unnecessary surplus pages to the buddy allocator */
984 free:
985 if (!list_empty(&surplus_list)) {
986 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
987 list_del(&page->lru);
988 put_page(page);
991 spin_lock(&hugetlb_lock);
993 return ret;
997 * When releasing a hugetlb pool reservation, any surplus pages that were
998 * allocated to satisfy the reservation must be explicitly freed if they were
999 * never used.
1000 * Called with hugetlb_lock held.
1002 static void return_unused_surplus_pages(struct hstate *h,
1003 unsigned long unused_resv_pages)
1005 unsigned long nr_pages;
1007 /* Uncommit the reservation */
1008 h->resv_huge_pages -= unused_resv_pages;
1010 /* Cannot return gigantic pages currently */
1011 if (h->order >= MAX_ORDER)
1012 return;
1014 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1017 * We want to release as many surplus pages as possible, spread
1018 * evenly across all nodes with memory. Iterate across these nodes
1019 * until we can no longer free unreserved surplus pages. This occurs
1020 * when the nodes with surplus pages have no free pages.
1021 * free_pool_huge_page() will balance the the freed pages across the
1022 * on-line nodes with memory and will handle the hstate accounting.
1024 while (nr_pages--) {
1025 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1026 break;
1031 * Determine if the huge page at addr within the vma has an associated
1032 * reservation. Where it does not we will need to logically increase
1033 * reservation and actually increase quota before an allocation can occur.
1034 * Where any new reservation would be required the reservation change is
1035 * prepared, but not committed. Once the page has been quota'd allocated
1036 * an instantiated the change should be committed via vma_commit_reservation.
1037 * No action is required on failure.
1039 static long vma_needs_reservation(struct hstate *h,
1040 struct vm_area_struct *vma, unsigned long addr)
1042 struct address_space *mapping = vma->vm_file->f_mapping;
1043 struct inode *inode = mapping->host;
1045 if (vma->vm_flags & VM_MAYSHARE) {
1046 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1047 return region_chg(&inode->i_mapping->private_list,
1048 idx, idx + 1);
1050 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1051 return 1;
1053 } else {
1054 long err;
1055 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1056 struct resv_map *reservations = vma_resv_map(vma);
1058 err = region_chg(&reservations->regions, idx, idx + 1);
1059 if (err < 0)
1060 return err;
1061 return 0;
1064 static void vma_commit_reservation(struct hstate *h,
1065 struct vm_area_struct *vma, unsigned long addr)
1067 struct address_space *mapping = vma->vm_file->f_mapping;
1068 struct inode *inode = mapping->host;
1070 if (vma->vm_flags & VM_MAYSHARE) {
1071 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1072 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1074 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1075 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1076 struct resv_map *reservations = vma_resv_map(vma);
1078 /* Mark this page used in the map. */
1079 region_add(&reservations->regions, idx, idx + 1);
1083 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1084 unsigned long addr, int avoid_reserve)
1086 struct hstate *h = hstate_vma(vma);
1087 struct page *page;
1088 struct address_space *mapping = vma->vm_file->f_mapping;
1089 struct inode *inode = mapping->host;
1090 long chg;
1093 * Processes that did not create the mapping will have no reserves and
1094 * will not have accounted against quota. Check that the quota can be
1095 * made before satisfying the allocation
1096 * MAP_NORESERVE mappings may also need pages and quota allocated
1097 * if no reserve mapping overlaps.
1099 chg = vma_needs_reservation(h, vma, addr);
1100 if (chg < 0)
1101 return ERR_PTR(chg);
1102 if (chg)
1103 if (hugetlb_get_quota(inode->i_mapping, chg))
1104 return ERR_PTR(-ENOSPC);
1106 spin_lock(&hugetlb_lock);
1107 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1108 spin_unlock(&hugetlb_lock);
1110 if (!page) {
1111 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1112 if (!page) {
1113 hugetlb_put_quota(inode->i_mapping, chg);
1114 return ERR_PTR(-VM_FAULT_SIGBUS);
1118 set_page_private(page, (unsigned long) mapping);
1120 vma_commit_reservation(h, vma, addr);
1122 return page;
1125 int __weak alloc_bootmem_huge_page(struct hstate *h)
1127 struct huge_bootmem_page *m;
1128 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1130 while (nr_nodes) {
1131 void *addr;
1133 addr = __alloc_bootmem_node_nopanic(
1134 NODE_DATA(hstate_next_node_to_alloc(h,
1135 &node_states[N_HIGH_MEMORY])),
1136 huge_page_size(h), huge_page_size(h), 0);
1138 if (addr) {
1140 * Use the beginning of the huge page to store the
1141 * huge_bootmem_page struct (until gather_bootmem
1142 * puts them into the mem_map).
1144 m = addr;
1145 goto found;
1147 nr_nodes--;
1149 return 0;
1151 found:
1152 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1153 /* Put them into a private list first because mem_map is not up yet */
1154 list_add(&m->list, &huge_boot_pages);
1155 m->hstate = h;
1156 return 1;
1159 static void prep_compound_huge_page(struct page *page, int order)
1161 if (unlikely(order > (MAX_ORDER - 1)))
1162 prep_compound_gigantic_page(page, order);
1163 else
1164 prep_compound_page(page, order);
1167 /* Put bootmem huge pages into the standard lists after mem_map is up */
1168 static void __init gather_bootmem_prealloc(void)
1170 struct huge_bootmem_page *m;
1172 list_for_each_entry(m, &huge_boot_pages, list) {
1173 struct page *page = virt_to_page(m);
1174 struct hstate *h = m->hstate;
1175 __ClearPageReserved(page);
1176 WARN_ON(page_count(page) != 1);
1177 prep_compound_huge_page(page, h->order);
1178 prep_new_huge_page(h, page, page_to_nid(page));
1182 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1184 unsigned long i;
1186 for (i = 0; i < h->max_huge_pages; ++i) {
1187 if (h->order >= MAX_ORDER) {
1188 if (!alloc_bootmem_huge_page(h))
1189 break;
1190 } else if (!alloc_fresh_huge_page(h,
1191 &node_states[N_HIGH_MEMORY]))
1192 break;
1194 h->max_huge_pages = i;
1197 static void __init hugetlb_init_hstates(void)
1199 struct hstate *h;
1201 for_each_hstate(h) {
1202 /* oversize hugepages were init'ed in early boot */
1203 if (h->order < MAX_ORDER)
1204 hugetlb_hstate_alloc_pages(h);
1208 static char * __init memfmt(char *buf, unsigned long n)
1210 if (n >= (1UL << 30))
1211 sprintf(buf, "%lu GB", n >> 30);
1212 else if (n >= (1UL << 20))
1213 sprintf(buf, "%lu MB", n >> 20);
1214 else
1215 sprintf(buf, "%lu KB", n >> 10);
1216 return buf;
1219 static void __init report_hugepages(void)
1221 struct hstate *h;
1223 for_each_hstate(h) {
1224 char buf[32];
1225 printk(KERN_INFO "HugeTLB registered %s page size, "
1226 "pre-allocated %ld pages\n",
1227 memfmt(buf, huge_page_size(h)),
1228 h->free_huge_pages);
1232 #ifdef CONFIG_HIGHMEM
1233 static void try_to_free_low(struct hstate *h, unsigned long count,
1234 nodemask_t *nodes_allowed)
1236 int i;
1238 if (h->order >= MAX_ORDER)
1239 return;
1241 for_each_node_mask(i, *nodes_allowed) {
1242 struct page *page, *next;
1243 struct list_head *freel = &h->hugepage_freelists[i];
1244 list_for_each_entry_safe(page, next, freel, lru) {
1245 if (count >= h->nr_huge_pages)
1246 return;
1247 if (PageHighMem(page))
1248 continue;
1249 list_del(&page->lru);
1250 update_and_free_page(h, page);
1251 h->free_huge_pages--;
1252 h->free_huge_pages_node[page_to_nid(page)]--;
1256 #else
1257 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1258 nodemask_t *nodes_allowed)
1261 #endif
1264 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1265 * balanced by operating on them in a round-robin fashion.
