[NET]: Generalise TSO-specific bits from skb_setup_caps
[linux-2.6/cjktty.git] / drivers / edac / edac_mc.h
blob342979677d2fd5e8727f5a97d18e332350b59356
1 /*
2 * MC kernel module
3 * (C) 2003 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * NMI handling support added by
12 * Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>
14 * $Id: edac_mc.h,v 1.4.2.10 2005/10/05 00:43:44 dsp_llnl Exp $
18 #ifndef _EDAC_MC_H_
19 #define _EDAC_MC_H_
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/types.h>
24 #include <linux/module.h>
25 #include <linux/spinlock.h>
26 #include <linux/smp.h>
27 #include <linux/pci.h>
28 #include <linux/time.h>
29 #include <linux/nmi.h>
30 #include <linux/rcupdate.h>
31 #include <linux/completion.h>
32 #include <linux/kobject.h>
34 #define EDAC_MC_LABEL_LEN 31
35 #define MC_PROC_NAME_MAX_LEN 7
37 #if PAGE_SHIFT < 20
38 #define PAGES_TO_MiB( pages ) ( ( pages ) >> ( 20 - PAGE_SHIFT ) )
39 #else /* PAGE_SHIFT > 20 */
40 #define PAGES_TO_MiB( pages ) ( ( pages ) << ( PAGE_SHIFT - 20 ) )
41 #endif
43 #define edac_printk(level, prefix, fmt, arg...) \
44 printk(level "EDAC " prefix ": " fmt, ##arg)
46 #define edac_mc_printk(mci, level, fmt, arg...) \
47 printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg)
49 #define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \
50 printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg)
52 /* prefixes for edac_printk() and edac_mc_printk() */
53 #define EDAC_MC "MC"
54 #define EDAC_PCI "PCI"
55 #define EDAC_DEBUG "DEBUG"
57 #ifdef CONFIG_EDAC_DEBUG
58 extern int edac_debug_level;
60 #define edac_debug_printk(level, fmt, arg...) \
61 do { \
62 if (level <= edac_debug_level) \
63 edac_printk(KERN_DEBUG, EDAC_DEBUG, fmt, ##arg); \
64 } while(0)
66 #define debugf0( ... ) edac_debug_printk(0, __VA_ARGS__ )
67 #define debugf1( ... ) edac_debug_printk(1, __VA_ARGS__ )
68 #define debugf2( ... ) edac_debug_printk(2, __VA_ARGS__ )
69 #define debugf3( ... ) edac_debug_printk(3, __VA_ARGS__ )
70 #define debugf4( ... ) edac_debug_printk(4, __VA_ARGS__ )
72 #else /* !CONFIG_EDAC_DEBUG */
74 #define debugf0( ... )
75 #define debugf1( ... )
76 #define debugf2( ... )
77 #define debugf3( ... )
78 #define debugf4( ... )
80 #endif /* !CONFIG_EDAC_DEBUG */
82 #define edac_xstr(s) edac_str(s)
83 #define edac_str(s) #s
84 #define EDAC_MOD_STR edac_xstr(KBUILD_BASENAME)
86 #define BIT(x) (1 << (x))
88 #define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \
89 PCI_DEVICE_ID_ ## vend ## _ ## dev
91 #if defined(CONFIG_X86) && defined(CONFIG_PCI)
92 #define dev_name(dev) pci_name(to_pci_dev(dev))
93 #else
94 #define dev_name(dev) to_platform_device(dev)->name
95 #endif
97 /* memory devices */
98 enum dev_type {
99 DEV_UNKNOWN = 0,
100 DEV_X1,
101 DEV_X2,
102 DEV_X4,
103 DEV_X8,
104 DEV_X16,
105 DEV_X32, /* Do these parts exist? */
106 DEV_X64 /* Do these parts exist? */
109 #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
110 #define DEV_FLAG_X1 BIT(DEV_X1)
111 #define DEV_FLAG_X2 BIT(DEV_X2)
112 #define DEV_FLAG_X4 BIT(DEV_X4)
113 #define DEV_FLAG_X8 BIT(DEV_X8)
114 #define DEV_FLAG_X16 BIT(DEV_X16)
115 #define DEV_FLAG_X32 BIT(DEV_X32)
116 #define DEV_FLAG_X64 BIT(DEV_X64)
118 /* memory types */
119 enum mem_type {
120 MEM_EMPTY = 0, /* Empty csrow */
121 MEM_RESERVED, /* Reserved csrow type */
122 MEM_UNKNOWN, /* Unknown csrow type */
123 MEM_FPM, /* Fast page mode */
124 MEM_EDO, /* Extended data out */
125 MEM_BEDO, /* Burst Extended data out */
126 MEM_SDR, /* Single data rate SDRAM */
127 MEM_RDR, /* Registered single data rate SDRAM */
128 MEM_DDR, /* Double data rate SDRAM */
129 MEM_RDDR, /* Registered Double data rate SDRAM */
