Merge branch 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6/cjktty.git] / kernel / sched.c
blob33cf4a1cbcd18a1144a1ce999aadd0fa9bb9aefd
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 #ifdef CONFIG_SMP
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
126 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
135 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
140 #endif
142 static inline int rt_policy(int policy)
144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 return 1;
146 return 0;
149 static inline int task_has_rt_policy(struct task_struct *p)
151 return rt_policy(p->policy);
155 * This is the priority-queue data structure of the RT scheduling class:
157 struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
162 struct rt_bandwidth {
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
165 ktime_t rt_period;
166 u64 rt_runtime;
167 struct hrtimer rt_period_timer;
170 static struct rt_bandwidth def_rt_bandwidth;
172 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
174 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 ktime_t now;
179 int overrun;
180 int idle = 0;
182 for (;;) {
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
186 if (!overrun)
187 break;
189 idle = do_sched_rt_period_timer(rt_b, overrun);
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
195 static
196 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
201 spin_lock_init(&rt_b->rt_runtime_lock);
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
209 static inline int rt_bandwidth_enabled(void)
211 return sysctl_sched_rt_runtime >= 0;
214 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
216 ktime_t now;
218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 return;
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 hrtimer_start_expires(&rt_b->rt_period_timer,
232 HRTIMER_MODE_ABS);
234 spin_unlock(&rt_b->rt_runtime_lock);
237 #ifdef CONFIG_RT_GROUP_SCHED
238 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
240 hrtimer_cancel(&rt_b->rt_period_timer);
242 #endif
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
248 static DEFINE_MUTEX(sched_domains_mutex);
250 #ifdef CONFIG_GROUP_SCHED
252 #include <linux/cgroup.h>
254 struct cfs_rq;
256 static LIST_HEAD(task_groups);
258 /* task group related information */
259 struct task_group {
260 #ifdef CONFIG_CGROUP_SCHED
261 struct cgroup_subsys_state css;
262 #endif
264 #ifdef CONFIG_FAIR_GROUP_SCHED
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
270 #endif
272 #ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
276 struct rt_bandwidth rt_bandwidth;
277 #endif
279 struct rcu_head rcu;
280 struct list_head list;
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
287 #ifdef CONFIG_USER_SCHED
290 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
294 struct task_group root_task_group;
296 #ifdef CONFIG_FAIR_GROUP_SCHED
297 /* Default task group's sched entity on each cpu */
298 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299 /* Default task group's cfs_rq on each cpu */
300 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301 #endif /* CONFIG_FAIR_GROUP_SCHED */
303 #ifdef CONFIG_RT_GROUP_SCHED
304 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306 #endif /* CONFIG_RT_GROUP_SCHED */
307 #else /* !CONFIG_USER_SCHED */
308 #define root_task_group init_task_group
309 #endif /* CONFIG_USER_SCHED */
311 /* task_group_lock serializes add/remove of task groups and also changes to
312 * a task group's cpu shares.
314 static DEFINE_SPINLOCK(task_group_lock);
316 #ifdef CONFIG_FAIR_GROUP_SCHED
317 #ifdef CONFIG_USER_SCHED
318 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
319 #else /* !CONFIG_USER_SCHED */
320 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
321 #endif /* CONFIG_USER_SCHED */
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
331 #define MIN_SHARES 2
332 #define MAX_SHARES (1UL << 18)
334 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335 #endif
337 /* Default task group.
338 * Every task in system belong to this group at bootup.
340 struct task_group init_task_group;
342 /* return group to which a task belongs */
343 static inline struct task_group *task_group(struct task_struct *p)
345 struct task_group *tg;
347 #ifdef CONFIG_USER_SCHED
348 rcu_read_lock();
349 tg = __task_cred(p)->user->tg;
350 rcu_read_unlock();
351 #elif defined(CONFIG_CGROUP_SCHED)
352 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
353 struct task_group, css);
354 #else
355 tg = &init_task_group;
356 #endif
357 return tg;
360 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
361 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
363 #ifdef CONFIG_FAIR_GROUP_SCHED
364 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
365 p->se.parent = task_group(p)->se[cpu];
366 #endif
368 #ifdef CONFIG_RT_GROUP_SCHED
369 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
370 p->rt.parent = task_group(p)->rt_se[cpu];
371 #endif
374 #else
376 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
377 static inline struct task_group *task_group(struct task_struct *p)
379 return NULL;
382 #endif /* CONFIG_GROUP_SCHED */
384 /* CFS-related fields in a runqueue */
385 struct cfs_rq {
386 struct load_weight load;
387 unsigned long nr_running;
389 u64 exec_clock;
390 u64 min_vruntime;
392 struct rb_root tasks_timeline;
393 struct rb_node *rb_leftmost;
395 struct list_head tasks;
396 struct list_head *balance_iterator;
399 * 'curr' points to currently running entity on this cfs_rq.
400 * It is set to NULL otherwise (i.e when none are currently running).
402 struct sched_entity *curr, *next, *last;
404 unsigned int nr_spread_over;
406 #ifdef CONFIG_FAIR_GROUP_SCHED
407 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
410 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
411 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
412 * (like users, containers etc.)
414 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
415 * list is used during load balance.
417 struct list_head leaf_cfs_rq_list;
418 struct task_group *tg; /* group that "owns" this runqueue */
420 #ifdef CONFIG_SMP
422 * the part of load.weight contributed by tasks
424 unsigned long task_weight;
427 * h_load = weight * f(tg)
429 * Where f(tg) is the recursive weight fraction assigned to
430 * this group.
432 unsigned long h_load;
435 * this cpu's part of tg->shares
437 unsigned long shares;
440 * load.weight at the time we set shares
442 unsigned long rq_weight;
443 #endif
444 #endif
447 /* Real-Time classes' related field in a runqueue: */
448 struct rt_rq {
449 struct rt_prio_array active;
450 unsigned long rt_nr_running;
451 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
452 int highest_prio; /* highest queued rt task prio */
453 #endif
454 #ifdef CONFIG_SMP
455 unsigned long rt_nr_migratory;
456 int overloaded;
457 #endif
458 int rt_throttled;
459 u64 rt_time;
460 u64 rt_runtime;
461 /* Nests inside the rq lock: */
462 spinlock_t rt_runtime_lock;
464 #ifdef CONFIG_RT_GROUP_SCHED
465 unsigned long rt_nr_boosted;
467 struct rq *rq;
468 struct list_head leaf_rt_rq_list;
469 struct task_group *tg;
470 struct sched_rt_entity *rt_se;
471 #endif
474 #ifdef CONFIG_SMP
477 * We add the notion of a root-domain which will be used to define per-domain
478 * variables. Each exclusive cpuset essentially defines an island domain by
479 * fully partitioning the member cpus from any other cpuset. Whenever a new
480 * exclusive cpuset is created, we also create and attach a new root-domain
481 * object.
484 struct root_domain {
485 atomic_t refcount;
486 cpumask_t span;
487 cpumask_t online;
490 * The "RT overload" flag: it gets set if a CPU has more than
491 * one runnable RT task.
493 cpumask_t rto_mask;
494 atomic_t rto_count;
495 #ifdef CONFIG_SMP
496 struct cpupri cpupri;
497 #endif
501 * By default the system creates a single root-domain with all cpus as
502 * members (mimicking the global state we have today).
504 static struct root_domain def_root_domain;
506 #endif
509 * This is the main, per-CPU runqueue data structure.
511 * Locking rule: those places that want to lock multiple runqueues
512 * (such as the load balancing or the thread migration code), lock
513 * acquire operations must be ordered by ascending &runqueue.
515 struct rq {
516 /* runqueue lock: */
517 spinlock_t lock;
520 * nr_running and cpu_load should be in the same cacheline because
521 * remote CPUs use both these fields when doing load calculation.
523 unsigned long nr_running;
524 #define CPU_LOAD_IDX_MAX 5
525 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
526 unsigned char idle_at_tick;
527 #ifdef CONFIG_NO_HZ
528 unsigned long last_tick_seen;
529 unsigned char in_nohz_recently;
530 #endif
531 /* capture load from *all* tasks on this cpu: */
532 struct load_weight load;
533 unsigned long nr_load_updates;
534 u64 nr_switches;
536 struct cfs_rq cfs;
537 struct rt_rq rt;
539 #ifdef CONFIG_FAIR_GROUP_SCHED
540 /* list of leaf cfs_rq on this cpu: */
541 struct list_head leaf_cfs_rq_list;
542 #endif
543 #ifdef CONFIG_RT_GROUP_SCHED
544 struct list_head leaf_rt_rq_list;
545 #endif
548 * This is part of a global counter where only the total sum
549 * over all CPUs matters. A task can increase this counter on
550 * one CPU and if it got migrated afterwards it may decrease
551 * it on another CPU. Always updated under the runqueue lock:
553 unsigned long nr_uninterruptible;
555 struct task_struct *curr, *idle;
556 unsigned long next_balance;
557 struct mm_struct *prev_mm;
559 u64 clock;
561 atomic_t nr_iowait;
563 #ifdef CONFIG_SMP
564 struct root_domain *rd;
565 struct sched_domain *sd;
567 /* For active balancing */
568 int active_balance;
569 int push_cpu;
570 /* cpu of this runqueue: */
571 int cpu;
572 int online;
574 unsigned long avg_load_per_task;
576 struct task_struct *migration_thread;
577 struct list_head migration_queue;
578 #endif
580 #ifdef CONFIG_SCHED_HRTICK
581 #ifdef CONFIG_SMP
582 int hrtick_csd_pending;
583 struct call_single_data hrtick_csd;
584 #endif
585 struct hrtimer hrtick_timer;
586 #endif
588 #ifdef CONFIG_SCHEDSTATS
589 /* latency stats */
590 struct sched_info rq_sched_info;
592 /* sys_sched_yield() stats */
593 unsigned int yld_exp_empty;
594 unsigned int yld_act_empty;
595 unsigned int yld_both_empty;
596 unsigned int yld_count;
598 /* schedule() stats */
599 unsigned int sched_switch;
600 unsigned int sched_count;
601 unsigned int sched_goidle;
603 /* try_to_wake_up() stats */
604 unsigned int ttwu_count;
605 unsigned int ttwu_local;
607 /* BKL stats */
608 unsigned int bkl_count;
609 #endif
612 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
614 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
616 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
619 static inline int cpu_of(struct rq *rq)
621 #ifdef CONFIG_SMP
622 return rq->cpu;
623 #else
624 return 0;
625 #endif
629 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
630 * See detach_destroy_domains: synchronize_sched for details.
632 * The domain tree of any CPU may only be accessed from within
633 * preempt-disabled sections.
635 #define for_each_domain(cpu, __sd) \
636 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
638 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
639 #define this_rq() (&__get_cpu_var(runqueues))
640 #define task_rq(p) cpu_rq(task_cpu(p))
641 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
643 static inline void update_rq_clock(struct rq *rq)
645 rq->clock = sched_clock_cpu(cpu_of(rq));
649 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
651 #ifdef CONFIG_SCHED_DEBUG
652 # define const_debug __read_mostly
653 #else
654 # define const_debug static const
655 #endif
658 * runqueue_is_locked
660 * Returns true if the current cpu runqueue is locked.
661 * This interface allows printk to be called with the runqueue lock
662 * held and know whether or not it is OK to wake up the klogd.
664 int runqueue_is_locked(void)
666 int cpu = get_cpu();
667 struct rq *rq = cpu_rq(cpu);
668 int ret;
670 ret = spin_is_locked(&rq->lock);
671 put_cpu();
672 return ret;
676 * Debugging: various feature bits
679 #define SCHED_FEAT(name, enabled) \
680 __SCHED_FEAT_##name ,
682 enum {
683 #include "sched_features.h"
686 #undef SCHED_FEAT
688 #define SCHED_FEAT(name, enabled) \
689 (1UL << __SCHED_FEAT_##name) * enabled |
691 const_debug unsigned int sysctl_sched_features =
692 #include "sched_features.h"
695 #undef SCHED_FEAT
697 #ifdef CONFIG_SCHED_DEBUG
698 #define SCHED_FEAT(name, enabled) \
699 #name ,
701 static __read_mostly char *sched_feat_names[] = {
702 #include "sched_features.h"
703 NULL
706 #undef SCHED_FEAT
708 static int sched_feat_open(struct inode *inode, struct file *filp)
710 filp->private_data = inode->i_private;
711 return 0;
714 static ssize_t
715 sched_feat_read(struct file *filp, char __user *ubuf,
716 size_t cnt, loff_t *ppos)
718 char *buf;
719 int r = 0;
720 int len = 0;
721 int i;
723 for (i = 0; sched_feat_names[i]; i++) {
724 len += strlen(sched_feat_names[i]);
725 len += 4;
728 buf = kmalloc(len + 2, GFP_KERNEL);
729 if (!buf)
730 return -ENOMEM;
732 for (i = 0; sched_feat_names[i]; i++) {
733 if (sysctl_sched_features & (1UL << i))
734 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
735 else
736 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
739 r += sprintf(buf + r, "\n");
740 WARN_ON(r >= len + 2);
742 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
744 kfree(buf);
746 return r;
749 static ssize_t
750 sched_feat_write(struct file *filp, const char __user *ubuf,
751 size_t cnt, loff_t *ppos)
753 char buf[64];
754 char *cmp = buf;
755 int neg = 0;
756 int i;
758 if (cnt > 63)
759 cnt = 63;
761 if (copy_from_user(&buf, ubuf, cnt))
762 return -EFAULT;
764 buf[cnt] = 0;
766 if (strncmp(buf, "NO_", 3) == 0) {
767 neg = 1;
768 cmp += 3;
771 for (i = 0; sched_feat_names[i]; i++) {
772 int len = strlen(sched_feat_names[i]);
774 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
775 if (neg)
776 sysctl_sched_features &= ~(1UL << i);
777 else
778 sysctl_sched_features |= (1UL << i);
779 break;
783 if (!sched_feat_names[i])
784 return -EINVAL;
786 filp->f_pos += cnt;
788 return cnt;
791 static struct file_operations sched_feat_fops = {
792 .open = sched_feat_open,
793 .read = sched_feat_read,
794 .write = sched_feat_write,
797 static __init int sched_init_debug(void)
799 debugfs_create_file("sched_features", 0644, NULL, NULL,
800 &sched_feat_fops);
802 return 0;
804 late_initcall(sched_init_debug);
806 #endif
808 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
811 * Number of tasks to iterate in a single balance run.
812 * Limited because this is done with IRQs disabled.
814 const_debug unsigned int sysctl_sched_nr_migrate = 32;
817 * ratelimit for updating the group shares.
818 * default: 0.25ms
820 unsigned int sysctl_sched_shares_ratelimit = 250000;
823 * Inject some fuzzyness into changing the per-cpu group shares
824 * this avoids remote rq-locks at the expense of fairness.
825 * default: 4
827 unsigned int sysctl_sched_shares_thresh = 4;
830 * period over which we measure -rt task cpu usage in us.
831 * default: 1s
833 unsigned int sysctl_sched_rt_period = 1000000;
835 static __read_mostly int scheduler_running;
838 * part of the period that we allow rt tasks to run in us.
839 * default: 0.95s
841 int sysctl_sched_rt_runtime = 950000;
843 static inline u64 global_rt_period(void)
845 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
848 static inline u64 global_rt_runtime(void)
850 if (sysctl_sched_rt_runtime < 0)
851 return RUNTIME_INF;
853 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
856 #ifndef prepare_arch_switch
857 # define prepare_arch_switch(next) do { } while (0)
858 #endif
859 #ifndef finish_arch_switch
860 # define finish_arch_switch(prev) do { } while (0)
861 #endif
863 static inline int task_current(struct rq *rq, struct task_struct *p)
865 return rq->curr == p;
868 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
869 static inline int task_running(struct rq *rq, struct task_struct *p)
871 return task_current(rq, p);
874 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
878 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
880 #ifdef CONFIG_DEBUG_SPINLOCK
881 /* this is a valid case when another task releases the spinlock */
882 rq->lock.owner = current;
883 #endif
885 * If we are tracking spinlock dependencies then we have to
886 * fix up the runqueue lock - which gets 'carried over' from
887 * prev into current:
889 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
891 spin_unlock_irq(&rq->lock);
894 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
895 static inline int task_running(struct rq *rq, struct task_struct *p)
897 #ifdef CONFIG_SMP
898 return p->oncpu;
899 #else
900 return task_current(rq, p);
901 #endif
904 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
906 #ifdef CONFIG_SMP
908 * We can optimise this out completely for !SMP, because the
909 * SMP rebalancing from interrupt is the only thing that cares
910 * here.
912 next->oncpu = 1;
913 #endif
914 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
915 spin_unlock_irq(&rq->lock);
916 #else
917 spin_unlock(&rq->lock);
918 #endif
921 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
923 #ifdef CONFIG_SMP
925 * After ->oncpu is cleared, the task can be moved to a different CPU.
926 * We must ensure this doesn't happen until the switch is completely
927 * finished.
929 smp_wmb();
930 prev->oncpu = 0;
931 #endif
932 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
933 local_irq_enable();
934 #endif
936 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
939 * __task_rq_lock - lock the runqueue a given task resides on.
940 * Must be called interrupts disabled.
942 static inline struct rq *__task_rq_lock(struct task_struct *p)
943 __acquires(rq->lock)
945 for (;;) {
946 struct rq *rq = task_rq(p);
947 spin_lock(&rq->lock);
948 if (likely(rq == task_rq(p)))
949 return rq;
950 spin_unlock(&rq->lock);
955 * task_rq_lock - lock the runqueue a given task resides on and disable
956 * interrupts. Note the ordering: we can safely lookup the task_rq without
957 * explicitly disabling preemption.
959 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
960 __acquires(rq->lock)
962 struct rq *rq;
964 for (;;) {
965 local_irq_save(*flags);
966 rq = task_rq(p);
967 spin_lock(&rq->lock);
968 if (likely(rq == task_rq(p)))
969 return rq;
970 spin_unlock_irqrestore(&rq->lock, *flags);
974 void task_rq_unlock_wait(struct task_struct *p)
976 struct rq *rq = task_rq(p);
978 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
979 spin_unlock_wait(&rq->lock);
982 static void __task_rq_unlock(struct rq *rq)
983 __releases(rq->lock)
985 spin_unlock(&rq->lock);
988 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
989 __releases(rq->lock)
991 spin_unlock_irqrestore(&rq->lock, *flags);
995 * this_rq_lock - lock this runqueue and disable interrupts.
997 static struct rq *this_rq_lock(void)
998 __acquires(rq->lock)
1000 struct rq *rq;
1002 local_irq_disable();
1003 rq = this_rq();
1004 spin_lock(&rq->lock);
1006 return rq;
1009 #ifdef CONFIG_SCHED_HRTICK
1011 * Use HR-timers to deliver accurate preemption points.
1013 * Its all a bit involved since we cannot program an hrt while holding the
1014 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1015 * reschedule event.
1017 * When we get rescheduled we reprogram the hrtick_timer outside of the
1018 * rq->lock.
1022 * Use hrtick when:
1023 * - enabled by features
1024 * - hrtimer is actually high res
1026 static inline int hrtick_enabled(struct rq *rq)
1028 if (!sched_feat(HRTICK))
1029 return 0;
1030 if (!cpu_active(cpu_of(rq)))
1031 return 0;
1032 return hrtimer_is_hres_active(&rq->hrtick_timer);
1035 static void hrtick_clear(struct rq *rq)
1037 if (hrtimer_active(&rq->hrtick_timer))
1038 hrtimer_cancel(&rq->hrtick_timer);
1042 * High-resolution timer tick.
1043 * Runs from hardirq context with interrupts disabled.
1045 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1047 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1049 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1051 spin_lock(&rq->lock);
1052 update_rq_clock(rq);
1053 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1054 spin_unlock(&rq->lock);
1056 return HRTIMER_NORESTART;
1059 #ifdef CONFIG_SMP
1061 * called from hardirq (IPI) context
1063 static void __hrtick_start(void *arg)
1065 struct rq *rq = arg;
1067 spin_lock(&rq->lock);
1068 hrtimer_restart(&rq->hrtick_timer);
1069 rq->hrtick_csd_pending = 0;
1070 spin_unlock(&rq->lock);
1074 * Called to set the hrtick timer state.
1076 * called with rq->lock held and irqs disabled
1078 static void hrtick_start(struct rq *rq, u64 delay)
1080 struct hrtimer *timer = &rq->hrtick_timer;
1081 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1083 hrtimer_set_expires(timer, time);
1085 if (rq == this_rq()) {
1086 hrtimer_restart(timer);
1087 } else if (!rq->hrtick_csd_pending) {
1088 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1089 rq->hrtick_csd_pending = 1;
1093 static int
1094 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1096 int cpu = (int)(long)hcpu;
1098 switch (action) {
1099 case CPU_UP_CANCELED:
1100 case CPU_UP_CANCELED_FROZEN:
1101 case CPU_DOWN_PREPARE:
1102 case CPU_DOWN_PREPARE_FROZEN:
1103 case CPU_DEAD:
1104 case CPU_DEAD_FROZEN:
1105 hrtick_clear(cpu_rq(cpu));
1106 return NOTIFY_OK;
1109 return NOTIFY_DONE;
1112 static __init void init_hrtick(void)
1114 hotcpu_notifier(hotplug_hrtick, 0);
1116 #else
1118 * Called to set the hrtick timer state.
1120 * called with rq->lock held and irqs disabled
1122 static void hrtick_start(struct rq *rq, u64 delay)
1124 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1127 static inline void init_hrtick(void)
1130 #endif /* CONFIG_SMP */
1132 static void init_rq_hrtick(struct rq *rq)
1134 #ifdef CONFIG_SMP
1135 rq->hrtick_csd_pending = 0;
1137 rq->hrtick_csd.flags = 0;
1138 rq->hrtick_csd.func = __hrtick_start;
1139 rq->hrtick_csd.info = rq;
1140 #endif
1142 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1143 rq->hrtick_timer.function = hrtick;
1144 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1146 #else /* CONFIG_SCHED_HRTICK */
1147 static inline void hrtick_clear(struct rq *rq)
1151 static inline void init_rq_hrtick(struct rq *rq)
1155 static inline void init_hrtick(void)
1158 #endif /* CONFIG_SCHED_HRTICK */
1161 * resched_task - mark a task 'to be rescheduled now'.
1163 * On UP this means the setting of the need_resched flag, on SMP it
1164 * might also involve a cross-CPU call to trigger the scheduler on
1165 * the target CPU.
1167 #ifdef CONFIG_SMP
1169 #ifndef tsk_is_polling
1170 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1171 #endif
1173 static void resched_task(struct task_struct *p)
1175 int cpu;
1177 assert_spin_locked(&task_rq(p)->lock);
1179 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1180 return;
1182 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1184 cpu = task_cpu(p);
1185 if (cpu == smp_processor_id())
1186 return;
1188 /* NEED_RESCHED must be visible before we test polling */
1189 smp_mb();
1190 if (!tsk_is_polling(p))
1191 smp_send_reschedule(cpu);
1194 static void resched_cpu(int cpu)
1196 struct rq *rq = cpu_rq(cpu);
1197 unsigned long flags;
1199 if (!spin_trylock_irqsave(&rq->lock, flags))
1200 return;
1201 resched_task(cpu_curr(cpu));
1202 spin_unlock_irqrestore(&rq->lock, flags);
1205 #ifdef CONFIG_NO_HZ
1207 * When add_timer_on() enqueues a timer into the timer wheel of an
1208 * idle CPU then this timer might expire before the next timer event
1209 * which is scheduled to wake up that CPU. In case of a completely
1210 * idle system the next event might even be infinite time into the
1211 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1212 * leaves the inner idle loop so the newly added timer is taken into
1213 * account when the CPU goes back to idle and evaluates the timer
1214 * wheel for the next timer event.
1216 void wake_up_idle_cpu(int cpu)
1218 struct rq *rq = cpu_rq(cpu);
1220 if (cpu == smp_processor_id())
1221 return;
1224 * This is safe, as this function is called with the timer
1225 * wheel base lock of (cpu) held. When the CPU is on the way
1226 * to idle and has not yet set rq->curr to idle then it will
1227 * be serialized on the timer wheel base lock and take the new
1228 * timer into account automatically.
1230 if (rq->curr != rq->idle)
1231 return;
1234 * We can set TIF_RESCHED on the idle task of the other CPU
1235 * lockless. The worst case is that the other CPU runs the
1236 * idle task through an additional NOOP schedule()
1238 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1240 /* NEED_RESCHED must be visible before we test polling */
1241 smp_mb();
1242 if (!tsk_is_polling(rq->idle))
1243 smp_send_reschedule(cpu);
1245 #endif /* CONFIG_NO_HZ */
1247 #else /* !CONFIG_SMP */
1248 static void resched_task(struct task_struct *p)
1250 assert_spin_locked(&task_rq(p)->lock);
1251 set_tsk_need_resched(p);
1253 #endif /* CONFIG_SMP */
1255 #if BITS_PER_LONG == 32
1256 # define WMULT_CONST (~0UL)
1257 #else
1258 # define WMULT_CONST (1UL << 32)
1259 #endif
1261 #define WMULT_SHIFT 32
1264 * Shift right and round:
1266 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1269 * delta *= weight / lw
1271 static unsigned long
1272 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1273 struct load_weight *lw)
1275 u64 tmp;
1277 if (!lw->inv_weight) {
1278 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1279 lw->inv_weight = 1;
1280 else
1281 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1282 / (lw->weight+1);
1285 tmp = (u64)delta_exec * weight;
1287 * Check whether we'd overflow the 64-bit multiplication:
1289 if (unlikely(tmp > WMULT_CONST))
1290 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1291 WMULT_SHIFT/2);
1292 else
1293 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1295 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1298 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1300 lw->weight += inc;
1301 lw->inv_weight = 0;
1304 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1306 lw->weight -= dec;
1307 lw->inv_weight = 0;
1311 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1312 * of tasks with abnormal "nice" values across CPUs the contribution that
1313 * each task makes to its run queue's load is weighted according to its
1314 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1315 * scaled version of the new time slice allocation that they receive on time
1316 * slice expiry etc.
1319 #define WEIGHT_IDLEPRIO 2
1320 #define WMULT_IDLEPRIO (1 << 31)
1323 * Nice levels are multiplicative, with a gentle 10% change for every
1324 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1325 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1326 * that remained on nice 0.
1328 * The "10% effect" is relative and cumulative: from _any_ nice level,
1329 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1330 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1331 * If a task goes up by ~10% and another task goes down by ~10% then
1332 * the relative distance between them is ~25%.)
1334 static const int prio_to_weight[40] = {
1335 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1336 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1337 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1338 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1339 /* 0 */ 1024, 820, 655, 526, 423,
1340 /* 5 */ 335, 272, 215, 172, 137,
1341 /* 10 */ 110, 87, 70, 56, 45,
1342 /* 15 */ 36, 29, 23, 18, 15,
1346 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1348 * In cases where the weight does not change often, we can use the
1349 * precalculated inverse to speed up arithmetics by turning divisions
1350 * into multiplications:
1352 static const u32 prio_to_wmult[40] = {
1353 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1354 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1355 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1356 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1357 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1358 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1359 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1360 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1363 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1366 * runqueue iterator, to support SMP load-balancing between different
1367 * scheduling classes, without having to expose their internal data
1368 * structures to the load-balancing proper:
1370 struct rq_iterator {
1371 void *arg;
1372 struct task_struct *(*start)(void *);
1373 struct task_struct *(*next)(void *);
1376 #ifdef CONFIG_SMP
1377 static unsigned long
1378 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1379 unsigned long max_load_move, struct sched_domain *sd,
1380 enum cpu_idle_type idle, int *all_pinned,
1381 int *this_best_prio, struct rq_iterator *iterator);
1383 static int
1384 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1385 struct sched_domain *sd, enum cpu_idle_type idle,
1386 struct rq_iterator *iterator);
1387 #endif
1389 #ifdef CONFIG_CGROUP_CPUACCT
1390 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1391 #else
1392 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1393 #endif
1395 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1397 update_load_add(&rq->load, load);
1400 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1402 update_load_sub(&rq->load, load);
1405 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1406 typedef int (*tg_visitor)(struct task_group *, void *);
1409 * Iterate the full tree, calling @down when first entering a node and @up when
1410 * leaving it for the final time.
1412 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1414 struct task_group *parent, *child;
1415 int ret;
1417 rcu_read_lock();
1418 parent = &root_task_group;
1419 down:
1420 ret = (*down)(parent, data);
1421 if (ret)
1422 goto out_unlock;
1423 list_for_each_entry_rcu(child, &parent->children, siblings) {
1424 parent = child;
1425 goto down;
1428 continue;
1430 ret = (*up)(parent, data);
1431 if (ret)
1432 goto out_unlock;
1434 child = parent;
1435 parent = parent->parent;
1436 if (parent)
1437 goto up;
1438 out_unlock:
1439 rcu_read_unlock();
1441 return ret;
1444 static int tg_nop(struct task_group *tg, void *data)
1446 return 0;
1448 #endif
1450 #ifdef CONFIG_SMP
1451 static unsigned long source_load(int cpu, int type);
1452 static unsigned long target_load(int cpu, int type);
1453 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1455 static unsigned long cpu_avg_load_per_task(int cpu)
1457 struct rq *rq = cpu_rq(cpu);
1458 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1460 if (nr_running)
1461 rq->avg_load_per_task = rq->load.weight / nr_running;
1462 else
1463 rq->avg_load_per_task = 0;
1465 return rq->avg_load_per_task;
1468 #ifdef CONFIG_FAIR_GROUP_SCHED
1470 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1473 * Calculate and set the cpu's group shares.
1475 static void
1476 update_group_shares_cpu(struct task_group *tg, int cpu,
1477 unsigned long sd_shares, unsigned long sd_rq_weight)
1479 int boost = 0;
1480 unsigned long shares;
1481 unsigned long rq_weight;
1483 if (!tg->se[cpu])
1484 return;
1486 rq_weight = tg->cfs_rq[cpu]->load.weight;
1489 * If there are currently no tasks on the cpu pretend there is one of
1490 * average load so that when a new task gets to run here it will not
1491 * get delayed by group starvation.