1266 * Returns 1 if an adjustment was made.
1268 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1269 int delta)
1271 int start_nid, next_nid;
1272 int ret = 0;
1274 VM_BUG_ON(delta != -1 && delta != 1);
1276 if (delta < 0)
1277 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1278 else
1279 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1280 next_nid = start_nid;
1282 do {
1283 int nid = next_nid;
1284 if (delta < 0) {
1286 * To shrink on this node, there must be a surplus page
1288 if (!h->surplus_huge_pages_node[nid]) {
1289 next_nid = hstate_next_node_to_alloc(h,
1290 nodes_allowed);
1291 continue;
1294 if (delta > 0) {
1296 * Surplus cannot exceed the total number of pages
1298 if (h->surplus_huge_pages_node[nid] >=
1299 h->nr_huge_pages_node[nid]) {
1300 next_nid = hstate_next_node_to_free(h,
1301 nodes_allowed);
1302 continue;
1306 h->surplus_huge_pages += delta;
1307 h->surplus_huge_pages_node[nid] += delta;
1308 ret = 1;
1309 break;
1310 } while (next_nid != start_nid);
1312 return ret;
1315 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1316 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1317 nodemask_t *nodes_allowed)
1319 unsigned long min_count, ret;
1321 if (h->order >= MAX_ORDER)
1322 return h->max_huge_pages;
1325 * Increase the pool size
1326 * First take pages out of surplus state. Then make up the
1327 * remaining difference by allocating fresh huge pages.
1329 * We might race with alloc_buddy_huge_page() here and be unable
1330 * to convert a surplus huge page to a normal huge page. That is
1331 * not critical, though, it just means the overall size of the
1332 * pool might be one hugepage larger than it needs to be, but
1333 * within all the constraints specified by the sysctls.
1335 spin_lock(&hugetlb_lock);
1336 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1337 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1338 break;
1341 while (count > persistent_huge_pages(h)) {
1343 * If this allocation races such that we no longer need the
1344 * page, free_huge_page will handle it by freeing the page
1345 * and reducing the surplus.
1347 spin_unlock(&hugetlb_lock);
1348 ret = alloc_fresh_huge_page(h, nodes_allowed);
1349 spin_lock(&hugetlb_lock);
1350 if (!ret)
1351 goto out;
1353 /* Bail for signals. Probably ctrl-c from user */
1354 if (signal_pending(current))
1355 goto out;
1359 * Decrease the pool size
1360 * First return free pages to the buddy allocator (being careful
1361 * to keep enough around to satisfy reservations). Then place
1362 * pages into surplus state as needed so the pool will shrink
1363 * to the desired size as pages become free.
1365 * By placing pages into the surplus state independent of the
1366 * overcommit value, we are allowing the surplus pool size to
1367 * exceed overcommit. There are few sane options here. Since
1368 * alloc_buddy_huge_page() is checking the global counter,
1369 * though, we'll note that we're not allowed to exceed surplus
1370 * and won't grow the pool anywhere else. Not until one of the
1371 * sysctls are changed, or the surplus pages go out of use.
1373 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1374 min_count = max(count, min_count);
1375 try_to_free_low(h, min_count, nodes_allowed);
1376 while (min_count < persistent_huge_pages(h)) {
1377 if (!free_pool_huge_page(h, nodes_allowed, 0))
1378 break;
1380 while (count < persistent_huge_pages(h)) {
1381 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1382 break;
1384 out:
1385 ret = persistent_huge_pages(h);
1386 spin_unlock(&hugetlb_lock);
1387 return ret;
1390 #define HSTATE_ATTR_RO(_name) \
1391 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1393 #define HSTATE_ATTR(_name) \
1394 static struct kobj_attribute _name##_attr = \
1395 __ATTR(_name, 0644, _name##_show, _name##_store)
1397 static struct kobject *hugepages_kobj;
1398 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1400 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1402 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1404 int i;
1406 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1407 if (hstate_kobjs[i] == kobj) {
1408 if (nidp)
1409 *nidp = NUMA_NO_NODE;
1410 return &hstates[i];
1413 return kobj_to_node_hstate(kobj, nidp);
1416 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1417 struct kobj_attribute *attr, char *buf)
1419 struct hstate *h;
1420 unsigned long nr_huge_pages;
1421 int nid;
1423 h = kobj_to_hstate(kobj, &nid);
1424 if (nid == NUMA_NO_NODE)
1425 nr_huge_pages = h->nr_huge_pages;
1426 else
1427 nr_huge_pages = h->nr_huge_pages_node[nid];
1429 return sprintf(buf, "%lu\n", nr_huge_pages);
1431 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1432 struct kobject *kobj, struct kobj_attribute *attr,
1433 const char *buf, size_t len)
1435 int err;
1436 int nid;
1437 unsigned long count;
1438 struct hstate *h;
1439 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1441 err = strict_strtoul(buf, 10, &count);
1442 if (err)
1443 return 0;
1445 h = kobj_to_hstate(kobj, &nid);
1446 if (nid == NUMA_NO_NODE) {
1448 * global hstate attribute
1450 if (!(obey_mempolicy &&
1451 init_nodemask_of_mempolicy(nodes_allowed))) {
1452 NODEMASK_FREE(nodes_allowed);
1453 nodes_allowed = &node_states[N_HIGH_MEMORY];
1455 } else if (nodes_allowed) {
1457 * per node hstate attribute: adjust count to global,
1458 * but restrict alloc/free to the specified node.
1460 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1461 init_nodemask_of_node(nodes_allowed, nid);
1462 } else
1463 nodes_allowed = &node_states[N_HIGH_MEMORY];
1465 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1467 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1468 NODEMASK_FREE(nodes_allowed);
1470 return len;
1473 static ssize_t nr_hugepages_show(struct kobject *kobj,
1474 struct kobj_attribute *attr, char *buf)
1476 return nr_hugepages_show_common(kobj, attr, buf);
1479 static ssize_t nr_hugepages_store(struct kobject *kobj,
1480 struct kobj_attribute *attr, const char *buf, size_t len)
1482 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1484 HSTATE_ATTR(nr_hugepages);
1486 #ifdef CONFIG_NUMA
1489 * hstate attribute for optionally mempolicy-based constraint on persistent
1490 * huge page alloc/free.
