[CPUFREQ] ondemand governor automatic downscaling
[linux-2.6/cjktty.git] / drivers / cpufreq / cpufreq_ondemand.c
blob8bc38ab96400fbe4a248d0ae22c05787d471258c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/smp.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
19 #include <linux/cpufreq.h>
20 #include <linux/sysctl.h>
21 #include <linux/types.h>
22 #include <linux/fs.h>
23 #include <linux/sysfs.h>
24 #include <linux/sched.h>
25 #include <linux/kmod.h>
26 #include <linux/workqueue.h>
27 #include <linux/jiffies.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/percpu.h>
32 * dbs is used in this file as a shortform for demandbased switching
33 * It helps to keep variable names smaller, simpler
36 #define DEF_FREQUENCY_UP_THRESHOLD (80)
37 #define MIN_FREQUENCY_UP_THRESHOLD (11)
38 #define MAX_FREQUENCY_UP_THRESHOLD (100)
40 /*
41 * The polling frequency of this governor depends on the capability of
42 * the processor. Default polling frequency is 1000 times the transition
43 * latency of the processor. The governor will work on any processor with
44 * transition latency <= 10mS, using appropriate sampling
45 * rate.
46 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
47 * this governor will not work.
48 * All times here are in uS.
50 static unsigned int def_sampling_rate;
51 #define MIN_SAMPLING_RATE (def_sampling_rate / 2)
52 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
53 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
54 #define DEF_SAMPLING_DOWN_FACTOR (10)
55 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
57 static void do_dbs_timer(void *data);
59 struct cpu_dbs_info_s {
60 struct cpufreq_policy *cur_policy;
61 unsigned int prev_cpu_idle_up;
62 unsigned int prev_cpu_idle_down;
63 unsigned int enable;
65 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
67 static unsigned int dbs_enable; /* number of CPUs using this policy */
69 static DECLARE_MUTEX (dbs_sem);
70 static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
72 struct dbs_tuners {
73 unsigned int sampling_rate;
74 unsigned int sampling_down_factor;
75 unsigned int up_threshold;
76 unsigned int ignore_nice;
79 static struct dbs_tuners dbs_tuners_ins = {
80 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
81 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
84 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
86 return kstat_cpu(cpu).cpustat.idle +
87 kstat_cpu(cpu).cpustat.iowait +
88 ( !dbs_tuners_ins.ignore_nice ?
89 kstat_cpu(cpu).cpustat.nice :
90 0);
93 /************************** sysfs interface ************************/
94 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
96 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
99 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
101 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
104 #define define_one_ro(_name) \
105 static struct freq_attr _name = \
106 __ATTR(_name, 0444, show_##_name, NULL)
108 define_one_ro(sampling_rate_max);
109 define_one_ro(sampling_rate_min);
111 /* cpufreq_ondemand Governor Tunables */
112 #define show_one(file_name, object) \
113 static ssize_t show_##file_name \
114 (struct cpufreq_policy *unused, char *buf) \
116 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
118 show_one(sampling_rate, sampling_rate);
119 show_one(sampling_down_factor, sampling_down_factor);
120 show_one(up_threshold, up_threshold);
121 show_one(ignore_nice, ignore_nice);
123 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
124 const char *buf, size_t count)
126 unsigned int input;
127 int ret;
128 ret = sscanf (buf, "%u", &input);
129 if (ret != 1 )
130 return -EINVAL;
132 down(&dbs_sem);
133 dbs_tuners_ins.sampling_down_factor = input;
134 up(&dbs_sem);
136 return count;
139 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
140 const char *buf, size_t count)
142 unsigned int input;
143 int ret;
144 ret = sscanf (buf, "%u", &input);
146 down(&dbs_sem);
147 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
148 up(&dbs_sem);
149 return -EINVAL;
152 dbs_tuners_ins.sampling_rate = input;
153 up(&dbs_sem);
155 return count;
158 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
159 const char *buf, size_t count)
161 unsigned int input;
162 int ret;
163 ret = sscanf (buf, "%u", &input);
165 down(&dbs_sem);
166 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
167 input < MIN_FREQUENCY_UP_THRESHOLD) {
168 up(&dbs_sem);
169 return -EINVAL;
172 dbs_tuners_ins.up_threshold = input;
173 up(&dbs_sem);
175 return count;
178 static ssize_t store_ignore_nice(struct cpufreq_policy *policy,
179 const char *buf, size_t count)