1493 if (!rq_weight) {
1494 boost = 1;
1495 rq_weight = NICE_0_LOAD;
1498 if (unlikely(rq_weight > sd_rq_weight))
1499 rq_weight = sd_rq_weight;
1502 * \Sum shares * rq_weight
1503 * shares = -----------------------
1504 * \Sum rq_weight
1507 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1508 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1510 if (abs(shares - tg->se[cpu]->load.weight) >
1511 sysctl_sched_shares_thresh) {
1512 struct rq *rq = cpu_rq(cpu);
1513 unsigned long flags;
1515 spin_lock_irqsave(&rq->lock, flags);
1517 * record the actual number of shares, not the boosted amount.
1519 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1520 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1522 __set_se_shares(tg->se[cpu], shares);
1523 spin_unlock_irqrestore(&rq->lock, flags);
1528 * Re-compute the task group their per cpu shares over the given domain.
1529 * This needs to be done in a bottom-up fashion because the rq weight of a
1530 * parent group depends on the shares of its child groups.
1532 static int tg_shares_up(struct task_group *tg, void *data)
1534 unsigned long rq_weight = 0;
1535 unsigned long shares = 0;
1536 struct sched_domain *sd = data;
1537 int i;
1539 for_each_cpu_mask(i, sd->span) {
1540 rq_weight += tg->cfs_rq[i]->load.weight;
1541 shares += tg->cfs_rq[i]->shares;
1544 if ((!shares && rq_weight) || shares > tg->shares)
1545 shares = tg->shares;
1547 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1548 shares = tg->shares;
1550 if (!rq_weight)
1551 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1553 for_each_cpu_mask(i, sd->span)
1554 update_group_shares_cpu(tg, i, shares, rq_weight);
1556 return 0;
1560 * Compute the cpu's hierarchical load factor for each task group.
1561 * This needs to be done in a top-down fashion because the load of a child
1562 * group is a fraction of its parents load.
1564 static int tg_load_down(struct task_group *tg, void *data)
1566 unsigned long load;
1567 long cpu = (long)data;
1569 if (!tg->parent) {
1570 load = cpu_rq(cpu)->load.weight;
1571 } else {
1572 load = tg->parent->cfs_rq[cpu]->h_load;
1573 load *= tg->cfs_rq[cpu]->shares;
1574 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1577 tg->cfs_rq[cpu]->h_load = load;
1579 return 0;
1582 static void update_shares(struct sched_domain *sd)
1584 u64 now = cpu_clock(raw_smp_processor_id());
1585 s64 elapsed = now - sd->last_update;
1587 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1588 sd->last_update = now;
1589 walk_tg_tree(tg_nop, tg_shares_up, sd);
1593 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1595 spin_unlock(&rq->lock);
1596 update_shares(sd);
1597 spin_lock(&rq->lock);
1600 static void update_h_load(long cpu)
1602 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1605 #else
1607 static inline void update_shares(struct sched_domain *sd)
1611 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1615 #endif
1617 #endif
1619 #ifdef CONFIG_FAIR_GROUP_SCHED
1620 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1622 #ifdef CONFIG_SMP
1623 cfs_rq->shares = shares;
1624 #endif
1626 #endif
1628 #include "sched_stats.h"
1629 #include "sched_idletask.c"
1630 #include "sched_fair.c"
1631 #include "sched_rt.c"
1632 #ifdef CONFIG_SCHED_DEBUG
1633 # include "sched_debug.c"
1634 #endif
1636 #define sched_class_highest (&rt_sched_class)
1637 #define for_each_class(class) \
1638 for (class = sched_class_highest; class; class = class->next)
1640 static void inc_nr_running(struct rq *rq)
1642 rq->nr_running++;
1645 static void dec_nr_running(struct rq *rq)
1647 rq->nr_running--;
1650 static void set_load_weight(struct task_struct *p)
1652 if (task_has_rt_policy(p)) {
1653 p->se.load.weight = prio_to_weight[0] * 2;
1654 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1655 return;
1659 * SCHED_IDLE tasks get minimal weight:
1661 if (p->policy == SCHED_IDLE) {
1662 p->se.load.weight = WEIGHT_IDLEPRIO;
1663 p->se.load.inv_weight = WMULT_IDLEPRIO;
1664 return;
1667 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1668 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1671 static void update_avg(u64 *avg, u64 sample)
1673 s64 diff = sample - *avg;
1674 *avg += diff >> 3;
1677 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1679 sched_info_queued(p);
1680 p->sched_class->enqueue_task(rq, p, wakeup);
1681 p->se.on_rq = 1;
1684 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1686 if (sleep && p->se.last_wakeup) {
1687 update_avg(&p->se.avg_overlap,
1688 p->se.sum_exec_runtime - p->se.last_wakeup);
1689 p->se.last_wakeup = 0;
1692 sched_info_dequeued(p);
1693 p->sched_class->dequeue_task(rq, p, sleep);
1694 p->se.on_rq = 0;
1698 * __normal_prio - return the priority that is based on the static prio
1700 static inline int __normal_prio(struct task_struct *p)
1702 return p->static_prio;
1706 * Calculate the expected normal priority: i.e. priority
1707 * without taking RT-inheritance into account. Might be
1708 * boosted by interactivity modifiers. Changes upon fork,
1709 * setprio syscalls, and whenever the interactivity
1710 * estimator recalculates.
1712 static inline int normal_prio(struct task_struct *p)
1714 int prio;
1716 if (task_has_rt_policy(p))
1717 prio = MAX_RT_PRIO-1 - p->rt_priority;
1718 else
1719 prio = __normal_prio(p);
1720 return prio;
1724 * Calculate the current priority, i.e. the priority
1725 * taken into account by the scheduler. This value might
1726 * be boosted by RT tasks, or might be boosted by
1727 * interactivity modifiers. Will be RT if the task got
1728 * RT-boosted. If not then it returns p->normal_prio.
1730 static int effective_prio(struct task_struct *p)
1732 p->normal_prio = normal_prio(p);
1734 * If we are RT tasks or we were boosted to RT priority,
1735 * keep the priority unchanged. Otherwise, update priority
1736 * to the normal priority:
1738 if (!rt_prio(p->prio))
1739 return p->normal_prio;
1740 return p->prio;
1744 * activate_task - move a task to the runqueue.
1746 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1748 if (task_contributes_to_load(p))
1749 rq->nr_uninterruptible--;
1751 enqueue_task(rq, p, wakeup);
1752 inc_nr_running(rq);
1756 * deactivate_task - remove a task from the runqueue.
1758 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1760 if (task_contributes_to_load(p))
1761 rq->nr_uninterruptible++;
1763 dequeue_task(rq, p, sleep);
1764 dec_nr_running(rq);
1768 * task_curr - is this task currently executing on a CPU?
1769 * @p: the task in question.
1771 inline int task_curr(const struct task_struct *p)
1773 return cpu_curr(task_cpu(p)) == p;
1776 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1778 set_task_rq(p, cpu);
1779 #ifdef CONFIG_SMP
1781 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1782 * successfuly executed on another CPU. We must ensure that updates of
1783 * per-task data have been completed by this moment.
1785 smp_wmb();
1786 task_thread_info(p)->cpu = cpu;
1787 #endif
1790 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1791 const struct sched_class *prev_class,
1792 int oldprio, int running)
1794 if (prev_class != p->sched_class) {
1795 if (prev_class->switched_from)
1796 prev_class->switched_from(rq, p, running);
1797 p->sched_class->switched_to(rq, p, running);
1798 } else
1799 p->sched_class->prio_changed(rq, p, oldprio, running);
1802 #ifdef CONFIG_SMP
1804 /* Used instead of source_load when we know the type == 0 */
1805 static unsigned long weighted_cpuload(const int cpu)
1807 return cpu_rq(cpu)->load.weight;
1811 * Is this task likely cache-hot:
1813 static int
1814 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1816 s64 delta;
1819 * Buddy candidates are cache hot:
1821 if (sched_feat(CACHE_HOT_BUDDY) &&
1822 (&p->se == cfs_rq_of(&p->se)->next ||
1823 &p->se == cfs_rq_of(&p->se)->last))
1824 return 1;
1826 if (p->sched_class != &fair_sched_class)
1827 return 0;
1829 if (sysctl_sched_migration_cost == -1)
1830 return 1;
1831 if (sysctl_sched_migration_cost == 0)
1832 return 0;
1834 delta = now - p->se.exec_start;
1836 return delta < (s64)sysctl_sched_migration_cost;
1840 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1842 int old_cpu = task_cpu(p);
1843 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1844 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1845 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1846 u64 clock_offset;
1848 clock_offset = old_rq->clock - new_rq->clock;
1850 #ifdef CONFIG_SCHEDSTATS
1851 if (p->se.wait_start)
1852 p->se.wait_start -= clock_offset;
1853 if (p->se.sleep_start)
1854 p->se.sleep_start -= clock_offset;
1855 if (p->se.block_start)
1856 p->se.block_start -= clock_offset;
1857 if (old_cpu != new_cpu) {
1858 schedstat_inc(p, se.nr_migrations);
1859 if (task_hot(p, old_rq->clock, NULL))
1860 schedstat_inc(p, se.nr_forced2_migrations);
1862 #endif
1863 p->se.vruntime -= old_cfsrq->min_vruntime -
1864 new_cfsrq->min_vruntime;
1866 __set_task_cpu(p, new_cpu);
1869 struct migration_req {
1870 struct list_head list;
1872 struct task_struct *task;
1873 int dest_cpu;
1875 struct completion done;
1879 * The task's runqueue lock must be held.
1880 * Returns true if you have to wait for migration thread.
1882 static int
1883 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1885 struct rq *rq = task_rq(p);
1888 * If the task is not on a runqueue (and not running), then
1889 * it is sufficient to simply update the task's cpu field.
1891 if (!p->se.on_rq && !task_running(rq, p)) {
1892 set_task_cpu(p, dest_cpu);
1893 return 0;
1896 init_completion(&req->done);
1897 req->task = p;
1898 req->dest_cpu = dest_cpu;
1899 list_add(&req->list, &rq->migration_queue);
1901 return 1;
1905 * wait_task_inactive - wait for a thread to unschedule.
1907 * If @match_state is nonzero, it's the @p->state value just checked and
1908 * not expected to change. If it changes, i.e. @p might have woken up,
1909 * then return zero. When we succeed in waiting for @p to be off its CPU,
1910 * we return a positive number (its total switch count). If a second call
1911 * a short while later returns the same number, the caller can be sure that
1912 * @p has remained unscheduled the whole time.
1914 * The caller must ensure that the task *will* unschedule sometime soon,
1915 * else this function might spin for a *long* time. This function can't
1916 * be called with interrupts off, or it may introduce deadlock with
1917 * smp_call_function() if an IPI is sent by the same process we are
1918 * waiting to become inactive.
1920 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1922 unsigned long flags;
1923 int running, on_rq;
1924 unsigned long ncsw;
1925 struct rq *rq;
1927 for (;;) {
1929 * We do the initial early heuristics without holding
1930 * any task-queue locks at all. We'll only try to get
1931 * the runqueue lock when things look like they will
1932 * work out!
1934 rq = task_rq(p);
1937 * If the task is actively running on another CPU
1938 * still, just relax and busy-wait without holding
1939 * any locks.
1941 * NOTE! Since we don't hold any locks, it's not
1942 * even sure that "rq" stays as the right runqueue!
1943 * But we don't care, since "task_running()" will
1944 * return false if the runqueue has changed and p
1945 * is actually now running somewhere else!
1947 while (task_running(rq, p)) {
1948 if (match_state && unlikely(p->state != match_state))
1949 return 0;
1950 cpu_relax();
1954 * Ok, time to look more closely! We need the rq
1955 * lock now, to be *sure*. If we're wrong, we'll
1956 * just go back and repeat.
1958 rq = task_rq_lock(p, &flags);
1959 trace_sched_wait_task(rq, p);
1960 running = task_running(rq, p);
1961 on_rq = p->se.on_rq;
1962 ncsw = 0;
1963 if (!match_state || p->state == match_state)
1964 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1965 task_rq_unlock(rq, &flags);
1968 * If it changed from the expected state, bail out now.
1970 if (unlikely(!ncsw))
1971 break;
1974 * Was it really running after all now that we
1975 * checked with the proper locks actually held?
1977 * Oops. Go back and try again..
1979 if (unlikely(running)) {
1980 cpu_relax();
1981 continue;
1985 * It's not enough that it's not actively running,
1986 * it must be off the runqueue _entirely_, and not
1987 * preempted!
1989 * So if it wa still runnable (but just not actively
1990 * running right now), it's preempted, and we should
1991 * yield - it could be a while.
1993 if (unlikely(on_rq)) {
1994 schedule_timeout_uninterruptible(1);
1995 continue;
1999 * Ahh, all good. It wasn't running, and it wasn't
2000 * runnable, which means that it will never become
2001 * running in the future either. We're all done!
2003 break;
2006 return ncsw;
2009 /***
2010 * kick_process - kick a running thread to enter/exit the kernel
2011 * @p: the to-be-kicked thread
2013 * Cause a process which is running on another CPU to enter
2014 * kernel-mode, without any delay. (to get signals handled.)
2016 * NOTE: this function doesnt have to take the runqueue lock,
2017 * because all it wants to ensure is that the remote task enters
2018 * the kernel. If the IPI races and the task has been migrated
2019 * to another CPU then no harm is done and the purpose has been
2020 * achieved as well.
2022 void kick_process(struct task_struct *p)
2024 int cpu;
2026 preempt_disable();
2027 cpu = task_cpu(p);
2028 if ((cpu != smp_processor_id()) && task_curr(p))
2029 smp_send_reschedule(cpu);
2030 preempt_enable();
2034 * Return a low guess at the load of a migration-source cpu weighted
2035 * according to the scheduling class and "nice" value.
2037 * We want to under-estimate the load of migration sources, to
2038 * balance conservatively.
2040 static unsigned long source_load(int cpu, int type)
2042 struct rq *rq = cpu_rq(cpu);
2043 unsigned long total = weighted_cpuload(cpu);
2045 if (type == 0 || !sched_feat(LB_BIAS))
2046 return total;
2048 return min(rq->cpu_load[type-1], total);
2052 * Return a high guess at the load of a migration-target cpu weighted
2053 * according to the scheduling class and "nice" value.
2055 static unsigned long target_load(int cpu, int type)
2057 struct rq *rq = cpu_rq(cpu);
2058 unsigned long total = weighted_cpuload(cpu);
2060 if (type == 0 || !sched_feat(LB_BIAS))
2061 return total;
2063 return max(rq->cpu_load[type-1], total);
2067 * find_idlest_group finds and returns the least busy CPU group within the
2068 * domain.
2070 static struct sched_group *
2071 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2073 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2074 unsigned long min_load = ULONG_MAX, this_load = 0;
2075 int load_idx = sd->forkexec_idx;
2076 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2078 do {
2079 unsigned long load, avg_load;
2080 int local_group;
2081 int i;
2083 /* Skip over this group if it has no CPUs allowed */
2084 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2085 continue;
2087 local_group = cpu_isset(this_cpu, group->cpumask);
2089 /* Tally up the load of all CPUs in the group */
2090 avg_load = 0;
2092 for_each_cpu_mask_nr(i, group->cpumask) {
2093 /* Bias balancing toward cpus of our domain */
2094 if (local_group)
2095 load = source_load(i, load_idx);
2096 else
2097 load = target_load(i, load_idx);
2099 avg_load += load;
2102 /* Adjust by relative CPU power of the group */
2103 avg_load = sg_div_cpu_power(group,
2104 avg_load * SCHED_LOAD_SCALE);
2106 if (local_group) {
2107 this_load = avg_load;
2108 this = group;
2109 } else if (avg_load < min_load) {
2110 min_load = avg_load;
2111 idlest = group;
2113 } while (group = group->next, group != sd->groups);
2115 if (!idlest || 100*this_load < imbalance*min_load)
2116 return NULL;
2117 return idlest;
2121 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2123 static int
2124 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2125 cpumask_t *tmp)
2127 unsigned long load, min_load = ULONG_MAX;
2128 int idlest = -1;
2129 int i;
2131 /* Traverse only the allowed CPUs */
2132 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2134 for_each_cpu_mask_nr(i, *tmp) {
2135 load = weighted_cpuload(i);
2137 if (load < min_load || (load == min_load && i == this_cpu)) {
2138 min_load = load;
2139 idlest = i;
2143 return idlest;
2147 * sched_balance_self: balance the current task (running on cpu) in domains
2148 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2149 * SD_BALANCE_EXEC.
2151 * Balance, ie. select the least loaded group.
2153 * Returns the target CPU number, or the same CPU if no balancing is needed.
2155 * preempt must be disabled.
2157 static int sched_balance_self(int cpu, int flag)
2159 struct task_struct *t = current;
2160 struct sched_domain *tmp, *sd = NULL;
2162 for_each_domain(cpu, tmp) {
2164 * If power savings logic is enabled for a domain, stop there.
2166 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2167 break;
2168 if (tmp->flags & flag)
2169 sd = tmp;
2172 if (sd)
2173 update_shares(sd);
2175 while (sd) {
2176 cpumask_t span, tmpmask;
2177 struct sched_group *group;
2178 int new_cpu, weight;
2180 if (!(sd->flags & flag)) {
2181 sd = sd->child;
2182 continue;
2185 span = sd->span;
2186 group = find_idlest_group(sd, t, cpu);
2187 if (!group) {
2188 sd = sd->child;
2189 continue;
2192 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2193 if (new_cpu == -1 || new_cpu == cpu) {
2194 /* Now try balancing at a lower domain level of cpu */
2195 sd = sd->child;
2196 continue;
2199 /* Now try balancing at a lower domain level of new_cpu */
2200 cpu = new_cpu;
2201 sd = NULL;
2202 weight = cpus_weight(span);
2203 for_each_domain(cpu, tmp) {
2204 if (weight <= cpus_weight(tmp->span))
2205 break;
2206 if (tmp->flags & flag)
2207 sd = tmp;
2209 /* while loop will break here if sd == NULL */
2212 return cpu;
2215 #endif /* CONFIG_SMP */
2217 /***
2218 * try_to_wake_up - wake up a thread
2219 * @p: the to-be-woken-up thread
2220 * @state: the mask of task states that can be woken
2221 * @sync: do a synchronous wakeup?
2223 * Put it on the run-queue if it's not already there. The "current"
2224 * thread is always on the run-queue (except when the actual
2225 * re-schedule is in progress), and as such you're allowed to do
2226 * the simpler "current->state = TASK_RUNNING" to mark yourself
2227 * runnable without the overhead of this.
2229 * returns failure only if the task is already active.
2231 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2233 int cpu, orig_cpu, this_cpu, success = 0;
2234 unsigned long flags;
2235 long old_state;
2236 struct rq *rq;
2238 if (!sched_feat(SYNC_WAKEUPS))
2239 sync = 0;
2241 #ifdef CONFIG_SMP
2242 if (sched_feat(LB_WAKEUP_UPDATE)) {
2243 struct sched_domain *sd;
2245 this_cpu = raw_smp_processor_id();
2246 cpu = task_cpu(p);
2248 for_each_domain(this_cpu, sd) {
2249 if (cpu_isset(cpu, sd->span)) {
2250 update_shares(sd);
2251 break;
2255 #endif
2257 smp_wmb();
2258 rq = task_rq_lock(p, &flags);
2259 old_state = p->state;
2260 if (!(old_state & state))
2261 goto out;
2263 if (p->se.on_rq)
2264 goto out_running;
2266 cpu = task_cpu(p);
2267 orig_cpu = cpu;
2268 this_cpu = smp_processor_id();
2270 #ifdef CONFIG_SMP
2271 if (unlikely(task_running(rq, p)))
2272 goto out_activate;
2274 cpu = p->sched_class->select_task_rq(p, sync);
2275 if (cpu != orig_cpu) {
2276 set_task_cpu(p, cpu);
2277 task_rq_unlock(rq, &flags);
2278 /* might preempt at this point */
2279 rq = task_rq_lock(p, &flags);
2280 old_state = p->state;
2281 if (!(old_state & state))
2282 goto out;
2283 if (p->se.on_rq)
2284 goto out_running;
2286 this_cpu = smp_processor_id();
2287 cpu = task_cpu(p);
2290 #ifdef CONFIG_SCHEDSTATS
2291 schedstat_inc(rq, ttwu_count);
2292 if (cpu == this_cpu)
2293 schedstat_inc(rq, ttwu_local);
2294 else {
2295 struct sched_domain *sd;
2296 for_each_domain(this_cpu, sd) {
2297 if (cpu_isset(cpu, sd->span)) {
2298 schedstat_inc(sd, ttwu_wake_remote);
2299 break;
2303 #endif /* CONFIG_SCHEDSTATS */
2305 out_activate:
2306 #endif /* CONFIG_SMP */
2307 schedstat_inc(p, se.nr_wakeups);
2308 if (sync)
2309 schedstat_inc(p, se.nr_wakeups_sync);
2310 if (orig_cpu != cpu)
2311 schedstat_inc(p, se.nr_wakeups_migrate);
2312 if (cpu == this_cpu)
2313 schedstat_inc(p, se.nr_wakeups_local);
2314 else
2315 schedstat_inc(p, se.nr_wakeups_remote);
2316 update_rq_clock(rq);
2317 activate_task(rq, p, 1);
2318 success = 1;
2320 out_running:
2321 trace_sched_wakeup(rq, p);
2322 check_preempt_curr(rq, p, sync);
2324 p->state = TASK_RUNNING;
2325 #ifdef CONFIG_SMP
2326 if (p->sched_class->task_wake_up)
2327 p->sched_class->task_wake_up(rq, p);
2328 #endif
2329 out:
2330 current->se.last_wakeup = current->se.sum_exec_runtime;
2332 task_rq_unlock(rq, &flags);
2334 return success;
2337 int wake_up_process(struct task_struct *p)
2339 return try_to_wake_up(p, TASK_ALL, 0);
2341 EXPORT_SYMBOL(wake_up_process);
2343 int wake_up_state(struct task_struct *p, unsigned int state)
2345 return try_to_wake_up(p, state, 0);
2349 * Perform scheduler related setup for a newly forked process p.
2350 * p is forked by current.
2352 * __sched_fork() is basic setup used by init_idle() too:
2354 static void __sched_fork(struct task_struct *p)
2356 p->se.exec_start = 0;
2357 p->se.sum_exec_runtime = 0;
2358 p->se.prev_sum_exec_runtime = 0;
2359 p->se.last_wakeup = 0;
2360 p->se.avg_overlap = 0;
2362 #ifdef CONFIG_SCHEDSTATS
2363 p->se.wait_start = 0;
2364 p->se.sum_sleep_runtime = 0;
2365 p->se.sleep_start = 0;
2366 p->se.block_start = 0;
2367 p->se.sleep_max = 0;
2368 p->se.block_max = 0;
2369 p->se.exec_max = 0;
2370 p->se.slice_max = 0;
2371 p->se.wait_max = 0;
2372 #endif
2374 INIT_LIST_HEAD(&p->rt.run_list);
2375 p->se.on_rq = 0;
2376 INIT_LIST_HEAD(&p->se.group_node);
2378 #ifdef CONFIG_PREEMPT_NOTIFIERS
2379 INIT_HLIST_HEAD(&p->preempt_notifiers);
2380 #endif
2383 * We mark the process as running here, but have not actually
2384 * inserted it onto the runqueue yet. This guarantees that
2385 * nobody will actually run it, and a signal or other external
2386 * event cannot wake it up and insert it on the runqueue either.
2388 p->state = TASK_RUNNING;
2392 * fork()/clone()-time setup:
2394 void sched_fork(struct task_struct *p, int clone_flags)
2396 int cpu = get_cpu();
2398 __sched_fork(p);
2400 #ifdef CONFIG_SMP
2401 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2402 #endif
2403 set_task_cpu(p, cpu);
2406 * Make sure we do not leak PI boosting priority to the child:
2408 p->prio = current->normal_prio;
2409 if (!rt_prio(p->prio))
2410 p->sched_class = &fair_sched_class;
2412 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2413 if (likely(sched_info_on()))
2414 memset(&p->sched_info, 0, sizeof(p->sched_info));
2415 #endif
2416 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2417 p->oncpu = 0;
2418 #endif
2419 #ifdef CONFIG_PREEMPT
2420 /* Want to start with kernel preemption disabled. */
2421 task_thread_info(p)->preempt_count = 1;
2422 #endif
2423 put_cpu();
2427 * wake_up_new_task - wake up a newly created task for the first time.
2429 * This function will do some initial scheduler statistics housekeeping
2430 * that must be done for every newly created context, then puts the task
2431 * on the runqueue and wakes it.
2433 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2435 unsigned long flags;
2436 struct rq *rq;
2438 rq = task_rq_lock(p, &flags);
2439 BUG_ON(p->state != TASK_RUNNING);
2440 update_rq_clock(rq);
2442 p->prio = effective_prio(p);
2444 if (!p->sched_class->task_new || !current->se.on_rq) {
2445 activate_task(rq, p, 0);
2446 } else {
2448 * Let the scheduling class do new task startup
2449 * management (if any):
2451 p->sched_class->task_new(rq, p);
2452 inc_nr_running(rq);
2454 trace_sched_wakeup_new(rq, p);
2455 check_preempt_curr(rq, p, 0);
2456 #ifdef CONFIG_SMP
2457 if (p->sched_class->task_wake_up)
2458 p->sched_class->task_wake_up(rq, p);
2459 #endif
2460 task_rq_unlock(rq, &flags);
2463 #ifdef CONFIG_PREEMPT_NOTIFIERS
2466 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2467 * @notifier: notifier struct to register
2469 void preempt_notifier_register(struct preempt_notifier *notifier)
2471 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2473 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2476 * preempt_notifier_unregister - no longer interested in preemption notifications
2477 * @notifier: notifier struct to unregister
2479 * This is safe to call from within a preemption notifier.
2481 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2483 hlist_del(&notifier->link);
2485 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2487 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2489 struct preempt_notifier *notifier;
2490 struct hlist_node *node;
2492 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2493 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2496 static void
2497 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2498 struct task_struct *next)
2500 struct preempt_notifier *notifier;
2501 struct hlist_node *node;
2503 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2504 notifier->ops->sched_out(notifier, next);
2507 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2509 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2513 static void
2514 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2515 struct task_struct *next)
2519 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2522 * prepare_task_switch - prepare to switch tasks
2523 * @rq: the runqueue preparing to switch
2524 * @prev: the current task that is being switched out
2525 * @next: the task we are going to switch to.
2527 * This is called with the rq lock held and interrupts off. It must
2528 * be paired with a subsequent finish_task_switch after the context
2529 * switch.
2531 * prepare_task_switch sets up locking and calls architecture specific
2532 * hooks.
2534 static inline void
2535 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2536 struct task_struct *next)
2538 fire_sched_out_preempt_notifiers(prev, next);
2539 prepare_lock_switch(rq, next);
2540 prepare_arch_switch(next);
2544 * finish_task_switch - clean up after a task-switch
2545 * @rq: runqueue associated with task-switch
2546 * @prev: the thread we just switched away from.
2548 * finish_task_switch must be called after the context switch, paired
2549 * with a prepare_task_switch call before the context switch.
2550 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2551 * and do any other architecture-specific cleanup actions.
2553 * Note that we may have delayed dropping an mm in context_switch(). If
2554 * so, we finish that here outside of the runqueue lock. (Doing it
2555 * with the lock held can cause deadlocks; see schedule() for
2556 * details.)
2558 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2559 __releases(rq->lock)
2561 struct mm_struct *mm = rq->prev_mm;
2562 long prev_state;
2564 rq->prev_mm = NULL;
2567 * A task struct has one reference for the use as "current".
2568 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2569 * schedule one last time. The schedule call will never return, and
2570 * the scheduled task must drop that reference.
2571 * The test for TASK_DEAD must occur while the runqueue locks are
2572 * still held, otherwise prev could be scheduled on another cpu, die
2573 * there before we look at prev->state, and then the reference would
2574 * be dropped twice.
2575 * Manfred Spraul <manfred@colorfullife.com>
2577 prev_state = prev->state;
2578 finish_arch_switch(prev);
2579 finish_lock_switch(rq, prev);
2580 #ifdef CONFIG_SMP
2581 if (current->sched_class->post_schedule)
2582 current->sched_class->post_schedule(rq);
2583 #endif
2585 fire_sched_in_preempt_notifiers(current);
2586 if (mm)
2587 mmdrop(mm);
2588 if (unlikely(prev_state == TASK_DEAD)) {
2590 * Remove function-return probe instances associated with this
2591 * task and put them back on the free list.
2593 kprobe_flush_task(prev);
2594 put_task_struct(prev);
2599 * schedule_tail - first thing a freshly forked thread must call.
2600 * @prev: the thread we just switched away from.
2602 asmlinkage void schedule_tail(struct task_struct *prev)
2603 __releases(rq->lock)
2605 struct rq *rq = this_rq();
2607 finish_task_switch(rq, prev);
2608 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2609 /* In this case, finish_task_switch does not reenable preemption */
2610 preempt_enable();
2611 #endif
2612 if (current->set_child_tid)
2613 put_user(task_pid_vnr(current), current->set_child_tid);
2617 * context_switch - switch to the new MM and the new
2618 * thread's register state.
2620 static inline void
2621 context_switch(struct rq *rq, struct task_struct *prev,
2622 struct task_struct *next)
2624 struct mm_struct *mm, *oldmm;
2626 prepare_task_switch(rq, prev, next);
2627 trace_sched_switch(rq, prev, next);
2628 mm = next->mm;
2629 oldmm = prev->active_mm;
2631 * For paravirt, this is coupled with an exit in switch_to to
2632 * combine the page table reload and the switch backend into
2633 * one hypercall.