1492 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1493 struct kobj_attribute *attr, char *buf)
1495 return nr_hugepages_show_common(kobj, attr, buf);
1498 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1499 struct kobj_attribute *attr, const char *buf, size_t len)
1501 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1503 HSTATE_ATTR(nr_hugepages_mempolicy);
1504 #endif
1507 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1508 struct kobj_attribute *attr, char *buf)
1510 struct hstate *h = kobj_to_hstate(kobj, NULL);
1511 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1513 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1514 struct kobj_attribute *attr, const char *buf, size_t count)
1516 int err;
1517 unsigned long input;
1518 struct hstate *h = kobj_to_hstate(kobj, NULL);
1520 err = strict_strtoul(buf, 10, &input);
1521 if (err)
1522 return 0;
1524 spin_lock(&hugetlb_lock);
1525 h->nr_overcommit_huge_pages = input;
1526 spin_unlock(&hugetlb_lock);
1528 return count;
1530 HSTATE_ATTR(nr_overcommit_hugepages);
1532 static ssize_t free_hugepages_show(struct kobject *kobj,
1533 struct kobj_attribute *attr, char *buf)
1535 struct hstate *h;
1536 unsigned long free_huge_pages;
1537 int nid;
1539 h = kobj_to_hstate(kobj, &nid);
1540 if (nid == NUMA_NO_NODE)
1541 free_huge_pages = h->free_huge_pages;
1542 else
1543 free_huge_pages = h->free_huge_pages_node[nid];
1545 return sprintf(buf, "%lu\n", free_huge_pages);
1547 HSTATE_ATTR_RO(free_hugepages);
1549 static ssize_t resv_hugepages_show(struct kobject *kobj,
1550 struct kobj_attribute *attr, char *buf)
1552 struct hstate *h = kobj_to_hstate(kobj, NULL);
1553 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1555 HSTATE_ATTR_RO(resv_hugepages);
1557 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1558 struct kobj_attribute *attr, char *buf)
1560 struct hstate *h;
1561 unsigned long surplus_huge_pages;
1562 int nid;
1564 h = kobj_to_hstate(kobj, &nid);
1565 if (nid == NUMA_NO_NODE)
1566 surplus_huge_pages = h->surplus_huge_pages;
1567 else
1568 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1570 return sprintf(buf, "%lu\n", surplus_huge_pages);
1572 HSTATE_ATTR_RO(surplus_hugepages);
1574 static struct attribute *hstate_attrs[] = {
1575 &nr_hugepages_attr.attr,
1576 &nr_overcommit_hugepages_attr.attr,
1577 &free_hugepages_attr.attr,
1578 &resv_hugepages_attr.attr,
1579 &surplus_hugepages_attr.attr,
1580 #ifdef CONFIG_NUMA
1581 &nr_hugepages_mempolicy_attr.attr,
1582 #endif
1583 NULL,
1586 static struct attribute_group hstate_attr_group = {
1587 .attrs = hstate_attrs,
1590 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1591 struct kobject **hstate_kobjs,
1592 struct attribute_group *hstate_attr_group)
1594 int retval;
1595 int hi = h - hstates;
1597 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1598 if (!hstate_kobjs[hi])
1599 return -ENOMEM;
1601 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1602 if (retval)
1603 kobject_put(hstate_kobjs[hi]);
1605 return retval;
1608 static void __init hugetlb_sysfs_init(void)
1610 struct hstate *h;
1611 int err;
1613 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1614 if (!hugepages_kobj)
1615 return;
1617 for_each_hstate(h) {
1618 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1619 hstate_kobjs, &hstate_attr_group);
1620 if (err)
1621 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1622 h->name);
1626 #ifdef CONFIG_NUMA
1629 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1630 * with node sysdevs in node_devices[] using a parallel array. The array
1631 * index of a node sysdev or _hstate == node id.
1632 * This is here to avoid any static dependency of the node sysdev driver, in
1633 * the base kernel, on the hugetlb module.
1635 struct node_hstate {
1636 struct kobject *hugepages_kobj;
1637 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1639 struct node_hstate node_hstates[MAX_NUMNODES];
1642 * A subset of global hstate attributes for node sysdevs
1644 static struct attribute *per_node_hstate_attrs[] = {
1645 &nr_hugepages_attr.attr,
1646 &free_hugepages_attr.attr,
1647 &surplus_hugepages_attr.attr,
1648 NULL,
1651 static struct attribute_group per_node_hstate_attr_group = {
1652 .attrs = per_node_hstate_attrs,
1656 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1657 * Returns node id via non-NULL nidp.
1659 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1661 int nid;
1663 for (nid = 0; nid < nr_node_ids; nid++) {
1664 struct node_hstate *nhs = &node_hstates[nid];
1665 int i;
1666 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1667 if (nhs->hstate_kobjs[i] == kobj) {
1668 if (nidp)
1669 *nidp = nid;
1670 return &hstates[i];
1674 BUG();
1675 return NULL;
1679 * Unregister hstate attributes from a single node sysdev.
1680 * No-op if no hstate attributes attached.
1682 void hugetlb_unregister_node(struct node *node)
1684 struct hstate *h;
1685 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1687 if (!nhs->hugepages_kobj)
1688 return; /* no hstate attributes */
1690 for_each_hstate(h)
1691 if (nhs->hstate_kobjs[h - hstates]) {
1692 kobject_put(nhs->hstate_kobjs[h - hstates]);
1693 nhs->hstate_kobjs[h - hstates] = NULL;
1696 kobject_put(nhs->hugepages_kobj);
1697 nhs->hugepages_kobj = NULL;
1701 * hugetlb module exit: unregister hstate attributes from node sysdevs
1702 * that have them.
1704 static void hugetlb_unregister_all_nodes(void)
1706 int nid;
1709 * disable node sysdev registrations.
1711 register_hugetlbfs_with_node(NULL, NULL);
1714 * remove hstate attributes from any nodes that have them.
1716 for (nid = 0; nid < nr_node_ids; nid++)
1717 hugetlb_unregister_node(&node_devices[nid]);
1721 * Register hstate attributes for a single node sysdev.
1722 * No-op if attributes already registered.
1724 void hugetlb_register_node(struct node *node)
1726 struct hstate *h;
1727 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1728 int err;
1730 if (nhs->hugepages_kobj)
1731 return; /* already allocated */
1733 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1734 &node->sysdev.kobj);
1735 if (!nhs->hugepages_kobj)
1736 return;
1738 for_each_hstate(h) {
1739 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1740 nhs->hstate_kobjs,
1741 &per_node_hstate_attr_group);
1742 if (err) {
1743 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1744 " for node %d\n",
1745 h->name, node->sysdev.id);
1746 hugetlb_unregister_node(node);
1747 break;
1753 * hugetlb init time: register hstate attributes for all registered node
1754 * sysdevs of nodes that have memory. All on-line nodes should have
1755 * registered their associated sysdev by this time.