130 MEM_RMBS /* Rambus DRAM */
133 #define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
134 #define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
135 #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
136 #define MEM_FLAG_FPM BIT(MEM_FPM)
137 #define MEM_FLAG_EDO BIT(MEM_EDO)
138 #define MEM_FLAG_BEDO BIT(MEM_BEDO)
139 #define MEM_FLAG_SDR BIT(MEM_SDR)
140 #define MEM_FLAG_RDR BIT(MEM_RDR)
141 #define MEM_FLAG_DDR BIT(MEM_DDR)
142 #define MEM_FLAG_RDDR BIT(MEM_RDDR)
143 #define MEM_FLAG_RMBS BIT(MEM_RMBS)
145 /* chipset Error Detection and Correction capabilities and mode */
146 enum edac_type {
147 EDAC_UNKNOWN = 0, /* Unknown if ECC is available */
148 EDAC_NONE, /* Doesnt support ECC */
149 EDAC_RESERVED, /* Reserved ECC type */
150 EDAC_PARITY, /* Detects parity errors */
151 EDAC_EC, /* Error Checking - no correction */
152 EDAC_SECDED, /* Single bit error correction, Double detection */
153 EDAC_S2ECD2ED, /* Chipkill x2 devices - do these exist? */
154 EDAC_S4ECD4ED, /* Chipkill x4 devices */
155 EDAC_S8ECD8ED, /* Chipkill x8 devices */
156 EDAC_S16ECD16ED, /* Chipkill x16 devices */
159 #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
160 #define EDAC_FLAG_NONE BIT(EDAC_NONE)
161 #define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
162 #define EDAC_FLAG_EC BIT(EDAC_EC)
163 #define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
164 #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
165 #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
166 #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
167 #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
169 /* scrubbing capabilities */
170 enum scrub_type {
171 SCRUB_UNKNOWN = 0, /* Unknown if scrubber is available */
172 SCRUB_NONE, /* No scrubber */
173 SCRUB_SW_PROG, /* SW progressive (sequential) scrubbing */
174 SCRUB_SW_SRC, /* Software scrub only errors */
175 SCRUB_SW_PROG_SRC, /* Progressive software scrub from an error */
176 SCRUB_SW_TUNABLE, /* Software scrub frequency is tunable */
177 SCRUB_HW_PROG, /* HW progressive (sequential) scrubbing */
178 SCRUB_HW_SRC, /* Hardware scrub only errors */
179 SCRUB_HW_PROG_SRC, /* Progressive hardware scrub from an error */
180 SCRUB_HW_TUNABLE /* Hardware scrub frequency is tunable */
183 #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
184 #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC_CORR)
185 #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC_CORR)
186 #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
187 #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
188 #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC_CORR)
189 #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC_CORR)
190 #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
192 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
195 * There are several things to be aware of that aren't at all obvious:
198 * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
200 * These are some of the many terms that are thrown about that don't always
201 * mean what people think they mean (Inconceivable!). In the interest of
202 * creating a common ground for discussion, terms and their definitions
203 * will be established.
205 * Memory devices: The individual chip on a memory stick. These devices
206 * commonly output 4 and 8 bits each. Grouping several
207 * of these in parallel provides 64 bits which is common
208 * for a memory stick.
210 * Memory Stick: A printed circuit board that agregates multiple
211 * memory devices in parallel. This is the atomic
212 * memory component that is purchaseable by Joe consumer
213 * and loaded into a memory socket.