2635 arch_enter_lazy_cpu_mode();
2637 if (unlikely(!mm)) {
2638 next->active_mm = oldmm;
2639 atomic_inc(&oldmm->mm_count);
2640 enter_lazy_tlb(oldmm, next);
2641 } else
2642 switch_mm(oldmm, mm, next);
2644 if (unlikely(!prev->mm)) {
2645 prev->active_mm = NULL;
2646 rq->prev_mm = oldmm;
2649 * Since the runqueue lock will be released by the next
2650 * task (which is an invalid locking op but in the case
2651 * of the scheduler it's an obvious special-case), so we
2652 * do an early lockdep release here:
2654 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2655 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2656 #endif
2658 /* Here we just switch the register state and the stack. */
2659 switch_to(prev, next, prev);
2661 barrier();
2663 * this_rq must be evaluated again because prev may have moved
2664 * CPUs since it called schedule(), thus the 'rq' on its stack
2665 * frame will be invalid.
2667 finish_task_switch(this_rq(), prev);
2671 * nr_running, nr_uninterruptible and nr_context_switches:
2673 * externally visible scheduler statistics: current number of runnable
2674 * threads, current number of uninterruptible-sleeping threads, total
2675 * number of context switches performed since bootup.
2677 unsigned long nr_running(void)
2679 unsigned long i, sum = 0;
2681 for_each_online_cpu(i)
2682 sum += cpu_rq(i)->nr_running;
2684 return sum;
2687 unsigned long nr_uninterruptible(void)
2689 unsigned long i, sum = 0;
2691 for_each_possible_cpu(i)
2692 sum += cpu_rq(i)->nr_uninterruptible;
2695 * Since we read the counters lockless, it might be slightly
2696 * inaccurate. Do not allow it to go below zero though:
2698 if (unlikely((long)sum < 0))
2699 sum = 0;
2701 return sum;
2704 unsigned long long nr_context_switches(void)
2706 int i;
2707 unsigned long long sum = 0;
2709 for_each_possible_cpu(i)
2710 sum += cpu_rq(i)->nr_switches;
2712 return sum;
2715 unsigned long nr_iowait(void)
2717 unsigned long i, sum = 0;
2719 for_each_possible_cpu(i)
2720 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2722 return sum;
2725 unsigned long nr_active(void)
2727 unsigned long i, running = 0, uninterruptible = 0;
2729 for_each_online_cpu(i) {
2730 running += cpu_rq(i)->nr_running;
2731 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2734 if (unlikely((long)uninterruptible < 0))
2735 uninterruptible = 0;
2737 return running + uninterruptible;
2741 * Update rq->cpu_load[] statistics. This function is usually called every
2742 * scheduler tick (TICK_NSEC).
2744 static void update_cpu_load(struct rq *this_rq)
2746 unsigned long this_load = this_rq->load.weight;
2747 int i, scale;
2749 this_rq->nr_load_updates++;
2751 /* Update our load: */
2752 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2753 unsigned long old_load, new_load;
2755 /* scale is effectively 1 << i now, and >> i divides by scale */
2757 old_load = this_rq->cpu_load[i];
2758 new_load = this_load;
2760 * Round up the averaging division if load is increasing. This
2761 * prevents us from getting stuck on 9 if the load is 10, for
2762 * example.
2764 if (new_load > old_load)
2765 new_load += scale-1;
2766 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2770 #ifdef CONFIG_SMP
2773 * double_rq_lock - safely lock two runqueues
2775 * Note this does not disable interrupts like task_rq_lock,
2776 * you need to do so manually before calling.
2778 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2779 __acquires(rq1->lock)
2780 __acquires(rq2->lock)
2782 BUG_ON(!irqs_disabled());
2783 if (rq1 == rq2) {
2784 spin_lock(&rq1->lock);
2785 __acquire(rq2->lock); /* Fake it out ;) */
2786 } else {
2787 if (rq1 < rq2) {
2788 spin_lock(&rq1->lock);
2789 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2790 } else {
2791 spin_lock(&rq2->lock);
2792 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2795 update_rq_clock(rq1);
2796 update_rq_clock(rq2);
2800 * double_rq_unlock - safely unlock two runqueues
2802 * Note this does not restore interrupts like task_rq_unlock,
2803 * you need to do so manually after calling.
2805 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2806 __releases(rq1->lock)
2807 __releases(rq2->lock)
2809 spin_unlock(&rq1->lock);
2810 if (rq1 != rq2)
2811 spin_unlock(&rq2->lock);
2812 else
2813 __release(rq2->lock);
2817 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2819 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2820 __releases(this_rq->lock)
2821 __acquires(busiest->lock)
2822 __acquires(this_rq->lock)
2824 int ret = 0;
2826 if (unlikely(!irqs_disabled())) {
2827 /* printk() doesn't work good under rq->lock */
2828 spin_unlock(&this_rq->lock);
2829 BUG_ON(1);
2831 if (unlikely(!spin_trylock(&busiest->lock))) {
2832 if (busiest < this_rq) {
2833 spin_unlock(&this_rq->lock);
2834 spin_lock(&busiest->lock);
2835 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2836 ret = 1;
2837 } else
2838 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2840 return ret;
2843 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2844 __releases(busiest->lock)
2846 spin_unlock(&busiest->lock);
2847 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2851 * If dest_cpu is allowed for this process, migrate the task to it.
2852 * This is accomplished by forcing the cpu_allowed mask to only
2853 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2854 * the cpu_allowed mask is restored.
2856 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2858 struct migration_req req;
2859 unsigned long flags;
2860 struct rq *rq;
2862 rq = task_rq_lock(p, &flags);
2863 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2864 || unlikely(!cpu_active(dest_cpu)))
2865 goto out;
2867 trace_sched_migrate_task(rq, p, dest_cpu);
2868 /* force the process onto the specified CPU */
2869 if (migrate_task(p, dest_cpu, &req)) {
2870 /* Need to wait for migration thread (might exit: take ref). */
2871 struct task_struct *mt = rq->migration_thread;
2873 get_task_struct(mt);
2874 task_rq_unlock(rq, &flags);
2875 wake_up_process(mt);
2876 put_task_struct(mt);
2877 wait_for_completion(&req.done);
2879 return;
2881 out:
2882 task_rq_unlock(rq, &flags);
2886 * sched_exec - execve() is a valuable balancing opportunity, because at
2887 * this point the task has the smallest effective memory and cache footprint.
2889 void sched_exec(void)
2891 int new_cpu, this_cpu = get_cpu();
2892 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2893 put_cpu();
2894 if (new_cpu != this_cpu)
2895 sched_migrate_task(current, new_cpu);
2899 * pull_task - move a task from a remote runqueue to the local runqueue.
2900 * Both runqueues must be locked.
2902 static void pull_task(struct rq *src_rq, struct task_struct *p,
2903 struct rq *this_rq, int this_cpu)
2905 deactivate_task(src_rq, p, 0);
2906 set_task_cpu(p, this_cpu);
2907 activate_task(this_rq, p, 0);
2909 * Note that idle threads have a prio of MAX_PRIO, for this test
2910 * to be always true for them.
2912 check_preempt_curr(this_rq, p, 0);
2916 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2918 static
2919 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2920 struct sched_domain *sd, enum cpu_idle_type idle,
2921 int *all_pinned)
2924 * We do not migrate tasks that are:
2925 * 1) running (obviously), or
2926 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2927 * 3) are cache-hot on their current CPU.
2929 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2930 schedstat_inc(p, se.nr_failed_migrations_affine);
2931 return 0;
2933 *all_pinned = 0;
2935 if (task_running(rq, p)) {
2936 schedstat_inc(p, se.nr_failed_migrations_running);
2937 return 0;
2941 * Aggressive migration if:
2942 * 1) task is cache cold, or
2943 * 2) too many balance attempts have failed.
2946 if (!task_hot(p, rq->clock, sd) ||
2947 sd->nr_balance_failed > sd->cache_nice_tries) {
2948 #ifdef CONFIG_SCHEDSTATS
2949 if (task_hot(p, rq->clock, sd)) {
2950 schedstat_inc(sd, lb_hot_gained[idle]);
2951 schedstat_inc(p, se.nr_forced_migrations);
2953 #endif
2954 return 1;
2957 if (task_hot(p, rq->clock, sd)) {
2958 schedstat_inc(p, se.nr_failed_migrations_hot);
2959 return 0;
2961 return 1;
2964 static unsigned long
2965 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2966 unsigned long max_load_move, struct sched_domain *sd,
2967 enum cpu_idle_type idle, int *all_pinned,
2968 int *this_best_prio, struct rq_iterator *iterator)
2970 int loops = 0, pulled = 0, pinned = 0;
2971 struct task_struct *p;
2972 long rem_load_move = max_load_move;
2974 if (max_load_move == 0)
2975 goto out;
2977 pinned = 1;
2980 * Start the load-balancing iterator:
2982 p = iterator->start(iterator->arg);
2983 next:
2984 if (!p || loops++ > sysctl_sched_nr_migrate)
2985 goto out;
2987 if ((p->se.load.weight >> 1) > rem_load_move ||
2988 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2989 p = iterator->next(iterator->arg);
2990 goto next;
2993 pull_task(busiest, p, this_rq, this_cpu);
2994 pulled++;
2995 rem_load_move -= p->se.load.weight;
2998 * We only want to steal up to the prescribed amount of weighted load.
3000 if (rem_load_move > 0) {
3001 if (p->prio < *this_best_prio)
3002 *this_best_prio = p->prio;
3003 p = iterator->next(iterator->arg);
3004 goto next;
3006 out:
3008 * Right now, this is one of only two places pull_task() is called,
3009 * so we can safely collect pull_task() stats here rather than
3010 * inside pull_task().
3012 schedstat_add(sd, lb_gained[idle], pulled);
3014 if (all_pinned)
3015 *all_pinned = pinned;
3017 return max_load_move - rem_load_move;
3021 * move_tasks tries to move up to max_load_move weighted load from busiest to
3022 * this_rq, as part of a balancing operation within domain "sd".
3023 * Returns 1 if successful and 0 otherwise.
3025 * Called with both runqueues locked.
3027 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3028 unsigned long max_load_move,
3029 struct sched_domain *sd, enum cpu_idle_type idle,
3030 int *all_pinned)
3032 const struct sched_class *class = sched_class_highest;
3033 unsigned long total_load_moved = 0;
3034 int this_best_prio = this_rq->curr->prio;
3036 do {
3037 total_load_moved +=
3038 class->load_balance(this_rq, this_cpu, busiest,
3039 max_load_move - total_load_moved,
3040 sd, idle, all_pinned, &this_best_prio);
3041 class = class->next;
3043 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3044 break;
3046 } while (class && max_load_move > total_load_moved);
3048 return total_load_moved > 0;
3051 static int
3052 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3053 struct sched_domain *sd, enum cpu_idle_type idle,
3054 struct rq_iterator *iterator)
3056 struct task_struct *p = iterator->start(iterator->arg);
3057 int pinned = 0;
3059 while (p) {
3060 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3061 pull_task(busiest, p, this_rq, this_cpu);
3063 * Right now, this is only the second place pull_task()
3064 * is called, so we can safely collect pull_task()
3065 * stats here rather than inside pull_task().
3067 schedstat_inc(sd, lb_gained[idle]);
3069 return 1;
3071 p = iterator->next(iterator->arg);
3074 return 0;
3078 * move_one_task tries to move exactly one task from busiest to this_rq, as
3079 * part of active balancing operations within "domain".
3080 * Returns 1 if successful and 0 otherwise.
3082 * Called with both runqueues locked.
3084 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3085 struct sched_domain *sd, enum cpu_idle_type idle)
3087 const struct sched_class *class;
3089 for (class = sched_class_highest; class; class = class->next)
3090 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3091 return 1;
3093 return 0;
3097 * find_busiest_group finds and returns the busiest CPU group within the
3098 * domain. It calculates and returns the amount of weighted load which
3099 * should be moved to restore balance via the imbalance parameter.
3101 static struct sched_group *
3102 find_busiest_group(struct sched_domain *sd, int this_cpu,
3103 unsigned long *imbalance, enum cpu_idle_type idle,
3104 int *sd_idle, const cpumask_t *cpus, int *balance)
3106 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3107 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3108 unsigned long max_pull;
3109 unsigned long busiest_load_per_task, busiest_nr_running;
3110 unsigned long this_load_per_task, this_nr_running;
3111 int load_idx, group_imb = 0;
3112 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3113 int power_savings_balance = 1;
3114 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3115 unsigned long min_nr_running = ULONG_MAX;
3116 struct sched_group *group_min = NULL, *group_leader = NULL;
3117 #endif
3119 max_load = this_load = total_load = total_pwr = 0;
3120 busiest_load_per_task = busiest_nr_running = 0;
3121 this_load_per_task = this_nr_running = 0;
3123 if (idle == CPU_NOT_IDLE)
3124 load_idx = sd->busy_idx;
3125 else if (idle == CPU_NEWLY_IDLE)
3126 load_idx = sd->newidle_idx;
3127 else
3128 load_idx = sd->idle_idx;
3130 do {
3131 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3132 int local_group;
3133 int i;
3134 int __group_imb = 0;
3135 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3136 unsigned long sum_nr_running, sum_weighted_load;
3137 unsigned long sum_avg_load_per_task;
3138 unsigned long avg_load_per_task;
3140 local_group = cpu_isset(this_cpu, group->cpumask);
3142 if (local_group)
3143 balance_cpu = first_cpu(group->cpumask);
3145 /* Tally up the load of all CPUs in the group */
3146 sum_weighted_load = sum_nr_running = avg_load = 0;
3147 sum_avg_load_per_task = avg_load_per_task = 0;
3149 max_cpu_load = 0;
3150 min_cpu_load = ~0UL;
3152 for_each_cpu_mask_nr(i, group->cpumask) {
3153 struct rq *rq;
3155 if (!cpu_isset(i, *cpus))
3156 continue;
3158 rq = cpu_rq(i);
3160 if (*sd_idle && rq->nr_running)
3161 *sd_idle = 0;
3163 /* Bias balancing toward cpus of our domain */
3164 if (local_group) {
3165 if (idle_cpu(i) && !first_idle_cpu) {
3166 first_idle_cpu = 1;
3167 balance_cpu = i;
3170 load = target_load(i, load_idx);
3171 } else {
3172 load = source_load(i, load_idx);
3173 if (load > max_cpu_load)
3174 max_cpu_load = load;
3175 if (min_cpu_load > load)
3176 min_cpu_load = load;
3179 avg_load += load;
3180 sum_nr_running += rq->nr_running;
3181 sum_weighted_load += weighted_cpuload(i);
3183 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3187 * First idle cpu or the first cpu(busiest) in this sched group
3188 * is eligible for doing load balancing at this and above
3189 * domains. In the newly idle case, we will allow all the cpu's
3190 * to do the newly idle load balance.
3192 if (idle != CPU_NEWLY_IDLE && local_group &&
3193 balance_cpu != this_cpu && balance) {
3194 *balance = 0;
3195 goto ret;
3198 total_load += avg_load;
3199 total_pwr += group->__cpu_power;
3201 /* Adjust by relative CPU power of the group */
3202 avg_load = sg_div_cpu_power(group,
3203 avg_load * SCHED_LOAD_SCALE);
3207 * Consider the group unbalanced when the imbalance is larger
3208 * than the average weight of two tasks.
3210 * APZ: with cgroup the avg task weight can vary wildly and
3211 * might not be a suitable number - should we keep a
3212 * normalized nr_running number somewhere that negates
3213 * the hierarchy?
3215 avg_load_per_task = sg_div_cpu_power(group,
3216 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3218 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3219 __group_imb = 1;
3221 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3223 if (local_group) {
3224 this_load = avg_load;
3225 this = group;
3226 this_nr_running = sum_nr_running;
3227 this_load_per_task = sum_weighted_load;
3228 } else if (avg_load > max_load &&
3229 (sum_nr_running > group_capacity || __group_imb)) {
3230 max_load = avg_load;
3231 busiest = group;
3232 busiest_nr_running = sum_nr_running;
3233 busiest_load_per_task = sum_weighted_load;
3234 group_imb = __group_imb;
3237 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3239 * Busy processors will not participate in power savings
3240 * balance.
3242 if (idle == CPU_NOT_IDLE ||
3243 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3244 goto group_next;
3247 * If the local group is idle or completely loaded
3248 * no need to do power savings balance at this domain
3250 if (local_group && (this_nr_running >= group_capacity ||
3251 !this_nr_running))
3252 power_savings_balance = 0;
3255 * If a group is already running at full capacity or idle,
3256 * don't include that group in power savings calculations
3258 if (!power_savings_balance || sum_nr_running >= group_capacity
3259 || !sum_nr_running)
3260 goto group_next;
3263 * Calculate the group which has the least non-idle load.
3264 * This is the group from where we need to pick up the load
3265 * for saving power
3267 if ((sum_nr_running < min_nr_running) ||
3268 (sum_nr_running == min_nr_running &&
3269 first_cpu(group->cpumask) <
3270 first_cpu(group_min->cpumask))) {
3271 group_min = group;
3272 min_nr_running = sum_nr_running;
3273 min_load_per_task = sum_weighted_load /
3274 sum_nr_running;
3278 * Calculate the group which is almost near its
3279 * capacity but still has some space to pick up some load
3280 * from other group and save more power
3282 if (sum_nr_running <= group_capacity - 1) {
3283 if (sum_nr_running > leader_nr_running ||
3284 (sum_nr_running == leader_nr_running &&
3285 first_cpu(group->cpumask) >
3286 first_cpu(group_leader->cpumask))) {
3287 group_leader = group;
3288 leader_nr_running = sum_nr_running;
3291 group_next:
3292 #endif
3293 group = group->next;
3294 } while (group != sd->groups);
3296 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3297 goto out_balanced;
3299 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3301 if (this_load >= avg_load ||
3302 100*max_load <= sd->imbalance_pct*this_load)
3303 goto out_balanced;
3305 busiest_load_per_task /= busiest_nr_running;
3306 if (group_imb)
3307 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3310 * We're trying to get all the cpus to the average_load, so we don't
3311 * want to push ourselves above the average load, nor do we wish to
3312 * reduce the max loaded cpu below the average load, as either of these
3313 * actions would just result in more rebalancing later, and ping-pong
3314 * tasks around. Thus we look for the minimum possible imbalance.
3315 * Negative imbalances (*we* are more loaded than anyone else) will
3316 * be counted as no imbalance for these purposes -- we can't fix that
3317 * by pulling tasks to us. Be careful of negative numbers as they'll
3318 * appear as very large values with unsigned longs.
3320 if (max_load <= busiest_load_per_task)
3321 goto out_balanced;
3324 * In the presence of smp nice balancing, certain scenarios can have
3325 * max load less than avg load(as we skip the groups at or below
3326 * its cpu_power, while calculating max_load..)
3328 if (max_load < avg_load) {
3329 *imbalance = 0;
3330 goto small_imbalance;
3333 /* Don't want to pull so many tasks that a group would go idle */
3334 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3336 /* How much load to actually move to equalise the imbalance */
3337 *imbalance = min(max_pull * busiest->__cpu_power,
3338 (avg_load - this_load) * this->__cpu_power)
3339 / SCHED_LOAD_SCALE;
3342 * if *imbalance is less than the average load per runnable task
3343 * there is no gaurantee that any tasks will be moved so we'll have
3344 * a think about bumping its value to force at least one task to be
3345 * moved
3347 if (*imbalance < busiest_load_per_task) {
3348 unsigned long tmp, pwr_now, pwr_move;
3349 unsigned int imbn;
3351 small_imbalance:
3352 pwr_move = pwr_now = 0;
3353 imbn = 2;
3354 if (this_nr_running) {
3355 this_load_per_task /= this_nr_running;
3356 if (busiest_load_per_task > this_load_per_task)
3357 imbn = 1;
3358 } else
3359 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3361 if (max_load - this_load + busiest_load_per_task >=
3362 busiest_load_per_task * imbn) {
3363 *imbalance = busiest_load_per_task;
3364 return busiest;
3368 * OK, we don't have enough imbalance to justify moving tasks,
3369 * however we may be able to increase total CPU power used by
3370 * moving them.
3373 pwr_now += busiest->__cpu_power *
3374 min(busiest_load_per_task, max_load);
3375 pwr_now += this->__cpu_power *
3376 min(this_load_per_task, this_load);
3377 pwr_now /= SCHED_LOAD_SCALE;
3379 /* Amount of load we'd subtract */
3380 tmp = sg_div_cpu_power(busiest,
3381 busiest_load_per_task * SCHED_LOAD_SCALE);
3382 if (max_load > tmp)
3383 pwr_move += busiest->__cpu_power *
3384 min(busiest_load_per_task, max_load - tmp);
3386 /* Amount of load we'd add */
3387 if (max_load * busiest->__cpu_power <
3388 busiest_load_per_task * SCHED_LOAD_SCALE)
3389 tmp = sg_div_cpu_power(this,
3390 max_load * busiest->__cpu_power);
3391 else
3392 tmp = sg_div_cpu_power(this,
3393 busiest_load_per_task * SCHED_LOAD_SCALE);
3394 pwr_move += this->__cpu_power *
3395 min(this_load_per_task, this_load + tmp);
3396 pwr_move /= SCHED_LOAD_SCALE;
3398 /* Move if we gain throughput */
3399 if (pwr_move > pwr_now)
3400 *imbalance = busiest_load_per_task;
3403 return busiest;
3405 out_balanced:
3406 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3407 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3408 goto ret;
3410 if (this == group_leader && group_leader != group_min) {
3411 *imbalance = min_load_per_task;
3412 return group_min;
3414 #endif
3415 ret:
3416 *imbalance = 0;
3417 return NULL;
3421 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3423 static struct rq *
3424 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3425 unsigned long imbalance, const cpumask_t *cpus)
3427 struct rq *busiest = NULL, *rq;
3428 unsigned long max_load = 0;
3429 int i;
3431 for_each_cpu_mask_nr(i, group->cpumask) {
3432 unsigned long wl;
3434 if (!cpu_isset(i, *cpus))
3435 continue;
3437 rq = cpu_rq(i);
3438 wl = weighted_cpuload(i);
3440 if (rq->nr_running == 1 && wl > imbalance)
3441 continue;
3443 if (wl > max_load) {
3444 max_load = wl;
3445 busiest = rq;
3449 return busiest;
3453 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3454 * so long as it is large enough.
3456 #define MAX_PINNED_INTERVAL 512
3459 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3460 * tasks if there is an imbalance.
3462 static int load_balance(int this_cpu, struct rq *this_rq,
3463 struct sched_domain *sd, enum cpu_idle_type idle,
3464 int *balance, cpumask_t *cpus)
3466 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3467 struct sched_group *group;
3468 unsigned long imbalance;
3469 struct rq *busiest;
3470 unsigned long flags;
3472 cpus_setall(*cpus);
3475 * When power savings policy is enabled for the parent domain, idle
3476 * sibling can pick up load irrespective of busy siblings. In this case,
3477 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3478 * portraying it as CPU_NOT_IDLE.
3480 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3481 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3482 sd_idle = 1;
3484 schedstat_inc(sd, lb_count[idle]);
3486 redo:
3487 update_shares(sd);
3488 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3489 cpus, balance);
3491 if (*balance == 0)
3492 goto out_balanced;
3494 if (!group) {
3495 schedstat_inc(sd, lb_nobusyg[idle]);
3496 goto out_balanced;
3499 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3500 if (!busiest) {
3501 schedstat_inc(sd, lb_nobusyq[idle]);
3502 goto out_balanced;
3505 BUG_ON(busiest == this_rq);
3507 schedstat_add(sd, lb_imbalance[idle], imbalance);
3509 ld_moved = 0;
3510 if (busiest->nr_running > 1) {
3512 * Attempt to move tasks. If find_busiest_group has found
3513 * an imbalance but busiest->nr_running <= 1, the group is
3514 * still unbalanced. ld_moved simply stays zero, so it is
3515 * correctly treated as an imbalance.
3517 local_irq_save(flags);
3518 double_rq_lock(this_rq, busiest);
3519 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3520 imbalance, sd, idle, &all_pinned);
3521 double_rq_unlock(this_rq, busiest);
3522 local_irq_restore(flags);
3525 * some other cpu did the load balance for us.
3527 if (ld_moved && this_cpu != smp_processor_id())
3528 resched_cpu(this_cpu);
3530 /* All tasks on this runqueue were pinned by CPU affinity */
3531 if (unlikely(all_pinned)) {
3532 cpu_clear(cpu_of(busiest), *cpus);
3533 if (!cpus_empty(*cpus))
3534 goto redo;
3535 goto out_balanced;
3539 if (!ld_moved) {
3540 schedstat_inc(sd, lb_failed[idle]);
3541 sd->nr_balance_failed++;
3543 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3545 spin_lock_irqsave(&busiest->lock, flags);
3547 /* don't kick the migration_thread, if the curr
3548 * task on busiest cpu can't be moved to this_cpu
3550 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3551 spin_unlock_irqrestore(&busiest->lock, flags);
3552 all_pinned = 1;
3553 goto out_one_pinned;
3556 if (!busiest->active_balance) {
3557 busiest->active_balance = 1;
3558 busiest->push_cpu = this_cpu;
3559 active_balance = 1;
3561 spin_unlock_irqrestore(&busiest->lock, flags);
3562 if (active_balance)
3563 wake_up_process(busiest->migration_thread);
3566 * We've kicked active balancing, reset the failure
3567 * counter.
3569 sd->nr_balance_failed = sd->cache_nice_tries+1;
3571 } else
3572 sd->nr_balance_failed = 0;
3574 if (likely(!active_balance)) {
3575 /* We were unbalanced, so reset the balancing interval */
3576 sd->balance_interval = sd->min_interval;
3577 } else {
3579 * If we've begun active balancing, start to back off. This
3580 * case may not be covered by the all_pinned logic if there
3581 * is only 1 task on the busy runqueue (because we don't call
3582 * move_tasks).
3584 if (sd->balance_interval < sd->max_interval)
3585 sd->balance_interval *= 2;
3588 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3589 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3590 ld_moved = -1;
3592 goto out;
3594 out_balanced:
3595 schedstat_inc(sd, lb_balanced[idle]);
3597 sd->nr_balance_failed = 0;
3599 out_one_pinned:
3600 /* tune up the balancing interval */
3601 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3602 (sd->balance_interval < sd->max_interval))
3603 sd->balance_interval *= 2;
3605 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3606 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3607 ld_moved = -1;
3608 else
3609 ld_moved = 0;
3610 out:
3611 if (ld_moved)
3612 update_shares(sd);
3613 return ld_moved;
3617 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3618 * tasks if there is an imbalance.
3620 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3621 * this_rq is locked.
3623 static int
3624 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3625 cpumask_t *cpus)
3627 struct sched_group *group;
3628 struct rq *busiest = NULL;
3629 unsigned long imbalance;
3630 int ld_moved = 0;
3631 int sd_idle = 0;
3632 int all_pinned = 0;
3634 cpus_setall(*cpus);
3637 * When power savings policy is enabled for the parent domain, idle
3638 * sibling can pick up load irrespective of busy siblings. In this case,
3639 * let the state of idle sibling percolate up as IDLE, instead of
3640 * portraying it as CPU_NOT_IDLE.
3642 if (sd->flags & SD_SHARE_CPUPOWER &&
3643 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3644 sd_idle = 1;
3646 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3647 redo:
3648 update_shares_locked(this_rq, sd);
3649 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3650 &sd_idle, cpus, NULL);
3651 if (!group) {
3652 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3653 goto out_balanced;
3656 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3657 if (!busiest) {
3658 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3659 goto out_balanced;
3662 BUG_ON(busiest == this_rq);
3664 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3666 ld_moved = 0;
3667 if (busiest->nr_running > 1) {
3668 /* Attempt to move tasks */
3669 double_lock_balance(this_rq, busiest);
3670 /* this_rq->clock is already updated */
3671 update_rq_clock(busiest);
3672 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3673 imbalance, sd, CPU_NEWLY_IDLE,
3674 &all_pinned);
3675 double_unlock_balance(this_rq, busiest);
3677 if (unlikely(all_pinned)) {
3678 cpu_clear(cpu_of(busiest), *cpus);
3679 if (!cpus_empty(*cpus))
3680 goto redo;
3684 if (!ld_moved) {
3685 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3686 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3687 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3688 return -1;
3689 } else
3690 sd->nr_balance_failed = 0;
3692 update_shares_locked(this_rq, sd);
3693 return ld_moved;
3695 out_balanced:
3696 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3697 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3698 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3699 return -1;
3700 sd->nr_balance_failed = 0;
3702 return 0;
3706 * idle_balance is called by schedule() if this_cpu is about to become
3707 * idle. Attempts to pull tasks from other CPUs.
3709 static void idle_balance(int this_cpu, struct rq *this_rq)
3711 struct sched_domain *sd;
3712 int pulled_task = -1;
3713 unsigned long next_balance = jiffies + HZ;
3714 cpumask_t tmpmask;
3716 for_each_domain(this_cpu, sd) {
3717 unsigned long interval;
3719 if (!(sd->flags & SD_LOAD_BALANCE))
3720 continue;
3722 if (sd->flags & SD_BALANCE_NEWIDLE)
3723 /* If we've pulled tasks over stop searching: */
3724 pulled_task = load_balance_newidle(this_cpu, this_rq,
3725 sd, &tmpmask);
3727 interval = msecs_to_jiffies(sd->balance_interval);
3728 if (time_after(next_balance, sd->last_balance + interval))
3729 next_balance = sd->last_balance + interval;
3730 if (pulled_task)
3731 break;
3733 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3735 * We are going idle. next_balance may be set based on
3736 * a busy processor. So reset next_balance.
3738 this_rq->next_balance = next_balance;
3743 * active_load_balance is run by migration threads. It pushes running tasks
3744 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3745 * running on each physical CPU where possible, and avoids physical /
3746 * logical imbalances.
3748 * Called with busiest_rq locked.
3750 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3752 int target_cpu = busiest_rq->push_cpu;
3753 struct sched_domain *sd;
3754 struct rq *target_rq;
3756 /* Is there any task to move? */
3757 if (busiest_rq->nr_running <= 1)
3758 return;
3760 target_rq = cpu_rq(target_cpu);
3763 * This condition is "impossible", if it occurs
3764 * we need to fix it. Originally reported by
3765 * Bjorn Helgaas on a 128-cpu setup.