181 unsigned int input;
182 int ret;
184 unsigned int j;
186 ret = sscanf (buf, "%u", &input);
187 if ( ret != 1 )
188 return -EINVAL;
190 if ( input > 1 )
191 input = 1;
193 down(&dbs_sem);
194 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
195 up(&dbs_sem);
196 return count;
198 dbs_tuners_ins.ignore_nice = input;
200 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
201 for_each_online_cpu(j) {
202 struct cpu_dbs_info_s *j_dbs_info;
203 j_dbs_info = &per_cpu(cpu_dbs_info, j);
204 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
205 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
207 up(&dbs_sem);
209 return count;
212 #define define_one_rw(_name) \
213 static struct freq_attr _name = \
214 __ATTR(_name, 0644, show_##_name, store_##_name)
216 define_one_rw(sampling_rate);
217 define_one_rw(sampling_down_factor);
218 define_one_rw(up_threshold);
219 define_one_rw(ignore_nice);
221 static struct attribute * dbs_attributes[] = {
222 &sampling_rate_max.attr,
223 &sampling_rate_min.attr,
224 &sampling_rate.attr,
225 &sampling_down_factor.attr,
226 &up_threshold.attr,
227 &ignore_nice.attr,
228 NULL
231 static struct attribute_group dbs_attr_group = {
232 .attrs = dbs_attributes,
233 .name = "ondemand",
236 /************************** sysfs end ************************/
238 static void dbs_check_cpu(int cpu)
240 unsigned int idle_ticks, up_idle_ticks, total_ticks;
241 unsigned int freq_next;
242 unsigned int freq_down_sampling_rate;
243 static int down_skip[NR_CPUS];
244 struct cpu_dbs_info_s *this_dbs_info;
246 struct cpufreq_policy *policy;
247 unsigned int j;
249 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
250 if (!this_dbs_info->enable)
251 return;
253 policy = this_dbs_info->cur_policy;
255 * Every sampling_rate, we check, if current idle time is less
256 * than 20% (default), then we try to increase frequency
257 * Every sampling_rate*sampling_down_factor, we look for a the lowest
258 * frequency which can sustain the load while keeping idle time over
259 * 30%. If such a frequency exist, we try to decrease to this frequency.
261 * Any frequency increase takes it to the maximum frequency.
262 * Frequency reduction happens at minimum steps of
263 * 5% (default) of current frequency
266 /* Check for frequency increase */
267 idle_ticks = UINT_MAX;
268 for_each_cpu_mask(j, policy->cpus) {
269 unsigned int tmp_idle_ticks, total_idle_ticks;
270 struct cpu_dbs_info_s *j_dbs_info;
272 j_dbs_info = &per_cpu(cpu_dbs_info, j);
273 total_idle_ticks = get_cpu_idle_time(j);
274 tmp_idle_ticks = total_idle_ticks -
275 j_dbs_info->prev_cpu_idle_up;
276 j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
278 if (tmp_idle_ticks < idle_ticks)
279 idle_ticks = tmp_idle_ticks;
282 /* Scale idle ticks by 100 and compare with up and down ticks */
283 idle_ticks *= 100;
284 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
285 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
287 if (idle_ticks < up_idle_ticks) {
288 down_skip[cpu] = 0;
289 for_each_cpu_mask(j, policy->cpus) {
290 struct cpu_dbs_info_s *j_dbs_info;
292 j_dbs_info = &per_cpu(cpu_dbs_info, j);
293 j_dbs_info->prev_cpu_idle_down =
294 j_dbs_info->prev_cpu_idle_up;
296 /* if we are already at full speed then break out early */
297 if (policy->cur == policy->max)
298 return;
300 __cpufreq_driver_target(policy, policy->max,
301 CPUFREQ_RELATION_H);
302 return;
305 /* Check for frequency decrease */
306 down_skip[cpu]++;
307 if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
308 return;
310 idle_ticks = UINT_MAX;
311 for_each_cpu_mask(j, policy->cpus) {
312 unsigned int tmp_idle_ticks, total_idle_ticks;
313 struct cpu_dbs_info_s *j_dbs_info;
315 j_dbs_info = &per_cpu(cpu_dbs_info, j);
316 /* Check for frequency decrease */
317 total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
318 tmp_idle_ticks = total_idle_ticks -
319 j_dbs_info->prev_cpu_idle_down;
320 j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
322 if (tmp_idle_ticks < idle_ticks)
323 idle_ticks = tmp_idle_ticks;
326 down_skip[cpu] = 0;
327 /* if we cannot reduce the frequency anymore, break out early */
328 if (policy->cur == policy->min)
329 return;
331 /* Compute how many ticks there are between two measurements */
332 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
333 dbs_tuners_ins.sampling_down_factor;
334 total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
337 * The optimal frequency is the frequency that is the lowest that
338 * can support the current CPU usage without triggering the up
339 * policy. To be safe, we focus 10 points under the threshold.
