vxge: update driver version
[linux-2.6/cjktty.git] / kernel / rcutree.c
blobccdc04c479815addc8dbacea69643174a4636670
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
51 #include "rcutree.h"
53 /* Data structures. */
55 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
57 #define RCU_STATE_INITIALIZER(structname) { \
58 .level = { &structname.node[0] }, \
59 .levelcnt = { \
60 NUM_RCU_LVL_0, /* root of hierarchy. */ \
61 NUM_RCU_LVL_1, \
62 NUM_RCU_LVL_2, \
63 NUM_RCU_LVL_3, \
64 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
65 }, \
66 .signaled = RCU_GP_IDLE, \
67 .gpnum = -300, \
68 .completed = -300, \
69 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
70 .orphan_cbs_list = NULL, \
71 .orphan_cbs_tail = &structname.orphan_cbs_list, \
72 .orphan_qlen = 0, \
73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76 .name = #structname, \
79 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
80 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
82 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
83 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
85 int rcu_scheduler_active __read_mostly;
86 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
89 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
90 * permit this function to be invoked without holding the root rcu_node
91 * structure's ->lock, but of course results can be subject to change.
93 static int rcu_gp_in_progress(struct rcu_state *rsp)
95 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
99 * Note a quiescent state. Because we do not need to know
100 * how many quiescent states passed, just if there was at least
101 * one since the start of the grace period, this just sets a flag.
103 void rcu_sched_qs(int cpu)
105 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
107 rdp->passed_quiesc_completed = rdp->gpnum - 1;
108 barrier();
109 rdp->passed_quiesc = 1;
112 void rcu_bh_qs(int cpu)
114 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
116 rdp->passed_quiesc_completed = rdp->gpnum - 1;
117 barrier();
118 rdp->passed_quiesc = 1;
122 * Note a context switch. This is a quiescent state for RCU-sched,
123 * and requires special handling for preemptible RCU.
125 void rcu_note_context_switch(int cpu)
127 rcu_sched_qs(cpu);
128 rcu_preempt_note_context_switch(cpu);
131 #ifdef CONFIG_NO_HZ
132 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
133 .dynticks_nesting = 1,
134 .dynticks = 1,
136 #endif /* #ifdef CONFIG_NO_HZ */
138 static int blimit = 10; /* Maximum callbacks per softirq. */
139 static int qhimark = 10000; /* If this many pending, ignore blimit. */
140 static int qlowmark = 100; /* Once only this many pending, use blimit. */
142 module_param(blimit, int, 0);
143 module_param(qhimark, int, 0);
144 module_param(qlowmark, int, 0);
146 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
147 int rcu_cpu_stall_suppress __read_mostly = RCU_CPU_STALL_SUPPRESS_INIT;
148 module_param(rcu_cpu_stall_suppress, int, 0644);
149 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
151 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
152 static int rcu_pending(int cpu);
155 * Return the number of RCU-sched batches processed thus far for debug & stats.
157 long rcu_batches_completed_sched(void)
159 return rcu_sched_state.completed;
161 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
164 * Return the number of RCU BH batches processed thus far for debug & stats.
166 long rcu_batches_completed_bh(void)
168 return rcu_bh_state.completed;
170 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
173 * Force a quiescent state for RCU BH.
175 void rcu_bh_force_quiescent_state(void)
177 force_quiescent_state(&rcu_bh_state, 0);
179 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
182 * Force a quiescent state for RCU-sched.
184 void rcu_sched_force_quiescent_state(void)
186 force_quiescent_state(&rcu_sched_state, 0);
188 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
191 * Does the CPU have callbacks ready to be invoked?
193 static int
194 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
196 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
200 * Does the current CPU require a yet-as-unscheduled grace period?
202 static int
203 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
205 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
209 * Return the root node of the specified rcu_state structure.
211 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
213 return &rsp->node[0];
216 #ifdef CONFIG_SMP
219 * If the specified CPU is offline, tell the caller that it is in
220 * a quiescent state. Otherwise, whack it with a reschedule IPI.
221 * Grace periods can end up waiting on an offline CPU when that
222 * CPU is in the process of coming online -- it will be added to the
223 * rcu_node bitmasks before it actually makes it online. The same thing
224 * can happen while a CPU is in the process of coming online. Because this
225 * race is quite rare, we check for it after detecting that the grace
226 * period has been delayed rather than checking each and every CPU
227 * each and every time we start a new grace period.
229 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
232 * If the CPU is offline, it is in a quiescent state. We can
233 * trust its state not to change because interrupts are disabled.
235 if (cpu_is_offline(rdp->cpu)) {
236 rdp->offline_fqs++;
237 return 1;
240 /* If preemptable RCU, no point in sending reschedule IPI. */
241 if (rdp->preemptable)
242 return 0;
244 /* The CPU is online, so send it a reschedule IPI. */
245 if (rdp->cpu != smp_processor_id())
246 smp_send_reschedule(rdp->cpu);
247 else
248 set_need_resched();
249 rdp->resched_ipi++;
250 return 0;
253 #endif /* #ifdef CONFIG_SMP */
255 #ifdef CONFIG_NO_HZ
258 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
260 * Enter nohz mode, in other words, -leave- the mode in which RCU
261 * read-side critical sections can occur. (Though RCU read-side
262 * critical sections can occur in irq handlers in nohz mode, a possibility
263 * handled by rcu_irq_enter() and rcu_irq_exit()).
265 void rcu_enter_nohz(void)
267 unsigned long flags;
268 struct rcu_dynticks *rdtp;
270 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
271 local_irq_save(flags);
272 rdtp = &__get_cpu_var(rcu_dynticks);
273 rdtp->dynticks++;
274 rdtp->dynticks_nesting--;
275 WARN_ON_ONCE(rdtp->dynticks & 0x1);
276 local_irq_restore(flags);
280 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
282 * Exit nohz mode, in other words, -enter- the mode in which RCU
283 * read-side critical sections normally occur.
285 void rcu_exit_nohz(void)
287 unsigned long flags;
288 struct rcu_dynticks *rdtp;
290 local_irq_save(flags);
291 rdtp = &__get_cpu_var(rcu_dynticks);
292 rdtp->dynticks++;
293 rdtp->dynticks_nesting++;
294 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
295 local_irq_restore(flags);
296 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
300 * rcu_nmi_enter - inform RCU of entry to NMI context
302 * If the CPU was idle with dynamic ticks active, and there is no
303 * irq handler running, this updates rdtp->dynticks_nmi to let the
304 * RCU grace-period handling know that the CPU is active.