215 * Socket: A physical connector on the motherboard that accepts
216 * a single memory stick.
218 * Channel: Set of memory devices on a memory stick that must be
219 * grouped in parallel with one or more additional
220 * channels from other memory sticks. This parallel
221 * grouping of the output from multiple channels are
222 * necessary for the smallest granularity of memory access.
223 * Some memory controllers are capable of single channel -
224 * which means that memory sticks can be loaded
225 * individually. Other memory controllers are only
226 * capable of dual channel - which means that memory
227 * sticks must be loaded as pairs (see "socket set").
229 * Chip-select row: All of the memory devices that are selected together.
230 * for a single, minimum grain of memory access.
231 * This selects all of the parallel memory devices across
232 * all of the parallel channels. Common chip-select rows
233 * for single channel are 64 bits, for dual channel 128
234 * bits.
236 * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memmory.
237 * Motherboards commonly drive two chip-select pins to
238 * a memory stick. A single-ranked stick, will occupy
239 * only one of those rows. The other will be unused.
241 * Double-Ranked stick: A double-ranked stick has two chip-select rows which
242 * access different sets of memory devices. The two
243 * rows cannot be accessed concurrently.
245 * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick.
246 * A double-sided stick has two chip-select rows which
247 * access different sets of memory devices. The two
248 * rows cannot be accessed concurrently. "Double-sided"
249 * is irrespective of the memory devices being mounted
250 * on both sides of the memory stick.
252 * Socket set: All of the memory sticks that are required for for
253 * a single memory access or all of the memory sticks
254 * spanned by a chip-select row. A single socket set
255 * has two chip-select rows and if double-sided sticks
256 * are used these will occupy those chip-select rows.
258 * Bank: This term is avoided because it is unclear when
259 * needing to distinguish between chip-select rows and
260 * socket sets.
262 * Controller pages:
264 * Physical pages:
266 * Virtual pages:
269 * STRUCTURE ORGANIZATION AND CHOICES
273 * PS - I enjoyed writing all that about as much as you enjoyed reading it.
276 struct channel_info {
277 int chan_idx; /* channel index */
278 u32 ce_count; /* Correctable Errors for this CHANNEL */
279 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
280 struct csrow_info *csrow; /* the parent */
283 struct csrow_info {
284 unsigned long first_page; /* first page number in dimm */
285 unsigned long last_page; /* last page number in dimm */
286 unsigned long page_mask; /* used for interleaving -
287 * 0UL for non intlv
289 u32 nr_pages; /* number of pages in csrow */
290 u32 grain; /* granularity of reported error in bytes */
291 int csrow_idx; /* the chip-select row */
292 enum dev_type dtype; /* memory device type */
293 u32 ue_count; /* Uncorrectable Errors for this csrow */
294 u32 ce_count; /* Correctable Errors for this csrow */
295 enum mem_type mtype; /* memory csrow type */
296 enum edac_type edac_mode; /* EDAC mode for this csrow */
297 struct mem_ctl_info *mci; /* the parent */
299 struct kobject kobj; /* sysfs kobject for this csrow */
300 struct completion kobj_complete;
302 /* FIXME the number of CHANNELs might need to become dynamic */
303 u32 nr_channels;
304 struct channel_info *channels;
307 struct mem_ctl_info {
308 struct list_head link; /* for global list of mem_ctl_info structs */
309 unsigned long mtype_cap; /* memory types supported by mc */
310 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
311 unsigned long edac_cap; /* configuration capabilities - this is
312 * closely related to edac_ctl_cap. The
313 * difference is that the controller may be
314 * capable of s4ecd4ed which would be listed
315 * in edac_ctl_cap, but if channels aren't
316 * capable of s4ecd4ed then the edac_cap would
317 * not have that capability.
319 unsigned long scrub_cap; /* chipset scrub capabilities */
320 enum scrub_type scrub_mode; /* current scrub mode */
322 /* pointer to edac checking routine */
323 void (*edac_check) (struct mem_ctl_info * mci);
325 * Remaps memory pages: controller pages to physical pages.
326 * For most MC's, this will be NULL.