3767 BUG_ON(busiest_rq == target_rq);
3769 /* move a task from busiest_rq to target_rq */
3770 double_lock_balance(busiest_rq, target_rq);
3771 update_rq_clock(busiest_rq);
3772 update_rq_clock(target_rq);
3774 /* Search for an sd spanning us and the target CPU. */
3775 for_each_domain(target_cpu, sd) {
3776 if ((sd->flags & SD_LOAD_BALANCE) &&
3777 cpu_isset(busiest_cpu, sd->span))
3778 break;
3781 if (likely(sd)) {
3782 schedstat_inc(sd, alb_count);
3784 if (move_one_task(target_rq, target_cpu, busiest_rq,
3785 sd, CPU_IDLE))
3786 schedstat_inc(sd, alb_pushed);
3787 else
3788 schedstat_inc(sd, alb_failed);
3790 double_unlock_balance(busiest_rq, target_rq);
3793 #ifdef CONFIG_NO_HZ
3794 static struct {
3795 atomic_t load_balancer;
3796 cpumask_t cpu_mask;
3797 } nohz ____cacheline_aligned = {
3798 .load_balancer = ATOMIC_INIT(-1),
3799 .cpu_mask = CPU_MASK_NONE,
3803 * This routine will try to nominate the ilb (idle load balancing)
3804 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3805 * load balancing on behalf of all those cpus. If all the cpus in the system
3806 * go into this tickless mode, then there will be no ilb owner (as there is
3807 * no need for one) and all the cpus will sleep till the next wakeup event
3808 * arrives...
3810 * For the ilb owner, tick is not stopped. And this tick will be used
3811 * for idle load balancing. ilb owner will still be part of
3812 * nohz.cpu_mask..
3814 * While stopping the tick, this cpu will become the ilb owner if there
3815 * is no other owner. And will be the owner till that cpu becomes busy
3816 * or if all cpus in the system stop their ticks at which point
3817 * there is no need for ilb owner.
3819 * When the ilb owner becomes busy, it nominates another owner, during the
3820 * next busy scheduler_tick()
3822 int select_nohz_load_balancer(int stop_tick)
3824 int cpu = smp_processor_id();
3826 if (stop_tick) {
3827 cpu_set(cpu, nohz.cpu_mask);
3828 cpu_rq(cpu)->in_nohz_recently = 1;
3831 * If we are going offline and still the leader, give up!
3833 if (!cpu_active(cpu) &&
3834 atomic_read(&nohz.load_balancer) == cpu) {
3835 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3836 BUG();
3837 return 0;
3840 /* time for ilb owner also to sleep */
3841 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3842 if (atomic_read(&nohz.load_balancer) == cpu)
3843 atomic_set(&nohz.load_balancer, -1);
3844 return 0;
3847 if (atomic_read(&nohz.load_balancer) == -1) {
3848 /* make me the ilb owner */
3849 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3850 return 1;
3851 } else if (atomic_read(&nohz.load_balancer) == cpu)
3852 return 1;
3853 } else {
3854 if (!cpu_isset(cpu, nohz.cpu_mask))
3855 return 0;
3857 cpu_clear(cpu, nohz.cpu_mask);
3859 if (atomic_read(&nohz.load_balancer) == cpu)
3860 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3861 BUG();
3863 return 0;
3865 #endif
3867 static DEFINE_SPINLOCK(balancing);
3870 * It checks each scheduling domain to see if it is due to be balanced,
3871 * and initiates a balancing operation if so.
3873 * Balancing parameters are set up in arch_init_sched_domains.
3875 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3877 int balance = 1;
3878 struct rq *rq = cpu_rq(cpu);
3879 unsigned long interval;
3880 struct sched_domain *sd;
3881 /* Earliest time when we have to do rebalance again */
3882 unsigned long next_balance = jiffies + 60*HZ;
3883 int update_next_balance = 0;
3884 int need_serialize;
3885 cpumask_t tmp;
3887 for_each_domain(cpu, sd) {
3888 if (!(sd->flags & SD_LOAD_BALANCE))
3889 continue;
3891 interval = sd->balance_interval;
3892 if (idle != CPU_IDLE)
3893 interval *= sd->busy_factor;
3895 /* scale ms to jiffies */
3896 interval = msecs_to_jiffies(interval);
3897 if (unlikely(!interval))
3898 interval = 1;
3899 if (interval > HZ*NR_CPUS/10)
3900 interval = HZ*NR_CPUS/10;
3902 need_serialize = sd->flags & SD_SERIALIZE;
3904 if (need_serialize) {
3905 if (!spin_trylock(&balancing))
3906 goto out;
3909 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3910 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3912 * We've pulled tasks over so either we're no
3913 * longer idle, or one of our SMT siblings is
3914 * not idle.
3916 idle = CPU_NOT_IDLE;
3918 sd->last_balance = jiffies;
3920 if (need_serialize)
3921 spin_unlock(&balancing);
3922 out:
3923 if (time_after(next_balance, sd->last_balance + interval)) {
3924 next_balance = sd->last_balance + interval;
3925 update_next_balance = 1;
3929 * Stop the load balance at this level. There is another
3930 * CPU in our sched group which is doing load balancing more
3931 * actively.
3933 if (!balance)
3934 break;
3938 * next_balance will be updated only when there is a need.
3939 * When the cpu is attached to null domain for ex, it will not be
3940 * updated.
3942 if (likely(update_next_balance))
3943 rq->next_balance = next_balance;
3947 * run_rebalance_domains is triggered when needed from the scheduler tick.
3948 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3949 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3951 static void run_rebalance_domains(struct softirq_action *h)
3953 int this_cpu = smp_processor_id();
3954 struct rq *this_rq = cpu_rq(this_cpu);
3955 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3956 CPU_IDLE : CPU_NOT_IDLE;
3958 rebalance_domains(this_cpu, idle);
3960 #ifdef CONFIG_NO_HZ
3962 * If this cpu is the owner for idle load balancing, then do the
3963 * balancing on behalf of the other idle cpus whose ticks are
3964 * stopped.
3966 if (this_rq->idle_at_tick &&
3967 atomic_read(&nohz.load_balancer) == this_cpu) {
3968 cpumask_t cpus = nohz.cpu_mask;
3969 struct rq *rq;
3970 int balance_cpu;
3972 cpu_clear(this_cpu, cpus);
3973 for_each_cpu_mask_nr(balance_cpu, cpus) {
3975 * If this cpu gets work to do, stop the load balancing
3976 * work being done for other cpus. Next load
3977 * balancing owner will pick it up.
3979 if (need_resched())
3980 break;
3982 rebalance_domains(balance_cpu, CPU_IDLE);
3984 rq = cpu_rq(balance_cpu);
3985 if (time_after(this_rq->next_balance, rq->next_balance))
3986 this_rq->next_balance = rq->next_balance;
3989 #endif
3993 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3995 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3996 * idle load balancing owner or decide to stop the periodic load balancing,
3997 * if the whole system is idle.
3999 static inline void trigger_load_balance(struct rq *rq, int cpu)
4001 #ifdef CONFIG_NO_HZ
4003 * If we were in the nohz mode recently and busy at the current
4004 * scheduler tick, then check if we need to nominate new idle
4005 * load balancer.
4007 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4008 rq->in_nohz_recently = 0;
4010 if (atomic_read(&nohz.load_balancer) == cpu) {
4011 cpu_clear(cpu, nohz.cpu_mask);
4012 atomic_set(&nohz.load_balancer, -1);
4015 if (atomic_read(&nohz.load_balancer) == -1) {
4017 * simple selection for now: Nominate the
4018 * first cpu in the nohz list to be the next
4019 * ilb owner.
4021 * TBD: Traverse the sched domains and nominate
4022 * the nearest cpu in the nohz.cpu_mask.
4024 int ilb = first_cpu(nohz.cpu_mask);
4026 if (ilb < nr_cpu_ids)
4027 resched_cpu(ilb);
4032 * If this cpu is idle and doing idle load balancing for all the
4033 * cpus with ticks stopped, is it time for that to stop?
4035 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4036 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4037 resched_cpu(cpu);
4038 return;
4042 * If this cpu is idle and the idle load balancing is done by
4043 * someone else, then no need raise the SCHED_SOFTIRQ
4045 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4046 cpu_isset(cpu, nohz.cpu_mask))
4047 return;
4048 #endif
4049 if (time_after_eq(jiffies, rq->next_balance))
4050 raise_softirq(SCHED_SOFTIRQ);
4053 #else /* CONFIG_SMP */
4056 * on UP we do not need to balance between CPUs:
4058 static inline void idle_balance(int cpu, struct rq *rq)
4062 #endif
4064 DEFINE_PER_CPU(struct kernel_stat, kstat);
4066 EXPORT_PER_CPU_SYMBOL(kstat);
4069 * Return any ns on the sched_clock that have not yet been banked in
4070 * @p in case that task is currently running.
4072 unsigned long long task_delta_exec(struct task_struct *p)
4074 unsigned long flags;
4075 struct rq *rq;
4076 u64 ns = 0;
4078 rq = task_rq_lock(p, &flags);
4080 if (task_current(rq, p)) {
4081 u64 delta_exec;
4083 update_rq_clock(rq);
4084 delta_exec = rq->clock - p->se.exec_start;
4085 if ((s64)delta_exec > 0)
4086 ns = delta_exec;
4089 task_rq_unlock(rq, &flags);
4091 return ns;
4095 * Account user cpu time to a process.
4096 * @p: the process that the cpu time gets accounted to
4097 * @cputime: the cpu time spent in user space since the last update
4099 void account_user_time(struct task_struct *p, cputime_t cputime)
4101 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4102 cputime64_t tmp;
4104 p->utime = cputime_add(p->utime, cputime);
4105 account_group_user_time(p, cputime);
4107 /* Add user time to cpustat. */
4108 tmp = cputime_to_cputime64(cputime);
4109 if (TASK_NICE(p) > 0)
4110 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4111 else
4112 cpustat->user = cputime64_add(cpustat->user, tmp);
4113 /* Account for user time used */
4114 acct_update_integrals(p);
4118 * Account guest cpu time to a process.
4119 * @p: the process that the cpu time gets accounted to
4120 * @cputime: the cpu time spent in virtual machine since the last update
4122 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4124 cputime64_t tmp;
4125 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4127 tmp = cputime_to_cputime64(cputime);
4129 p->utime = cputime_add(p->utime, cputime);
4130 account_group_user_time(p, cputime);
4131 p->gtime = cputime_add(p->gtime, cputime);
4133 cpustat->user = cputime64_add(cpustat->user, tmp);
4134 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4138 * Account scaled user cpu time to a process.
4139 * @p: the process that the cpu time gets accounted to
4140 * @cputime: the cpu time spent in user space since the last update
4142 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4144 p->utimescaled = cputime_add(p->utimescaled, cputime);
4148 * Account system cpu time to a process.
4149 * @p: the process that the cpu time gets accounted to
4150 * @hardirq_offset: the offset to subtract from hardirq_count()
4151 * @cputime: the cpu time spent in kernel space since the last update
4153 void account_system_time(struct task_struct *p, int hardirq_offset,
4154 cputime_t cputime)
4156 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4157 struct rq *rq = this_rq();
4158 cputime64_t tmp;
4160 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4161 account_guest_time(p, cputime);
4162 return;
4165 p->stime = cputime_add(p->stime, cputime);
4166 account_group_system_time(p, cputime);
4168 /* Add system time to cpustat. */
4169 tmp = cputime_to_cputime64(cputime);
4170 if (hardirq_count() - hardirq_offset)
4171 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4172 else if (softirq_count())
4173 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4174 else if (p != rq->idle)
4175 cpustat->system = cputime64_add(cpustat->system, tmp);
4176 else if (atomic_read(&rq->nr_iowait) > 0)
4177 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4178 else
4179 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4180 /* Account for system time used */
4181 acct_update_integrals(p);
4185 * Account scaled system cpu time to a process.
4186 * @p: the process that the cpu time gets accounted to
4187 * @hardirq_offset: the offset to subtract from hardirq_count()
4188 * @cputime: the cpu time spent in kernel space since the last update
4190 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4192 p->stimescaled = cputime_add(p->stimescaled, cputime);
4196 * Account for involuntary wait time.
4197 * @p: the process from which the cpu time has been stolen
4198 * @steal: the cpu time spent in involuntary wait
4200 void account_steal_time(struct task_struct *p, cputime_t steal)
4202 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4203 cputime64_t tmp = cputime_to_cputime64(steal);
4204 struct rq *rq = this_rq();
4206 if (p == rq->idle) {
4207 p->stime = cputime_add(p->stime, steal);
4208 account_group_system_time(p, steal);
4209 if (atomic_read(&rq->nr_iowait) > 0)
4210 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4211 else
4212 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4213 } else
4214 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4218 * Use precise platform statistics if available:
4220 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4221 cputime_t task_utime(struct task_struct *p)
4223 return p->utime;
4226 cputime_t task_stime(struct task_struct *p)
4228 return p->stime;
4230 #else
4231 cputime_t task_utime(struct task_struct *p)
4233 clock_t utime = cputime_to_clock_t(p->utime),
4234 total = utime + cputime_to_clock_t(p->stime);
4235 u64 temp;
4238 * Use CFS's precise accounting:
4240 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4242 if (total) {
4243 temp *= utime;
4244 do_div(temp, total);
4246 utime = (clock_t)temp;
4248 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4249 return p->prev_utime;
4252 cputime_t task_stime(struct task_struct *p)
4254 clock_t stime;
4257 * Use CFS's precise accounting. (we subtract utime from
4258 * the total, to make sure the total observed by userspace
4259 * grows monotonically - apps rely on that):
4261 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4262 cputime_to_clock_t(task_utime(p));
4264 if (stime >= 0)
4265 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4267 return p->prev_stime;
4269 #endif
4271 inline cputime_t task_gtime(struct task_struct *p)
4273 return p->gtime;
4277 * This function gets called by the timer code, with HZ frequency.
4278 * We call it with interrupts disabled.
4280 * It also gets called by the fork code, when changing the parent's
4281 * timeslices.
4283 void scheduler_tick(void)
4285 int cpu = smp_processor_id();
4286 struct rq *rq = cpu_rq(cpu);
4287 struct task_struct *curr = rq->curr;
4289 sched_clock_tick();
4291 spin_lock(&rq->lock);
4292 update_rq_clock(rq);
4293 update_cpu_load(rq);
4294 curr->sched_class->task_tick(rq, curr, 0);
4295 spin_unlock(&rq->lock);
4297 #ifdef CONFIG_SMP
4298 rq->idle_at_tick = idle_cpu(cpu);
4299 trigger_load_balance(rq, cpu);
4300 #endif
4303 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4304 defined(CONFIG_PREEMPT_TRACER))
4306 static inline unsigned long get_parent_ip(unsigned long addr)
4308 if (in_lock_functions(addr)) {
4309 addr = CALLER_ADDR2;
4310 if (in_lock_functions(addr))
4311 addr = CALLER_ADDR3;
4313 return addr;
4316 void __kprobes add_preempt_count(int val)
4318 #ifdef CONFIG_DEBUG_PREEMPT
4320 * Underflow?
4322 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4323 return;
4324 #endif
4325 preempt_count() += val;
4326 #ifdef CONFIG_DEBUG_PREEMPT
4328 * Spinlock count overflowing soon?
4330 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4331 PREEMPT_MASK - 10);
4332 #endif
4333 if (preempt_count() == val)
4334 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4336 EXPORT_SYMBOL(add_preempt_count);
4338 void __kprobes sub_preempt_count(int val)
4340 #ifdef CONFIG_DEBUG_PREEMPT
4342 * Underflow?
4344 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4345 return;
4347 * Is the spinlock portion underflowing?
4349 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4350 !(preempt_count() & PREEMPT_MASK)))
4351 return;
4352 #endif
4354 if (preempt_count() == val)
4355 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4356 preempt_count() -= val;
4358 EXPORT_SYMBOL(sub_preempt_count);
4360 #endif
4363 * Print scheduling while atomic bug:
4365 static noinline void __schedule_bug(struct task_struct *prev)
4367 struct pt_regs *regs = get_irq_regs();
4369 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4370 prev->comm, prev->pid, preempt_count());
4372 debug_show_held_locks(prev);
4373 print_modules();
4374 if (irqs_disabled())
4375 print_irqtrace_events(prev);
4377 if (regs)
4378 show_regs(regs);
4379 else
4380 dump_stack();
4384 * Various schedule()-time debugging checks and statistics:
4386 static inline void schedule_debug(struct task_struct *prev)
4389 * Test if we are atomic. Since do_exit() needs to call into
4390 * schedule() atomically, we ignore that path for now.
4391 * Otherwise, whine if we are scheduling when we should not be.
4393 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4394 __schedule_bug(prev);
4396 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4398 schedstat_inc(this_rq(), sched_count);
4399 #ifdef CONFIG_SCHEDSTATS
4400 if (unlikely(prev->lock_depth >= 0)) {
4401 schedstat_inc(this_rq(), bkl_count);
4402 schedstat_inc(prev, sched_info.bkl_count);
4404 #endif
4408 * Pick up the highest-prio task:
4410 static inline struct task_struct *
4411 pick_next_task(struct rq *rq, struct task_struct *prev)
4413 const struct sched_class *class;
4414 struct task_struct *p;
4417 * Optimization: we know that if all tasks are in
4418 * the fair class we can call that function directly:
4420 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4421 p = fair_sched_class.pick_next_task(rq);
4422 if (likely(p))
4423 return p;
4426 class = sched_class_highest;
4427 for ( ; ; ) {
4428 p = class->pick_next_task(rq);
4429 if (p)
4430 return p;
4432 * Will never be NULL as the idle class always
4433 * returns a non-NULL p:
4435 class = class->next;
4440 * schedule() is the main scheduler function.
4442 asmlinkage void __sched schedule(void)
4444 struct task_struct *prev, *next;
4445 unsigned long *switch_count;
4446 struct rq *rq;
4447 int cpu;
4449 need_resched:
4450 preempt_disable();
4451 cpu = smp_processor_id();
4452 rq = cpu_rq(cpu);
4453 rcu_qsctr_inc(cpu);
4454 prev = rq->curr;
4455 switch_count = &prev->nivcsw;
4457 release_kernel_lock(prev);
4458 need_resched_nonpreemptible:
4460 schedule_debug(prev);
4462 if (sched_feat(HRTICK))
4463 hrtick_clear(rq);
4465 spin_lock_irq(&rq->lock);
4466 update_rq_clock(rq);
4467 clear_tsk_need_resched(prev);
4469 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4470 if (unlikely(signal_pending_state(prev->state, prev)))
4471 prev->state = TASK_RUNNING;
4472 else
4473 deactivate_task(rq, prev, 1);
4474 switch_count = &prev->nvcsw;
4477 #ifdef CONFIG_SMP
4478 if (prev->sched_class->pre_schedule)
4479 prev->sched_class->pre_schedule(rq, prev);
4480 #endif
4482 if (unlikely(!rq->nr_running))
4483 idle_balance(cpu, rq);
4485 prev->sched_class->put_prev_task(rq, prev);
4486 next = pick_next_task(rq, prev);
4488 if (likely(prev != next)) {
4489 sched_info_switch(prev, next);
4491 rq->nr_switches++;
4492 rq->curr = next;
4493 ++*switch_count;
4495 context_switch(rq, prev, next); /* unlocks the rq */
4497 * the context switch might have flipped the stack from under
4498 * us, hence refresh the local variables.
4500 cpu = smp_processor_id();
4501 rq = cpu_rq(cpu);
4502 } else
4503 spin_unlock_irq(&rq->lock);
4505 if (unlikely(reacquire_kernel_lock(current) < 0))
4506 goto need_resched_nonpreemptible;
4508 preempt_enable_no_resched();
4509 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4510 goto need_resched;
4512 EXPORT_SYMBOL(schedule);
4514 #ifdef CONFIG_PREEMPT
4516 * this is the entry point to schedule() from in-kernel preemption
4517 * off of preempt_enable. Kernel preemptions off return from interrupt
4518 * occur there and call schedule directly.
4520 asmlinkage void __sched preempt_schedule(void)
4522 struct thread_info *ti = current_thread_info();
4525 * If there is a non-zero preempt_count or interrupts are disabled,
4526 * we do not want to preempt the current task. Just return..
4528 if (likely(ti->preempt_count || irqs_disabled()))
4529 return;
4531 do {
4532 add_preempt_count(PREEMPT_ACTIVE);
4533 schedule();
4534 sub_preempt_count(PREEMPT_ACTIVE);
4537 * Check again in case we missed a preemption opportunity
4538 * between schedule and now.
4540 barrier();
4541 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4543 EXPORT_SYMBOL(preempt_schedule);
4546 * this is the entry point to schedule() from kernel preemption
4547 * off of irq context.
4548 * Note, that this is called and return with irqs disabled. This will
4549 * protect us against recursive calling from irq.
4551 asmlinkage void __sched preempt_schedule_irq(void)
4553 struct thread_info *ti = current_thread_info();
4555 /* Catch callers which need to be fixed */
4556 BUG_ON(ti->preempt_count || !irqs_disabled());
4558 do {
4559 add_preempt_count(PREEMPT_ACTIVE);
4560 local_irq_enable();
4561 schedule();
4562 local_irq_disable();
4563 sub_preempt_count(PREEMPT_ACTIVE);
4566 * Check again in case we missed a preemption opportunity
4567 * between schedule and now.
4569 barrier();
4570 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4573 #endif /* CONFIG_PREEMPT */
4575 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4576 void *key)
4578 return try_to_wake_up(curr->private, mode, sync);
4580 EXPORT_SYMBOL(default_wake_function);
4583 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4584 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4585 * number) then we wake all the non-exclusive tasks and one exclusive task.
4587 * There are circumstances in which we can try to wake a task which has already
4588 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4589 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4591 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4592 int nr_exclusive, int sync, void *key)
4594 wait_queue_t *curr, *next;
4596 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4597 unsigned flags = curr->flags;
4599 if (curr->func(curr, mode, sync, key) &&
4600 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4601 break;
4606 * __wake_up - wake up threads blocked on a waitqueue.
4607 * @q: the waitqueue
4608 * @mode: which threads
4609 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4610 * @key: is directly passed to the wakeup function
4612 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4613 int nr_exclusive, void *key)
4615 unsigned long flags;
4617 spin_lock_irqsave(&q->lock, flags);
4618 __wake_up_common(q, mode, nr_exclusive, 0, key);
4619 spin_unlock_irqrestore(&q->lock, flags);
4621 EXPORT_SYMBOL(__wake_up);
4624 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4626 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4628 __wake_up_common(q, mode, 1, 0, NULL);
4632 * __wake_up_sync - wake up threads blocked on a waitqueue.
4633 * @q: the waitqueue
4634 * @mode: which threads
4635 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4637 * The sync wakeup differs that the waker knows that it will schedule
4638 * away soon, so while the target thread will be woken up, it will not
4639 * be migrated to another CPU - ie. the two threads are 'synchronized'
4640 * with each other. This can prevent needless bouncing between CPUs.
4642 * On UP it can prevent extra preemption.
4644 void
4645 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4647 unsigned long flags;
4648 int sync = 1;
4650 if (unlikely(!q))
4651 return;
4653 if (unlikely(!nr_exclusive))
4654 sync = 0;
4656 spin_lock_irqsave(&q->lock, flags);
4657 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4658 spin_unlock_irqrestore(&q->lock, flags);
4660 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4663 * complete: - signals a single thread waiting on this completion
4664 * @x: holds the state of this particular completion
4666 * This will wake up a single thread waiting on this completion. Threads will be
4667 * awakened in the same order in which they were queued.
4669 * See also complete_all(), wait_for_completion() and related routines.
4671 void complete(struct completion *x)
4673 unsigned long flags;
4675 spin_lock_irqsave(&x->wait.lock, flags);
4676 x->done++;
4677 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4678 spin_unlock_irqrestore(&x->wait.lock, flags);
4680 EXPORT_SYMBOL(complete);
4683 * complete_all: - signals all threads waiting on this completion
4684 * @x: holds the state of this particular completion
4686 * This will wake up all threads waiting on this particular completion event.
4688 void complete_all(struct completion *x)
4690 unsigned long flags;
4692 spin_lock_irqsave(&x->wait.lock, flags);
4693 x->done += UINT_MAX/2;
4694 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4695 spin_unlock_irqrestore(&x->wait.lock, flags);
4697 EXPORT_SYMBOL(complete_all);
4699 static inline long __sched
4700 do_wait_for_common(struct completion *x, long timeout, int state)
4702 if (!x->done) {
4703 DECLARE_WAITQUEUE(wait, current);
4705 wait.flags |= WQ_FLAG_EXCLUSIVE;
4706 __add_wait_queue_tail(&x->wait, &wait);
4707 do {
4708 if (signal_pending_state(state, current)) {
4709 timeout = -ERESTARTSYS;
4710 break;
4712 __set_current_state(state);
4713 spin_unlock_irq(&x->wait.lock);
4714 timeout = schedule_timeout(timeout);
4715 spin_lock_irq(&x->wait.lock);
4716 } while (!x->done && timeout);
4717 __remove_wait_queue(&x->wait, &wait);
4718 if (!x->done)
4719 return timeout;
4721 x->done--;
4722 return timeout ?: 1;
4725 static long __sched
4726 wait_for_common(struct completion *x, long timeout, int state)
4728 might_sleep();
4730 spin_lock_irq(&x->wait.lock);
4731 timeout = do_wait_for_common(x, timeout, state);
4732 spin_unlock_irq(&x->wait.lock);
4733 return timeout;
4737 * wait_for_completion: - waits for completion of a task
4738 * @x: holds the state of this particular completion
4740 * This waits to be signaled for completion of a specific task. It is NOT
4741 * interruptible and there is no timeout.
4743 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4744 * and interrupt capability. Also see complete().
4746 void __sched wait_for_completion(struct completion *x)
4748 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4750 EXPORT_SYMBOL(wait_for_completion);
4753 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4754 * @x: holds the state of this particular completion
4755 * @timeout: timeout value in jiffies
4757 * This waits for either a completion of a specific task to be signaled or for a
4758 * specified timeout to expire. The timeout is in jiffies. It is not
4759 * interruptible.
4761 unsigned long __sched
4762 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4764 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4766 EXPORT_SYMBOL(wait_for_completion_timeout);
4769 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4770 * @x: holds the state of this particular completion
4772 * This waits for completion of a specific task to be signaled. It is
4773 * interruptible.
4775 int __sched wait_for_completion_interruptible(struct completion *x)
4777 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4778 if (t == -ERESTARTSYS)
4779 return t;
4780 return 0;
4782 EXPORT_SYMBOL(wait_for_completion_interruptible);
4785 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4786 * @x: holds the state of this particular completion
4787 * @timeout: timeout value in jiffies
4789 * This waits for either a completion of a specific task to be signaled or for a
4790 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4792 unsigned long __sched
4793 wait_for_completion_interruptible_timeout(struct completion *x,
4794 unsigned long timeout)
4796 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4798 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4801 * wait_for_completion_killable: - waits for completion of a task (killable)
4802 * @x: holds the state of this particular completion
4804 * This waits to be signaled for completion of a specific task. It can be
4805 * interrupted by a kill signal.
4807 int __sched wait_for_completion_killable(struct completion *x)
4809 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4810 if (t == -ERESTARTSYS)
4811 return t;
4812 return 0;
4814 EXPORT_SYMBOL(wait_for_completion_killable);
4817 * try_wait_for_completion - try to decrement a completion without blocking
4818 * @x: completion structure
4820 * Returns: 0 if a decrement cannot be done without blocking
4821 * 1 if a decrement succeeded.
4823 * If a completion is being used as a counting completion,
4824 * attempt to decrement the counter without blocking. This
4825 * enables us to avoid waiting if the resource the completion
4826 * is protecting is not available.
4828 bool try_wait_for_completion(struct completion *x)
4830 int ret = 1;
4832 spin_lock_irq(&x->wait.lock);
4833 if (!x->done)
4834 ret = 0;
4835 else
4836 x->done--;
4837 spin_unlock_irq(&x->wait.lock);
4838 return ret;
4840 EXPORT_SYMBOL(try_wait_for_completion);
4843 * completion_done - Test to see if a completion has any waiters
4844 * @x: completion structure
4846 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4847 * 1 if there are no waiters.
4850 bool completion_done(struct completion *x)
4852 int ret = 1;
4854 spin_lock_irq(&x->wait.lock);
4855 if (!x->done)
4856 ret = 0;
4857 spin_unlock_irq(&x->wait.lock);
4858 return ret;
4860 EXPORT_SYMBOL(completion_done);
4862 static long __sched
4863 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4865 unsigned long flags;
4866 wait_queue_t wait;
4868 init_waitqueue_entry(&wait, current);
4870 __set_current_state(state);
4872 spin_lock_irqsave(&q->lock, flags);
4873 __add_wait_queue(q, &wait);
4874 spin_unlock(&q->lock);
4875 timeout = schedule_timeout(timeout);
4876 spin_lock_irq(&q->lock);
4877 __remove_wait_queue(q, &wait);
4878 spin_unlock_irqrestore(&q->lock, flags);
4880 return timeout;
4883 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4885 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4887 EXPORT_SYMBOL(interruptible_sleep_on);
4889 long __sched
4890 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4892 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4894 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4896 void __sched sleep_on(wait_queue_head_t *q)
4898 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4900 EXPORT_SYMBOL(sleep_on);
4902 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4904 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4906 EXPORT_SYMBOL(sleep_on_timeout);
4908 #ifdef CONFIG_RT_MUTEXES
4911 * rt_mutex_setprio - set the current priority of a task
4912 * @p: task
4913 * @prio: prio value (kernel-internal form)
4915 * This function changes the 'effective' priority of a task. It does
4916 * not touch ->normal_prio like __setscheduler().
4918 * Used by the rt_mutex code to implement priority inheritance logic.