306 void rcu_nmi_enter(void)
308 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
310 if (rdtp->dynticks & 0x1)
311 return;
312 rdtp->dynticks_nmi++;
313 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
314 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
318 * rcu_nmi_exit - inform RCU of exit from NMI context
320 * If the CPU was idle with dynamic ticks active, and there is no
321 * irq handler running, this updates rdtp->dynticks_nmi to let the
322 * RCU grace-period handling know that the CPU is no longer active.
324 void rcu_nmi_exit(void)
326 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
328 if (rdtp->dynticks & 0x1)
329 return;
330 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
331 rdtp->dynticks_nmi++;
332 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
336 * rcu_irq_enter - inform RCU of entry to hard irq context
338 * If the CPU was idle with dynamic ticks active, this updates the
339 * rdtp->dynticks to let the RCU handling know that the CPU is active.
341 void rcu_irq_enter(void)
343 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
345 if (rdtp->dynticks_nesting++)
346 return;
347 rdtp->dynticks++;
348 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
349 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
353 * rcu_irq_exit - inform RCU of exit from hard irq context
355 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
356 * to put let the RCU handling be aware that the CPU is going back to idle
357 * with no ticks.
359 void rcu_irq_exit(void)
361 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
363 if (--rdtp->dynticks_nesting)
364 return;
365 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
366 rdtp->dynticks++;
367 WARN_ON_ONCE(rdtp->dynticks & 0x1);
369 /* If the interrupt queued a callback, get out of dyntick mode. */
370 if (__get_cpu_var(rcu_sched_data).nxtlist ||
371 __get_cpu_var(rcu_bh_data).nxtlist)
372 set_need_resched();
375 #ifdef CONFIG_SMP
378 * Snapshot the specified CPU's dynticks counter so that we can later
379 * credit them with an implicit quiescent state. Return 1 if this CPU
380 * is in dynticks idle mode, which is an extended quiescent state.
382 static int dyntick_save_progress_counter(struct rcu_data *rdp)
384 int ret;
385 int snap;
386 int snap_nmi;
388 snap = rdp->dynticks->dynticks;
389 snap_nmi = rdp->dynticks->dynticks_nmi;
390 smp_mb(); /* Order sampling of snap with end of grace period. */
391 rdp->dynticks_snap = snap;
392 rdp->dynticks_nmi_snap = snap_nmi;
393 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
394 if (ret)
395 rdp->dynticks_fqs++;
396 return ret;
400 * Return true if the specified CPU has passed through a quiescent
401 * state by virtue of being in or having passed through an dynticks
402 * idle state since the last call to dyntick_save_progress_counter()
403 * for this same CPU.
405 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
407 long curr;
408 long curr_nmi;
409 long snap;
410 long snap_nmi;
412 curr = rdp->dynticks->dynticks;
413 snap = rdp->dynticks_snap;
414 curr_nmi = rdp->dynticks->dynticks_nmi;
415 snap_nmi = rdp->dynticks_nmi_snap;
416 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
419 * If the CPU passed through or entered a dynticks idle phase with
420 * no active irq/NMI handlers, then we can safely pretend that the CPU
421 * already acknowledged the request to pass through a quiescent
422 * state. Either way, that CPU cannot possibly be in an RCU
423 * read-side critical section that started before the beginning
424 * of the current RCU grace period.
426 if ((curr != snap || (curr & 0x1) == 0) &&
427 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
428 rdp->dynticks_fqs++;
429 return 1;
432 /* Go check for the CPU being offline. */
433 return rcu_implicit_offline_qs(rdp);
436 #endif /* #ifdef CONFIG_SMP */
438 #else /* #ifdef CONFIG_NO_HZ */
440 #ifdef CONFIG_SMP
442 static int dyntick_save_progress_counter(struct rcu_data *rdp)
444 return 0;
447 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
449 return rcu_implicit_offline_qs(rdp);
452 #endif /* #ifdef CONFIG_SMP */
454 #endif /* #else #ifdef CONFIG_NO_HZ */
456 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
458 int rcu_cpu_stall_suppress __read_mostly;
460 static void record_gp_stall_check_time(struct rcu_state *rsp)
462 rsp->gp_start = jiffies;
463 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
466 static void print_other_cpu_stall(struct rcu_state *rsp)
468 int cpu;
469 long delta;
470 unsigned long flags;
471 struct rcu_node *rnp = rcu_get_root(rsp);
473 /* Only let one CPU complain about others per time interval. */
475 raw_spin_lock_irqsave(&rnp->lock, flags);
476 delta = jiffies - rsp->jiffies_stall;
477 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
478 raw_spin_unlock_irqrestore(&rnp->lock, flags);
479 return;
481 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
484 * Now rat on any tasks that got kicked up to the root rcu_node
485 * due to CPU offlining.
487 rcu_print_task_stall(rnp);
488 raw_spin_unlock_irqrestore(&rnp->lock, flags);
491 * OK, time to rat on our buddy...
492 * See Documentation/RCU/stallwarn.txt for info on how to debug
493 * RCU CPU stall warnings.
495 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
496 rsp->name);
497 rcu_for_each_leaf_node(rsp, rnp) {
498 raw_spin_lock_irqsave(&rnp->lock, flags);
499 rcu_print_task_stall(rnp);
500 raw_spin_unlock_irqrestore(&rnp->lock, flags);
501 if (rnp->qsmask == 0)
502 continue;
503 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
504 if (rnp->qsmask & (1UL << cpu))
505 printk(" %d", rnp->grplo + cpu);
507 printk("} (detected by %d, t=%ld jiffies)\n",
508 smp_processor_id(), (long)(jiffies - rsp->gp_start));
509 trigger_all_cpu_backtrace();
511 /* If so configured, complain about tasks blocking the grace period. */
513 rcu_print_detail_task_stall(rsp);
515 force_quiescent_state(rsp, 0); /* Kick them all. */
518 static void print_cpu_stall(struct rcu_state *rsp)
520 unsigned long flags;
521 struct rcu_node *rnp = rcu_get_root(rsp);
524 * OK, time to rat on ourselves...
525 * See Documentation/RCU/stallwarn.txt for info on how to debug
526 * RCU CPU stall warnings.
528 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
529 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
530 trigger_all_cpu_backtrace();
532 raw_spin_lock_irqsave(&rnp->lock, flags);
533 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
534 rsp->jiffies_stall =
535 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
536 raw_spin_unlock_irqrestore(&rnp->lock, flags);
538 set_need_resched(); /* kick ourselves to get things going. */
541 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
543 long delta;
544 struct rcu_node *rnp;
546 if (rcu_cpu_stall_suppress)
547 return;
548 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
549 rnp = rdp->mynode;
550 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && delta >= 0) {
552 /* We haven't checked in, so go dump stack. */
553 print_cpu_stall(rsp);
555 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
557 /* They had two time units to dump stack, so complain. */
558 print_other_cpu_stall(rsp);
562 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
564 rcu_cpu_stall_suppress = 1;
565 return NOTIFY_DONE;
569 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
571 * Set the stall-warning timeout way off into the future, thus preventing
572 * any RCU CPU stall-warning messages from appearing in the current set of
573 * RCU grace periods.