1757 static void hugetlb_register_all_nodes(void)
1759 int nid;
1761 for_each_node_state(nid, N_HIGH_MEMORY) {
1762 struct node *node = &node_devices[nid];
1763 if (node->sysdev.id == nid)
1764 hugetlb_register_node(node);
1768 * Let the node sysdev driver know we're here so it can
1769 * [un]register hstate attributes on node hotplug.
1771 register_hugetlbfs_with_node(hugetlb_register_node,
1772 hugetlb_unregister_node);
1774 #else /* !CONFIG_NUMA */
1776 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1778 BUG();
1779 if (nidp)
1780 *nidp = -1;
1781 return NULL;
1784 static void hugetlb_unregister_all_nodes(void) { }
1786 static void hugetlb_register_all_nodes(void) { }
1788 #endif
1790 static void __exit hugetlb_exit(void)
1792 struct hstate *h;
1794 hugetlb_unregister_all_nodes();
1796 for_each_hstate(h) {
1797 kobject_put(hstate_kobjs[h - hstates]);
1800 kobject_put(hugepages_kobj);
1802 module_exit(hugetlb_exit);
1804 static int __init hugetlb_init(void)
1806 /* Some platform decide whether they support huge pages at boot
1807 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1808 * there is no such support
1810 if (HPAGE_SHIFT == 0)
1811 return 0;
1813 if (!size_to_hstate(default_hstate_size)) {
1814 default_hstate_size = HPAGE_SIZE;
1815 if (!size_to_hstate(default_hstate_size))
1816 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1818 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1819 if (default_hstate_max_huge_pages)
1820 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1822 hugetlb_init_hstates();
1824 gather_bootmem_prealloc();
1826 report_hugepages();
1828 hugetlb_sysfs_init();
1830 hugetlb_register_all_nodes();
1832 return 0;
1834 module_init(hugetlb_init);
1836 /* Should be called on processing a hugepagesz=... option */
1837 void __init hugetlb_add_hstate(unsigned order)
1839 struct hstate *h;
1840 unsigned long i;
1842 if (size_to_hstate(PAGE_SIZE << order)) {
1843 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1844 return;
1846 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1847 BUG_ON(order == 0);
1848 h = &hstates[max_hstate++];
1849 h->order = order;
1850 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1851 h->nr_huge_pages = 0;
1852 h->free_huge_pages = 0;
1853 for (i = 0; i < MAX_NUMNODES; ++i)
1854 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1855 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1856 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1857 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1858 huge_page_size(h)/1024);
1860 parsed_hstate = h;
1863 static int __init hugetlb_nrpages_setup(char *s)
1865 unsigned long *mhp;
1866 static unsigned long *last_mhp;
1869 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1870 * so this hugepages= parameter goes to the "default hstate".
1872 if (!max_hstate)
1873 mhp = &default_hstate_max_huge_pages;
1874 else
1875 mhp = &parsed_hstate->max_huge_pages;
1877 if (mhp == last_mhp) {
1878 printk(KERN_WARNING "hugepages= specified twice without "
1879 "interleaving hugepagesz=, ignoring\n");
1880 return 1;
1883 if (sscanf(s, "%lu", mhp) <= 0)
1884 *mhp = 0;
1887 * Global state is always initialized later in hugetlb_init.
1888 * But we need to allocate >= MAX_ORDER hstates here early to still
1889 * use the bootmem allocator.
1891 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1892 hugetlb_hstate_alloc_pages(parsed_hstate);
1894 last_mhp = mhp;
1896 return 1;
1898 __setup("hugepages=", hugetlb_nrpages_setup);
1900 static int __init hugetlb_default_setup(char *s)
1902 default_hstate_size = memparse(s, &s);
1903 return 1;
1905 __setup("default_hugepagesz=", hugetlb_default_setup);
1907 static unsigned int cpuset_mems_nr(unsigned int *array)
1909 int node;
1910 unsigned int nr = 0;
1912 for_each_node_mask(node, cpuset_current_mems_allowed)
1913 nr += array[node];
1915 return nr;
1918 #ifdef CONFIG_SYSCTL
1919 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1920 struct ctl_table *table, int write,
1921 void __user *buffer, size_t *length, loff_t *ppos)
1923 struct hstate *h = &default_hstate;
1924 unsigned long tmp;
1926 if (!write)
1927 tmp = h->max_huge_pages;
1929 table->data = &tmp;
1930 table->maxlen = sizeof(unsigned long);
1931 proc_doulongvec_minmax(table, write, buffer, length, ppos);
1933 if (write) {
1934 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1935 GFP_KERNEL | __GFP_NORETRY);
1936 if (!(obey_mempolicy &&
1937 init_nodemask_of_mempolicy(nodes_allowed))) {
1938 NODEMASK_FREE(nodes_allowed);
1939 nodes_allowed = &node_states[N_HIGH_MEMORY];
1941 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1943 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1944 NODEMASK_FREE(nodes_allowed);
1947 return 0;
1950 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1951 void __user *buffer, size_t *length, loff_t *ppos)
1954 return hugetlb_sysctl_handler_common(false, table, write,
1955 buffer, length, ppos);
1958 #ifdef CONFIG_NUMA
1959 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1960 void __user *buffer, size_t *length, loff_t *ppos)
1962 return hugetlb_sysctl_handler_common(true, table, write,
1963 buffer, length, ppos);
1965 #endif /* CONFIG_NUMA */
1967 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1968 void __user *buffer,
1969 size_t *length, loff_t *ppos)
1971 proc_dointvec(table, write, buffer, length, ppos);
1972 if (hugepages_treat_as_movable)
1973 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1974 else
1975 htlb_alloc_mask = GFP_HIGHUSER;
1976 return 0;
1979 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1980 void __user *buffer,
1981 size_t *length, loff_t *ppos)
1983 struct hstate *h = &default_hstate;
1984 unsigned long tmp;
1986 if (!write)
1987 tmp = h->nr_overcommit_huge_pages;
1989 table->data = &tmp;
1990 table->maxlen = sizeof(unsigned long);
1991 proc_doulongvec_minmax(table, write, buffer, length, ppos);
1993 if (write) {
1994 spin_lock(&hugetlb_lock);
1995 h->nr_overcommit_huge_pages = tmp;
1996 spin_unlock(&hugetlb_lock);
1999 return 0;
2002 #endif /* CONFIG_SYSCTL */
2004 void hugetlb_report_meminfo(struct seq_file *m)
2006 struct hstate *h = &default_hstate;
2007 seq_printf(m,
2008 "HugePages_Total: %5lu\n"
2009 "HugePages_Free: %5lu\n"
2010 "HugePages_Rsvd: %5lu\n"
2011 "HugePages_Surp: %5lu\n"
2012 "Hugepagesize: %8lu kB\n",
2013 h->nr_huge_pages,
2014 h->free_huge_pages,
2015 h->resv_huge_pages,
2016 h->surplus_huge_pages,
2017 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2020 int hugetlb_report_node_meminfo(int nid, char *buf)
2022 struct hstate *h = &default_hstate;
2023 return sprintf(buf,
2024 "Node %d HugePages_Total: %5u\n"
2025 "Node %d HugePages_Free: %5u\n"
2026 "Node %d HugePages_Surp: %5u\n",
2027 nid, h->nr_huge_pages_node[nid],
2028 nid, h->free_huge_pages_node[nid],
2029 nid, h->surplus_huge_pages_node[nid]);
2032 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2033 unsigned long hugetlb_total_pages(void)
2035 struct hstate *h = &default_hstate;
2036 return h->nr_huge_pages * pages_per_huge_page(h);
2039 static int hugetlb_acct_memory(struct hstate *h, long delta)
2041 int ret = -ENOMEM;
2043 spin_lock(&hugetlb_lock);
2045 * When cpuset is configured, it breaks the strict hugetlb page
2046 * reservation as the accounting is done on a global variable. Such
2047 * reservation is completely rubbish in the presence of cpuset because
2048 * the reservation is not checked against page availability for the
2049 * current cpuset. Application can still potentially OOM'ed by kernel
2050 * with lack of free htlb page in cpuset that the task is in.