4920 void rt_mutex_setprio(struct task_struct *p, int prio)
4922 unsigned long flags;
4923 int oldprio, on_rq, running;
4924 struct rq *rq;
4925 const struct sched_class *prev_class = p->sched_class;
4927 BUG_ON(prio < 0 || prio > MAX_PRIO);
4929 rq = task_rq_lock(p, &flags);
4930 update_rq_clock(rq);
4932 oldprio = p->prio;
4933 on_rq = p->se.on_rq;
4934 running = task_current(rq, p);
4935 if (on_rq)
4936 dequeue_task(rq, p, 0);
4937 if (running)
4938 p->sched_class->put_prev_task(rq, p);
4940 if (rt_prio(prio))
4941 p->sched_class = &rt_sched_class;
4942 else
4943 p->sched_class = &fair_sched_class;
4945 p->prio = prio;
4947 if (running)
4948 p->sched_class->set_curr_task(rq);
4949 if (on_rq) {
4950 enqueue_task(rq, p, 0);
4952 check_class_changed(rq, p, prev_class, oldprio, running);
4954 task_rq_unlock(rq, &flags);
4957 #endif
4959 void set_user_nice(struct task_struct *p, long nice)
4961 int old_prio, delta, on_rq;
4962 unsigned long flags;
4963 struct rq *rq;
4965 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4966 return;
4968 * We have to be careful, if called from sys_setpriority(),
4969 * the task might be in the middle of scheduling on another CPU.
4971 rq = task_rq_lock(p, &flags);
4972 update_rq_clock(rq);
4974 * The RT priorities are set via sched_setscheduler(), but we still
4975 * allow the 'normal' nice value to be set - but as expected
4976 * it wont have any effect on scheduling until the task is
4977 * SCHED_FIFO/SCHED_RR:
4979 if (task_has_rt_policy(p)) {
4980 p->static_prio = NICE_TO_PRIO(nice);
4981 goto out_unlock;
4983 on_rq = p->se.on_rq;
4984 if (on_rq)
4985 dequeue_task(rq, p, 0);
4987 p->static_prio = NICE_TO_PRIO(nice);
4988 set_load_weight(p);
4989 old_prio = p->prio;
4990 p->prio = effective_prio(p);
4991 delta = p->prio - old_prio;
4993 if (on_rq) {
4994 enqueue_task(rq, p, 0);
4996 * If the task increased its priority or is running and
4997 * lowered its priority, then reschedule its CPU:
4999 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5000 resched_task(rq->curr);
5002 out_unlock:
5003 task_rq_unlock(rq, &flags);
5005 EXPORT_SYMBOL(set_user_nice);
5008 * can_nice - check if a task can reduce its nice value
5009 * @p: task
5010 * @nice: nice value
5012 int can_nice(const struct task_struct *p, const int nice)
5014 /* convert nice value [19,-20] to rlimit style value [1,40] */
5015 int nice_rlim = 20 - nice;
5017 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5018 capable(CAP_SYS_NICE));
5021 #ifdef __ARCH_WANT_SYS_NICE
5024 * sys_nice - change the priority of the current process.
5025 * @increment: priority increment
5027 * sys_setpriority is a more generic, but much slower function that
5028 * does similar things.
5030 asmlinkage long sys_nice(int increment)
5032 long nice, retval;
5035 * Setpriority might change our priority at the same moment.
5036 * We don't have to worry. Conceptually one call occurs first
5037 * and we have a single winner.
5039 if (increment < -40)
5040 increment = -40;
5041 if (increment > 40)
5042 increment = 40;
5044 nice = PRIO_TO_NICE(current->static_prio) + increment;
5045 if (nice < -20)
5046 nice = -20;
5047 if (nice > 19)
5048 nice = 19;
5050 if (increment < 0 && !can_nice(current, nice))
5051 return -EPERM;
5053 retval = security_task_setnice(current, nice);
5054 if (retval)
5055 return retval;
5057 set_user_nice(current, nice);
5058 return 0;
5061 #endif
5064 * task_prio - return the priority value of a given task.
5065 * @p: the task in question.
5067 * This is the priority value as seen by users in /proc.
5068 * RT tasks are offset by -200. Normal tasks are centered
5069 * around 0, value goes from -16 to +15.
5071 int task_prio(const struct task_struct *p)
5073 return p->prio - MAX_RT_PRIO;
5077 * task_nice - return the nice value of a given task.
5078 * @p: the task in question.
5080 int task_nice(const struct task_struct *p)
5082 return TASK_NICE(p);
5084 EXPORT_SYMBOL(task_nice);
5087 * idle_cpu - is a given cpu idle currently?
5088 * @cpu: the processor in question.
5090 int idle_cpu(int cpu)
5092 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5096 * idle_task - return the idle task for a given cpu.
5097 * @cpu: the processor in question.
5099 struct task_struct *idle_task(int cpu)
5101 return cpu_rq(cpu)->idle;
5105 * find_process_by_pid - find a process with a matching PID value.
5106 * @pid: the pid in question.
5108 static struct task_struct *find_process_by_pid(pid_t pid)
5110 return pid ? find_task_by_vpid(pid) : current;
5113 /* Actually do priority change: must hold rq lock. */
5114 static void
5115 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5117 BUG_ON(p->se.on_rq);
5119 p->policy = policy;
5120 switch (p->policy) {
5121 case SCHED_NORMAL:
5122 case SCHED_BATCH:
5123 case SCHED_IDLE:
5124 p->sched_class = &fair_sched_class;
5125 break;
5126 case SCHED_FIFO:
5127 case SCHED_RR:
5128 p->sched_class = &rt_sched_class;
5129 break;
5132 p->rt_priority = prio;
5133 p->normal_prio = normal_prio(p);
5134 /* we are holding p->pi_lock already */
5135 p->prio = rt_mutex_getprio(p);
5136 set_load_weight(p);
5140 * check the target process has a UID that matches the current process's
5142 static bool check_same_owner(struct task_struct *p)
5144 const struct cred *cred = current_cred(), *pcred;
5145 bool match;
5147 rcu_read_lock();
5148 pcred = __task_cred(p);
5149 match = (cred->euid == pcred->euid ||
5150 cred->euid == pcred->uid);
5151 rcu_read_unlock();
5152 return match;
5155 static int __sched_setscheduler(struct task_struct *p, int policy,
5156 struct sched_param *param, bool user)
5158 int retval, oldprio, oldpolicy = -1, on_rq, running;
5159 unsigned long flags;
5160 const struct sched_class *prev_class = p->sched_class;
5161 struct rq *rq;
5163 /* may grab non-irq protected spin_locks */
5164 BUG_ON(in_interrupt());
5165 recheck:
5166 /* double check policy once rq lock held */
5167 if (policy < 0)
5168 policy = oldpolicy = p->policy;
5169 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5170 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5171 policy != SCHED_IDLE)
5172 return -EINVAL;
5174 * Valid priorities for SCHED_FIFO and SCHED_RR are
5175 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5176 * SCHED_BATCH and SCHED_IDLE is 0.
5178 if (param->sched_priority < 0 ||
5179 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5180 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5181 return -EINVAL;
5182 if (rt_policy(policy) != (param->sched_priority != 0))
5183 return -EINVAL;
5186 * Allow unprivileged RT tasks to decrease priority:
5188 if (user && !capable(CAP_SYS_NICE)) {
5189 if (rt_policy(policy)) {
5190 unsigned long rlim_rtprio;
5192 if (!lock_task_sighand(p, &flags))
5193 return -ESRCH;
5194 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5195 unlock_task_sighand(p, &flags);
5197 /* can't set/change the rt policy */
5198 if (policy != p->policy && !rlim_rtprio)
5199 return -EPERM;
5201 /* can't increase priority */
5202 if (param->sched_priority > p->rt_priority &&
5203 param->sched_priority > rlim_rtprio)
5204 return -EPERM;
5207 * Like positive nice levels, dont allow tasks to
5208 * move out of SCHED_IDLE either:
5210 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5211 return -EPERM;
5213 /* can't change other user's priorities */
5214 if (!check_same_owner(p))
5215 return -EPERM;
5218 if (user) {
5219 #ifdef CONFIG_RT_GROUP_SCHED
5221 * Do not allow realtime tasks into groups that have no runtime
5222 * assigned.
5224 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5225 task_group(p)->rt_bandwidth.rt_runtime == 0)
5226 return -EPERM;
5227 #endif
5229 retval = security_task_setscheduler(p, policy, param);
5230 if (retval)
5231 return retval;
5235 * make sure no PI-waiters arrive (or leave) while we are
5236 * changing the priority of the task:
5238 spin_lock_irqsave(&p->pi_lock, flags);
5240 * To be able to change p->policy safely, the apropriate
5241 * runqueue lock must be held.
5243 rq = __task_rq_lock(p);
5244 /* recheck policy now with rq lock held */
5245 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5246 policy = oldpolicy = -1;
5247 __task_rq_unlock(rq);
5248 spin_unlock_irqrestore(&p->pi_lock, flags);
5249 goto recheck;
5251 update_rq_clock(rq);
5252 on_rq = p->se.on_rq;
5253 running = task_current(rq, p);
5254 if (on_rq)
5255 deactivate_task(rq, p, 0);
5256 if (running)
5257 p->sched_class->put_prev_task(rq, p);
5259 oldprio = p->prio;
5260 __setscheduler(rq, p, policy, param->sched_priority);
5262 if (running)
5263 p->sched_class->set_curr_task(rq);
5264 if (on_rq) {
5265 activate_task(rq, p, 0);
5267 check_class_changed(rq, p, prev_class, oldprio, running);
5269 __task_rq_unlock(rq);
5270 spin_unlock_irqrestore(&p->pi_lock, flags);
5272 rt_mutex_adjust_pi(p);
5274 return 0;
5278 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5279 * @p: the task in question.
5280 * @policy: new policy.
5281 * @param: structure containing the new RT priority.
5283 * NOTE that the task may be already dead.
5285 int sched_setscheduler(struct task_struct *p, int policy,
5286 struct sched_param *param)
5288 return __sched_setscheduler(p, policy, param, true);
5290 EXPORT_SYMBOL_GPL(sched_setscheduler);
5293 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5294 * @p: the task in question.
5295 * @policy: new policy.
5296 * @param: structure containing the new RT priority.
5298 * Just like sched_setscheduler, only don't bother checking if the
5299 * current context has permission. For example, this is needed in
5300 * stop_machine(): we create temporary high priority worker threads,
5301 * but our caller might not have that capability.
5303 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5304 struct sched_param *param)
5306 return __sched_setscheduler(p, policy, param, false);
5309 static int
5310 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5312 struct sched_param lparam;
5313 struct task_struct *p;
5314 int retval;
5316 if (!param || pid < 0)
5317 return -EINVAL;
5318 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5319 return -EFAULT;
5321 rcu_read_lock();
5322 retval = -ESRCH;
5323 p = find_process_by_pid(pid);
5324 if (p != NULL)
5325 retval = sched_setscheduler(p, policy, &lparam);
5326 rcu_read_unlock();
5328 return retval;
5332 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5333 * @pid: the pid in question.
5334 * @policy: new policy.
5335 * @param: structure containing the new RT priority.
5337 asmlinkage long
5338 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5340 /* negative values for policy are not valid */
5341 if (policy < 0)
5342 return -EINVAL;
5344 return do_sched_setscheduler(pid, policy, param);
5348 * sys_sched_setparam - set/change the RT priority of a thread
5349 * @pid: the pid in question.
5350 * @param: structure containing the new RT priority.
5352 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5354 return do_sched_setscheduler(pid, -1, param);
5358 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5359 * @pid: the pid in question.
5361 asmlinkage long sys_sched_getscheduler(pid_t pid)
5363 struct task_struct *p;
5364 int retval;
5366 if (pid < 0)
5367 return -EINVAL;
5369 retval = -ESRCH;
5370 read_lock(&tasklist_lock);
5371 p = find_process_by_pid(pid);
5372 if (p) {
5373 retval = security_task_getscheduler(p);
5374 if (!retval)
5375 retval = p->policy;
5377 read_unlock(&tasklist_lock);
5378 return retval;
5382 * sys_sched_getscheduler - get the RT priority of a thread
5383 * @pid: the pid in question.
5384 * @param: structure containing the RT priority.
5386 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5388 struct sched_param lp;
5389 struct task_struct *p;
5390 int retval;
5392 if (!param || pid < 0)
5393 return -EINVAL;
5395 read_lock(&tasklist_lock);
5396 p = find_process_by_pid(pid);
5397 retval = -ESRCH;
5398 if (!p)
5399 goto out_unlock;
5401 retval = security_task_getscheduler(p);
5402 if (retval)
5403 goto out_unlock;
5405 lp.sched_priority = p->rt_priority;
5406 read_unlock(&tasklist_lock);
5409 * This one might sleep, we cannot do it with a spinlock held ...
5411 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5413 return retval;
5415 out_unlock:
5416 read_unlock(&tasklist_lock);
5417 return retval;
5420 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5422 cpumask_t cpus_allowed;
5423 cpumask_t new_mask = *in_mask;
5424 struct task_struct *p;
5425 int retval;
5427 get_online_cpus();
5428 read_lock(&tasklist_lock);
5430 p = find_process_by_pid(pid);
5431 if (!p) {
5432 read_unlock(&tasklist_lock);
5433 put_online_cpus();
5434 return -ESRCH;
5438 * It is not safe to call set_cpus_allowed with the
5439 * tasklist_lock held. We will bump the task_struct's
5440 * usage count and then drop tasklist_lock.
5442 get_task_struct(p);
5443 read_unlock(&tasklist_lock);
5445 retval = -EPERM;
5446 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5447 goto out_unlock;
5449 retval = security_task_setscheduler(p, 0, NULL);
5450 if (retval)
5451 goto out_unlock;
5453 cpuset_cpus_allowed(p, &cpus_allowed);
5454 cpus_and(new_mask, new_mask, cpus_allowed);
5455 again:
5456 retval = set_cpus_allowed_ptr(p, &new_mask);
5458 if (!retval) {
5459 cpuset_cpus_allowed(p, &cpus_allowed);
5460 if (!cpus_subset(new_mask, cpus_allowed)) {
5462 * We must have raced with a concurrent cpuset
5463 * update. Just reset the cpus_allowed to the
5464 * cpuset's cpus_allowed
5466 new_mask = cpus_allowed;
5467 goto again;
5470 out_unlock:
5471 put_task_struct(p);
5472 put_online_cpus();
5473 return retval;
5476 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5477 cpumask_t *new_mask)
5479 if (len < sizeof(cpumask_t)) {
5480 memset(new_mask, 0, sizeof(cpumask_t));
5481 } else if (len > sizeof(cpumask_t)) {
5482 len = sizeof(cpumask_t);
5484 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5488 * sys_sched_setaffinity - set the cpu affinity of a process
5489 * @pid: pid of the process
5490 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5491 * @user_mask_ptr: user-space pointer to the new cpu mask
5493 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5494 unsigned long __user *user_mask_ptr)
5496 cpumask_t new_mask;
5497 int retval;
5499 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5500 if (retval)
5501 return retval;
5503 return sched_setaffinity(pid, &new_mask);
5506 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5508 struct task_struct *p;
5509 int retval;
5511 get_online_cpus();
5512 read_lock(&tasklist_lock);
5514 retval = -ESRCH;
5515 p = find_process_by_pid(pid);
5516 if (!p)
5517 goto out_unlock;
5519 retval = security_task_getscheduler(p);
5520 if (retval)
5521 goto out_unlock;
5523 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5525 out_unlock:
5526 read_unlock(&tasklist_lock);
5527 put_online_cpus();
5529 return retval;
5533 * sys_sched_getaffinity - get the cpu affinity of a process
5534 * @pid: pid of the process
5535 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5536 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5538 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5539 unsigned long __user *user_mask_ptr)
5541 int ret;
5542 cpumask_t mask;
5544 if (len < sizeof(cpumask_t))
5545 return -EINVAL;
5547 ret = sched_getaffinity(pid, &mask);
5548 if (ret < 0)
5549 return ret;
5551 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5552 return -EFAULT;
5554 return sizeof(cpumask_t);
5558 * sys_sched_yield - yield the current processor to other threads.
5560 * This function yields the current CPU to other tasks. If there are no
5561 * other threads running on this CPU then this function will return.
5563 asmlinkage long sys_sched_yield(void)
5565 struct rq *rq = this_rq_lock();
5567 schedstat_inc(rq, yld_count);
5568 current->sched_class->yield_task(rq);
5571 * Since we are going to call schedule() anyway, there's
5572 * no need to preempt or enable interrupts:
5574 __release(rq->lock);
5575 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5576 _raw_spin_unlock(&rq->lock);
5577 preempt_enable_no_resched();
5579 schedule();
5581 return 0;
5584 static void __cond_resched(void)
5586 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5587 __might_sleep(__FILE__, __LINE__);
5588 #endif
5590 * The BKS might be reacquired before we have dropped
5591 * PREEMPT_ACTIVE, which could trigger a second
5592 * cond_resched() call.
5594 do {
5595 add_preempt_count(PREEMPT_ACTIVE);
5596 schedule();
5597 sub_preempt_count(PREEMPT_ACTIVE);
5598 } while (need_resched());
5601 int __sched _cond_resched(void)
5603 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5604 system_state == SYSTEM_RUNNING) {
5605 __cond_resched();
5606 return 1;
5608 return 0;
5610 EXPORT_SYMBOL(_cond_resched);
5613 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5614 * call schedule, and on return reacquire the lock.
5616 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5617 * operations here to prevent schedule() from being called twice (once via
5618 * spin_unlock(), once by hand).
5620 int cond_resched_lock(spinlock_t *lock)
5622 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5623 int ret = 0;
5625 if (spin_needbreak(lock) || resched) {
5626 spin_unlock(lock);
5627 if (resched && need_resched())
5628 __cond_resched();
5629 else
5630 cpu_relax();
5631 ret = 1;
5632 spin_lock(lock);
5634 return ret;
5636 EXPORT_SYMBOL(cond_resched_lock);
5638 int __sched cond_resched_softirq(void)
5640 BUG_ON(!in_softirq());
5642 if (need_resched() && system_state == SYSTEM_RUNNING) {
5643 local_bh_enable();
5644 __cond_resched();
5645 local_bh_disable();
5646 return 1;
5648 return 0;
5650 EXPORT_SYMBOL(cond_resched_softirq);
5653 * yield - yield the current processor to other threads.
5655 * This is a shortcut for kernel-space yielding - it marks the
5656 * thread runnable and calls sys_sched_yield().
5658 void __sched yield(void)
5660 set_current_state(TASK_RUNNING);
5661 sys_sched_yield();
5663 EXPORT_SYMBOL(yield);
5666 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5667 * that process accounting knows that this is a task in IO wait state.
5669 * But don't do that if it is a deliberate, throttling IO wait (this task
5670 * has set its backing_dev_info: the queue against which it should throttle)
5672 void __sched io_schedule(void)
5674 struct rq *rq = &__raw_get_cpu_var(runqueues);
5676 delayacct_blkio_start();
5677 atomic_inc(&rq->nr_iowait);
5678 schedule();
5679 atomic_dec(&rq->nr_iowait);
5680 delayacct_blkio_end();
5682 EXPORT_SYMBOL(io_schedule);
5684 long __sched io_schedule_timeout(long timeout)
5686 struct rq *rq = &__raw_get_cpu_var(runqueues);
5687 long ret;
5689 delayacct_blkio_start();
5690 atomic_inc(&rq->nr_iowait);
5691 ret = schedule_timeout(timeout);
5692 atomic_dec(&rq->nr_iowait);
5693 delayacct_blkio_end();
5694 return ret;
5698 * sys_sched_get_priority_max - return maximum RT priority.
5699 * @policy: scheduling class.
5701 * this syscall returns the maximum rt_priority that can be used
5702 * by a given scheduling class.
5704 asmlinkage long sys_sched_get_priority_max(int policy)
5706 int ret = -EINVAL;
5708 switch (policy) {
5709 case SCHED_FIFO:
5710 case SCHED_RR:
5711 ret = MAX_USER_RT_PRIO-1;
5712 break;
5713 case SCHED_NORMAL:
5714 case SCHED_BATCH:
5715 case SCHED_IDLE:
5716 ret = 0;
5717 break;
5719 return ret;
5723 * sys_sched_get_priority_min - return minimum RT priority.
5724 * @policy: scheduling class.
5726 * this syscall returns the minimum rt_priority that can be used
5727 * by a given scheduling class.
5729 asmlinkage long sys_sched_get_priority_min(int policy)
5731 int ret = -EINVAL;
5733 switch (policy) {
5734 case SCHED_FIFO:
5735 case SCHED_RR:
5736 ret = 1;
5737 break;
5738 case SCHED_NORMAL:
5739 case SCHED_BATCH:
5740 case SCHED_IDLE:
5741 ret = 0;
5743 return ret;
5747 * sys_sched_rr_get_interval - return the default timeslice of a process.
5748 * @pid: pid of the process.
5749 * @interval: userspace pointer to the timeslice value.
5751 * this syscall writes the default timeslice value of a given process
5752 * into the user-space timespec buffer. A value of '0' means infinity.
5754 asmlinkage
5755 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5757 struct task_struct *p;
5758 unsigned int time_slice;
5759 int retval;
5760 struct timespec t;
5762 if (pid < 0)
5763 return -EINVAL;
5765 retval = -ESRCH;
5766 read_lock(&tasklist_lock);
5767 p = find_process_by_pid(pid);
5768 if (!p)
5769 goto out_unlock;
5771 retval = security_task_getscheduler(p);
5772 if (retval)
5773 goto out_unlock;
5776 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5777 * tasks that are on an otherwise idle runqueue:
5779 time_slice = 0;
5780 if (p->policy == SCHED_RR) {
5781 time_slice = DEF_TIMESLICE;
5782 } else if (p->policy != SCHED_FIFO) {
5783 struct sched_entity *se = &p->se;
5784 unsigned long flags;
5785 struct rq *rq;
5787 rq = task_rq_lock(p, &flags);
5788 if (rq->cfs.load.weight)
5789 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5790 task_rq_unlock(rq, &flags);
5792 read_unlock(&tasklist_lock);
5793 jiffies_to_timespec(time_slice, &t);
5794 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5795 return retval;
5797 out_unlock:
5798 read_unlock(&tasklist_lock);
5799 return retval;
5802 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5804 void sched_show_task(struct task_struct *p)
5806 unsigned long free = 0;
5807 unsigned state;
5809 state = p->state ? __ffs(p->state) + 1 : 0;
5810 printk(KERN_INFO "%-13.13s %c", p->comm,
5811 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5812 #if BITS_PER_LONG == 32
5813 if (state == TASK_RUNNING)
5814 printk(KERN_CONT " running ");
5815 else
5816 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5817 #else
5818 if (state == TASK_RUNNING)
5819 printk(KERN_CONT " running task ");
5820 else
5821 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5822 #endif
5823 #ifdef CONFIG_DEBUG_STACK_USAGE
5825 unsigned long *n = end_of_stack(p);
5826 while (!*n)
5827 n++;
5828 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5830 #endif
5831 printk(KERN_CONT "%5lu %5d %6d\n", free,
5832 task_pid_nr(p), task_pid_nr(p->real_parent));
5834 show_stack(p, NULL);
5837 void show_state_filter(unsigned long state_filter)
5839 struct task_struct *g, *p;
5841 #if BITS_PER_LONG == 32
5842 printk(KERN_INFO
5843 " task PC stack pid father\n");
5844 #else
5845 printk(KERN_INFO
5846 " task PC stack pid father\n");
5847 #endif
5848 read_lock(&tasklist_lock);
5849 do_each_thread(g, p) {
5851 * reset the NMI-timeout, listing all files on a slow
5852 * console might take alot of time:
5854 touch_nmi_watchdog();
5855 if (!state_filter || (p->state & state_filter))
5856 sched_show_task(p);
5857 } while_each_thread(g, p);
5859 touch_all_softlockup_watchdogs();
5861 #ifdef CONFIG_SCHED_DEBUG
5862 sysrq_sched_debug_show();
5863 #endif
5864 read_unlock(&tasklist_lock);
5866 * Only show locks if all tasks are dumped:
5868 if (state_filter == -1)
5869 debug_show_all_locks();
5872 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5874 idle->sched_class = &idle_sched_class;
5878 * init_idle - set up an idle thread for a given CPU
5879 * @idle: task in question
5880 * @cpu: cpu the idle task belongs to
5882 * NOTE: this function does not set the idle thread's NEED_RESCHED
5883 * flag, to make booting more robust.
5885 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5887 struct rq *rq = cpu_rq(cpu);
5888 unsigned long flags;
5890 spin_lock_irqsave(&rq->lock, flags);
5892 __sched_fork(idle);
5893 idle->se.exec_start = sched_clock();
5895 idle->prio = idle->normal_prio = MAX_PRIO;
5896 idle->cpus_allowed = cpumask_of_cpu(cpu);
5897 __set_task_cpu(idle, cpu);
5899 rq->curr = rq->idle = idle;
5900 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5901 idle->oncpu = 1;
5902 #endif
5903 spin_unlock_irqrestore(&rq->lock, flags);
5905 /* Set the preempt count _outside_ the spinlocks! */
5906 #if defined(CONFIG_PREEMPT)
5907 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5908 #else
5909 task_thread_info(idle)->preempt_count = 0;
5910 #endif
5912 * The idle tasks have their own, simple scheduling class:
5914 idle->sched_class = &idle_sched_class;
5918 * In a system that switches off the HZ timer nohz_cpu_mask
5919 * indicates which cpus entered this state. This is used
5920 * in the rcu update to wait only for active cpus. For system
5921 * which do not switch off the HZ timer nohz_cpu_mask should
5922 * always be CPU_MASK_NONE.
5924 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5927 * Increase the granularity value when there are more CPUs,
5928 * because with more CPUs the 'effective latency' as visible
5929 * to users decreases. But the relationship is not linear,
5930 * so pick a second-best guess by going with the log2 of the
5931 * number of CPUs.
5933 * This idea comes from the SD scheduler of Con Kolivas:
5935 static inline void sched_init_granularity(void)
5937 unsigned int factor = 1 + ilog2(num_online_cpus());
5938 const unsigned long limit = 200000000;
5940 sysctl_sched_min_granularity *= factor;
5941 if (sysctl_sched_min_granularity > limit)
5942 sysctl_sched_min_granularity = limit;
5944 sysctl_sched_latency *= factor;
5945 if (sysctl_sched_latency > limit)
5946 sysctl_sched_latency = limit;
5948 sysctl_sched_wakeup_granularity *= factor;
5950 sysctl_sched_shares_ratelimit *= factor;
5953 #ifdef CONFIG_SMP
5955 * This is how migration works:
5957 * 1) we queue a struct migration_req structure in the source CPU's
5958 * runqueue and wake up that CPU's migration thread.
5959 * 2) we down() the locked semaphore => thread blocks.
5960 * 3) migration thread wakes up (implicitly it forces the migrated
5961 * thread off the CPU)
5962 * 4) it gets the migration request and checks whether the migrated
5963 * task is still in the wrong runqueue.
5964 * 5) if it's in the wrong runqueue then the migration thread removes
5965 * it and puts it into the right queue.
5966 * 6) migration thread up()s the semaphore.
5967 * 7) we wake up and the migration is done.
5971 * Change a given task's CPU affinity. Migrate the thread to a
5972 * proper CPU and schedule it away if the CPU it's executing on
5973 * is removed from the allowed bitmask.
5975 * NOTE: the caller must have a valid reference to the task, the
5976 * task must not exit() & deallocate itself prematurely. The
5977 * call is not atomic; no spinlocks may be held.
5979 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5981 struct migration_req req;
5982 unsigned long flags;
5983 struct rq *rq;
5984 int ret = 0;
5986 rq = task_rq_lock(p, &flags);
5987 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5988 ret = -EINVAL;
5989 goto out;
5992 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5993 !cpus_equal(p->cpus_allowed, *new_mask))) {
5994 ret = -EINVAL;
5995 goto out;
5998 if (p->sched_class->set_cpus_allowed)
5999 p->sched_class->set_cpus_allowed(p, new_mask);
6000 else {
6001 p->cpus_allowed = *new_mask;
6002 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
6005 /* Can the task run on the task's current CPU? If so, we're done */
6006 if (cpu_isset(task_cpu(p), *new_mask))
6007 goto out;
6009 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
6010 /* Need help from migration thread: drop lock and wait. */
6011 task_rq_unlock(rq, &flags);
6012 wake_up_process(rq->migration_thread);
6013 wait_for_completion(&req.done);
6014 tlb_migrate_finish(p->mm);
6015 return 0;
6017 out:
6018 task_rq_unlock(rq, &flags);
6020 return ret;
6022 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6025 * Move (not current) task off this cpu, onto dest cpu. We're doing
6026 * this because either it can't run here any more (set_cpus_allowed()
6027 * away from this CPU, or CPU going down), or because we're
6028 * attempting to rebalance this task on exec (sched_exec).
6030 * So we race with normal scheduler movements, but that's OK, as long
6031 * as the task is no longer on this CPU.
6033 * Returns non-zero if task was successfully migrated.
6035 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6037 struct rq *rq_dest, *rq_src;
6038 int ret = 0, on_rq;
6040 if (unlikely(!cpu_active(dest_cpu)))
6041 return ret;
6043 rq_src = cpu_rq(src_cpu);
6044 rq_dest = cpu_rq(dest_cpu);
6046 double_rq_lock(rq_src, rq_dest);
6047 /* Already moved. */
6048 if (task_cpu(p) != src_cpu)
6049 goto done;
6050 /* Affinity changed (again). */
6051 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6052 goto fail;
6054 on_rq = p->se.on_rq;
6055 if (on_rq)
6056 deactivate_task(rq_src, p, 0);
6058 set_task_cpu(p, dest_cpu);
6059 if (on_rq) {
6060 activate_task(rq_dest, p, 0);
6061 check_preempt_curr(rq_dest, p, 0);
6063 done:
6064 ret = 1;
6065 fail:
6066 double_rq_unlock(rq_src, rq_dest);
6067 return ret;
6071 * migration_thread - this is a highprio system thread that performs
6072 * thread migration by bumping thread off CPU then 'pushing' onto
6073 * another runqueue.
