Merge branch 'sched-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6/cjktty.git] / kernel / hrtimer.c
blob0c8d7c04861542102960852c60150c6771180553
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
22 * Credits:
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
49 #include <asm/uaccess.h>
51 #include <trace/events/timer.h>
54 * The timer bases:
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
62 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
65 .clock_base =
68 .index = CLOCK_REALTIME,
69 .get_time = &ktime_get_real,
70 .resolution = KTIME_LOW_RES,
73 .index = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
75 .resolution = KTIME_LOW_RES,
81 * Get the coarse grained time at the softirq based on xtime and
82 * wall_to_monotonic.
84 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
86 ktime_t xtim, tomono;
87 struct timespec xts, tom;
88 unsigned long seq;
90 do {
91 seq = read_seqbegin(&xtime_lock);
92 xts = __current_kernel_time();
93 tom = __get_wall_to_monotonic();
94 } while (read_seqretry(&xtime_lock, seq));
96 xtim = timespec_to_ktime(xts);
97 tomono = timespec_to_ktime(tom);
98 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
99 base->clock_base[CLOCK_MONOTONIC].softirq_time =
100 ktime_add(xtim, tomono);
104 * Functions and macros which are different for UP/SMP systems are kept in a
105 * single place
107 #ifdef CONFIG_SMP
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
119 * locked.
121 static
122 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
123 unsigned long *flags)
125 struct hrtimer_clock_base *base;
127 for (;;) {
128 base = timer->base;
129 if (likely(base != NULL)) {
130 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
131 if (likely(base == timer->base))
132 return base;
133 /* The timer has migrated to another CPU: */
134 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
136 cpu_relax();
142 * Get the preferred target CPU for NOHZ
144 static int hrtimer_get_target(int this_cpu, int pinned)
146 #ifdef CONFIG_NO_HZ
147 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
148 return get_nohz_timer_target();
149 #endif
150 return this_cpu;
154 * With HIGHRES=y we do not migrate the timer when it is expiring
155 * before the next event on the target cpu because we cannot reprogram
156 * the target cpu hardware and we would cause it to fire late.
158 * Called with cpu_base->lock of target cpu held.
160 static int
161 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
163 #ifdef CONFIG_HIGH_RES_TIMERS
164 ktime_t expires;
166 if (!new_base->cpu_base->hres_active)
167 return 0;
169 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
170 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
171 #else
172 return 0;
173 #endif
177 * Switch the timer base to the current CPU when possible.
179 static inline struct hrtimer_clock_base *
180 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
181 int pinned)
183 struct hrtimer_clock_base *new_base;
184 struct hrtimer_cpu_base *new_cpu_base;
185 int this_cpu = smp_processor_id();
186 int cpu = hrtimer_get_target(this_cpu, pinned);
188 again:
189 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
190 new_base = &new_cpu_base->clock_base[base->index];
192 if (base != new_base) {
194 * We are trying to move timer to new_base.
195 * However we can't change timer's base while it is running,
196 * so we keep it on the same CPU. No hassle vs. reprogramming
197 * the event source in the high resolution case. The softirq
198 * code will take care of this when the timer function has
199 * completed. There is no conflict as we hold the lock until
200 * the timer is enqueued.
202 if (unlikely(hrtimer_callback_running(timer)))
203 return base;
205 /* See the comment in lock_timer_base() */
206 timer->base = NULL;
207 raw_spin_unlock(&base->cpu_base->lock);
208 raw_spin_lock(&new_base->cpu_base->lock);
210 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
211 cpu = this_cpu;
212 raw_spin_unlock(&new_base->cpu_base->lock);
213 raw_spin_lock(&base->cpu_base->lock);
214 timer->base = base;
215 goto again;
217 timer->base = new_base;
219 return new_base;
222 #else /* CONFIG_SMP */
224 static inline struct hrtimer_clock_base *
225 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
227 struct hrtimer_clock_base *base = timer->base;
229 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
231 return base;
234 # define switch_hrtimer_base(t, b, p) (b)
236 #endif /* !CONFIG_SMP */
239 * Functions for the union type storage format of ktime_t which are
240 * too large for inlining:
242 #if BITS_PER_LONG < 64
243 # ifndef CONFIG_KTIME_SCALAR
245 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
246 * @kt: addend
247 * @nsec: the scalar nsec value to add
249 * Returns the sum of kt and nsec in ktime_t format
251 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
253 ktime_t tmp;
255 if (likely(nsec < NSEC_PER_SEC)) {
256 tmp.tv64 = nsec;
257 } else {
258 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