575 * The caller must disable hard irqs.
577 void rcu_cpu_stall_reset(void)
579 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
580 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
581 rcu_preempt_stall_reset();
584 static struct notifier_block rcu_panic_block = {
585 .notifier_call = rcu_panic,
588 static void __init check_cpu_stall_init(void)
590 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
593 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
595 static void record_gp_stall_check_time(struct rcu_state *rsp)
599 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
603 void rcu_cpu_stall_reset(void)
607 static void __init check_cpu_stall_init(void)
611 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
614 * Update CPU-local rcu_data state to record the newly noticed grace period.
615 * This is used both when we started the grace period and when we notice
616 * that someone else started the grace period. The caller must hold the
617 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
618 * and must have irqs disabled.
620 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
622 if (rdp->gpnum != rnp->gpnum) {
623 rdp->qs_pending = 1;
624 rdp->passed_quiesc = 0;
625 rdp->gpnum = rnp->gpnum;
629 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
631 unsigned long flags;
632 struct rcu_node *rnp;
634 local_irq_save(flags);
635 rnp = rdp->mynode;
636 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
637 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
638 local_irq_restore(flags);
639 return;
641 __note_new_gpnum(rsp, rnp, rdp);
642 raw_spin_unlock_irqrestore(&rnp->lock, flags);
646 * Did someone else start a new RCU grace period start since we last
647 * checked? Update local state appropriately if so. Must be called
648 * on the CPU corresponding to rdp.
650 static int
651 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
653 unsigned long flags;
654 int ret = 0;
656 local_irq_save(flags);
657 if (rdp->gpnum != rsp->gpnum) {
658 note_new_gpnum(rsp, rdp);
659 ret = 1;
661 local_irq_restore(flags);
662 return ret;
666 * Advance this CPU's callbacks, but only if the current grace period
667 * has ended. This may be called only from the CPU to whom the rdp
668 * belongs. In addition, the corresponding leaf rcu_node structure's
669 * ->lock must be held by the caller, with irqs disabled.
671 static void
672 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
674 /* Did another grace period end? */
675 if (rdp->completed != rnp->completed) {
677 /* Advance callbacks. No harm if list empty. */
678 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
679 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
680 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
682 /* Remember that we saw this grace-period completion. */
683 rdp->completed = rnp->completed;
688 * Advance this CPU's callbacks, but only if the current grace period
689 * has ended. This may be called only from the CPU to whom the rdp
690 * belongs.
692 static void
693 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
695 unsigned long flags;
696 struct rcu_node *rnp;
698 local_irq_save(flags);
699 rnp = rdp->mynode;
700 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
701 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
702 local_irq_restore(flags);
703 return;
705 __rcu_process_gp_end(rsp, rnp, rdp);
706 raw_spin_unlock_irqrestore(&rnp->lock, flags);
710 * Do per-CPU grace-period initialization for running CPU. The caller
711 * must hold the lock of the leaf rcu_node structure corresponding to
712 * this CPU.
714 static void
715 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
717 /* Prior grace period ended, so advance callbacks for current CPU. */
718 __rcu_process_gp_end(rsp, rnp, rdp);
721 * Because this CPU just now started the new grace period, we know
722 * that all of its callbacks will be covered by this upcoming grace
723 * period, even the ones that were registered arbitrarily recently.
724 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
726 * Other CPUs cannot be sure exactly when the grace period started.
727 * Therefore, their recently registered callbacks must pass through
728 * an additional RCU_NEXT_READY stage, so that they will be handled
729 * by the next RCU grace period.
731 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
732 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
734 /* Set state so that this CPU will detect the next quiescent state. */
735 __note_new_gpnum(rsp, rnp, rdp);
739 * Start a new RCU grace period if warranted, re-initializing the hierarchy
740 * in preparation for detecting the next grace period. The caller must hold
741 * the root node's ->lock, which is released before return. Hard irqs must
742 * be disabled.
744 static void
745 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
746 __releases(rcu_get_root(rsp)->lock)
748 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
749 struct rcu_node *rnp = rcu_get_root(rsp);
751 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
752 if (cpu_needs_another_gp(rsp, rdp))
753 rsp->fqs_need_gp = 1;
754 if (rnp->completed == rsp->completed) {
755 raw_spin_unlock_irqrestore(&rnp->lock, flags);
756 return;
758 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
761 * Propagate new ->completed value to rcu_node structures
762 * so that other CPUs don't have to wait until the start
763 * of the next grace period to process their callbacks.
765 rcu_for_each_node_breadth_first(rsp, rnp) {
766 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
767 rnp->completed = rsp->completed;
768 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
770 local_irq_restore(flags);
771 return;
774 /* Advance to a new grace period and initialize state. */
775 rsp->gpnum++;
776 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
777 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
778 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
779 record_gp_stall_check_time(rsp);
781 /* Special-case the common single-level case. */
782 if (NUM_RCU_NODES == 1) {
783 rcu_preempt_check_blocked_tasks(rnp);
784 rnp->qsmask = rnp->qsmaskinit;
785 rnp->gpnum = rsp->gpnum;
786 rnp->completed = rsp->completed;
787 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
788 rcu_start_gp_per_cpu(rsp, rnp, rdp);
789 raw_spin_unlock_irqrestore(&rnp->lock, flags);
790 return;
793 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
796 /* Exclude any concurrent CPU-hotplug operations. */
797 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
800 * Set the quiescent-state-needed bits in all the rcu_node
801 * structures for all currently online CPUs in breadth-first
802 * order, starting from the root rcu_node structure. This
803 * operation relies on the layout of the hierarchy within the
804 * rsp->node[] array. Note that other CPUs will access only
805 * the leaves of the hierarchy, which still indicate that no
806 * grace period is in progress, at least until the corresponding
807 * leaf node has been initialized. In addition, we have excluded
808 * CPU-hotplug operations.
810 * Note that the grace period cannot complete until we finish
811 * the initialization process, as there will be at least one
812 * qsmask bit set in the root node until that time, namely the
813 * one corresponding to this CPU, due to the fact that we have
814 * irqs disabled.