2051 * Attempt to enforce strict accounting with cpuset is almost
2052 * impossible (or too ugly) because cpuset is too fluid that
2053 * task or memory node can be dynamically moved between cpusets.
2055 * The change of semantics for shared hugetlb mapping with cpuset is
2056 * undesirable. However, in order to preserve some of the semantics,
2057 * we fall back to check against current free page availability as
2058 * a best attempt and hopefully to minimize the impact of changing
2059 * semantics that cpuset has.
2061 if (delta > 0) {
2062 if (gather_surplus_pages(h, delta) < 0)
2063 goto out;
2065 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2066 return_unused_surplus_pages(h, delta);
2067 goto out;
2071 ret = 0;
2072 if (delta < 0)
2073 return_unused_surplus_pages(h, (unsigned long) -delta);
2075 out:
2076 spin_unlock(&hugetlb_lock);
2077 return ret;
2080 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2082 struct resv_map *reservations = vma_resv_map(vma);
2085 * This new VMA should share its siblings reservation map if present.
2086 * The VMA will only ever have a valid reservation map pointer where
2087 * it is being copied for another still existing VMA. As that VMA
2088 * has a reference to the reservation map it cannot dissappear until
2089 * after this open call completes. It is therefore safe to take a
2090 * new reference here without additional locking.
2092 if (reservations)
2093 kref_get(&reservations->refs);
2096 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2098 struct hstate *h = hstate_vma(vma);
2099 struct resv_map *reservations = vma_resv_map(vma);
2100 unsigned long reserve;
2101 unsigned long start;
2102 unsigned long end;
2104 if (reservations) {
2105 start = vma_hugecache_offset(h, vma, vma->vm_start);
2106 end = vma_hugecache_offset(h, vma, vma->vm_end);
2108 reserve = (end - start) -
2109 region_count(&reservations->regions, start, end);
2111 kref_put(&reservations->refs, resv_map_release);
2113 if (reserve) {
2114 hugetlb_acct_memory(h, -reserve);
2115 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2121 * We cannot handle pagefaults against hugetlb pages at all. They cause
2122 * handle_mm_fault() to try to instantiate regular-sized pages in the
2123 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2124 * this far.
2126 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2128 BUG();
2129 return 0;
2132 const struct vm_operations_struct hugetlb_vm_ops = {
2133 .fault = hugetlb_vm_op_fault,
2134 .open = hugetlb_vm_op_open,
2135 .close = hugetlb_vm_op_close,
2138 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2139 int writable)
2141 pte_t entry;
2143 if (writable) {
2144 entry =
2145 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2146 } else {
2147 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2149 entry = pte_mkyoung(entry);
2150 entry = pte_mkhuge(entry);
2152 return entry;
2155 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2156 unsigned long address, pte_t *ptep)
2158 pte_t entry;
2160 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2161 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2162 update_mmu_cache(vma, address, ptep);
2167 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2168 struct vm_area_struct *vma)
2170 pte_t *src_pte, *dst_pte, entry;
2171 struct page *ptepage;
2172 unsigned long addr;
2173 int cow;
2174 struct hstate *h = hstate_vma(vma);
2175 unsigned long sz = huge_page_size(h);
2177 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2179 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2180 src_pte = huge_pte_offset(src, addr);
2181 if (!src_pte)
2182 continue;
2183 dst_pte = huge_pte_alloc(dst, addr, sz);
2184 if (!dst_pte)
2185 goto nomem;
2187 /* If the pagetables are shared don't copy or take references */
2188 if (dst_pte == src_pte)
2189 continue;
2191 spin_lock(&dst->page_table_lock);
2192 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2193 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2194 if (cow)
2195 huge_ptep_set_wrprotect(src, addr, src_pte);
2196 entry = huge_ptep_get(src_pte);
2197 ptepage = pte_page(entry);
2198 get_page(ptepage);
2199 page_dup_rmap(ptepage);
2200 set_huge_pte_at(dst, addr, dst_pte, entry);
2202 spin_unlock(&src->page_table_lock);
2203 spin_unlock(&dst->page_table_lock);
2205 return 0;
2207 nomem:
2208 return -ENOMEM;
2211 static int is_hugetlb_entry_migration(pte_t pte)
2213 swp_entry_t swp;
2215 if (huge_pte_none(pte) || pte_present(pte))
2216 return 0;
2217 swp = pte_to_swp_entry(pte);
2218 if (non_swap_entry(swp) && is_migration_entry(swp)) {
2219 return 1;
2220 } else
2221 return 0;
2224 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2226 swp_entry_t swp;
2228 if (huge_pte_none(pte) || pte_present(pte))
2229 return 0;
2230 swp = pte_to_swp_entry(pte);
2231 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2232 return 1;
2233 } else
2234 return 0;
2237 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2238 unsigned long end, struct page *ref_page)
2240 struct mm_struct *mm = vma->vm_mm;
2241 unsigned long address;
2242 pte_t *ptep;
2243 pte_t pte;
2244 struct page *page;
2245 struct page *tmp;
2246 struct hstate *h = hstate_vma(vma);
2247 unsigned long sz = huge_page_size(h);
2250 * A page gathering list, protected by per file i_mmap_lock. The
2251 * lock is used to avoid list corruption from multiple unmapping
2252 * of the same page since we are using page->lru.
2254 LIST_HEAD(page_list);
2256 WARN_ON(!is_vm_hugetlb_page(vma));
2257 BUG_ON(start & ~huge_page_mask(h));
2258 BUG_ON(end & ~huge_page_mask(h));
2260 mmu_notifier_invalidate_range_start(mm, start, end);
2261 spin_lock(&mm->page_table_lock);
2262 for (address = start; address < end; address += sz) {
2263 ptep = huge_pte_offset(mm, address);
2264 if (!ptep)
2265 continue;
2267 if (huge_pmd_unshare(mm, &address, ptep))
2268 continue;
2271 * If a reference page is supplied, it is because a specific
2272 * page is being unmapped, not a range. Ensure the page we
2273 * are about to unmap is the actual page of interest.