260 tmp = ktime_set((long)nsec, rem);
263 return ktime_add(kt, tmp);
266 EXPORT_SYMBOL_GPL(ktime_add_ns);
269 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
270 * @kt: minuend
271 * @nsec: the scalar nsec value to subtract
273 * Returns the subtraction of @nsec from @kt in ktime_t format
275 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
277 ktime_t tmp;
279 if (likely(nsec < NSEC_PER_SEC)) {
280 tmp.tv64 = nsec;
281 } else {
282 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
284 tmp = ktime_set((long)nsec, rem);
287 return ktime_sub(kt, tmp);
290 EXPORT_SYMBOL_GPL(ktime_sub_ns);
291 # endif /* !CONFIG_KTIME_SCALAR */
294 * Divide a ktime value by a nanosecond value
296 u64 ktime_divns(const ktime_t kt, s64 div)
298 u64 dclc;
299 int sft = 0;
301 dclc = ktime_to_ns(kt);
302 /* Make sure the divisor is less than 2^32: */
303 while (div >> 32) {
304 sft++;
305 div >>= 1;
307 dclc >>= sft;
308 do_div(dclc, (unsigned long) div);
310 return dclc;
312 #endif /* BITS_PER_LONG >= 64 */
315 * Add two ktime values and do a safety check for overflow:
317 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
319 ktime_t res = ktime_add(lhs, rhs);
322 * We use KTIME_SEC_MAX here, the maximum timeout which we can
323 * return to user space in a timespec:
325 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
326 res = ktime_set(KTIME_SEC_MAX, 0);
328 return res;
331 EXPORT_SYMBOL_GPL(ktime_add_safe);
333 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
335 static struct debug_obj_descr hrtimer_debug_descr;
338 * fixup_init is called when:
339 * - an active object is initialized
341 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
343 struct hrtimer *timer = addr;
345 switch (state) {
346 case ODEBUG_STATE_ACTIVE:
347 hrtimer_cancel(timer);
348 debug_object_init(timer, &hrtimer_debug_descr);
349 return 1;
350 default:
351 return 0;
356 * fixup_activate is called when:
357 * - an active object is activated
358 * - an unknown object is activated (might be a statically initialized object)
360 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
362 switch (state) {
364 case ODEBUG_STATE_NOTAVAILABLE:
365 WARN_ON_ONCE(1);
366 return 0;
368 case ODEBUG_STATE_ACTIVE:
369 WARN_ON(1);
371 default:
372 return 0;
377 * fixup_free is called when:
378 * - an active object is freed
380 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
382 struct hrtimer *timer = addr;
384 switch (state) {
385 case ODEBUG_STATE_ACTIVE:
386 hrtimer_cancel(timer);
387 debug_object_free(timer, &hrtimer_debug_descr);
388 return 1;
389 default:
390 return 0;
394 static struct debug_obj_descr hrtimer_debug_descr = {
395 .name = "hrtimer",
396 .fixup_init = hrtimer_fixup_init,
397 .fixup_activate = hrtimer_fixup_activate,
398 .fixup_free = hrtimer_fixup_free,
401 static inline void debug_hrtimer_init(struct hrtimer *timer)
403 debug_object_init(timer, &hrtimer_debug_descr);
406 static inline void debug_hrtimer_activate(struct hrtimer *timer)
408 debug_object_activate(timer, &hrtimer_debug_descr);
411 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
413 debug_object_deactivate(timer, &hrtimer_debug_descr);
416 static inline void debug_hrtimer_free(struct hrtimer *timer)
418 debug_object_free(timer, &hrtimer_debug_descr);
421 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
422 enum hrtimer_mode mode);
424 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
425 enum hrtimer_mode mode)
427 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
428 __hrtimer_init(timer, clock_id, mode);
430 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
432 void destroy_hrtimer_on_stack(struct hrtimer *timer)
434 debug_object_free(timer, &hrtimer_debug_descr);
437 #else
438 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
439 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
440 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
441 #endif
443 static inline void
444 debug_init(struct hrtimer *timer, clockid_t clockid,
445 enum hrtimer_mode mode)
447 debug_hrtimer_init(timer);
448 trace_hrtimer_init(timer, clockid, mode);
451 static inline void debug_activate(struct hrtimer *timer)
453 debug_hrtimer_activate(timer);
454 trace_hrtimer_start(timer);
457 static inline void debug_deactivate(struct hrtimer *timer)
459 debug_hrtimer_deactivate(timer);
460 trace_hrtimer_cancel(timer);
463 /* High resolution timer related functions */
464 #ifdef CONFIG_HIGH_RES_TIMERS
467 * High resolution timer enabled ?
469 static int hrtimer_hres_enabled __read_mostly = 1;
472 * Enable / Disable high resolution mode
474 static int __init setup_hrtimer_hres(char *str)
476 if (!strcmp(str, "off"))
477 hrtimer_hres_enabled = 0;
478 else if (!strcmp(str, "on"))
479 hrtimer_hres_enabled = 1;
480 else
481 return 0;
482 return 1;
485 __setup("highres=", setup_hrtimer_hres);
488 * hrtimer_high_res_enabled - query, if the highres mode is enabled
490 static inline int hrtimer_is_hres_enabled(void)
492 return hrtimer_hres_enabled;
496 * Is the high resolution mode active ?