816 rcu_for_each_node_breadth_first(rsp, rnp) {
817 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
818 rcu_preempt_check_blocked_tasks(rnp);
819 rnp->qsmask = rnp->qsmaskinit;
820 rnp->gpnum = rsp->gpnum;
821 rnp->completed = rsp->completed;
822 if (rnp == rdp->mynode)
823 rcu_start_gp_per_cpu(rsp, rnp, rdp);
824 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
827 rnp = rcu_get_root(rsp);
828 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
829 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
830 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
831 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
835 * Report a full set of quiescent states to the specified rcu_state
836 * data structure. This involves cleaning up after the prior grace
837 * period and letting rcu_start_gp() start up the next grace period
838 * if one is needed. Note that the caller must hold rnp->lock, as
839 * required by rcu_start_gp(), which will release it.
841 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
842 __releases(rcu_get_root(rsp)->lock)
844 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
845 rsp->completed = rsp->gpnum;
846 rsp->signaled = RCU_GP_IDLE;
847 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
851 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
852 * Allows quiescent states for a group of CPUs to be reported at one go
853 * to the specified rcu_node structure, though all the CPUs in the group
854 * must be represented by the same rcu_node structure (which need not be
855 * a leaf rcu_node structure, though it often will be). That structure's
856 * lock must be held upon entry, and it is released before return.
858 static void
859 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
860 struct rcu_node *rnp, unsigned long flags)
861 __releases(rnp->lock)
863 struct rcu_node *rnp_c;
865 /* Walk up the rcu_node hierarchy. */
866 for (;;) {
867 if (!(rnp->qsmask & mask)) {
869 /* Our bit has already been cleared, so done. */
870 raw_spin_unlock_irqrestore(&rnp->lock, flags);
871 return;
873 rnp->qsmask &= ~mask;
874 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
876 /* Other bits still set at this level, so done. */
877 raw_spin_unlock_irqrestore(&rnp->lock, flags);
878 return;
880 mask = rnp->grpmask;
881 if (rnp->parent == NULL) {
883 /* No more levels. Exit loop holding root lock. */
885 break;
887 raw_spin_unlock_irqrestore(&rnp->lock, flags);
888 rnp_c = rnp;
889 rnp = rnp->parent;
890 raw_spin_lock_irqsave(&rnp->lock, flags);
891 WARN_ON_ONCE(rnp_c->qsmask);
895 * Get here if we are the last CPU to pass through a quiescent
896 * state for this grace period. Invoke rcu_report_qs_rsp()
897 * to clean up and start the next grace period if one is needed.
899 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
903 * Record a quiescent state for the specified CPU to that CPU's rcu_data
904 * structure. This must be either called from the specified CPU, or
905 * called when the specified CPU is known to be offline (and when it is
906 * also known that no other CPU is concurrently trying to help the offline
907 * CPU). The lastcomp argument is used to make sure we are still in the
908 * grace period of interest. We don't want to end the current grace period
909 * based on quiescent states detected in an earlier grace period!
911 static void
912 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
914 unsigned long flags;
915 unsigned long mask;
916 struct rcu_node *rnp;
918 rnp = rdp->mynode;
919 raw_spin_lock_irqsave(&rnp->lock, flags);
920 if (lastcomp != rnp->completed) {
923 * Someone beat us to it for this grace period, so leave.
924 * The race with GP start is resolved by the fact that we
925 * hold the leaf rcu_node lock, so that the per-CPU bits
926 * cannot yet be initialized -- so we would simply find our
927 * CPU's bit already cleared in rcu_report_qs_rnp() if this
928 * race occurred.
930 rdp->passed_quiesc = 0; /* try again later! */
931 raw_spin_unlock_irqrestore(&rnp->lock, flags);
932 return;
934 mask = rdp->grpmask;
935 if ((rnp->qsmask & mask) == 0) {
936 raw_spin_unlock_irqrestore(&rnp->lock, flags);
937 } else {
938 rdp->qs_pending = 0;
941 * This GP can't end until cpu checks in, so all of our
942 * callbacks can be processed during the next GP.
944 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
946 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
951 * Check to see if there is a new grace period of which this CPU
952 * is not yet aware, and if so, set up local rcu_data state for it.
953 * Otherwise, see if this CPU has just passed through its first
954 * quiescent state for this grace period, and record that fact if so.
956 static void
957 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
959 /* If there is now a new grace period, record and return. */
960 if (check_for_new_grace_period(rsp, rdp))
961 return;
964 * Does this CPU still need to do its part for current grace period?
965 * If no, return and let the other CPUs do their part as well.
967 if (!rdp->qs_pending)
968 return;
971 * Was there a quiescent state since the beginning of the grace
972 * period? If no, then exit and wait for the next call.
974 if (!rdp->passed_quiesc)
975 return;
978 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
979 * judge of that).
981 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
984 #ifdef CONFIG_HOTPLUG_CPU
987 * Move a dying CPU's RCU callbacks to the ->orphan_cbs_list for the
988 * specified flavor of RCU. The callbacks will be adopted by the next
989 * _rcu_barrier() invocation or by the CPU_DEAD notifier, whichever
990 * comes first. Because this is invoked from the CPU_DYING notifier,
991 * irqs are already disabled.
993 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
995 int i;
996 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
998 if (rdp->nxtlist == NULL)
999 return; /* irqs disabled, so comparison is stable. */
1000 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1001 *rsp->orphan_cbs_tail = rdp->nxtlist;
1002 rsp->orphan_cbs_tail = rdp->nxttail[RCU_NEXT_TAIL];
1003 rdp->nxtlist = NULL;
1004 for (i = 0; i < RCU_NEXT_SIZE; i++)
1005 rdp->nxttail[i] = &rdp->nxtlist;
1006 rsp->orphan_qlen += rdp->qlen;
1007 rdp->n_cbs_orphaned += rdp->qlen;
1008 rdp->qlen = 0;
1009 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1013 * Adopt previously orphaned RCU callbacks.
1015 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1017 unsigned long flags;
1018 struct rcu_data *rdp;
1020 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1021 rdp = this_cpu_ptr(rsp->rda);
1022 if (rsp->orphan_cbs_list == NULL) {
1023 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1024 return;
1026 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_list;
1027 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_cbs_tail;
1028 rdp->qlen += rsp->orphan_qlen;
1029 rdp->n_cbs_adopted += rsp->orphan_qlen;
1030 rsp->orphan_cbs_list = NULL;
1031 rsp->orphan_cbs_tail = &rsp->orphan_cbs_list;
1032 rsp->orphan_qlen = 0;
1033 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1037 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1038 * and move all callbacks from the outgoing CPU to the current one.
1040 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1042 unsigned long flags;
1043 unsigned long mask;
1044 int need_report = 0;
1045 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1046 struct rcu_node *rnp;
1048 /* Exclude any attempts to start a new grace period. */
1049 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1051 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1052 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1053 mask = rdp->grpmask; /* rnp->grplo is constant. */
1054 do {
1055 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1056 rnp->qsmaskinit &= ~mask;
1057 if (rnp->qsmaskinit != 0) {
1058 if (rnp != rdp->mynode)
1059 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1060 break;
1062 if (rnp == rdp->mynode)
1063 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1064 else
1065 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1066 mask = rnp->grpmask;
1067 rnp = rnp->parent;
1068 } while (rnp != NULL);
1071 * We still hold the leaf rcu_node structure lock here, and
1072 * irqs are still disabled. The reason for this subterfuge is
1073 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1074 * held leads to deadlock.