328 /* FIXME - why not send the phys page to begin with? */
329 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
330 unsigned long page);
331 int mc_idx;
332 int nr_csrows;
333 struct csrow_info *csrows;
335 * FIXME - what about controllers on other busses? - IDs must be
336 * unique. dev pointer should be sufficiently unique, but
337 * BUS:SLOT.FUNC numbers may not be unique.
339 struct device *dev;
340 const char *mod_name;
341 const char *mod_ver;
342 const char *ctl_name;
343 char proc_name[MC_PROC_NAME_MAX_LEN + 1];
344 void *pvt_info;
345 u32 ue_noinfo_count; /* Uncorrectable Errors w/o info */
346 u32 ce_noinfo_count; /* Correctable Errors w/o info */
347 u32 ue_count; /* Total Uncorrectable Errors for this MC */
348 u32 ce_count; /* Total Correctable Errors for this MC */
349 unsigned long start_time; /* mci load start time (in jiffies) */
351 /* this stuff is for safe removal of mc devices from global list while
352 * NMI handlers may be traversing list
354 struct rcu_head rcu;
355 struct completion complete;
357 /* edac sysfs device control */
358 struct kobject edac_mci_kobj;
359 struct completion kobj_complete;
362 #ifdef CONFIG_PCI
364 /* write all or some bits in a byte-register*/
365 static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value,
366 u8 mask)
368 if (mask != 0xff) {
369 u8 buf;
371 pci_read_config_byte(pdev, offset, &buf);
372 value &= mask;
373 buf &= ~mask;
374 value |= buf;
377 pci_write_config_byte(pdev, offset, value);
380 /* write all or some bits in a word-register*/
381 static inline void pci_write_bits16(struct pci_dev *pdev, int offset,
382 u16 value, u16 mask)
384 if (mask != 0xffff) {
385 u16 buf;
387 pci_read_config_word(pdev, offset, &buf);
388 value &= mask;
389 buf &= ~mask;
390 value |= buf;
393 pci_write_config_word(pdev, offset, value);
396 /* write all or some bits in a dword-register*/
397 static inline void pci_write_bits32(struct pci_dev *pdev, int offset,
398 u32 value, u32 mask)
400 if (mask != 0xffff) {
401 u32 buf;
403 pci_read_config_dword(pdev, offset, &buf);
404 value &= mask;
405 buf &= ~mask;
406 value |= buf;
409 pci_write_config_dword(pdev, offset, value);
412 #endif /* CONFIG_PCI */
414 #ifdef CONFIG_EDAC_DEBUG
415 void edac_mc_dump_channel(struct channel_info *chan);
416 void edac_mc_dump_mci(struct mem_ctl_info *mci);
417 void edac_mc_dump_csrow(struct csrow_info *csrow);
418 #endif /* CONFIG_EDAC_DEBUG */
420 extern int edac_mc_add_mc(struct mem_ctl_info *mci,int mc_idx);
421 extern struct mem_ctl_info * edac_mc_del_mc(struct device *dev);
422 extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
423 unsigned long page);
424 extern void edac_mc_scrub_block(unsigned long page, unsigned long offset,
425 u32 size);
428 * The no info errors are used when error overflows are reported.
429 * There are a limited number of error logging registers that can
430 * be exausted. When all registers are exhausted and an additional
431 * error occurs then an error overflow register records that an
432 * error occured and the type of error, but doesn't have any
433 * further information. The ce/ue versions make for cleaner
434 * reporting logic and function interface - reduces conditional
435 * statement clutter and extra function arguments.
437 extern void edac_mc_handle_ce(struct mem_ctl_info *mci,
438 unsigned long page_frame_number, unsigned long offset_in_page,
439 unsigned long syndrome, int row, int channel,
440 const char *msg);
441 extern void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
442 const char *msg);
443 extern void edac_mc_handle_ue(struct mem_ctl_info *mci,
444 unsigned long page_frame_number, unsigned long offset_in_page,
445 int row, const char *msg);
446 extern void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
447 const char *msg);
450 * This kmalloc's and initializes all the structures.
451 * Can't be used if all structures don't have the same lifetime.
453 extern struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
454 unsigned nr_chans);
456 /* Free an mc previously allocated by edac_mc_alloc() */
457 extern void edac_mc_free(struct mem_ctl_info *mci);
459 #endif /* _EDAC_MC_H_ */