6075 static int migration_thread(void *data)
6077 int cpu = (long)data;
6078 struct rq *rq;
6080 rq = cpu_rq(cpu);
6081 BUG_ON(rq->migration_thread != current);
6083 set_current_state(TASK_INTERRUPTIBLE);
6084 while (!kthread_should_stop()) {
6085 struct migration_req *req;
6086 struct list_head *head;
6088 spin_lock_irq(&rq->lock);
6090 if (cpu_is_offline(cpu)) {
6091 spin_unlock_irq(&rq->lock);
6092 goto wait_to_die;
6095 if (rq->active_balance) {
6096 active_load_balance(rq, cpu);
6097 rq->active_balance = 0;
6100 head = &rq->migration_queue;
6102 if (list_empty(head)) {
6103 spin_unlock_irq(&rq->lock);
6104 schedule();
6105 set_current_state(TASK_INTERRUPTIBLE);
6106 continue;
6108 req = list_entry(head->next, struct migration_req, list);
6109 list_del_init(head->next);
6111 spin_unlock(&rq->lock);
6112 __migrate_task(req->task, cpu, req->dest_cpu);
6113 local_irq_enable();
6115 complete(&req->done);
6117 __set_current_state(TASK_RUNNING);
6118 return 0;
6120 wait_to_die:
6121 /* Wait for kthread_stop */
6122 set_current_state(TASK_INTERRUPTIBLE);
6123 while (!kthread_should_stop()) {
6124 schedule();
6125 set_current_state(TASK_INTERRUPTIBLE);
6127 __set_current_state(TASK_RUNNING);
6128 return 0;
6131 #ifdef CONFIG_HOTPLUG_CPU
6133 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6135 int ret;
6137 local_irq_disable();
6138 ret = __migrate_task(p, src_cpu, dest_cpu);
6139 local_irq_enable();
6140 return ret;
6144 * Figure out where task on dead CPU should go, use force if necessary.
6145 * NOTE: interrupts should be disabled by the caller
6147 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6149 unsigned long flags;
6150 cpumask_t mask;
6151 struct rq *rq;
6152 int dest_cpu;
6154 do {
6155 /* On same node? */
6156 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6157 cpus_and(mask, mask, p->cpus_allowed);
6158 dest_cpu = any_online_cpu(mask);
6160 /* On any allowed CPU? */
6161 if (dest_cpu >= nr_cpu_ids)
6162 dest_cpu = any_online_cpu(p->cpus_allowed);
6164 /* No more Mr. Nice Guy. */
6165 if (dest_cpu >= nr_cpu_ids) {
6166 cpumask_t cpus_allowed;
6168 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6170 * Try to stay on the same cpuset, where the
6171 * current cpuset may be a subset of all cpus.
6172 * The cpuset_cpus_allowed_locked() variant of
6173 * cpuset_cpus_allowed() will not block. It must be
6174 * called within calls to cpuset_lock/cpuset_unlock.
6176 rq = task_rq_lock(p, &flags);
6177 p->cpus_allowed = cpus_allowed;
6178 dest_cpu = any_online_cpu(p->cpus_allowed);
6179 task_rq_unlock(rq, &flags);
6182 * Don't tell them about moving exiting tasks or
6183 * kernel threads (both mm NULL), since they never
6184 * leave kernel.
6186 if (p->mm && printk_ratelimit()) {
6187 printk(KERN_INFO "process %d (%s) no "
6188 "longer affine to cpu%d\n",
6189 task_pid_nr(p), p->comm, dead_cpu);
6192 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6196 * While a dead CPU has no uninterruptible tasks queued at this point,
6197 * it might still have a nonzero ->nr_uninterruptible counter, because
6198 * for performance reasons the counter is not stricly tracking tasks to
6199 * their home CPUs. So we just add the counter to another CPU's counter,
6200 * to keep the global sum constant after CPU-down:
6202 static void migrate_nr_uninterruptible(struct rq *rq_src)
6204 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6205 unsigned long flags;
6207 local_irq_save(flags);
6208 double_rq_lock(rq_src, rq_dest);
6209 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6210 rq_src->nr_uninterruptible = 0;
6211 double_rq_unlock(rq_src, rq_dest);
6212 local_irq_restore(flags);
6215 /* Run through task list and migrate tasks from the dead cpu. */
6216 static void migrate_live_tasks(int src_cpu)
6218 struct task_struct *p, *t;
6220 read_lock(&tasklist_lock);
6222 do_each_thread(t, p) {
6223 if (p == current)
6224 continue;
6226 if (task_cpu(p) == src_cpu)
6227 move_task_off_dead_cpu(src_cpu, p);
6228 } while_each_thread(t, p);
6230 read_unlock(&tasklist_lock);
6234 * Schedules idle task to be the next runnable task on current CPU.
6235 * It does so by boosting its priority to highest possible.
6236 * Used by CPU offline code.
6238 void sched_idle_next(void)
6240 int this_cpu = smp_processor_id();
6241 struct rq *rq = cpu_rq(this_cpu);
6242 struct task_struct *p = rq->idle;
6243 unsigned long flags;
6245 /* cpu has to be offline */
6246 BUG_ON(cpu_online(this_cpu));
6249 * Strictly not necessary since rest of the CPUs are stopped by now
6250 * and interrupts disabled on the current cpu.
6252 spin_lock_irqsave(&rq->lock, flags);
6254 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6256 update_rq_clock(rq);
6257 activate_task(rq, p, 0);
6259 spin_unlock_irqrestore(&rq->lock, flags);
6263 * Ensures that the idle task is using init_mm right before its cpu goes
6264 * offline.
6266 void idle_task_exit(void)
6268 struct mm_struct *mm = current->active_mm;
6270 BUG_ON(cpu_online(smp_processor_id()));
6272 if (mm != &init_mm)
6273 switch_mm(mm, &init_mm, current);
6274 mmdrop(mm);
6277 /* called under rq->lock with disabled interrupts */
6278 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6280 struct rq *rq = cpu_rq(dead_cpu);
6282 /* Must be exiting, otherwise would be on tasklist. */
6283 BUG_ON(!p->exit_state);
6285 /* Cannot have done final schedule yet: would have vanished. */
6286 BUG_ON(p->state == TASK_DEAD);
6288 get_task_struct(p);
6291 * Drop lock around migration; if someone else moves it,
6292 * that's OK. No task can be added to this CPU, so iteration is
6293 * fine.
6295 spin_unlock_irq(&rq->lock);
6296 move_task_off_dead_cpu(dead_cpu, p);
6297 spin_lock_irq(&rq->lock);
6299 put_task_struct(p);
6302 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6303 static void migrate_dead_tasks(unsigned int dead_cpu)
6305 struct rq *rq = cpu_rq(dead_cpu);
6306 struct task_struct *next;
6308 for ( ; ; ) {
6309 if (!rq->nr_running)
6310 break;
6311 update_rq_clock(rq);
6312 next = pick_next_task(rq, rq->curr);
6313 if (!next)
6314 break;
6315 next->sched_class->put_prev_task(rq, next);
6316 migrate_dead(dead_cpu, next);
6320 #endif /* CONFIG_HOTPLUG_CPU */
6322 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6324 static struct ctl_table sd_ctl_dir[] = {
6326 .procname = "sched_domain",
6327 .mode = 0555,
6329 {0, },
6332 static struct ctl_table sd_ctl_root[] = {
6334 .ctl_name = CTL_KERN,
6335 .procname = "kernel",
6336 .mode = 0555,
6337 .child = sd_ctl_dir,
6339 {0, },
6342 static struct ctl_table *sd_alloc_ctl_entry(int n)
6344 struct ctl_table *entry =
6345 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6347 return entry;
6350 static void sd_free_ctl_entry(struct ctl_table **tablep)
6352 struct ctl_table *entry;
6355 * In the intermediate directories, both the child directory and
6356 * procname are dynamically allocated and could fail but the mode
6357 * will always be set. In the lowest directory the names are
6358 * static strings and all have proc handlers.
6360 for (entry = *tablep; entry->mode; entry++) {
6361 if (entry->child)
6362 sd_free_ctl_entry(&entry->child);
6363 if (entry->proc_handler == NULL)
6364 kfree(entry->procname);
6367 kfree(*tablep);
6368 *tablep = NULL;
6371 static void
6372 set_table_entry(struct ctl_table *entry,
6373 const char *procname, void *data, int maxlen,
6374 mode_t mode, proc_handler *proc_handler)
6376 entry->procname = procname;
6377 entry->data = data;
6378 entry->maxlen = maxlen;
6379 entry->mode = mode;
6380 entry->proc_handler = proc_handler;
6383 static struct ctl_table *
6384 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6386 struct ctl_table *table = sd_alloc_ctl_entry(13);
6388 if (table == NULL)
6389 return NULL;
6391 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6392 sizeof(long), 0644, proc_doulongvec_minmax);
6393 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6394 sizeof(long), 0644, proc_doulongvec_minmax);
6395 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6396 sizeof(int), 0644, proc_dointvec_minmax);
6397 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6398 sizeof(int), 0644, proc_dointvec_minmax);
6399 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6400 sizeof(int), 0644, proc_dointvec_minmax);
6401 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6402 sizeof(int), 0644, proc_dointvec_minmax);
6403 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6404 sizeof(int), 0644, proc_dointvec_minmax);
6405 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6406 sizeof(int), 0644, proc_dointvec_minmax);
6407 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6408 sizeof(int), 0644, proc_dointvec_minmax);
6409 set_table_entry(&table[9], "cache_nice_tries",
6410 &sd->cache_nice_tries,
6411 sizeof(int), 0644, proc_dointvec_minmax);
6412 set_table_entry(&table[10], "flags", &sd->flags,
6413 sizeof(int), 0644, proc_dointvec_minmax);
6414 set_table_entry(&table[11], "name", sd->name,
6415 CORENAME_MAX_SIZE, 0444, proc_dostring);
6416 /* &table[12] is terminator */
6418 return table;
6421 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6423 struct ctl_table *entry, *table;
6424 struct sched_domain *sd;
6425 int domain_num = 0, i;
6426 char buf[32];
6428 for_each_domain(cpu, sd)
6429 domain_num++;
6430 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6431 if (table == NULL)
6432 return NULL;
6434 i = 0;
6435 for_each_domain(cpu, sd) {
6436 snprintf(buf, 32, "domain%d", i);
6437 entry->procname = kstrdup(buf, GFP_KERNEL);
6438 entry->mode = 0555;
6439 entry->child = sd_alloc_ctl_domain_table(sd);
6440 entry++;
6441 i++;
6443 return table;
6446 static struct ctl_table_header *sd_sysctl_header;
6447 static void register_sched_domain_sysctl(void)
6449 int i, cpu_num = num_online_cpus();
6450 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6451 char buf[32];
6453 WARN_ON(sd_ctl_dir[0].child);
6454 sd_ctl_dir[0].child = entry;
6456 if (entry == NULL)
6457 return;
6459 for_each_online_cpu(i) {
6460 snprintf(buf, 32, "cpu%d", i);
6461 entry->procname = kstrdup(buf, GFP_KERNEL);
6462 entry->mode = 0555;
6463 entry->child = sd_alloc_ctl_cpu_table(i);
6464 entry++;
6467 WARN_ON(sd_sysctl_header);
6468 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6471 /* may be called multiple times per register */
6472 static void unregister_sched_domain_sysctl(void)
6474 if (sd_sysctl_header)
6475 unregister_sysctl_table(sd_sysctl_header);
6476 sd_sysctl_header = NULL;
6477 if (sd_ctl_dir[0].child)
6478 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6480 #else
6481 static void register_sched_domain_sysctl(void)
6484 static void unregister_sched_domain_sysctl(void)
6487 #endif
6489 static void set_rq_online(struct rq *rq)
6491 if (!rq->online) {
6492 const struct sched_class *class;
6494 cpu_set(rq->cpu, rq->rd->online);
6495 rq->online = 1;
6497 for_each_class(class) {
6498 if (class->rq_online)
6499 class->rq_online(rq);
6504 static void set_rq_offline(struct rq *rq)
6506 if (rq->online) {
6507 const struct sched_class *class;
6509 for_each_class(class) {
6510 if (class->rq_offline)
6511 class->rq_offline(rq);
6514 cpu_clear(rq->cpu, rq->rd->online);
6515 rq->online = 0;
6520 * migration_call - callback that gets triggered when a CPU is added.
6521 * Here we can start up the necessary migration thread for the new CPU.
6523 static int __cpuinit
6524 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6526 struct task_struct *p;
6527 int cpu = (long)hcpu;
6528 unsigned long flags;
6529 struct rq *rq;
6531 switch (action) {
6533 case CPU_UP_PREPARE:
6534 case CPU_UP_PREPARE_FROZEN:
6535 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6536 if (IS_ERR(p))
6537 return NOTIFY_BAD;
6538 kthread_bind(p, cpu);
6539 /* Must be high prio: stop_machine expects to yield to it. */
6540 rq = task_rq_lock(p, &flags);
6541 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6542 task_rq_unlock(rq, &flags);
6543 cpu_rq(cpu)->migration_thread = p;
6544 break;
6546 case CPU_ONLINE:
6547 case CPU_ONLINE_FROZEN:
6548 /* Strictly unnecessary, as first user will wake it. */
6549 wake_up_process(cpu_rq(cpu)->migration_thread);
6551 /* Update our root-domain */
6552 rq = cpu_rq(cpu);
6553 spin_lock_irqsave(&rq->lock, flags);
6554 if (rq->rd) {
6555 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6557 set_rq_online(rq);
6559 spin_unlock_irqrestore(&rq->lock, flags);
6560 break;
6562 #ifdef CONFIG_HOTPLUG_CPU
6563 case CPU_UP_CANCELED:
6564 case CPU_UP_CANCELED_FROZEN:
6565 if (!cpu_rq(cpu)->migration_thread)
6566 break;
6567 /* Unbind it from offline cpu so it can run. Fall thru. */
6568 kthread_bind(cpu_rq(cpu)->migration_thread,
6569 any_online_cpu(cpu_online_map));
6570 kthread_stop(cpu_rq(cpu)->migration_thread);
6571 cpu_rq(cpu)->migration_thread = NULL;
6572 break;
6574 case CPU_DEAD:
6575 case CPU_DEAD_FROZEN:
6576 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6577 migrate_live_tasks(cpu);
6578 rq = cpu_rq(cpu);
6579 kthread_stop(rq->migration_thread);
6580 rq->migration_thread = NULL;
6581 /* Idle task back to normal (off runqueue, low prio) */
6582 spin_lock_irq(&rq->lock);
6583 update_rq_clock(rq);
6584 deactivate_task(rq, rq->idle, 0);
6585 rq->idle->static_prio = MAX_PRIO;
6586 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6587 rq->idle->sched_class = &idle_sched_class;
6588 migrate_dead_tasks(cpu);
6589 spin_unlock_irq(&rq->lock);
6590 cpuset_unlock();
6591 migrate_nr_uninterruptible(rq);
6592 BUG_ON(rq->nr_running != 0);
6595 * No need to migrate the tasks: it was best-effort if
6596 * they didn't take sched_hotcpu_mutex. Just wake up
6597 * the requestors.
6599 spin_lock_irq(&rq->lock);
6600 while (!list_empty(&rq->migration_queue)) {
6601 struct migration_req *req;
6603 req = list_entry(rq->migration_queue.next,
6604 struct migration_req, list);
6605 list_del_init(&req->list);
6606 spin_unlock_irq(&rq->lock);
6607 complete(&req->done);
6608 spin_lock_irq(&rq->lock);
6610 spin_unlock_irq(&rq->lock);
6611 break;
6613 case CPU_DYING:
6614 case CPU_DYING_FROZEN:
6615 /* Update our root-domain */
6616 rq = cpu_rq(cpu);
6617 spin_lock_irqsave(&rq->lock, flags);
6618 if (rq->rd) {
6619 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6620 set_rq_offline(rq);
6622 spin_unlock_irqrestore(&rq->lock, flags);
6623 break;
6624 #endif
6626 return NOTIFY_OK;
6629 /* Register at highest priority so that task migration (migrate_all_tasks)
6630 * happens before everything else.
6632 static struct notifier_block __cpuinitdata migration_notifier = {
6633 .notifier_call = migration_call,
6634 .priority = 10
6637 static int __init migration_init(void)
6639 void *cpu = (void *)(long)smp_processor_id();
6640 int err;
6642 /* Start one for the boot CPU: */
6643 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6644 BUG_ON(err == NOTIFY_BAD);
6645 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6646 register_cpu_notifier(&migration_notifier);
6648 return err;
6650 early_initcall(migration_init);
6651 #endif
6653 #ifdef CONFIG_SMP
6655 #ifdef CONFIG_SCHED_DEBUG
6657 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6659 switch (lvl) {
6660 case SD_LV_NONE:
6661 return "NONE";
6662 case SD_LV_SIBLING:
6663 return "SIBLING";
6664 case SD_LV_MC:
6665 return "MC";
6666 case SD_LV_CPU:
6667 return "CPU";
6668 case SD_LV_NODE:
6669 return "NODE";
6670 case SD_LV_ALLNODES:
6671 return "ALLNODES";
6672 case SD_LV_MAX:
6673 return "MAX";
6676 return "MAX";
6679 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6680 cpumask_t *groupmask)
6682 struct sched_group *group = sd->groups;
6683 char str[256];
6685 cpulist_scnprintf(str, sizeof(str), sd->span);
6686 cpus_clear(*groupmask);
6688 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6690 if (!(sd->flags & SD_LOAD_BALANCE)) {
6691 printk("does not load-balance\n");
6692 if (sd->parent)
6693 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6694 " has parent");
6695 return -1;
6698 printk(KERN_CONT "span %s level %s\n",
6699 str, sd_level_to_string(sd->level));
6701 if (!cpu_isset(cpu, sd->span)) {
6702 printk(KERN_ERR "ERROR: domain->span does not contain "
6703 "CPU%d\n", cpu);
6705 if (!cpu_isset(cpu, group->cpumask)) {
6706 printk(KERN_ERR "ERROR: domain->groups does not contain"
6707 " CPU%d\n", cpu);
6710 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6711 do {
6712 if (!group) {
6713 printk("\n");
6714 printk(KERN_ERR "ERROR: group is NULL\n");
6715 break;
6718 if (!group->__cpu_power) {
6719 printk(KERN_CONT "\n");
6720 printk(KERN_ERR "ERROR: domain->cpu_power not "
6721 "set\n");
6722 break;
6725 if (!cpus_weight(group->cpumask)) {
6726 printk(KERN_CONT "\n");
6727 printk(KERN_ERR "ERROR: empty group\n");
6728 break;
6731 if (cpus_intersects(*groupmask, group->cpumask)) {
6732 printk(KERN_CONT "\n");
6733 printk(KERN_ERR "ERROR: repeated CPUs\n");
6734 break;
6737 cpus_or(*groupmask, *groupmask, group->cpumask);
6739 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6740 printk(KERN_CONT " %s", str);
6742 group = group->next;
6743 } while (group != sd->groups);
6744 printk(KERN_CONT "\n");
6746 if (!cpus_equal(sd->span, *groupmask))
6747 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6749 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6750 printk(KERN_ERR "ERROR: parent span is not a superset "
6751 "of domain->span\n");
6752 return 0;
6755 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6757 cpumask_t *groupmask;
6758 int level = 0;
6760 if (!sd) {
6761 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6762 return;
6765 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6767 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6768 if (!groupmask) {
6769 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6770 return;
6773 for (;;) {
6774 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6775 break;
6776 level++;
6777 sd = sd->parent;
6778 if (!sd)
6779 break;
6781 kfree(groupmask);
6783 #else /* !CONFIG_SCHED_DEBUG */
6784 # define sched_domain_debug(sd, cpu) do { } while (0)
6785 #endif /* CONFIG_SCHED_DEBUG */
6787 static int sd_degenerate(struct sched_domain *sd)
6789 if (cpus_weight(sd->span) == 1)
6790 return 1;
6792 /* Following flags need at least 2 groups */
6793 if (sd->flags & (SD_LOAD_BALANCE |
6794 SD_BALANCE_NEWIDLE |
6795 SD_BALANCE_FORK |
6796 SD_BALANCE_EXEC |
6797 SD_SHARE_CPUPOWER |
6798 SD_SHARE_PKG_RESOURCES)) {
6799 if (sd->groups != sd->groups->next)
6800 return 0;
6803 /* Following flags don't use groups */
6804 if (sd->flags & (SD_WAKE_IDLE |
6805 SD_WAKE_AFFINE |
6806 SD_WAKE_BALANCE))
6807 return 0;
6809 return 1;
6812 static int
6813 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6815 unsigned long cflags = sd->flags, pflags = parent->flags;
6817 if (sd_degenerate(parent))
6818 return 1;
6820 if (!cpus_equal(sd->span, parent->span))
6821 return 0;
6823 /* Does parent contain flags not in child? */
6824 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6825 if (cflags & SD_WAKE_AFFINE)
6826 pflags &= ~SD_WAKE_BALANCE;
6827 /* Flags needing groups don't count if only 1 group in parent */
6828 if (parent->groups == parent->groups->next) {
6829 pflags &= ~(SD_LOAD_BALANCE |
6830 SD_BALANCE_NEWIDLE |
6831 SD_BALANCE_FORK |
6832 SD_BALANCE_EXEC |
6833 SD_SHARE_CPUPOWER |
6834 SD_SHARE_PKG_RESOURCES);
6836 if (~cflags & pflags)
6837 return 0;
6839 return 1;
6842 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6844 unsigned long flags;
6846 spin_lock_irqsave(&rq->lock, flags);
6848 if (rq->rd) {
6849 struct root_domain *old_rd = rq->rd;
6851 if (cpu_isset(rq->cpu, old_rd->online))
6852 set_rq_offline(rq);
6854 cpu_clear(rq->cpu, old_rd->span);
6856 if (atomic_dec_and_test(&old_rd->refcount))
6857 kfree(old_rd);
6860 atomic_inc(&rd->refcount);
6861 rq->rd = rd;
6863 cpu_set(rq->cpu, rd->span);
6864 if (cpu_isset(rq->cpu, cpu_online_map))
6865 set_rq_online(rq);
6867 spin_unlock_irqrestore(&rq->lock, flags);
6870 static void init_rootdomain(struct root_domain *rd)
6872 memset(rd, 0, sizeof(*rd));
6874 cpus_clear(rd->span);
6875 cpus_clear(rd->online);
6877 cpupri_init(&rd->cpupri);
6880 static void init_defrootdomain(void)
6882 init_rootdomain(&def_root_domain);
6883 atomic_set(&def_root_domain.refcount, 1);
6886 static struct root_domain *alloc_rootdomain(void)
6888 struct root_domain *rd;
6890 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6891 if (!rd)
6892 return NULL;
6894 init_rootdomain(rd);
6896 return rd;
6900 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6901 * hold the hotplug lock.
6903 static void
6904 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6906 struct rq *rq = cpu_rq(cpu);
6907 struct sched_domain *tmp;
6909 /* Remove the sched domains which do not contribute to scheduling. */
6910 for (tmp = sd; tmp; ) {
6911 struct sched_domain *parent = tmp->parent;
6912 if (!parent)
6913 break;
6915 if (sd_parent_degenerate(tmp, parent)) {
6916 tmp->parent = parent->parent;
6917 if (parent->parent)
6918 parent->parent->child = tmp;
6919 } else
6920 tmp = tmp->parent;
6923 if (sd && sd_degenerate(sd)) {
6924 sd = sd->parent;
6925 if (sd)
6926 sd->child = NULL;
6929 sched_domain_debug(sd, cpu);
6931 rq_attach_root(rq, rd);
6932 rcu_assign_pointer(rq->sd, sd);
6935 /* cpus with isolated domains */
6936 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6938 /* Setup the mask of cpus configured for isolated domains */
6939 static int __init isolated_cpu_setup(char *str)
6941 static int __initdata ints[NR_CPUS];
6942 int i;
6944 str = get_options(str, ARRAY_SIZE(ints), ints);
6945 cpus_clear(cpu_isolated_map);
6946 for (i = 1; i <= ints[0]; i++)
6947 if (ints[i] < NR_CPUS)
6948 cpu_set(ints[i], cpu_isolated_map);
6949 return 1;
6952 __setup("isolcpus=", isolated_cpu_setup);
6955 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6956 * to a function which identifies what group(along with sched group) a CPU
6957 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6958 * (due to the fact that we keep track of groups covered with a cpumask_t).
6960 * init_sched_build_groups will build a circular linked list of the groups
6961 * covered by the given span, and will set each group's ->cpumask correctly,
6962 * and ->cpu_power to 0.
6964 static void
6965 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6966 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6967 struct sched_group **sg,
6968 cpumask_t *tmpmask),
6969 cpumask_t *covered, cpumask_t *tmpmask)
6971 struct sched_group *first = NULL, *last = NULL;
6972 int i;
6974 cpus_clear(*covered);
6976 for_each_cpu_mask_nr(i, *span) {
6977 struct sched_group *sg;
6978 int group = group_fn(i, cpu_map, &sg, tmpmask);
6979 int j;
6981 if (cpu_isset(i, *covered))
6982 continue;
6984 cpus_clear(sg->cpumask);
6985 sg->__cpu_power = 0;
6987 for_each_cpu_mask_nr(j, *span) {
6988 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6989 continue;
6991 cpu_set(j, *covered);
6992 cpu_set(j, sg->cpumask);
6994 if (!first)
6995 first = sg;
6996 if (last)
6997 last->next = sg;
6998 last = sg;
7000 last->next = first;
7003 #define SD_NODES_PER_DOMAIN 16
7005 #ifdef CONFIG_NUMA
7008 * find_next_best_node - find the next node to include in a sched_domain
7009 * @node: node whose sched_domain we're building
7010 * @used_nodes: nodes already in the sched_domain
7012 * Find the next node to include in a given scheduling domain. Simply
7013 * finds the closest node not already in the @used_nodes map.
7015 * Should use nodemask_t.
7017 static int find_next_best_node(int node, nodemask_t *used_nodes)
7019 int i, n, val, min_val, best_node = 0;
7021 min_val = INT_MAX;
7023 for (i = 0; i < nr_node_ids; i++) {
7024 /* Start at @node */
7025 n = (node + i) % nr_node_ids;
7027 if (!nr_cpus_node(n))
7028 continue;
7030 /* Skip already used nodes */
7031 if (node_isset(n, *used_nodes))
7032 continue;
7034 /* Simple min distance search */
7035 val = node_distance(node, n);
7037 if (val < min_val) {
7038 min_val = val;
7039 best_node = n;
7043 node_set(best_node, *used_nodes);
7044 return best_node;
7048 * sched_domain_node_span - get a cpumask for a node's sched_domain
7049 * @node: node whose cpumask we're constructing
7050 * @span: resulting cpumask
7052 * Given a node, construct a good cpumask for its sched_domain to span. It
7053 * should be one that prevents unnecessary balancing, but also spreads tasks
7054 * out optimally.
7056 static void sched_domain_node_span(int node, cpumask_t *span)
7058 nodemask_t used_nodes;
7059 node_to_cpumask_ptr(nodemask, node);
7060 int i;
7062 cpus_clear(*span);
7063 nodes_clear(used_nodes);
7065 cpus_or(*span, *span, *nodemask);
7066 node_set(node, used_nodes);
7068 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7069 int next_node = find_next_best_node(node, &used_nodes);
7071 node_to_cpumask_ptr_next(nodemask, next_node);
7072 cpus_or(*span, *span, *nodemask);
7075 #endif /* CONFIG_NUMA */
7077 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7080 * SMT sched-domains:
7082 #ifdef CONFIG_SCHED_SMT
7083 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7084 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7086 static int
7087 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7088 cpumask_t *unused)
7090 if (sg)
7091 *sg = &per_cpu(sched_group_cpus, cpu);
7092 return cpu;
7094 #endif /* CONFIG_SCHED_SMT */
7097 * multi-core sched-domains:
7099 #ifdef CONFIG_SCHED_MC
7100 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7101 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7102 #endif /* CONFIG_SCHED_MC */
7104 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7105 static int
7106 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7107 cpumask_t *mask)
7109 int group;
7111 *mask = per_cpu(cpu_sibling_map, cpu);
7112 cpus_and(*mask, *mask, *cpu_map);
7113 group = first_cpu(*mask);
7114 if (sg)
7115 *sg = &per_cpu(sched_group_core, group);
7116 return group;
7118 #elif defined(CONFIG_SCHED_MC)
7119 static int
7120 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7121 cpumask_t *unused)
7123 if (sg)
7124 *sg = &per_cpu(sched_group_core, cpu);
7125 return cpu;
7127 #endif
7129 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7130 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7132 static int
7133 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7134 cpumask_t *mask)
7136 int group;
7137 #ifdef CONFIG_SCHED_MC
7138 *mask = cpu_coregroup_map(cpu);
7139 cpus_and(*mask, *mask, *cpu_map);
7140 group = first_cpu(*mask);
7141 #elif defined(CONFIG_SCHED_SMT)
7142 *mask = per_cpu(cpu_sibling_map, cpu);
7143 cpus_and(*mask, *mask, *cpu_map);
7144 group = first_cpu(*mask);
7145 #else
7146 group = cpu;
7147 #endif
7148 if (sg)
7149 *sg = &per_cpu(sched_group_phys, group);
7150 return group;
7153 #ifdef CONFIG_NUMA
7155 * The init_sched_build_groups can't handle what we want to do with node
7156 * groups, so roll our own. Now each node has its own list of groups which
7157 * gets dynamically allocated.
7159 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7160 static struct sched_group ***sched_group_nodes_bycpu;
7162 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7163 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7165 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7166 struct sched_group **sg, cpumask_t *nodemask)
7168 int group;
7170 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7171 cpus_and(*nodemask, *nodemask, *cpu_map);
7172 group = first_cpu(*nodemask);
7174 if (sg)
7175 *sg = &per_cpu(sched_group_allnodes, group);
7176 return group;
7179 static void init_numa_sched_groups_power(struct sched_group *group_head)
7181 struct sched_group *sg = group_head;
7182 int j;
7184 if (!sg)
7185 return;
7186 do {
7187 for_each_cpu_mask_nr(j, sg->cpumask) {
7188 struct sched_domain *sd;
7190 sd = &per_cpu(phys_domains, j);
7191 if (j != first_cpu(sd->groups->cpumask)) {
7193 * Only add "power" once for each
7194 * physical package.