1076 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1077 rnp = rdp->mynode;
1078 if (need_report & RCU_OFL_TASKS_NORM_GP)
1079 rcu_report_unblock_qs_rnp(rnp, flags);
1080 else
1081 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1082 if (need_report & RCU_OFL_TASKS_EXP_GP)
1083 rcu_report_exp_rnp(rsp, rnp);
1085 rcu_adopt_orphan_cbs(rsp);
1089 * Remove the specified CPU from the RCU hierarchy and move any pending
1090 * callbacks that it might have to the current CPU. This code assumes
1091 * that at least one CPU in the system will remain running at all times.
1092 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1094 static void rcu_offline_cpu(int cpu)
1096 __rcu_offline_cpu(cpu, &rcu_sched_state);
1097 __rcu_offline_cpu(cpu, &rcu_bh_state);
1098 rcu_preempt_offline_cpu(cpu);
1101 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1103 static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
1107 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1111 static void rcu_offline_cpu(int cpu)
1115 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1118 * Invoke any RCU callbacks that have made it to the end of their grace
1119 * period. Thottle as specified by rdp->blimit.
1121 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1123 unsigned long flags;
1124 struct rcu_head *next, *list, **tail;
1125 int count;
1127 /* If no callbacks are ready, just return.*/
1128 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1129 return;
1132 * Extract the list of ready callbacks, disabling to prevent
1133 * races with call_rcu() from interrupt handlers.
1135 local_irq_save(flags);
1136 list = rdp->nxtlist;
1137 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1138 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1139 tail = rdp->nxttail[RCU_DONE_TAIL];
1140 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1141 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1142 rdp->nxttail[count] = &rdp->nxtlist;
1143 local_irq_restore(flags);
1145 /* Invoke callbacks. */
1146 count = 0;
1147 while (list) {
1148 next = list->next;
1149 prefetch(next);
1150 debug_rcu_head_unqueue(list);
1151 list->func(list);
1152 list = next;
1153 if (++count >= rdp->blimit)
1154 break;
1157 local_irq_save(flags);
1159 /* Update count, and requeue any remaining callbacks. */
1160 rdp->qlen -= count;
1161 rdp->n_cbs_invoked += count;
1162 if (list != NULL) {
1163 *tail = rdp->nxtlist;
1164 rdp->nxtlist = list;
1165 for (count = 0; count < RCU_NEXT_SIZE; count++)
1166 if (&rdp->nxtlist == rdp->nxttail[count])
1167 rdp->nxttail[count] = tail;
1168 else
1169 break;
1172 /* Reinstate batch limit if we have worked down the excess. */
1173 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1174 rdp->blimit = blimit;
1176 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1177 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1178 rdp->qlen_last_fqs_check = 0;
1179 rdp->n_force_qs_snap = rsp->n_force_qs;
1180 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1181 rdp->qlen_last_fqs_check = rdp->qlen;
1183 local_irq_restore(flags);
1185 /* Re-raise the RCU softirq if there are callbacks remaining. */
1186 if (cpu_has_callbacks_ready_to_invoke(rdp))
1187 raise_softirq(RCU_SOFTIRQ);
1191 * Check to see if this CPU is in a non-context-switch quiescent state
1192 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1193 * Also schedule the RCU softirq handler.
1195 * This function must be called with hardirqs disabled. It is normally
1196 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1197 * false, there is no point in invoking rcu_check_callbacks().
1199 void rcu_check_callbacks(int cpu, int user)
1201 if (user ||
1202 (idle_cpu(cpu) && rcu_scheduler_active &&
1203 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1206 * Get here if this CPU took its interrupt from user
1207 * mode or from the idle loop, and if this is not a
1208 * nested interrupt. In this case, the CPU is in
1209 * a quiescent state, so note it.
1211 * No memory barrier is required here because both
1212 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1213 * variables that other CPUs neither access nor modify,
1214 * at least not while the corresponding CPU is online.
1217 rcu_sched_qs(cpu);
1218 rcu_bh_qs(cpu);
1220 } else if (!in_softirq()) {
1223 * Get here if this CPU did not take its interrupt from
1224 * softirq, in other words, if it is not interrupting
1225 * a rcu_bh read-side critical section. This is an _bh
1226 * critical section, so note it.
1229 rcu_bh_qs(cpu);
1231 rcu_preempt_check_callbacks(cpu);
1232 if (rcu_pending(cpu))
1233 raise_softirq(RCU_SOFTIRQ);
1236 #ifdef CONFIG_SMP
1239 * Scan the leaf rcu_node structures, processing dyntick state for any that
1240 * have not yet encountered a quiescent state, using the function specified.
1241 * The caller must have suppressed start of new grace periods.
1243 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1245 unsigned long bit;
1246 int cpu;
1247 unsigned long flags;
1248 unsigned long mask;
1249 struct rcu_node *rnp;
1251 rcu_for_each_leaf_node(rsp, rnp) {
1252 mask = 0;
1253 raw_spin_lock_irqsave(&rnp->lock, flags);
1254 if (!rcu_gp_in_progress(rsp)) {
1255 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1256 return;
1258 if (rnp->qsmask == 0) {
1259 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1260 continue;
1262 cpu = rnp->grplo;
1263 bit = 1;
1264 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1265 if ((rnp->qsmask & bit) != 0 &&
1266 f(per_cpu_ptr(rsp->rda, cpu)))
1267 mask |= bit;
1269 if (mask != 0) {
1271 /* rcu_report_qs_rnp() releases rnp->lock. */
1272 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1273 continue;
1275 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1280 * Force quiescent states on reluctant CPUs, and also detect which
1281 * CPUs are in dyntick-idle mode.