2275 if (ref_page) {
2276 pte = huge_ptep_get(ptep);
2277 if (huge_pte_none(pte))
2278 continue;
2279 page = pte_page(pte);
2280 if (page != ref_page)
2281 continue;
2284 * Mark the VMA as having unmapped its page so that
2285 * future faults in this VMA will fail rather than
2286 * looking like data was lost
2288 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2291 pte = huge_ptep_get_and_clear(mm, address, ptep);
2292 if (huge_pte_none(pte))
2293 continue;
2296 * HWPoisoned hugepage is already unmapped and dropped reference
2298 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2299 continue;
2301 page = pte_page(pte);
2302 if (pte_dirty(pte))
2303 set_page_dirty(page);
2304 list_add(&page->lru, &page_list);
2306 spin_unlock(&mm->page_table_lock);
2307 flush_tlb_range(vma, start, end);
2308 mmu_notifier_invalidate_range_end(mm, start, end);
2309 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2310 page_remove_rmap(page);
2311 list_del(&page->lru);
2312 put_page(page);
2316 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2317 unsigned long end, struct page *ref_page)
2319 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2320 __unmap_hugepage_range(vma, start, end, ref_page);
2321 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2325 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2326 * mappping it owns the reserve page for. The intention is to unmap the page
2327 * from other VMAs and let the children be SIGKILLed if they are faulting the
2328 * same region.
2330 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2331 struct page *page, unsigned long address)
2333 struct hstate *h = hstate_vma(vma);
2334 struct vm_area_struct *iter_vma;
2335 struct address_space *mapping;
2336 struct prio_tree_iter iter;
2337 pgoff_t pgoff;
2340 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2341 * from page cache lookup which is in HPAGE_SIZE units.
2343 address = address & huge_page_mask(h);
2344 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2345 + (vma->vm_pgoff >> PAGE_SHIFT);
2346 mapping = (struct address_space *)page_private(page);
2349 * Take the mapping lock for the duration of the table walk. As
2350 * this mapping should be shared between all the VMAs,
2351 * __unmap_hugepage_range() is called as the lock is already held
2353 spin_lock(&mapping->i_mmap_lock);
2354 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2355 /* Do not unmap the current VMA */
2356 if (iter_vma == vma)
2357 continue;
2360 * Unmap the page from other VMAs without their own reserves.
2361 * They get marked to be SIGKILLed if they fault in these
2362 * areas. This is because a future no-page fault on this VMA
2363 * could insert a zeroed page instead of the data existing
2364 * from the time of fork. This would look like data corruption
2366 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2367 __unmap_hugepage_range(iter_vma,
2368 address, address + huge_page_size(h),
2369 page);
2371 spin_unlock(&mapping->i_mmap_lock);
2373 return 1;
2377 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2379 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2380 unsigned long address, pte_t *ptep, pte_t pte,
2381 struct page *pagecache_page)
2383 struct hstate *h = hstate_vma(vma);
2384 struct page *old_page, *new_page;
2385 int avoidcopy;
2386 int outside_reserve = 0;
2388 old_page = pte_page(pte);
2390 retry_avoidcopy:
2391 /* If no-one else is actually using this page, avoid the copy
2392 * and just make the page writable */
2393 avoidcopy = (page_mapcount(old_page) == 1);
2394 if (avoidcopy) {
2395 if (PageAnon(old_page))
2396 page_move_anon_rmap(old_page, vma, address);
2397 set_huge_ptep_writable(vma, address, ptep);
2398 return 0;
2402 * If the process that created a MAP_PRIVATE mapping is about to
2403 * perform a COW due to a shared page count, attempt to satisfy
2404 * the allocation without using the existing reserves. The pagecache
2405 * page is used to determine if the reserve at this address was
2406 * consumed or not. If reserves were used, a partial faulted mapping
2407 * at the time of fork() could consume its reserves on COW instead
2408 * of the full address range.
2410 if (!(vma->vm_flags & VM_MAYSHARE) &&
2411 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2412 old_page != pagecache_page)
2413 outside_reserve = 1;
2415 page_cache_get(old_page);
2417 /* Drop page_table_lock as buddy allocator may be called */
2418 spin_unlock(&mm->page_table_lock);
2419 new_page = alloc_huge_page(vma, address, outside_reserve);
2421 if (IS_ERR(new_page)) {
2422 page_cache_release(old_page);
2425 * If a process owning a MAP_PRIVATE mapping fails to COW,
2426 * it is due to references held by a child and an insufficient
2427 * huge page pool. To guarantee the original mappers
2428 * reliability, unmap the page from child processes. The child
2429 * may get SIGKILLed if it later faults.
2431 if (outside_reserve) {
2432 BUG_ON(huge_pte_none(pte));
2433 if (unmap_ref_private(mm, vma, old_page, address)) {
2434 BUG_ON(page_count(old_page) != 1);
2435 BUG_ON(huge_pte_none(pte));
2436 spin_lock(&mm->page_table_lock);
2437 goto retry_avoidcopy;
2439 WARN_ON_ONCE(1);
2442 /* Caller expects lock to be held */
2443 spin_lock(&mm->page_table_lock);
2444 return -PTR_ERR(new_page);
2448 * When the original hugepage is shared one, it does not have
2449 * anon_vma prepared.
2451 if (unlikely(anon_vma_prepare(vma))) {
2452 /* Caller expects lock to be held */
2453 spin_lock(&mm->page_table_lock);
2454 return VM_FAULT_OOM;
2457 copy_user_huge_page(new_page, old_page, address, vma);
2458 __SetPageUptodate(new_page);
2461 * Retake the page_table_lock to check for racing updates
2462 * before the page tables are altered
2464 spin_lock(&mm->page_table_lock);
2465 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2466 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2467 /* Break COW */
2468 mmu_notifier_invalidate_range_start(mm,
2469 address & huge_page_mask(h),
2470 (address & huge_page_mask(h)) + huge_page_size(h));
2471 huge_ptep_clear_flush(vma, address, ptep);
2472 set_huge_pte_at(mm, address, ptep,
2473 make_huge_pte(vma, new_page, 1));
2474 page_remove_rmap(old_page);
2475 hugepage_add_new_anon_rmap(new_page, vma, address);
2476 /* Make the old page be freed below */
2477 new_page = old_page;
2478 mmu_notifier_invalidate_range_end(mm,
2479 address & huge_page_mask(h),
2480 (address & huge_page_mask(h)) + huge_page_size(h));
2482 page_cache_release(new_page);
2483 page_cache_release(old_page);
2484 return 0;
2487 /* Return the pagecache page at a given address within a VMA */
2488 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2489 struct vm_area_struct *vma, unsigned long address)
2491 struct address_space *mapping;
2492 pgoff_t idx;
2494 mapping = vma->vm_file->f_mapping;
2495 idx = vma_hugecache_offset(h, vma, address);
2497 return find_lock_page(mapping, idx);
2501 * Return whether there is a pagecache page to back given address within VMA.