7196 continue;
7199 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7201 sg = sg->next;
7202 } while (sg != group_head);
7204 #endif /* CONFIG_NUMA */
7206 #ifdef CONFIG_NUMA
7207 /* Free memory allocated for various sched_group structures */
7208 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7210 int cpu, i;
7212 for_each_cpu_mask_nr(cpu, *cpu_map) {
7213 struct sched_group **sched_group_nodes
7214 = sched_group_nodes_bycpu[cpu];
7216 if (!sched_group_nodes)
7217 continue;
7219 for (i = 0; i < nr_node_ids; i++) {
7220 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7222 *nodemask = node_to_cpumask(i);
7223 cpus_and(*nodemask, *nodemask, *cpu_map);
7224 if (cpus_empty(*nodemask))
7225 continue;
7227 if (sg == NULL)
7228 continue;
7229 sg = sg->next;
7230 next_sg:
7231 oldsg = sg;
7232 sg = sg->next;
7233 kfree(oldsg);
7234 if (oldsg != sched_group_nodes[i])
7235 goto next_sg;
7237 kfree(sched_group_nodes);
7238 sched_group_nodes_bycpu[cpu] = NULL;
7241 #else /* !CONFIG_NUMA */
7242 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7245 #endif /* CONFIG_NUMA */
7248 * Initialize sched groups cpu_power.
7250 * cpu_power indicates the capacity of sched group, which is used while
7251 * distributing the load between different sched groups in a sched domain.
7252 * Typically cpu_power for all the groups in a sched domain will be same unless
7253 * there are asymmetries in the topology. If there are asymmetries, group
7254 * having more cpu_power will pickup more load compared to the group having
7255 * less cpu_power.
7257 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7258 * the maximum number of tasks a group can handle in the presence of other idle
7259 * or lightly loaded groups in the same sched domain.
7261 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7263 struct sched_domain *child;
7264 struct sched_group *group;
7266 WARN_ON(!sd || !sd->groups);
7268 if (cpu != first_cpu(sd->groups->cpumask))
7269 return;
7271 child = sd->child;
7273 sd->groups->__cpu_power = 0;
7276 * For perf policy, if the groups in child domain share resources
7277 * (for example cores sharing some portions of the cache hierarchy
7278 * or SMT), then set this domain groups cpu_power such that each group
7279 * can handle only one task, when there are other idle groups in the
7280 * same sched domain.
7282 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7283 (child->flags &
7284 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7285 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7286 return;
7290 * add cpu_power of each child group to this groups cpu_power
7292 group = child->groups;
7293 do {
7294 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7295 group = group->next;
7296 } while (group != child->groups);
7300 * Initializers for schedule domains
7301 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7304 #ifdef CONFIG_SCHED_DEBUG
7305 # define SD_INIT_NAME(sd, type) sd->name = #type
7306 #else
7307 # define SD_INIT_NAME(sd, type) do { } while (0)
7308 #endif
7310 #define SD_INIT(sd, type) sd_init_##type(sd)
7312 #define SD_INIT_FUNC(type) \
7313 static noinline void sd_init_##type(struct sched_domain *sd) \
7315 memset(sd, 0, sizeof(*sd)); \
7316 *sd = SD_##type##_INIT; \
7317 sd->level = SD_LV_##type; \
7318 SD_INIT_NAME(sd, type); \
7321 SD_INIT_FUNC(CPU)
7322 #ifdef CONFIG_NUMA
7323 SD_INIT_FUNC(ALLNODES)
7324 SD_INIT_FUNC(NODE)
7325 #endif
7326 #ifdef CONFIG_SCHED_SMT
7327 SD_INIT_FUNC(SIBLING)
7328 #endif
7329 #ifdef CONFIG_SCHED_MC
7330 SD_INIT_FUNC(MC)
7331 #endif
7334 * To minimize stack usage kmalloc room for cpumasks and share the
7335 * space as the usage in build_sched_domains() dictates. Used only
7336 * if the amount of space is significant.
7338 struct allmasks {
7339 cpumask_t tmpmask; /* make this one first */
7340 union {
7341 cpumask_t nodemask;
7342 cpumask_t this_sibling_map;
7343 cpumask_t this_core_map;
7345 cpumask_t send_covered;
7347 #ifdef CONFIG_NUMA
7348 cpumask_t domainspan;
7349 cpumask_t covered;
7350 cpumask_t notcovered;
7351 #endif
7354 #if NR_CPUS > 128
7355 #define SCHED_CPUMASK_ALLOC 1
7356 #define SCHED_CPUMASK_FREE(v) kfree(v)
7357 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7358 #else
7359 #define SCHED_CPUMASK_ALLOC 0
7360 #define SCHED_CPUMASK_FREE(v)
7361 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7362 #endif
7364 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7365 ((unsigned long)(a) + offsetof(struct allmasks, v))
7367 static int default_relax_domain_level = -1;
7369 static int __init setup_relax_domain_level(char *str)
7371 unsigned long val;
7373 val = simple_strtoul(str, NULL, 0);
7374 if (val < SD_LV_MAX)
7375 default_relax_domain_level = val;
7377 return 1;
7379 __setup("relax_domain_level=", setup_relax_domain_level);
7381 static void set_domain_attribute(struct sched_domain *sd,
7382 struct sched_domain_attr *attr)
7384 int request;
7386 if (!attr || attr->relax_domain_level < 0) {
7387 if (default_relax_domain_level < 0)
7388 return;
7389 else
7390 request = default_relax_domain_level;
7391 } else
7392 request = attr->relax_domain_level;
7393 if (request < sd->level) {
7394 /* turn off idle balance on this domain */
7395 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7396 } else {
7397 /* turn on idle balance on this domain */
7398 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7403 * Build sched domains for a given set of cpus and attach the sched domains
7404 * to the individual cpus
7406 static int __build_sched_domains(const cpumask_t *cpu_map,
7407 struct sched_domain_attr *attr)
7409 int i;
7410 struct root_domain *rd;
7411 SCHED_CPUMASK_DECLARE(allmasks);
7412 cpumask_t *tmpmask;
7413 #ifdef CONFIG_NUMA
7414 struct sched_group **sched_group_nodes = NULL;
7415 int sd_allnodes = 0;
7418 * Allocate the per-node list of sched groups
7420 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7421 GFP_KERNEL);
7422 if (!sched_group_nodes) {
7423 printk(KERN_WARNING "Can not alloc sched group node list\n");
7424 return -ENOMEM;
7426 #endif
7428 rd = alloc_rootdomain();
7429 if (!rd) {
7430 printk(KERN_WARNING "Cannot alloc root domain\n");
7431 #ifdef CONFIG_NUMA
7432 kfree(sched_group_nodes);
7433 #endif
7434 return -ENOMEM;
7437 #if SCHED_CPUMASK_ALLOC
7438 /* get space for all scratch cpumask variables */
7439 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7440 if (!allmasks) {
7441 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7442 kfree(rd);
7443 #ifdef CONFIG_NUMA
7444 kfree(sched_group_nodes);
7445 #endif
7446 return -ENOMEM;
7448 #endif
7449 tmpmask = (cpumask_t *)allmasks;
7452 #ifdef CONFIG_NUMA
7453 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7454 #endif
7457 * Set up domains for cpus specified by the cpu_map.
7459 for_each_cpu_mask_nr(i, *cpu_map) {
7460 struct sched_domain *sd = NULL, *p;
7461 SCHED_CPUMASK_VAR(nodemask, allmasks);
7463 *nodemask = node_to_cpumask(cpu_to_node(i));
7464 cpus_and(*nodemask, *nodemask, *cpu_map);
7466 #ifdef CONFIG_NUMA
7467 if (cpus_weight(*cpu_map) >
7468 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7469 sd = &per_cpu(allnodes_domains, i);
7470 SD_INIT(sd, ALLNODES);
7471 set_domain_attribute(sd, attr);
7472 sd->span = *cpu_map;
7473 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7474 p = sd;
7475 sd_allnodes = 1;
7476 } else
7477 p = NULL;
7479 sd = &per_cpu(node_domains, i);
7480 SD_INIT(sd, NODE);
7481 set_domain_attribute(sd, attr);
7482 sched_domain_node_span(cpu_to_node(i), &sd->span);
7483 sd->parent = p;
7484 if (p)
7485 p->child = sd;
7486 cpus_and(sd->span, sd->span, *cpu_map);
7487 #endif
7489 p = sd;
7490 sd = &per_cpu(phys_domains, i);
7491 SD_INIT(sd, CPU);
7492 set_domain_attribute(sd, attr);
7493 sd->span = *nodemask;
7494 sd->parent = p;
7495 if (p)
7496 p->child = sd;
7497 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7499 #ifdef CONFIG_SCHED_MC
7500 p = sd;
7501 sd = &per_cpu(core_domains, i);
7502 SD_INIT(sd, MC);
7503 set_domain_attribute(sd, attr);
7504 sd->span = cpu_coregroup_map(i);
7505 cpus_and(sd->span, sd->span, *cpu_map);
7506 sd->parent = p;
7507 p->child = sd;
7508 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7509 #endif
7511 #ifdef CONFIG_SCHED_SMT
7512 p = sd;
7513 sd = &per_cpu(cpu_domains, i);
7514 SD_INIT(sd, SIBLING);
7515 set_domain_attribute(sd, attr);
7516 sd->span = per_cpu(cpu_sibling_map, i);
7517 cpus_and(sd->span, sd->span, *cpu_map);
7518 sd->parent = p;
7519 p->child = sd;
7520 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7521 #endif
7524 #ifdef CONFIG_SCHED_SMT
7525 /* Set up CPU (sibling) groups */
7526 for_each_cpu_mask_nr(i, *cpu_map) {
7527 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7528 SCHED_CPUMASK_VAR(send_covered, allmasks);
7530 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7531 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7532 if (i != first_cpu(*this_sibling_map))
7533 continue;
7535 init_sched_build_groups(this_sibling_map, cpu_map,
7536 &cpu_to_cpu_group,
7537 send_covered, tmpmask);
7539 #endif
7541 #ifdef CONFIG_SCHED_MC
7542 /* Set up multi-core groups */
7543 for_each_cpu_mask_nr(i, *cpu_map) {
7544 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7545 SCHED_CPUMASK_VAR(send_covered, allmasks);
7547 *this_core_map = cpu_coregroup_map(i);
7548 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7549 if (i != first_cpu(*this_core_map))
7550 continue;
7552 init_sched_build_groups(this_core_map, cpu_map,
7553 &cpu_to_core_group,
7554 send_covered, tmpmask);
7556 #endif
7558 /* Set up physical groups */
7559 for (i = 0; i < nr_node_ids; i++) {
7560 SCHED_CPUMASK_VAR(nodemask, allmasks);
7561 SCHED_CPUMASK_VAR(send_covered, allmasks);
7563 *nodemask = node_to_cpumask(i);
7564 cpus_and(*nodemask, *nodemask, *cpu_map);
7565 if (cpus_empty(*nodemask))
7566 continue;
7568 init_sched_build_groups(nodemask, cpu_map,
7569 &cpu_to_phys_group,
7570 send_covered, tmpmask);
7573 #ifdef CONFIG_NUMA
7574 /* Set up node groups */
7575 if (sd_allnodes) {
7576 SCHED_CPUMASK_VAR(send_covered, allmasks);
7578 init_sched_build_groups(cpu_map, cpu_map,
7579 &cpu_to_allnodes_group,
7580 send_covered, tmpmask);
7583 for (i = 0; i < nr_node_ids; i++) {
7584 /* Set up node groups */
7585 struct sched_group *sg, *prev;
7586 SCHED_CPUMASK_VAR(nodemask, allmasks);
7587 SCHED_CPUMASK_VAR(domainspan, allmasks);
7588 SCHED_CPUMASK_VAR(covered, allmasks);
7589 int j;
7591 *nodemask = node_to_cpumask(i);
7592 cpus_clear(*covered);
7594 cpus_and(*nodemask, *nodemask, *cpu_map);
7595 if (cpus_empty(*nodemask)) {
7596 sched_group_nodes[i] = NULL;
7597 continue;
7600 sched_domain_node_span(i, domainspan);
7601 cpus_and(*domainspan, *domainspan, *cpu_map);
7603 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7604 if (!sg) {
7605 printk(KERN_WARNING "Can not alloc domain group for "
7606 "node %d\n", i);
7607 goto error;
7609 sched_group_nodes[i] = sg;
7610 for_each_cpu_mask_nr(j, *nodemask) {
7611 struct sched_domain *sd;
7613 sd = &per_cpu(node_domains, j);
7614 sd->groups = sg;
7616 sg->__cpu_power = 0;
7617 sg->cpumask = *nodemask;
7618 sg->next = sg;
7619 cpus_or(*covered, *covered, *nodemask);
7620 prev = sg;
7622 for (j = 0; j < nr_node_ids; j++) {
7623 SCHED_CPUMASK_VAR(notcovered, allmasks);
7624 int n = (i + j) % nr_node_ids;
7625 node_to_cpumask_ptr(pnodemask, n);
7627 cpus_complement(*notcovered, *covered);
7628 cpus_and(*tmpmask, *notcovered, *cpu_map);
7629 cpus_and(*tmpmask, *tmpmask, *domainspan);
7630 if (cpus_empty(*tmpmask))
7631 break;
7633 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7634 if (cpus_empty(*tmpmask))
7635 continue;
7637 sg = kmalloc_node(sizeof(struct sched_group),
7638 GFP_KERNEL, i);
7639 if (!sg) {
7640 printk(KERN_WARNING
7641 "Can not alloc domain group for node %d\n", j);
7642 goto error;
7644 sg->__cpu_power = 0;
7645 sg->cpumask = *tmpmask;
7646 sg->next = prev->next;
7647 cpus_or(*covered, *covered, *tmpmask);
7648 prev->next = sg;
7649 prev = sg;
7652 #endif
7654 /* Calculate CPU power for physical packages and nodes */
7655 #ifdef CONFIG_SCHED_SMT
7656 for_each_cpu_mask_nr(i, *cpu_map) {
7657 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7659 init_sched_groups_power(i, sd);
7661 #endif
7662 #ifdef CONFIG_SCHED_MC
7663 for_each_cpu_mask_nr(i, *cpu_map) {
7664 struct sched_domain *sd = &per_cpu(core_domains, i);
7666 init_sched_groups_power(i, sd);
7668 #endif
7670 for_each_cpu_mask_nr(i, *cpu_map) {
7671 struct sched_domain *sd = &per_cpu(phys_domains, i);
7673 init_sched_groups_power(i, sd);
7676 #ifdef CONFIG_NUMA
7677 for (i = 0; i < nr_node_ids; i++)
7678 init_numa_sched_groups_power(sched_group_nodes[i]);
7680 if (sd_allnodes) {
7681 struct sched_group *sg;
7683 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7684 tmpmask);
7685 init_numa_sched_groups_power(sg);
7687 #endif
7689 /* Attach the domains */
7690 for_each_cpu_mask_nr(i, *cpu_map) {
7691 struct sched_domain *sd;
7692 #ifdef CONFIG_SCHED_SMT
7693 sd = &per_cpu(cpu_domains, i);
7694 #elif defined(CONFIG_SCHED_MC)
7695 sd = &per_cpu(core_domains, i);
7696 #else
7697 sd = &per_cpu(phys_domains, i);
7698 #endif
7699 cpu_attach_domain(sd, rd, i);
7702 SCHED_CPUMASK_FREE((void *)allmasks);
7703 return 0;
7705 #ifdef CONFIG_NUMA
7706 error:
7707 free_sched_groups(cpu_map, tmpmask);
7708 SCHED_CPUMASK_FREE((void *)allmasks);
7709 kfree(rd);
7710 return -ENOMEM;
7711 #endif
7714 static int build_sched_domains(const cpumask_t *cpu_map)
7716 return __build_sched_domains(cpu_map, NULL);
7719 static cpumask_t *doms_cur; /* current sched domains */
7720 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7721 static struct sched_domain_attr *dattr_cur;
7722 /* attribues of custom domains in 'doms_cur' */
7725 * Special case: If a kmalloc of a doms_cur partition (array of
7726 * cpumask_t) fails, then fallback to a single sched domain,
7727 * as determined by the single cpumask_t fallback_doms.
7729 static cpumask_t fallback_doms;
7731 void __attribute__((weak)) arch_update_cpu_topology(void)
7736 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7737 * For now this just excludes isolated cpus, but could be used to
7738 * exclude other special cases in the future.
7740 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7742 int err;
7744 arch_update_cpu_topology();
7745 ndoms_cur = 1;
7746 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7747 if (!doms_cur)
7748 doms_cur = &fallback_doms;
7749 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7750 dattr_cur = NULL;
7751 err = build_sched_domains(doms_cur);
7752 register_sched_domain_sysctl();
7754 return err;
7757 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7758 cpumask_t *tmpmask)
7760 free_sched_groups(cpu_map, tmpmask);
7764 * Detach sched domains from a group of cpus specified in cpu_map
7765 * These cpus will now be attached to the NULL domain
7767 static void detach_destroy_domains(const cpumask_t *cpu_map)
7769 cpumask_t tmpmask;
7770 int i;
7772 unregister_sched_domain_sysctl();
7774 for_each_cpu_mask_nr(i, *cpu_map)
7775 cpu_attach_domain(NULL, &def_root_domain, i);
7776 synchronize_sched();
7777 arch_destroy_sched_domains(cpu_map, &tmpmask);
7780 /* handle null as "default" */
7781 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7782 struct sched_domain_attr *new, int idx_new)
7784 struct sched_domain_attr tmp;
7786 /* fast path */
7787 if (!new && !cur)
7788 return 1;
7790 tmp = SD_ATTR_INIT;
7791 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7792 new ? (new + idx_new) : &tmp,
7793 sizeof(struct sched_domain_attr));
7797 * Partition sched domains as specified by the 'ndoms_new'
7798 * cpumasks in the array doms_new[] of cpumasks. This compares
7799 * doms_new[] to the current sched domain partitioning, doms_cur[].
7800 * It destroys each deleted domain and builds each new domain.
7802 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7803 * The masks don't intersect (don't overlap.) We should setup one
7804 * sched domain for each mask. CPUs not in any of the cpumasks will
7805 * not be load balanced. If the same cpumask appears both in the
7806 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7807 * it as it is.
7809 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7810 * ownership of it and will kfree it when done with it. If the caller
7811 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7812 * ndoms_new == 1, and partition_sched_domains() will fallback to
7813 * the single partition 'fallback_doms', it also forces the domains
7814 * to be rebuilt.
7816 * If doms_new == NULL it will be replaced with cpu_online_map.
7817 * ndoms_new == 0 is a special case for destroying existing domains,
7818 * and it will not create the default domain.
7820 * Call with hotplug lock held
7822 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7823 struct sched_domain_attr *dattr_new)
7825 int i, j, n;
7827 mutex_lock(&sched_domains_mutex);
7829 /* always unregister in case we don't destroy any domains */
7830 unregister_sched_domain_sysctl();
7832 n = doms_new ? ndoms_new : 0;
7834 /* Destroy deleted domains */
7835 for (i = 0; i < ndoms_cur; i++) {
7836 for (j = 0; j < n; j++) {
7837 if (cpus_equal(doms_cur[i], doms_new[j])
7838 && dattrs_equal(dattr_cur, i, dattr_new, j))
7839 goto match1;
7841 /* no match - a current sched domain not in new doms_new[] */
7842 detach_destroy_domains(doms_cur + i);
7843 match1:
7847 if (doms_new == NULL) {
7848 ndoms_cur = 0;
7849 doms_new = &fallback_doms;
7850 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7851 dattr_new = NULL;
7854 /* Build new domains */
7855 for (i = 0; i < ndoms_new; i++) {
7856 for (j = 0; j < ndoms_cur; j++) {
7857 if (cpus_equal(doms_new[i], doms_cur[j])
7858 && dattrs_equal(dattr_new, i, dattr_cur, j))
7859 goto match2;
7861 /* no match - add a new doms_new */
7862 __build_sched_domains(doms_new + i,
7863 dattr_new ? dattr_new + i : NULL);
7864 match2:
7868 /* Remember the new sched domains */
7869 if (doms_cur != &fallback_doms)
7870 kfree(doms_cur);
7871 kfree(dattr_cur); /* kfree(NULL) is safe */
7872 doms_cur = doms_new;
7873 dattr_cur = dattr_new;
7874 ndoms_cur = ndoms_new;
7876 register_sched_domain_sysctl();
7878 mutex_unlock(&sched_domains_mutex);
7881 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7882 int arch_reinit_sched_domains(void)
7884 get_online_cpus();
7886 /* Destroy domains first to force the rebuild */
7887 partition_sched_domains(0, NULL, NULL);
7889 rebuild_sched_domains();
7890 put_online_cpus();
7892 return 0;
7895 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7897 int ret;
7899 if (buf[0] != '0' && buf[0] != '1')
7900 return -EINVAL;
7902 if (smt)
7903 sched_smt_power_savings = (buf[0] == '1');
7904 else
7905 sched_mc_power_savings = (buf[0] == '1');
7907 ret = arch_reinit_sched_domains();
7909 return ret ? ret : count;
7912 #ifdef CONFIG_SCHED_MC
7913 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7914 char *page)
7916 return sprintf(page, "%u\n", sched_mc_power_savings);
7918 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7919 const char *buf, size_t count)
7921 return sched_power_savings_store(buf, count, 0);
7923 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7924 sched_mc_power_savings_show,
7925 sched_mc_power_savings_store);
7926 #endif
7928 #ifdef CONFIG_SCHED_SMT
7929 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7930 char *page)
7932 return sprintf(page, "%u\n", sched_smt_power_savings);
7934 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7935 const char *buf, size_t count)
7937 return sched_power_savings_store(buf, count, 1);
7939 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7940 sched_smt_power_savings_show,
7941 sched_smt_power_savings_store);
7942 #endif
7944 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7946 int err = 0;
7948 #ifdef CONFIG_SCHED_SMT
7949 if (smt_capable())
7950 err = sysfs_create_file(&cls->kset.kobj,
7951 &attr_sched_smt_power_savings.attr);
7952 #endif
7953 #ifdef CONFIG_SCHED_MC
7954 if (!err && mc_capable())
7955 err = sysfs_create_file(&cls->kset.kobj,
7956 &attr_sched_mc_power_savings.attr);
7957 #endif
7958 return err;
7960 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7962 #ifndef CONFIG_CPUSETS
7964 * Add online and remove offline CPUs from the scheduler domains.
7965 * When cpusets are enabled they take over this function.
7967 static int update_sched_domains(struct notifier_block *nfb,
7968 unsigned long action, void *hcpu)
7970 switch (action) {
7971 case CPU_ONLINE:
7972 case CPU_ONLINE_FROZEN:
7973 case CPU_DEAD:
7974 case CPU_DEAD_FROZEN:
7975 partition_sched_domains(1, NULL, NULL);
7976 return NOTIFY_OK;
7978 default:
7979 return NOTIFY_DONE;
7982 #endif
7984 static int update_runtime(struct notifier_block *nfb,
7985 unsigned long action, void *hcpu)
7987 int cpu = (int)(long)hcpu;
7989 switch (action) {
7990 case CPU_DOWN_PREPARE:
7991 case CPU_DOWN_PREPARE_FROZEN:
7992 disable_runtime(cpu_rq(cpu));
7993 return NOTIFY_OK;
7995 case CPU_DOWN_FAILED:
7996 case CPU_DOWN_FAILED_FROZEN:
7997 case CPU_ONLINE:
7998 case CPU_ONLINE_FROZEN:
7999 enable_runtime(cpu_rq(cpu));
8000 return NOTIFY_OK;
8002 default:
8003 return NOTIFY_DONE;
8007 void __init sched_init_smp(void)
8009 cpumask_t non_isolated_cpus;
8011 #if defined(CONFIG_NUMA)
8012 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8013 GFP_KERNEL);
8014 BUG_ON(sched_group_nodes_bycpu == NULL);
8015 #endif
8016 get_online_cpus();
8017 mutex_lock(&sched_domains_mutex);
8018 arch_init_sched_domains(&cpu_online_map);
8019 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
8020 if (cpus_empty(non_isolated_cpus))
8021 cpu_set(smp_processor_id(), non_isolated_cpus);
8022 mutex_unlock(&sched_domains_mutex);
8023 put_online_cpus();
8025 #ifndef CONFIG_CPUSETS
8026 /* XXX: Theoretical race here - CPU may be hotplugged now */
8027 hotcpu_notifier(update_sched_domains, 0);
8028 #endif
8030 /* RT runtime code needs to handle some hotplug events */
8031 hotcpu_notifier(update_runtime, 0);
8033 init_hrtick();
8035 /* Move init over to a non-isolated CPU */
8036 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8037 BUG();
8038 sched_init_granularity();
8040 #else
8041 void __init sched_init_smp(void)
8043 sched_init_granularity();
8045 #endif /* CONFIG_SMP */
8047 int in_sched_functions(unsigned long addr)
8049 return in_lock_functions(addr) ||
8050 (addr >= (unsigned long)__sched_text_start
8051 && addr < (unsigned long)__sched_text_end);
8054 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8056 cfs_rq->tasks_timeline = RB_ROOT;
8057 INIT_LIST_HEAD(&cfs_rq->tasks);
8058 #ifdef CONFIG_FAIR_GROUP_SCHED
8059 cfs_rq->rq = rq;
8060 #endif
8061 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8064 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8066 struct rt_prio_array *array;
8067 int i;
8069 array = &rt_rq->active;
8070 for (i = 0; i < MAX_RT_PRIO; i++) {
8071 INIT_LIST_HEAD(array->queue + i);
8072 __clear_bit(i, array->bitmap);
8074 /* delimiter for bitsearch: */
8075 __set_bit(MAX_RT_PRIO, array->bitmap);
8077 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8078 rt_rq->highest_prio = MAX_RT_PRIO;
8079 #endif
8080 #ifdef CONFIG_SMP
8081 rt_rq->rt_nr_migratory = 0;
8082 rt_rq->overloaded = 0;
8083 #endif
8085 rt_rq->rt_time = 0;
8086 rt_rq->rt_throttled = 0;
8087 rt_rq->rt_runtime = 0;
8088 spin_lock_init(&rt_rq->rt_runtime_lock);
8090 #ifdef CONFIG_RT_GROUP_SCHED
8091 rt_rq->rt_nr_boosted = 0;
8092 rt_rq->rq = rq;
8093 #endif
8096 #ifdef CONFIG_FAIR_GROUP_SCHED
8097 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8098 struct sched_entity *se, int cpu, int add,
8099 struct sched_entity *parent)
8101 struct rq *rq = cpu_rq(cpu);
8102 tg->cfs_rq[cpu] = cfs_rq;
8103 init_cfs_rq(cfs_rq, rq);
8104 cfs_rq->tg = tg;
8105 if (add)
8106 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8108 tg->se[cpu] = se;
8109 /* se could be NULL for init_task_group */
8110 if (!se)
8111 return;
8113 if (!parent)
8114 se->cfs_rq = &rq->cfs;
8115 else
8116 se->cfs_rq = parent->my_q;
8118 se->my_q = cfs_rq;
8119 se->load.weight = tg->shares;
8120 se->load.inv_weight = 0;
8121 se->parent = parent;
8123 #endif
8125 #ifdef CONFIG_RT_GROUP_SCHED
8126 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8127 struct sched_rt_entity *rt_se, int cpu, int add,
8128 struct sched_rt_entity *parent)
8130 struct rq *rq = cpu_rq(cpu);
8132 tg->rt_rq[cpu] = rt_rq;
8133 init_rt_rq(rt_rq, rq);
8134 rt_rq->tg = tg;
8135 rt_rq->rt_se = rt_se;
8136 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8137 if (add)
8138 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8140 tg->rt_se[cpu] = rt_se;
8141 if (!rt_se)
8142 return;
8144 if (!parent)
8145 rt_se->rt_rq = &rq->rt;
8146 else
8147 rt_se->rt_rq = parent->my_q;
8149 rt_se->my_q = rt_rq;
8150 rt_se->parent = parent;
8151 INIT_LIST_HEAD(&rt_se->run_list);
8153 #endif
8155 void __init sched_init(void)
8157 int i, j;
8158 unsigned long alloc_size = 0, ptr;
8160 #ifdef CONFIG_FAIR_GROUP_SCHED
8161 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8162 #endif
8163 #ifdef CONFIG_RT_GROUP_SCHED
8164 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8165 #endif
8166 #ifdef CONFIG_USER_SCHED
8167 alloc_size *= 2;
8168 #endif
8170 * As sched_init() is called before page_alloc is setup,
8171 * we use alloc_bootmem().