1283 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1285 unsigned long flags;
1286 struct rcu_node *rnp = rcu_get_root(rsp);
1288 if (!rcu_gp_in_progress(rsp))
1289 return; /* No grace period in progress, nothing to force. */
1290 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1291 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1292 return; /* Someone else is already on the job. */
1294 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1295 goto unlock_fqs_ret; /* no emergency and done recently. */
1296 rsp->n_force_qs++;
1297 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1298 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1299 if(!rcu_gp_in_progress(rsp)) {
1300 rsp->n_force_qs_ngp++;
1301 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1302 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1304 rsp->fqs_active = 1;
1305 switch (rsp->signaled) {
1306 case RCU_GP_IDLE:
1307 case RCU_GP_INIT:
1309 break; /* grace period idle or initializing, ignore. */
1311 case RCU_SAVE_DYNTICK:
1312 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1313 break; /* So gcc recognizes the dead code. */
1315 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1317 /* Record dyntick-idle state. */
1318 force_qs_rnp(rsp, dyntick_save_progress_counter);
1319 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1320 if (rcu_gp_in_progress(rsp))
1321 rsp->signaled = RCU_FORCE_QS;
1322 break;
1324 case RCU_FORCE_QS:
1326 /* Check dyntick-idle state, send IPI to laggarts. */
1327 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1328 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1330 /* Leave state in case more forcing is required. */
1332 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1333 break;
1335 rsp->fqs_active = 0;
1336 if (rsp->fqs_need_gp) {
1337 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1338 rsp->fqs_need_gp = 0;
1339 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1340 return;
1342 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1343 unlock_fqs_ret:
1344 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1347 #else /* #ifdef CONFIG_SMP */
1349 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1351 set_need_resched();
1354 #endif /* #else #ifdef CONFIG_SMP */
1357 * This does the RCU processing work from softirq context for the
1358 * specified rcu_state and rcu_data structures. This may be called
1359 * only from the CPU to whom the rdp belongs.
1361 static void
1362 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1364 unsigned long flags;
1366 WARN_ON_ONCE(rdp->beenonline == 0);
1369 * If an RCU GP has gone long enough, go check for dyntick
1370 * idle CPUs and, if needed, send resched IPIs.
1372 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1373 force_quiescent_state(rsp, 1);
1376 * Advance callbacks in response to end of earlier grace
1377 * period that some other CPU ended.
1379 rcu_process_gp_end(rsp, rdp);
1381 /* Update RCU state based on any recent quiescent states. */
1382 rcu_check_quiescent_state(rsp, rdp);
1384 /* Does this CPU require a not-yet-started grace period? */
1385 if (cpu_needs_another_gp(rsp, rdp)) {
1386 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1387 rcu_start_gp(rsp, flags); /* releases above lock */
1390 /* If there are callbacks ready, invoke them. */
1391 rcu_do_batch(rsp, rdp);
1395 * Do softirq processing for the current CPU.
1397 static void rcu_process_callbacks(struct softirq_action *unused)
1400 * Memory references from any prior RCU read-side critical sections
1401 * executed by the interrupted code must be seen before any RCU
1402 * grace-period manipulations below.
1404 smp_mb(); /* See above block comment. */
1406 __rcu_process_callbacks(&rcu_sched_state,
1407 &__get_cpu_var(rcu_sched_data));
1408 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1409 rcu_preempt_process_callbacks();
1412 * Memory references from any later RCU read-side critical sections
1413 * executed by the interrupted code must be seen after any RCU
1414 * grace-period manipulations above.
1416 smp_mb(); /* See above block comment. */
1418 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1419 rcu_needs_cpu_flush();
1422 static void
1423 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1424 struct rcu_state *rsp)
1426 unsigned long flags;
1427 struct rcu_data *rdp;
1429 debug_rcu_head_queue(head);
1430 head->func = func;
1431 head->next = NULL;
1433 smp_mb(); /* Ensure RCU update seen before callback registry. */
1436 * Opportunistically note grace-period endings and beginnings.
1437 * Note that we might see a beginning right after we see an
1438 * end, but never vice versa, since this CPU has to pass through
1439 * a quiescent state betweentimes.
1441 local_irq_save(flags);
1442 rdp = this_cpu_ptr(rsp->rda);
1443 rcu_process_gp_end(rsp, rdp);
1444 check_for_new_grace_period(rsp, rdp);
1446 /* Add the callback to our list. */
1447 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1448 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1450 /* Start a new grace period if one not already started. */
1451 if (!rcu_gp_in_progress(rsp)) {
1452 unsigned long nestflag;
1453 struct rcu_node *rnp_root = rcu_get_root(rsp);
1455 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1456 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1460 * Force the grace period if too many callbacks or too long waiting.
1461 * Enforce hysteresis, and don't invoke force_quiescent_state()
1462 * if some other CPU has recently done so. Also, don't bother
1463 * invoking force_quiescent_state() if the newly enqueued callback
1464 * is the only one waiting for a grace period to complete.
1466 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1467 rdp->blimit = LONG_MAX;
1468 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1469 *rdp->nxttail[RCU_DONE_TAIL] != head)
1470 force_quiescent_state(rsp, 0);
1471 rdp->n_force_qs_snap = rsp->n_force_qs;
1472 rdp->qlen_last_fqs_check = rdp->qlen;
1473 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1474 force_quiescent_state(rsp, 1);
1475 local_irq_restore(flags);
1479 * Queue an RCU-sched callback for invocation after a grace period.
1481 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1483 __call_rcu(head, func, &rcu_sched_state);
1485 EXPORT_SYMBOL_GPL(call_rcu_sched);
1488 * Queue an RCU for invocation after a quicker grace period.
1490 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1492 __call_rcu(head, func, &rcu_bh_state);
1494 EXPORT_SYMBOL_GPL(call_rcu_bh);
1497 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1499 * Control will return to the caller some time after a full rcu-sched
1500 * grace period has elapsed, in other words after all currently executing
1501 * rcu-sched read-side critical sections have completed. These read-side
1502 * critical sections are delimited by rcu_read_lock_sched() and
1503 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1504 * local_irq_disable(), and so on may be used in place of
1505 * rcu_read_lock_sched().
1507 * This means that all preempt_disable code sequences, including NMI and
1508 * hardware-interrupt handlers, in progress on entry will have completed
1509 * before this primitive returns. However, this does not guarantee that
1510 * softirq handlers will have completed, since in some kernels, these
1511 * handlers can run in process context, and can block.
1513 * This primitive provides the guarantees made by the (now removed)
1514 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1515 * guarantees that rcu_read_lock() sections will have completed.
1516 * In "classic RCU", these two guarantees happen to be one and
1517 * the same, but can differ in realtime RCU implementations.
1519 void synchronize_sched(void)
1521 struct rcu_synchronize rcu;
1523 if (rcu_blocking_is_gp())
1524 return;
1526 init_rcu_head_on_stack(&rcu.head);
1527 init_completion(&rcu.completion);
1528 /* Will wake me after RCU finished. */
1529 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1530 /* Wait for it. */
1531 wait_for_completion(&rcu.completion);
1532 destroy_rcu_head_on_stack(&rcu.head);
1534 EXPORT_SYMBOL_GPL(synchronize_sched);
1537 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1539 * Control will return to the caller some time after a full rcu_bh grace
1540 * period has elapsed, in other words after all currently executing rcu_bh
1541 * read-side critical sections have completed. RCU read-side critical
1542 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1543 * and may be nested.