2502 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2504 static bool hugetlbfs_pagecache_present(struct hstate *h,
2505 struct vm_area_struct *vma, unsigned long address)
2507 struct address_space *mapping;
2508 pgoff_t idx;
2509 struct page *page;
2511 mapping = vma->vm_file->f_mapping;
2512 idx = vma_hugecache_offset(h, vma, address);
2514 page = find_get_page(mapping, idx);
2515 if (page)
2516 put_page(page);
2517 return page != NULL;
2520 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2521 unsigned long address, pte_t *ptep, unsigned int flags)
2523 struct hstate *h = hstate_vma(vma);
2524 int ret = VM_FAULT_SIGBUS;
2525 pgoff_t idx;
2526 unsigned long size;
2527 struct page *page;
2528 struct address_space *mapping;
2529 pte_t new_pte;
2532 * Currently, we are forced to kill the process in the event the
2533 * original mapper has unmapped pages from the child due to a failed
2534 * COW. Warn that such a situation has occured as it may not be obvious
2536 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2537 printk(KERN_WARNING
2538 "PID %d killed due to inadequate hugepage pool\n",
2539 current->pid);
2540 return ret;
2543 mapping = vma->vm_file->f_mapping;
2544 idx = vma_hugecache_offset(h, vma, address);
2547 * Use page lock to guard against racing truncation
2548 * before we get page_table_lock.
2550 retry:
2551 page = find_lock_page(mapping, idx);
2552 if (!page) {
2553 size = i_size_read(mapping->host) >> huge_page_shift(h);
2554 if (idx >= size)
2555 goto out;
2556 page = alloc_huge_page(vma, address, 0);
2557 if (IS_ERR(page)) {
2558 ret = -PTR_ERR(page);
2559 goto out;
2561 clear_huge_page(page, address, huge_page_size(h));
2562 __SetPageUptodate(page);
2564 if (vma->vm_flags & VM_MAYSHARE) {
2565 int err;
2566 struct inode *inode = mapping->host;
2568 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2569 if (err) {
2570 put_page(page);
2571 if (err == -EEXIST)
2572 goto retry;
2573 goto out;
2576 spin_lock(&inode->i_lock);
2577 inode->i_blocks += blocks_per_huge_page(h);
2578 spin_unlock(&inode->i_lock);
2579 page_dup_rmap(page);
2580 } else {
2581 lock_page(page);
2582 if (unlikely(anon_vma_prepare(vma))) {
2583 ret = VM_FAULT_OOM;
2584 goto backout_unlocked;
2586 hugepage_add_new_anon_rmap(page, vma, address);
2588 } else {
2590 * If memory error occurs between mmap() and fault, some process
2591 * don't have hwpoisoned swap entry for errored virtual address.
2592 * So we need to block hugepage fault by PG_hwpoison bit check.
2594 if (unlikely(PageHWPoison(page))) {
2595 ret = VM_FAULT_HWPOISON |
2596 VM_FAULT_SET_HINDEX(h - hstates);
2597 goto backout_unlocked;
2599 page_dup_rmap(page);
2603 * If we are going to COW a private mapping later, we examine the
2604 * pending reservations for this page now. This will ensure that
2605 * any allocations necessary to record that reservation occur outside
2606 * the spinlock.
2608 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2609 if (vma_needs_reservation(h, vma, address) < 0) {
2610 ret = VM_FAULT_OOM;
2611 goto backout_unlocked;
2614 spin_lock(&mm->page_table_lock);
2615 size = i_size_read(mapping->host) >> huge_page_shift(h);
2616 if (idx >= size)
2617 goto backout;
2619 ret = 0;
2620 if (!huge_pte_none(huge_ptep_get(ptep)))
2621 goto backout;
2623 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2624 && (vma->vm_flags & VM_SHARED)));
2625 set_huge_pte_at(mm, address, ptep, new_pte);
2627 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2628 /* Optimization, do the COW without a second fault */
2629 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2632 spin_unlock(&mm->page_table_lock);
2633 unlock_page(page);
2634 out:
2635 return ret;
2637 backout:
2638 spin_unlock(&mm->page_table_lock);
2639 backout_unlocked:
2640 unlock_page(page);
2641 put_page(page);
2642 goto out;
2645 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2646 unsigned long address, unsigned int flags)
2648 pte_t *ptep;
2649 pte_t entry;
2650 int ret;
2651 struct page *page = NULL;
2652 struct page *pagecache_page = NULL;
2653 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2654 struct hstate *h = hstate_vma(vma);
2656 ptep = huge_pte_offset(mm, address);
2657 if (ptep) {
2658 entry = huge_ptep_get(ptep);
2659 if (unlikely(is_hugetlb_entry_migration(entry))) {
2660 migration_entry_wait(mm, (pmd_t *)ptep, address);
2661 return 0;
2662 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2663 return VM_FAULT_HWPOISON_LARGE |
2664 VM_FAULT_SET_HINDEX(h - hstates);
2667 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2668 if (!ptep)
2669 return VM_FAULT_OOM;
2672 * Serialize hugepage allocation and instantiation, so that we don't
2673 * get spurious allocation failures if two CPUs race to instantiate
2674 * the same page in the page cache.
2676 mutex_lock(&hugetlb_instantiation_mutex);
2677 entry = huge_ptep_get(ptep);
2678 if (huge_pte_none(entry)) {
2679 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2680 goto out_mutex;
2683 ret = 0;
2686 * If we are going to COW the mapping later, we examine the pending
2687 * reservations for this page now. This will ensure that any
2688 * allocations necessary to record that reservation occur outside the
2689 * spinlock. For private mappings, we also lookup the pagecache
2690 * page now as it is used to determine if a reservation has been
2691 * consumed.
2693 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2694 if (vma_needs_reservation(h, vma, address) < 0) {
2695 ret = VM_FAULT_OOM;
2696 goto out_mutex;
2699 if (!(vma->vm_flags & VM_MAYSHARE))
2700 pagecache_page = hugetlbfs_pagecache_page(h,
2701 vma, address);
2705 * hugetlb_cow() requires page locks of pte_page(entry) and
2706 * pagecache_page, so here we need take the former one
2707 * when page != pagecache_page or !pagecache_page.
2708 * Note that locking order is always pagecache_page -> page,
2709 * so no worry about deadlock.
2711 page = pte_page(entry);
2712 if (page != pagecache_page)
2713 lock_page(page);
2715 spin_lock(&mm->page_table_lock);
2716 /* Check for a racing update before calling hugetlb_cow */
2717 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2718 goto out_page_table_lock;
2721 if (flags & FAULT_FLAG_WRITE) {
2722 if (!pte_write(entry)) {
2723 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2724 pagecache_page);
2725 goto out_page_table_lock;
2727 entry = pte_mkdirty(entry);
2729 entry = pte_mkyoung(entry);
2730 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2731 flags & FAULT_FLAG_WRITE))
2732 update_mmu_cache(vma, address, ptep);
2734 out_page_table_lock:
2735 spin_unlock(&mm->page_table_lock);
2737 if (pagecache_page) {
2738 unlock_page(pagecache_page);
2739 put_page(pagecache_page);
2741 if (page != pagecache_page)
2742 unlock_page(page);
2744 out_mutex:
2745 mutex_unlock(&hugetlb_instantiation_mutex);
2747 return ret;
2750 /* Can be overriden by architectures */
2751 __attribute__((weak)) struct page *
2752 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2753 pud_t *pud, int write)
2755 BUG();
2756 return NULL;
2759 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2760 struct page **pages, struct vm_area_struct **vmas,
2761 unsigned long *position, int *length, int i,
2762 unsigned int flags)
2764 unsigned long pfn_offset;
2765 unsigned long vaddr = *position;
2766 int remainder = *length;
2767 struct hstate *h = hstate_vma(vma);
2769 spin_lock(&mm->page_table_lock);
2770 while (vaddr < vma->vm_end && remainder) {
2771 pte_t *pte;
2772 int absent;
2773 struct page *page;
2776 * Some archs (sparc64, sh*) have multiple pte_ts to
2777 * each hugepage. We have to make sure we get the
2778 * first, for the page indexing below to work.