8173 if (alloc_size) {
8174 ptr = (unsigned long)alloc_bootmem(alloc_size);
8176 #ifdef CONFIG_FAIR_GROUP_SCHED
8177 init_task_group.se = (struct sched_entity **)ptr;
8178 ptr += nr_cpu_ids * sizeof(void **);
8180 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8181 ptr += nr_cpu_ids * sizeof(void **);
8183 #ifdef CONFIG_USER_SCHED
8184 root_task_group.se = (struct sched_entity **)ptr;
8185 ptr += nr_cpu_ids * sizeof(void **);
8187 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8188 ptr += nr_cpu_ids * sizeof(void **);
8189 #endif /* CONFIG_USER_SCHED */
8190 #endif /* CONFIG_FAIR_GROUP_SCHED */
8191 #ifdef CONFIG_RT_GROUP_SCHED
8192 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8193 ptr += nr_cpu_ids * sizeof(void **);
8195 init_task_group.rt_rq = (struct rt_rq **)ptr;
8196 ptr += nr_cpu_ids * sizeof(void **);
8198 #ifdef CONFIG_USER_SCHED
8199 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8200 ptr += nr_cpu_ids * sizeof(void **);
8202 root_task_group.rt_rq = (struct rt_rq **)ptr;
8203 ptr += nr_cpu_ids * sizeof(void **);
8204 #endif /* CONFIG_USER_SCHED */
8205 #endif /* CONFIG_RT_GROUP_SCHED */
8208 #ifdef CONFIG_SMP
8209 init_defrootdomain();
8210 #endif
8212 init_rt_bandwidth(&def_rt_bandwidth,
8213 global_rt_period(), global_rt_runtime());
8215 #ifdef CONFIG_RT_GROUP_SCHED
8216 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8217 global_rt_period(), global_rt_runtime());
8218 #ifdef CONFIG_USER_SCHED
8219 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8220 global_rt_period(), RUNTIME_INF);
8221 #endif /* CONFIG_USER_SCHED */
8222 #endif /* CONFIG_RT_GROUP_SCHED */
8224 #ifdef CONFIG_GROUP_SCHED
8225 list_add(&init_task_group.list, &task_groups);
8226 INIT_LIST_HEAD(&init_task_group.children);
8228 #ifdef CONFIG_USER_SCHED
8229 INIT_LIST_HEAD(&root_task_group.children);
8230 init_task_group.parent = &root_task_group;
8231 list_add(&init_task_group.siblings, &root_task_group.children);
8232 #endif /* CONFIG_USER_SCHED */
8233 #endif /* CONFIG_GROUP_SCHED */
8235 for_each_possible_cpu(i) {
8236 struct rq *rq;
8238 rq = cpu_rq(i);
8239 spin_lock_init(&rq->lock);
8240 rq->nr_running = 0;
8241 init_cfs_rq(&rq->cfs, rq);
8242 init_rt_rq(&rq->rt, rq);
8243 #ifdef CONFIG_FAIR_GROUP_SCHED
8244 init_task_group.shares = init_task_group_load;
8245 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8246 #ifdef CONFIG_CGROUP_SCHED
8248 * How much cpu bandwidth does init_task_group get?
8250 * In case of task-groups formed thr' the cgroup filesystem, it
8251 * gets 100% of the cpu resources in the system. This overall
8252 * system cpu resource is divided among the tasks of
8253 * init_task_group and its child task-groups in a fair manner,
8254 * based on each entity's (task or task-group's) weight
8255 * (se->load.weight).
8257 * In other words, if init_task_group has 10 tasks of weight
8258 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8259 * then A0's share of the cpu resource is:
8261 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8263 * We achieve this by letting init_task_group's tasks sit
8264 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8266 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8267 #elif defined CONFIG_USER_SCHED
8268 root_task_group.shares = NICE_0_LOAD;
8269 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8271 * In case of task-groups formed thr' the user id of tasks,
8272 * init_task_group represents tasks belonging to root user.
8273 * Hence it forms a sibling of all subsequent groups formed.
8274 * In this case, init_task_group gets only a fraction of overall
8275 * system cpu resource, based on the weight assigned to root
8276 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8277 * by letting tasks of init_task_group sit in a separate cfs_rq
8278 * (init_cfs_rq) and having one entity represent this group of
8279 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8281 init_tg_cfs_entry(&init_task_group,
8282 &per_cpu(init_cfs_rq, i),
8283 &per_cpu(init_sched_entity, i), i, 1,
8284 root_task_group.se[i]);
8286 #endif
8287 #endif /* CONFIG_FAIR_GROUP_SCHED */
8289 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8290 #ifdef CONFIG_RT_GROUP_SCHED
8291 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8292 #ifdef CONFIG_CGROUP_SCHED
8293 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8294 #elif defined CONFIG_USER_SCHED
8295 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8296 init_tg_rt_entry(&init_task_group,
8297 &per_cpu(init_rt_rq, i),
8298 &per_cpu(init_sched_rt_entity, i), i, 1,
8299 root_task_group.rt_se[i]);
8300 #endif
8301 #endif
8303 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8304 rq->cpu_load[j] = 0;
8305 #ifdef CONFIG_SMP
8306 rq->sd = NULL;
8307 rq->rd = NULL;
8308 rq->active_balance = 0;
8309 rq->next_balance = jiffies;
8310 rq->push_cpu = 0;
8311 rq->cpu = i;
8312 rq->online = 0;
8313 rq->migration_thread = NULL;
8314 INIT_LIST_HEAD(&rq->migration_queue);
8315 rq_attach_root(rq, &def_root_domain);
8316 #endif
8317 init_rq_hrtick(rq);
8318 atomic_set(&rq->nr_iowait, 0);
8321 set_load_weight(&init_task);
8323 #ifdef CONFIG_PREEMPT_NOTIFIERS
8324 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8325 #endif
8327 #ifdef CONFIG_SMP
8328 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8329 #endif
8331 #ifdef CONFIG_RT_MUTEXES
8332 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8333 #endif
8336 * The boot idle thread does lazy MMU switching as well:
8338 atomic_inc(&init_mm.mm_count);
8339 enter_lazy_tlb(&init_mm, current);
8342 * Make us the idle thread. Technically, schedule() should not be
8343 * called from this thread, however somewhere below it might be,
8344 * but because we are the idle thread, we just pick up running again
8345 * when this runqueue becomes "idle".
8347 init_idle(current, smp_processor_id());
8349 * During early bootup we pretend to be a normal task:
8351 current->sched_class = &fair_sched_class;
8353 scheduler_running = 1;
8356 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8357 void __might_sleep(char *file, int line)
8359 #ifdef in_atomic
8360 static unsigned long prev_jiffy; /* ratelimiting */
8362 if ((!in_atomic() && !irqs_disabled()) ||
8363 system_state != SYSTEM_RUNNING || oops_in_progress)
8364 return;
8365 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8366 return;
8367 prev_jiffy = jiffies;
8369 printk(KERN_ERR
8370 "BUG: sleeping function called from invalid context at %s:%d\n",
8371 file, line);
8372 printk(KERN_ERR
8373 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8374 in_atomic(), irqs_disabled(),
8375 current->pid, current->comm);
8377 debug_show_held_locks(current);
8378 if (irqs_disabled())
8379 print_irqtrace_events(current);
8380 dump_stack();
8381 #endif
8383 EXPORT_SYMBOL(__might_sleep);
8384 #endif
8386 #ifdef CONFIG_MAGIC_SYSRQ
8387 static void normalize_task(struct rq *rq, struct task_struct *p)
8389 int on_rq;
8391 update_rq_clock(rq);
8392 on_rq = p->se.on_rq;
8393 if (on_rq)
8394 deactivate_task(rq, p, 0);
8395 __setscheduler(rq, p, SCHED_NORMAL, 0);
8396 if (on_rq) {
8397 activate_task(rq, p, 0);
8398 resched_task(rq->curr);
8402 void normalize_rt_tasks(void)
8404 struct task_struct *g, *p;
8405 unsigned long flags;
8406 struct rq *rq;
8408 read_lock_irqsave(&tasklist_lock, flags);
8409 do_each_thread(g, p) {
8411 * Only normalize user tasks:
8413 if (!p->mm)
8414 continue;
8416 p->se.exec_start = 0;
8417 #ifdef CONFIG_SCHEDSTATS
8418 p->se.wait_start = 0;
8419 p->se.sleep_start = 0;
8420 p->se.block_start = 0;
8421 #endif
8423 if (!rt_task(p)) {
8425 * Renice negative nice level userspace
8426 * tasks back to 0:
8428 if (TASK_NICE(p) < 0 && p->mm)
8429 set_user_nice(p, 0);
8430 continue;
8433 spin_lock(&p->pi_lock);
8434 rq = __task_rq_lock(p);
8436 normalize_task(rq, p);
8438 __task_rq_unlock(rq);
8439 spin_unlock(&p->pi_lock);
8440 } while_each_thread(g, p);
8442 read_unlock_irqrestore(&tasklist_lock, flags);
8445 #endif /* CONFIG_MAGIC_SYSRQ */
8447 #ifdef CONFIG_IA64
8449 * These functions are only useful for the IA64 MCA handling.
8451 * They can only be called when the whole system has been
8452 * stopped - every CPU needs to be quiescent, and no scheduling
8453 * activity can take place. Using them for anything else would
8454 * be a serious bug, and as a result, they aren't even visible
8455 * under any other configuration.
8459 * curr_task - return the current task for a given cpu.
8460 * @cpu: the processor in question.
8462 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8464 struct task_struct *curr_task(int cpu)
8466 return cpu_curr(cpu);
8470 * set_curr_task - set the current task for a given cpu.
8471 * @cpu: the processor in question.
8472 * @p: the task pointer to set.
8474 * Description: This function must only be used when non-maskable interrupts
8475 * are serviced on a separate stack. It allows the architecture to switch the
8476 * notion of the current task on a cpu in a non-blocking manner. This function
8477 * must be called with all CPU's synchronized, and interrupts disabled, the
8478 * and caller must save the original value of the current task (see
8479 * curr_task() above) and restore that value before reenabling interrupts and
8480 * re-starting the system.
8482 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8484 void set_curr_task(int cpu, struct task_struct *p)
8486 cpu_curr(cpu) = p;
8489 #endif
8491 #ifdef CONFIG_FAIR_GROUP_SCHED
8492 static void free_fair_sched_group(struct task_group *tg)
8494 int i;
8496 for_each_possible_cpu(i) {
8497 if (tg->cfs_rq)
8498 kfree(tg->cfs_rq[i]);
8499 if (tg->se)
8500 kfree(tg->se[i]);
8503 kfree(tg->cfs_rq);
8504 kfree(tg->se);
8507 static
8508 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8510 struct cfs_rq *cfs_rq;
8511 struct sched_entity *se, *parent_se;
8512 struct rq *rq;
8513 int i;
8515 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8516 if (!tg->cfs_rq)
8517 goto err;
8518 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8519 if (!tg->se)
8520 goto err;
8522 tg->shares = NICE_0_LOAD;
8524 for_each_possible_cpu(i) {
8525 rq = cpu_rq(i);
8527 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8528 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8529 if (!cfs_rq)
8530 goto err;
8532 se = kmalloc_node(sizeof(struct sched_entity),
8533 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8534 if (!se)
8535 goto err;
8537 parent_se = parent ? parent->se[i] : NULL;
8538 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8541 return 1;
8543 err:
8544 return 0;
8547 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8549 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8550 &cpu_rq(cpu)->leaf_cfs_rq_list);
8553 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8555 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8557 #else /* !CONFG_FAIR_GROUP_SCHED */
8558 static inline void free_fair_sched_group(struct task_group *tg)
8562 static inline
8563 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8565 return 1;
8568 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8572 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8575 #endif /* CONFIG_FAIR_GROUP_SCHED */
8577 #ifdef CONFIG_RT_GROUP_SCHED
8578 static void free_rt_sched_group(struct task_group *tg)
8580 int i;
8582 destroy_rt_bandwidth(&tg->rt_bandwidth);
8584 for_each_possible_cpu(i) {
8585 if (tg->rt_rq)
8586 kfree(tg->rt_rq[i]);
8587 if (tg->rt_se)
8588 kfree(tg->rt_se[i]);
8591 kfree(tg->rt_rq);
8592 kfree(tg->rt_se);
8595 static
8596 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8598 struct rt_rq *rt_rq;
8599 struct sched_rt_entity *rt_se, *parent_se;
8600 struct rq *rq;
8601 int i;
8603 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8604 if (!tg->rt_rq)
8605 goto err;
8606 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8607 if (!tg->rt_se)
8608 goto err;
8610 init_rt_bandwidth(&tg->rt_bandwidth,
8611 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8613 for_each_possible_cpu(i) {
8614 rq = cpu_rq(i);
8616 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8617 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8618 if (!rt_rq)
8619 goto err;
8621 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8622 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8623 if (!rt_se)
8624 goto err;
8626 parent_se = parent ? parent->rt_se[i] : NULL;
8627 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8630 return 1;
8632 err:
8633 return 0;
8636 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8638 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8639 &cpu_rq(cpu)->leaf_rt_rq_list);
8642 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8644 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8646 #else /* !CONFIG_RT_GROUP_SCHED */
8647 static inline void free_rt_sched_group(struct task_group *tg)
8651 static inline
8652 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8654 return 1;
8657 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8661 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8664 #endif /* CONFIG_RT_GROUP_SCHED */
8666 #ifdef CONFIG_GROUP_SCHED
8667 static void free_sched_group(struct task_group *tg)
8669 free_fair_sched_group(tg);
8670 free_rt_sched_group(tg);
8671 kfree(tg);
8674 /* allocate runqueue etc for a new task group */
8675 struct task_group *sched_create_group(struct task_group *parent)
8677 struct task_group *tg;
8678 unsigned long flags;
8679 int i;
8681 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8682 if (!tg)
8683 return ERR_PTR(-ENOMEM);
8685 if (!alloc_fair_sched_group(tg, parent))
8686 goto err;
8688 if (!alloc_rt_sched_group(tg, parent))
8689 goto err;
8691 spin_lock_irqsave(&task_group_lock, flags);
8692 for_each_possible_cpu(i) {
8693 register_fair_sched_group(tg, i);
8694 register_rt_sched_group(tg, i);
8696 list_add_rcu(&tg->list, &task_groups);
8698 WARN_ON(!parent); /* root should already exist */
8700 tg->parent = parent;
8701 INIT_LIST_HEAD(&tg->children);
8702 list_add_rcu(&tg->siblings, &parent->children);
8703 spin_unlock_irqrestore(&task_group_lock, flags);
8705 return tg;
8707 err:
8708 free_sched_group(tg);
8709 return ERR_PTR(-ENOMEM);
8712 /* rcu callback to free various structures associated with a task group */
8713 static void free_sched_group_rcu(struct rcu_head *rhp)
8715 /* now it should be safe to free those cfs_rqs */
8716 free_sched_group(container_of(rhp, struct task_group, rcu));
8719 /* Destroy runqueue etc associated with a task group */
8720 void sched_destroy_group(struct task_group *tg)
8722 unsigned long flags;
8723 int i;
8725 spin_lock_irqsave(&task_group_lock, flags);
8726 for_each_possible_cpu(i) {
8727 unregister_fair_sched_group(tg, i);
8728 unregister_rt_sched_group(tg, i);
8730 list_del_rcu(&tg->list);
8731 list_del_rcu(&tg->siblings);
8732 spin_unlock_irqrestore(&task_group_lock, flags);
8734 /* wait for possible concurrent references to cfs_rqs complete */
8735 call_rcu(&tg->rcu, free_sched_group_rcu);
8738 /* change task's runqueue when it moves between groups.
8739 * The caller of this function should have put the task in its new group
8740 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8741 * reflect its new group.
8743 void sched_move_task(struct task_struct *tsk)
8745 int on_rq, running;
8746 unsigned long flags;
8747 struct rq *rq;
8749 rq = task_rq_lock(tsk, &flags);
8751 update_rq_clock(rq);
8753 running = task_current(rq, tsk);
8754 on_rq = tsk->se.on_rq;
8756 if (on_rq)
8757 dequeue_task(rq, tsk, 0);
8758 if (unlikely(running))
8759 tsk->sched_class->put_prev_task(rq, tsk);
8761 set_task_rq(tsk, task_cpu(tsk));
8763 #ifdef CONFIG_FAIR_GROUP_SCHED
8764 if (tsk->sched_class->moved_group)
8765 tsk->sched_class->moved_group(tsk);
8766 #endif
8768 if (unlikely(running))
8769 tsk->sched_class->set_curr_task(rq);
8770 if (on_rq)
8771 enqueue_task(rq, tsk, 0);
8773 task_rq_unlock(rq, &flags);
8775 #endif /* CONFIG_GROUP_SCHED */
8777 #ifdef CONFIG_FAIR_GROUP_SCHED
8778 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8780 struct cfs_rq *cfs_rq = se->cfs_rq;
8781 int on_rq;
8783 on_rq = se->on_rq;
8784 if (on_rq)
8785 dequeue_entity(cfs_rq, se, 0);
8787 se->load.weight = shares;
8788 se->load.inv_weight = 0;
8790 if (on_rq)
8791 enqueue_entity(cfs_rq, se, 0);
8794 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8796 struct cfs_rq *cfs_rq = se->cfs_rq;
8797 struct rq *rq = cfs_rq->rq;
8798 unsigned long flags;
8800 spin_lock_irqsave(&rq->lock, flags);
8801 __set_se_shares(se, shares);
8802 spin_unlock_irqrestore(&rq->lock, flags);
8805 static DEFINE_MUTEX(shares_mutex);
8807 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8809 int i;
8810 unsigned long flags;
8813 * We can't change the weight of the root cgroup.
8815 if (!tg->se[0])
8816 return -EINVAL;
8818 if (shares < MIN_SHARES)
8819 shares = MIN_SHARES;
8820 else if (shares > MAX_SHARES)
8821 shares = MAX_SHARES;
8823 mutex_lock(&shares_mutex);
8824 if (tg->shares == shares)
8825 goto done;
8827 spin_lock_irqsave(&task_group_lock, flags);
8828 for_each_possible_cpu(i)
8829 unregister_fair_sched_group(tg, i);
8830 list_del_rcu(&tg->siblings);
8831 spin_unlock_irqrestore(&task_group_lock, flags);
8833 /* wait for any ongoing reference to this group to finish */
8834 synchronize_sched();
8837 * Now we are free to modify the group's share on each cpu
8838 * w/o tripping rebalance_share or load_balance_fair.
8840 tg->shares = shares;
8841 for_each_possible_cpu(i) {
8843 * force a rebalance
8845 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8846 set_se_shares(tg->se[i], shares);
8850 * Enable load balance activity on this group, by inserting it back on
8851 * each cpu's rq->leaf_cfs_rq_list.
8853 spin_lock_irqsave(&task_group_lock, flags);
8854 for_each_possible_cpu(i)
8855 register_fair_sched_group(tg, i);
8856 list_add_rcu(&tg->siblings, &tg->parent->children);
8857 spin_unlock_irqrestore(&task_group_lock, flags);
8858 done:
8859 mutex_unlock(&shares_mutex);
8860 return 0;
8863 unsigned long sched_group_shares(struct task_group *tg)
8865 return tg->shares;
8867 #endif
8869 #ifdef CONFIG_RT_GROUP_SCHED
8871 * Ensure that the real time constraints are schedulable.
8873 static DEFINE_MUTEX(rt_constraints_mutex);
8875 static unsigned long to_ratio(u64 period, u64 runtime)
8877 if (runtime == RUNTIME_INF)
8878 return 1ULL << 20;
8880 return div64_u64(runtime << 20, period);
8883 /* Must be called with tasklist_lock held */
8884 static inline int tg_has_rt_tasks(struct task_group *tg)
8886 struct task_struct *g, *p;
8888 do_each_thread(g, p) {
8889 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8890 return 1;
8891 } while_each_thread(g, p);
8893 return 0;
8896 struct rt_schedulable_data {
8897 struct task_group *tg;
8898 u64 rt_period;
8899 u64 rt_runtime;
8902 static int tg_schedulable(struct task_group *tg, void *data)
8904 struct rt_schedulable_data *d = data;
8905 struct task_group *child;
8906 unsigned long total, sum = 0;
8907 u64 period, runtime;
8909 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8910 runtime = tg->rt_bandwidth.rt_runtime;
8912 if (tg == d->tg) {
8913 period = d->rt_period;
8914 runtime = d->rt_runtime;
8918 * Cannot have more runtime than the period.
8920 if (runtime > period && runtime != RUNTIME_INF)
8921 return -EINVAL;
8924 * Ensure we don't starve existing RT tasks.
8926 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8927 return -EBUSY;
8929 total = to_ratio(period, runtime);
8932 * Nobody can have more than the global setting allows.
8934 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8935 return -EINVAL;
8938 * The sum of our children's runtime should not exceed our own.
8940 list_for_each_entry_rcu(child, &tg->children, siblings) {
8941 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8942 runtime = child->rt_bandwidth.rt_runtime;
8944 if (child == d->tg) {
8945 period = d->rt_period;
8946 runtime = d->rt_runtime;
8949 sum += to_ratio(period, runtime);
8952 if (sum > total)
8953 return -EINVAL;
8955 return 0;
8958 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8960 struct rt_schedulable_data data = {
8961 .tg = tg,
8962 .rt_period = period,
8963 .rt_runtime = runtime,
8966 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8969 static int tg_set_bandwidth(struct task_group *tg,
8970 u64 rt_period, u64 rt_runtime)
8972 int i, err = 0;
8974 mutex_lock(&rt_constraints_mutex);
8975 read_lock(&tasklist_lock);
8976 err = __rt_schedulable(tg, rt_period, rt_runtime);
8977 if (err)
8978 goto unlock;
8980 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8981 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8982 tg->rt_bandwidth.rt_runtime = rt_runtime;
8984 for_each_possible_cpu(i) {
8985 struct rt_rq *rt_rq = tg->rt_rq[i];
8987 spin_lock(&rt_rq->rt_runtime_lock);
8988 rt_rq->rt_runtime = rt_runtime;
8989 spin_unlock(&rt_rq->rt_runtime_lock);
8991 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8992 unlock:
8993 read_unlock(&tasklist_lock);
8994 mutex_unlock(&rt_constraints_mutex);
8996 return err;
8999 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9001 u64 rt_runtime, rt_period;
9003 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9004 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9005 if (rt_runtime_us < 0)
9006 rt_runtime = RUNTIME_INF;
9008 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9011 long sched_group_rt_runtime(struct task_group *tg)
9013 u64 rt_runtime_us;
9015 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9016 return -1;
9018 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9019 do_div(rt_runtime_us, NSEC_PER_USEC);
9020 return rt_runtime_us;
9023 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9025 u64 rt_runtime, rt_period;
9027 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9028 rt_runtime = tg->rt_bandwidth.rt_runtime;
9030 if (rt_period == 0)
9031 return -EINVAL;
9033 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9036 long sched_group_rt_period(struct task_group *tg)
9038 u64 rt_period_us;
9040 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9041 do_div(rt_period_us, NSEC_PER_USEC);
9042 return rt_period_us;
9045 static int sched_rt_global_constraints(void)
9047 u64 runtime, period;
9048 int ret = 0;
9050 if (sysctl_sched_rt_period <= 0)
9051 return -EINVAL;
9053 runtime = global_rt_runtime();
9054 period = global_rt_period();
9057 * Sanity check on the sysctl variables.
9059 if (runtime > period && runtime != RUNTIME_INF)
9060 return -EINVAL;
9062 mutex_lock(&rt_constraints_mutex);
9063 read_lock(&tasklist_lock);
9064 ret = __rt_schedulable(NULL, 0, 0);
9065 read_unlock(&tasklist_lock);
9066 mutex_unlock(&rt_constraints_mutex);
9068 return ret;
9070 #else /* !CONFIG_RT_GROUP_SCHED */
9071 static int sched_rt_global_constraints(void)
9073 unsigned long flags;
9074 int i;
9076 if (sysctl_sched_rt_period <= 0)
9077 return -EINVAL;
9079 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9080 for_each_possible_cpu(i) {
9081 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9083 spin_lock(&rt_rq->rt_runtime_lock);
9084 rt_rq->rt_runtime = global_rt_runtime();
9085 spin_unlock(&rt_rq->rt_runtime_lock);
9087 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9089 return 0;
9091 #endif /* CONFIG_RT_GROUP_SCHED */
9093 int sched_rt_handler(struct ctl_table *table, int write,
9094 struct file *filp, void __user *buffer, size_t *lenp,
9095 loff_t *ppos)
9097 int ret;
9098 int old_period, old_runtime;
9099 static DEFINE_MUTEX(mutex);
9101 mutex_lock(&mutex);
9102 old_period = sysctl_sched_rt_period;
9103 old_runtime = sysctl_sched_rt_runtime;
9105 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9107 if (!ret && write) {
9108 ret = sched_rt_global_constraints();
9109 if (ret) {
9110 sysctl_sched_rt_period = old_period;
9111 sysctl_sched_rt_runtime = old_runtime;
9112 } else {
9113 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9114 def_rt_bandwidth.rt_period =
9115 ns_to_ktime(global_rt_period());
9118 mutex_unlock(&mutex);
9120 return ret;
9123 #ifdef CONFIG_CGROUP_SCHED
9125 /* return corresponding task_group object of a cgroup */
9126 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9128 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9129 struct task_group, css);
9132 static struct cgroup_subsys_state *
9133 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9135 struct task_group *tg, *parent;
9137 if (!cgrp->parent) {
9138 /* This is early initialization for the top cgroup */
9139 return &init_task_group.css;
9142 parent = cgroup_tg(cgrp->parent);
9143 tg = sched_create_group(parent);
9144 if (IS_ERR(tg))
9145 return ERR_PTR(-ENOMEM);
9147 return &tg->css;
9150 static void
9151 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9153 struct task_group *tg = cgroup_tg(cgrp);
9155 sched_destroy_group(tg);
9158 static int
9159 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9160 struct task_struct *tsk)
9162 #ifdef CONFIG_RT_GROUP_SCHED
9163 /* Don't accept realtime tasks when there is no way for them to run */
9164 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9165 return -EINVAL;
9166 #else
9167 /* We don't support RT-tasks being in separate groups */
9168 if (tsk->sched_class != &fair_sched_class)
9169 return -EINVAL;
9170 #endif
9172 return 0;
9175 static void
9176 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9177 struct cgroup *old_cont, struct task_struct *tsk)
9179 sched_move_task(tsk);
9182 #ifdef CONFIG_FAIR_GROUP_SCHED
9183 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9184 u64 shareval)
9186 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9189 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9191 struct task_group *tg = cgroup_tg(cgrp);
9193 return (u64) tg->shares;
9195 #endif /* CONFIG_FAIR_GROUP_SCHED */
9197 #ifdef CONFIG_RT_GROUP_SCHED
9198 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9199 s64 val)
9201 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9204 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9206 return sched_group_rt_runtime(cgroup_tg(cgrp));
9209 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9210 u64 rt_period_us)
9212 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9215 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9217 return sched_group_rt_period(cgroup_tg(cgrp));
9219 #endif /* CONFIG_RT_GROUP_SCHED */
9221 static struct cftype cpu_files[] = {
9222 #ifdef CONFIG_FAIR_GROUP_SCHED
9224 .name = "shares",
9225 .read_u64 = cpu_shares_read_u64,
9226 .write_u64 = cpu_shares_write_u64,
9228 #endif
9229 #ifdef CONFIG_RT_GROUP_SCHED
9231 .name = "rt_runtime_us",
9232 .read_s64 = cpu_rt_runtime_read,
9233 .write_s64 = cpu_rt_runtime_write,
9236 .name = "rt_period_us",
9237 .read_u64 = cpu_rt_period_read_uint,
9238 .write_u64 = cpu_rt_period_write_uint,
9240 #endif
9243 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9245 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9248 struct cgroup_subsys cpu_cgroup_subsys = {
9249 .name = "cpu",
9250 .create = cpu_cgroup_create,
9251 .destroy = cpu_cgroup_destroy,
9252 .can_attach = cpu_cgroup_can_attach,
9253 .attach = cpu_cgroup_attach,
9254 .populate = cpu_cgroup_populate,
9255 .subsys_id = cpu_cgroup_subsys_id,
9256 .early_init = 1,
9259 #endif /* CONFIG_CGROUP_SCHED */
9261 #ifdef CONFIG_CGROUP_CPUACCT
9264 * CPU accounting code for task groups.
9266 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9267 * (balbir@in.ibm.com).
9270 /* track cpu usage of a group of tasks */
9271 struct cpuacct {
9272 struct cgroup_subsys_state css;
9273 /* cpuusage holds pointer to a u64-type object on every cpu */
9274 u64 *cpuusage;
9277 struct cgroup_subsys cpuacct_subsys;
9279 /* return cpu accounting group corresponding to this container */
9280 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9282 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9283 struct cpuacct, css);
9286 /* return cpu accounting group to which this task belongs */
9287 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9289 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9290 struct cpuacct, css);
9293 /* create a new cpu accounting group */
9294 static struct cgroup_subsys_state *cpuacct_create(
9295 struct cgroup_subsys *ss, struct cgroup *cgrp)
9297 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9299 if (!ca)
9300 return ERR_PTR(-ENOMEM);
9302 ca->cpuusage = alloc_percpu(u64);
9303 if (!ca->cpuusage) {
9304 kfree(ca);
9305 return ERR_PTR(-ENOMEM);
9308 return &ca->css;
9311 /* destroy an existing cpu accounting group */
9312 static void
9313 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9315 struct cpuacct *ca = cgroup_ca(cgrp);
9317 free_percpu(ca->cpuusage);
9318 kfree(ca);
9321 /* return total cpu usage (in nanoseconds) of a group */
9322 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9324 struct cpuacct *ca = cgroup_ca(cgrp);
9325 u64 totalcpuusage = 0;
9326 int i;
9328 for_each_possible_cpu(i) {
9329 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9332 * Take rq->lock to make 64-bit addition safe on 32-bit
9333 * platforms.
9335 spin_lock_irq(&cpu_rq(i)->lock);
9336 totalcpuusage += *cpuusage;
9337 spin_unlock_irq(&cpu_rq(i)->lock);
9340 return totalcpuusage;
9343 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9344 u64 reset)
9346 struct cpuacct *ca = cgroup_ca(cgrp);
9347 int err = 0;
9348 int i;
9350 if (reset) {
9351 err = -EINVAL;
9352 goto out;
9355 for_each_possible_cpu(i) {
9356 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9358 spin_lock_irq(&cpu_rq(i)->lock);
9359 *cpuusage = 0;
9360 spin_unlock_irq(&cpu_rq(i)->lock);
9362 out:
9363 return err;
9366 static struct cftype files[] = {
9368 .name = "usage",
9369 .read_u64 = cpuusage_read,
9370 .write_u64 = cpuusage_write,
9374 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9376 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9380 * charge this task's execution time to its accounting group.
9382 * called with rq->lock held.
9384 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9386 struct cpuacct *ca;
9388 if (!cpuacct_subsys.active)
9389 return;
9391 ca = task_ca(tsk);
9392 if (ca) {
9393 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9395 *cpuusage += cputime;
9399 struct cgroup_subsys cpuacct_subsys = {
9400 .name = "cpuacct",
9401 .create = cpuacct_create,
9402 .destroy = cpuacct_destroy,
9403 .populate = cpuacct_populate,
9404 .subsys_id = cpuacct_subsys_id,
9406 #endif /* CONFIG_CGROUP_CPUACCT */