1545 void synchronize_rcu_bh(void)
1547 struct rcu_synchronize rcu;
1549 if (rcu_blocking_is_gp())
1550 return;
1552 init_rcu_head_on_stack(&rcu.head);
1553 init_completion(&rcu.completion);
1554 /* Will wake me after RCU finished. */
1555 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1556 /* Wait for it. */
1557 wait_for_completion(&rcu.completion);
1558 destroy_rcu_head_on_stack(&rcu.head);
1560 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1563 * Check to see if there is any immediate RCU-related work to be done
1564 * by the current CPU, for the specified type of RCU, returning 1 if so.
1565 * The checks are in order of increasing expense: checks that can be
1566 * carried out against CPU-local state are performed first. However,
1567 * we must check for CPU stalls first, else we might not get a chance.
1569 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1571 struct rcu_node *rnp = rdp->mynode;
1573 rdp->n_rcu_pending++;
1575 /* Check for CPU stalls, if enabled. */
1576 check_cpu_stall(rsp, rdp);
1578 /* Is the RCU core waiting for a quiescent state from this CPU? */
1579 if (rdp->qs_pending && !rdp->passed_quiesc) {
1582 * If force_quiescent_state() coming soon and this CPU
1583 * needs a quiescent state, and this is either RCU-sched
1584 * or RCU-bh, force a local reschedule.
1586 rdp->n_rp_qs_pending++;
1587 if (!rdp->preemptable &&
1588 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1589 jiffies))
1590 set_need_resched();
1591 } else if (rdp->qs_pending && rdp->passed_quiesc) {
1592 rdp->n_rp_report_qs++;
1593 return 1;
1596 /* Does this CPU have callbacks ready to invoke? */
1597 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1598 rdp->n_rp_cb_ready++;
1599 return 1;
1602 /* Has RCU gone idle with this CPU needing another grace period? */
1603 if (cpu_needs_another_gp(rsp, rdp)) {
1604 rdp->n_rp_cpu_needs_gp++;
1605 return 1;
1608 /* Has another RCU grace period completed? */
1609 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
1610 rdp->n_rp_gp_completed++;
1611 return 1;
1614 /* Has a new RCU grace period started? */
1615 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
1616 rdp->n_rp_gp_started++;
1617 return 1;
1620 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1621 if (rcu_gp_in_progress(rsp) &&
1622 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
1623 rdp->n_rp_need_fqs++;
1624 return 1;
1627 /* nothing to do */
1628 rdp->n_rp_need_nothing++;
1629 return 0;
1633 * Check to see if there is any immediate RCU-related work to be done
1634 * by the current CPU, returning 1 if so. This function is part of the
1635 * RCU implementation; it is -not- an exported member of the RCU API.
1637 static int rcu_pending(int cpu)
1639 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
1640 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1641 rcu_preempt_pending(cpu);
1645 * Check to see if any future RCU-related work will need to be done
1646 * by the current CPU, even if none need be done immediately, returning
1647 * 1 if so.
1649 static int rcu_needs_cpu_quick_check(int cpu)
1651 /* RCU callbacks either ready or pending? */
1652 return per_cpu(rcu_sched_data, cpu).nxtlist ||
1653 per_cpu(rcu_bh_data, cpu).nxtlist ||
1654 rcu_preempt_needs_cpu(cpu);
1657 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1658 static atomic_t rcu_barrier_cpu_count;
1659 static DEFINE_MUTEX(rcu_barrier_mutex);
1660 static struct completion rcu_barrier_completion;
1662 static void rcu_barrier_callback(struct rcu_head *notused)
1664 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1665 complete(&rcu_barrier_completion);
1669 * Called with preemption disabled, and from cross-cpu IRQ context.
1671 static void rcu_barrier_func(void *type)
1673 int cpu = smp_processor_id();
1674 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1675 void (*call_rcu_func)(struct rcu_head *head,
1676 void (*func)(struct rcu_head *head));
1678 atomic_inc(&rcu_barrier_cpu_count);
1679 call_rcu_func = type;
1680 call_rcu_func(head, rcu_barrier_callback);
1684 * Orchestrate the specified type of RCU barrier, waiting for all
1685 * RCU callbacks of the specified type to complete.
1687 static void _rcu_barrier(struct rcu_state *rsp,
1688 void (*call_rcu_func)(struct rcu_head *head,
1689 void (*func)(struct rcu_head *head)))
1691 BUG_ON(in_interrupt());
1692 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1693 mutex_lock(&rcu_barrier_mutex);
1694 init_completion(&rcu_barrier_completion);
1696 * Initialize rcu_barrier_cpu_count to 1, then invoke
1697 * rcu_barrier_func() on each CPU, so that each CPU also has
1698 * incremented rcu_barrier_cpu_count. Only then is it safe to
1699 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1700 * might complete its grace period before all of the other CPUs
1701 * did their increment, causing this function to return too
1702 * early.
1704 atomic_set(&rcu_barrier_cpu_count, 1);
1705 preempt_disable(); /* stop CPU_DYING from filling orphan_cbs_list */
1706 rcu_adopt_orphan_cbs(rsp);
1707 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1708 preempt_enable(); /* CPU_DYING can again fill orphan_cbs_list */
1709 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1710 complete(&rcu_barrier_completion);
1711 wait_for_completion(&rcu_barrier_completion);
1712 mutex_unlock(&rcu_barrier_mutex);
1716 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1718 void rcu_barrier_bh(void)
1720 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
1722 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1725 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1727 void rcu_barrier_sched(void)
1729 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
1731 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
1734 * Do boot-time initialization of a CPU's per-CPU RCU data.
1736 static void __init
1737 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
1739 unsigned long flags;
1740 int i;
1741 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1742 struct rcu_node *rnp = rcu_get_root(rsp);
1744 /* Set up local state, ensuring consistent view of global state. */
1745 raw_spin_lock_irqsave(&rnp->lock, flags);
1746 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1747 rdp->nxtlist = NULL;
1748 for (i = 0; i < RCU_NEXT_SIZE; i++)
1749 rdp->nxttail[i] = &rdp->nxtlist;
1750 rdp->qlen = 0;
1751 #ifdef CONFIG_NO_HZ
1752 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1753 #endif /* #ifdef CONFIG_NO_HZ */
1754 rdp->cpu = cpu;
1755 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1759 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1760 * offline event can be happening at a given time. Note also that we
1761 * can accept some slop in the rsp->completed access due to the fact
1762 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1764 static void __cpuinit
1765 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
1767 unsigned long flags;
1768 unsigned long mask;
1769 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1770 struct rcu_node *rnp = rcu_get_root(rsp);
1772 /* Set up local state, ensuring consistent view of global state. */
1773 raw_spin_lock_irqsave(&rnp->lock, flags);
1774 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1775 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1776 rdp->beenonline = 1; /* We have now been online. */
1777 rdp->preemptable = preemptable;
1778 rdp->qlen_last_fqs_check = 0;
1779 rdp->n_force_qs_snap = rsp->n_force_qs;
1780 rdp->blimit = blimit;
1781 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1784 * A new grace period might start here. If so, we won't be part
1785 * of it, but that is OK, as we are currently in a quiescent state.