341 freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
342 freq_next = (freq_next * policy->cur) /
343 (dbs_tuners_ins.up_threshold - 10);
345 if (freq_next <= ((policy->cur * 95) / 100))
346 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
349 static void do_dbs_timer(void *data)
351 int i;
352 down(&dbs_sem);
353 for_each_online_cpu(i)
354 dbs_check_cpu(i);
355 schedule_delayed_work(&dbs_work,
356 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
357 up(&dbs_sem);
360 static inline void dbs_timer_init(void)
362 INIT_WORK(&dbs_work, do_dbs_timer, NULL);
363 schedule_delayed_work(&dbs_work,
364 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
365 return;
368 static inline void dbs_timer_exit(void)
370 cancel_delayed_work(&dbs_work);
371 return;
374 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
375 unsigned int event)
377 unsigned int cpu = policy->cpu;
378 struct cpu_dbs_info_s *this_dbs_info;
379 unsigned int j;
381 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
383 switch (event) {
384 case CPUFREQ_GOV_START:
385 if ((!cpu_online(cpu)) ||
386 (!policy->cur))
387 return -EINVAL;
389 if (policy->cpuinfo.transition_latency >
390 (TRANSITION_LATENCY_LIMIT * 1000))
391 return -EINVAL;
392 if (this_dbs_info->enable) /* Already enabled */
393 break;
395 down(&dbs_sem);
396 for_each_cpu_mask(j, policy->cpus) {
397 struct cpu_dbs_info_s *j_dbs_info;
398 j_dbs_info = &per_cpu(cpu_dbs_info, j);
399 j_dbs_info->cur_policy = policy;
401 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
402 j_dbs_info->prev_cpu_idle_down
403 = j_dbs_info->prev_cpu_idle_up;
405 this_dbs_info->enable = 1;
406 sysfs_create_group(&policy->kobj, &dbs_attr_group);
407 dbs_enable++;
409 * Start the timerschedule work, when this governor
410 * is used for first time
412 if (dbs_enable == 1) {
413 unsigned int latency;
414 /* policy latency is in nS. Convert it to uS first */
416 latency = policy->cpuinfo.transition_latency;
417 if (latency < 1000)
418 latency = 1000;
420 def_sampling_rate = (latency / 1000) *
421 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
422 dbs_tuners_ins.sampling_rate = def_sampling_rate;
423 dbs_tuners_ins.ignore_nice = 0;
425 dbs_timer_init();
428 up(&dbs_sem);
429 break;
431 case CPUFREQ_GOV_STOP:
432 down(&dbs_sem);
433 this_dbs_info->enable = 0;
434 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
435 dbs_enable--;
437 * Stop the timerschedule work, when this governor
438 * is used for first time
440 if (dbs_enable == 0)
441 dbs_timer_exit();
443 up(&dbs_sem);
445 break;
447 case CPUFREQ_GOV_LIMITS:
448 down(&dbs_sem);
449 if (policy->max < this_dbs_info->cur_policy->cur)
450 __cpufreq_driver_target(
451 this_dbs_info->cur_policy,
452 policy->max, CPUFREQ_RELATION_H);
453 else if (policy->min > this_dbs_info->cur_policy->cur)
454 __cpufreq_driver_target(
455 this_dbs_info->cur_policy,
456 policy->min, CPUFREQ_RELATION_L);
457 up(&dbs_sem);
458 break;
460 return 0;
463 static struct cpufreq_governor cpufreq_gov_dbs = {
464 .name = "ondemand",
465 .governor = cpufreq_governor_dbs,
466 .owner = THIS_MODULE,
469 static int __init cpufreq_gov_dbs_init(void)
471 return cpufreq_register_governor(&cpufreq_gov_dbs);
474 static void __exit cpufreq_gov_dbs_exit(void)
476 /* Make sure that the scheduled work is indeed not running */
477 flush_scheduled_work();
479 cpufreq_unregister_governor(&cpufreq_gov_dbs);
483 MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
484 MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
485 "Low Latency Frequency Transition capable processors");
486 MODULE_LICENSE ("GPL");
488 module_init(cpufreq_gov_dbs_init);
489 module_exit(cpufreq_gov_dbs_exit);