2780 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2781 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2784 * When coredumping, it suits get_dump_page if we just return
2785 * an error where there's an empty slot with no huge pagecache
2786 * to back it. This way, we avoid allocating a hugepage, and
2787 * the sparse dumpfile avoids allocating disk blocks, but its
2788 * huge holes still show up with zeroes where they need to be.
2790 if (absent && (flags & FOLL_DUMP) &&
2791 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2792 remainder = 0;
2793 break;
2796 if (absent ||
2797 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2798 int ret;
2800 spin_unlock(&mm->page_table_lock);
2801 ret = hugetlb_fault(mm, vma, vaddr,
2802 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2803 spin_lock(&mm->page_table_lock);
2804 if (!(ret & VM_FAULT_ERROR))
2805 continue;
2807 remainder = 0;
2808 break;
2811 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2812 page = pte_page(huge_ptep_get(pte));
2813 same_page:
2814 if (pages) {
2815 pages[i] = mem_map_offset(page, pfn_offset);
2816 get_page(pages[i]);
2819 if (vmas)
2820 vmas[i] = vma;
2822 vaddr += PAGE_SIZE;
2823 ++pfn_offset;
2824 --remainder;
2825 ++i;
2826 if (vaddr < vma->vm_end && remainder &&
2827 pfn_offset < pages_per_huge_page(h)) {
2829 * We use pfn_offset to avoid touching the pageframes
2830 * of this compound page.
2832 goto same_page;
2835 spin_unlock(&mm->page_table_lock);
2836 *length = remainder;
2837 *position = vaddr;
2839 return i ? i : -EFAULT;
2842 void hugetlb_change_protection(struct vm_area_struct *vma,
2843 unsigned long address, unsigned long end, pgprot_t newprot)
2845 struct mm_struct *mm = vma->vm_mm;
2846 unsigned long start = address;
2847 pte_t *ptep;
2848 pte_t pte;
2849 struct hstate *h = hstate_vma(vma);
2851 BUG_ON(address >= end);
2852 flush_cache_range(vma, address, end);
2854 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2855 spin_lock(&mm->page_table_lock);
2856 for (; address < end; address += huge_page_size(h)) {
2857 ptep = huge_pte_offset(mm, address);
2858 if (!ptep)
2859 continue;
2860 if (huge_pmd_unshare(mm, &address, ptep))
2861 continue;
2862 if (!huge_pte_none(huge_ptep_get(ptep))) {
2863 pte = huge_ptep_get_and_clear(mm, address, ptep);
2864 pte = pte_mkhuge(pte_modify(pte, newprot));
2865 set_huge_pte_at(mm, address, ptep, pte);
2868 spin_unlock(&mm->page_table_lock);
2869 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2871 flush_tlb_range(vma, start, end);
2874 int hugetlb_reserve_pages(struct inode *inode,
2875 long from, long to,
2876 struct vm_area_struct *vma,
2877 int acctflag)
2879 long ret, chg;
2880 struct hstate *h = hstate_inode(inode);
2883 * Only apply hugepage reservation if asked. At fault time, an
2884 * attempt will be made for VM_NORESERVE to allocate a page
2885 * and filesystem quota without using reserves
2887 if (acctflag & VM_NORESERVE)
2888 return 0;
2891 * Shared mappings base their reservation on the number of pages that
2892 * are already allocated on behalf of the file. Private mappings need
2893 * to reserve the full area even if read-only as mprotect() may be
2894 * called to make the mapping read-write. Assume !vma is a shm mapping
2896 if (!vma || vma->vm_flags & VM_MAYSHARE)
2897 chg = region_chg(&inode->i_mapping->private_list, from, to);
2898 else {
2899 struct resv_map *resv_map = resv_map_alloc();
2900 if (!resv_map)
2901 return -ENOMEM;
2903 chg = to - from;
2905 set_vma_resv_map(vma, resv_map);
2906 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2909 if (chg < 0)
2910 return chg;
2912 /* There must be enough filesystem quota for the mapping */
2913 if (hugetlb_get_quota(inode->i_mapping, chg))
2914 return -ENOSPC;
2917 * Check enough hugepages are available for the reservation.
2918 * Hand back the quota if there are not
2920 ret = hugetlb_acct_memory(h, chg);
2921 if (ret < 0) {
2922 hugetlb_put_quota(inode->i_mapping, chg);
2923 return ret;
2927 * Account for the reservations made. Shared mappings record regions
2928 * that have reservations as they are shared by multiple VMAs.
2929 * When the last VMA disappears, the region map says how much
2930 * the reservation was and the page cache tells how much of
2931 * the reservation was consumed. Private mappings are per-VMA and
2932 * only the consumed reservations are tracked. When the VMA
2933 * disappears, the original reservation is the VMA size and the
2934 * consumed reservations are stored in the map. Hence, nothing
2935 * else has to be done for private mappings here
2937 if (!vma || vma->vm_flags & VM_MAYSHARE)
2938 region_add(&inode->i_mapping->private_list, from, to);
2939 return 0;
2942 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2944 struct hstate *h = hstate_inode(inode);
2945 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2947 spin_lock(&inode->i_lock);
2948 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2949 spin_unlock(&inode->i_lock);
2951 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2952 hugetlb_acct_memory(h, -(chg - freed));
2955 #ifdef CONFIG_MEMORY_FAILURE
2957 /* Should be called in hugetlb_lock */
2958 static int is_hugepage_on_freelist(struct page *hpage)
2960 struct page *page;
2961 struct page *tmp;
2962 struct hstate *h = page_hstate(hpage);
2963 int nid = page_to_nid(hpage);
2965 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2966 if (page == hpage)
2967 return 1;
2968 return 0;
2972 * This function is called from memory failure code.
2973 * Assume the caller holds page lock of the head page.
2975 int dequeue_hwpoisoned_huge_page(struct page *hpage)
2977 struct hstate *h = page_hstate(hpage);
2978 int nid = page_to_nid(hpage);
2979 int ret = -EBUSY;
2981 spin_lock(&hugetlb_lock);
2982 if (is_hugepage_on_freelist(hpage)) {
2983 list_del(&hpage->lru);
2984 set_page_refcounted(hpage);
2985 h->free_huge_pages--;
2986 h->free_huge_pages_node[nid]--;
2987 ret = 0;
2989 spin_unlock(&hugetlb_lock);
2990 return ret;
2992 #endif