1788 /* Exclude any attempts to start a new GP on large systems. */
1789 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1791 /* Add CPU to rcu_node bitmasks. */
1792 rnp = rdp->mynode;
1793 mask = rdp->grpmask;
1794 do {
1795 /* Exclude any attempts to start a new GP on small systems. */
1796 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1797 rnp->qsmaskinit |= mask;
1798 mask = rnp->grpmask;
1799 if (rnp == rdp->mynode) {
1800 rdp->gpnum = rnp->completed; /* if GP in progress... */
1801 rdp->completed = rnp->completed;
1802 rdp->passed_quiesc_completed = rnp->completed - 1;
1804 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
1805 rnp = rnp->parent;
1806 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1808 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1811 static void __cpuinit rcu_online_cpu(int cpu)
1813 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1814 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1815 rcu_preempt_init_percpu_data(cpu);
1819 * Handle CPU online/offline notification events.
1821 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1822 unsigned long action, void *hcpu)
1824 long cpu = (long)hcpu;
1826 switch (action) {
1827 case CPU_UP_PREPARE:
1828 case CPU_UP_PREPARE_FROZEN:
1829 rcu_online_cpu(cpu);
1830 break;
1831 case CPU_DYING:
1832 case CPU_DYING_FROZEN:
1834 * preempt_disable() in _rcu_barrier() prevents stop_machine(),
1835 * so when "on_each_cpu(rcu_barrier_func, (void *)type, 1);"
1836 * returns, all online cpus have queued rcu_barrier_func().
1837 * The dying CPU clears its cpu_online_mask bit and
1838 * moves all of its RCU callbacks to ->orphan_cbs_list
1839 * in the context of stop_machine(), so subsequent calls
1840 * to _rcu_barrier() will adopt these callbacks and only
1841 * then queue rcu_barrier_func() on all remaining CPUs.
1843 rcu_send_cbs_to_orphanage(&rcu_bh_state);
1844 rcu_send_cbs_to_orphanage(&rcu_sched_state);
1845 rcu_preempt_send_cbs_to_orphanage();
1846 break;
1847 case CPU_DEAD:
1848 case CPU_DEAD_FROZEN:
1849 case CPU_UP_CANCELED:
1850 case CPU_UP_CANCELED_FROZEN:
1851 rcu_offline_cpu(cpu);
1852 break;
1853 default:
1854 break;
1856 return NOTIFY_OK;
1860 * This function is invoked towards the end of the scheduler's initialization
1861 * process. Before this is called, the idle task might contain
1862 * RCU read-side critical sections (during which time, this idle
1863 * task is booting the system). After this function is called, the
1864 * idle tasks are prohibited from containing RCU read-side critical
1865 * sections. This function also enables RCU lockdep checking.
1867 void rcu_scheduler_starting(void)
1869 WARN_ON(num_online_cpus() != 1);
1870 WARN_ON(nr_context_switches() > 0);
1871 rcu_scheduler_active = 1;
1875 * Compute the per-level fanout, either using the exact fanout specified
1876 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1878 #ifdef CONFIG_RCU_FANOUT_EXACT
1879 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1881 int i;
1883 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1884 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1886 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1887 static void __init rcu_init_levelspread(struct rcu_state *rsp)
1889 int ccur;
1890 int cprv;
1891 int i;
1893 cprv = NR_CPUS;
1894 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1895 ccur = rsp->levelcnt[i];
1896 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1897 cprv = ccur;
1900 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1903 * Helper function for rcu_init() that initializes one rcu_state structure.
1905 static void __init rcu_init_one(struct rcu_state *rsp,
1906 struct rcu_data __percpu *rda)
1908 static char *buf[] = { "rcu_node_level_0",
1909 "rcu_node_level_1",
1910 "rcu_node_level_2",
1911 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
1912 int cpustride = 1;
1913 int i;
1914 int j;
1915 struct rcu_node *rnp;
1917 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
1919 /* Initialize the level-tracking arrays. */
1921 for (i = 1; i < NUM_RCU_LVLS; i++)
1922 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1923 rcu_init_levelspread(rsp);
1925 /* Initialize the elements themselves, starting from the leaves. */
1927 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1928 cpustride *= rsp->levelspread[i];
1929 rnp = rsp->level[i];
1930 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1931 raw_spin_lock_init(&rnp->lock);
1932 lockdep_set_class_and_name(&rnp->lock,
1933 &rcu_node_class[i], buf[i]);
1934 rnp->gpnum = 0;
1935 rnp->qsmask = 0;
1936 rnp->qsmaskinit = 0;
1937 rnp->grplo = j * cpustride;
1938 rnp->grphi = (j + 1) * cpustride - 1;
1939 if (rnp->grphi >= NR_CPUS)
1940 rnp->grphi = NR_CPUS - 1;
1941 if (i == 0) {
1942 rnp->grpnum = 0;
1943 rnp->grpmask = 0;
1944 rnp->parent = NULL;
1945 } else {
1946 rnp->grpnum = j % rsp->levelspread[i - 1];
1947 rnp->grpmask = 1UL << rnp->grpnum;
1948 rnp->parent = rsp->level[i - 1] +
1949 j / rsp->levelspread[i - 1];
1951 rnp->level = i;
1952 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1953 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
1954 INIT_LIST_HEAD(&rnp->blocked_tasks[2]);
1955 INIT_LIST_HEAD(&rnp->blocked_tasks[3]);
1959 rsp->rda = rda;
1960 rnp = rsp->level[NUM_RCU_LVLS - 1];
1961 for_each_possible_cpu(i) {
1962 while (i > rnp->grphi)
1963 rnp++;
1964 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
1965 rcu_boot_init_percpu_data(i, rsp);
1969 void __init rcu_init(void)
1971 int cpu;
1973 rcu_bootup_announce();
1974 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
1975 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
1976 __rcu_init_preempt();
1977 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
1980 * We don't need protection against CPU-hotplug here because
1981 * this is called early in boot, before either interrupts
1982 * or the scheduler are operational.
1984 cpu_notifier(rcu_cpu_notify, 0);
1985 for_each_online_cpu(cpu)
1986 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1987 check_cpu_stall_init();
1990 #include "rcutree_plugin.h"