498 static inline int hrtimer_hres_active(void)
500 return __this_cpu_read(hrtimer_bases.hres_active);
504 * Reprogram the event source with checking both queues for the
505 * next event
506 * Called with interrupts disabled and base->lock held
508 static void
509 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
511 int i;
512 struct hrtimer_clock_base *base = cpu_base->clock_base;
513 ktime_t expires, expires_next;
515 expires_next.tv64 = KTIME_MAX;
517 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
518 struct hrtimer *timer;
519 struct timerqueue_node *next;
521 next = timerqueue_getnext(&base->active);
522 if (!next)
523 continue;
524 timer = container_of(next, struct hrtimer, node);
526 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
528 * clock_was_set() has changed base->offset so the
529 * result might be negative. Fix it up to prevent a
530 * false positive in clockevents_program_event()
532 if (expires.tv64 < 0)
533 expires.tv64 = 0;
534 if (expires.tv64 < expires_next.tv64)
535 expires_next = expires;
538 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
539 return;
541 cpu_base->expires_next.tv64 = expires_next.tv64;
543 if (cpu_base->expires_next.tv64 != KTIME_MAX)
544 tick_program_event(cpu_base->expires_next, 1);
548 * Shared reprogramming for clock_realtime and clock_monotonic
550 * When a timer is enqueued and expires earlier than the already enqueued
551 * timers, we have to check, whether it expires earlier than the timer for
552 * which the clock event device was armed.
554 * Called with interrupts disabled and base->cpu_base.lock held
556 static int hrtimer_reprogram(struct hrtimer *timer,
557 struct hrtimer_clock_base *base)
559 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
560 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
561 int res;
563 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
566 * When the callback is running, we do not reprogram the clock event
567 * device. The timer callback is either running on a different CPU or
568 * the callback is executed in the hrtimer_interrupt context. The
569 * reprogramming is handled either by the softirq, which called the
570 * callback or at the end of the hrtimer_interrupt.
572 if (hrtimer_callback_running(timer))
573 return 0;
576 * CLOCK_REALTIME timer might be requested with an absolute
577 * expiry time which is less than base->offset. Nothing wrong
578 * about that, just avoid to call into the tick code, which
579 * has now objections against negative expiry values.
581 if (expires.tv64 < 0)
582 return -ETIME;
584 if (expires.tv64 >= cpu_base->expires_next.tv64)
585 return 0;
588 * If a hang was detected in the last timer interrupt then we
589 * do not schedule a timer which is earlier than the expiry
590 * which we enforced in the hang detection. We want the system
591 * to make progress.
593 if (cpu_base->hang_detected)
594 return 0;
597 * Clockevents returns -ETIME, when the event was in the past.
599 res = tick_program_event(expires, 0);
600 if (!IS_ERR_VALUE(res))
601 cpu_base->expires_next = expires;
602 return res;
607 * Retrigger next event is called after clock was set
609 * Called with interrupts disabled via on_each_cpu()
611 static void retrigger_next_event(void *arg)
613 struct hrtimer_cpu_base *base;
614 struct timespec realtime_offset, wtm;
615 unsigned long seq;
617 if (!hrtimer_hres_active())
618 return;
620 do {
621 seq = read_seqbegin(&xtime_lock);
622 wtm = __get_wall_to_monotonic();
623 } while (read_seqretry(&xtime_lock, seq));
624 set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
626 base = &__get_cpu_var(hrtimer_bases);
628 /* Adjust CLOCK_REALTIME offset */
629 raw_spin_lock(&base->lock);
630 base->clock_base[CLOCK_REALTIME].offset =
631 timespec_to_ktime(realtime_offset);
633 hrtimer_force_reprogram(base, 0);
634 raw_spin_unlock(&base->lock);
638 * Clock realtime was set
640 * Change the offset of the realtime clock vs. the monotonic
641 * clock.
643 * We might have to reprogram the high resolution timer interrupt. On
644 * SMP we call the architecture specific code to retrigger _all_ high
645 * resolution timer interrupts. On UP we just disable interrupts and
646 * call the high resolution interrupt code.
648 void clock_was_set(void)
650 /* Retrigger the CPU local events everywhere */
651 on_each_cpu(retrigger_next_event, NULL, 1);
655 * During resume we might have to reprogram the high resolution timer
656 * interrupt (on the local CPU):
658 void hres_timers_resume(void)
660 WARN_ONCE(!irqs_disabled(),
661 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
663 retrigger_next_event(NULL);
667 * Initialize the high resolution related parts of cpu_base
669 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
671 base->expires_next.tv64 = KTIME_MAX;
672 base->hres_active = 0;
676 * Initialize the high resolution related parts of a hrtimer
678 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
684 * When High resolution timers are active, try to reprogram. Note, that in case
685 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
686 * check happens. The timer gets enqueued into the rbtree. The reprogramming
687 * and expiry check is done in the hrtimer_interrupt or in the softirq.
689 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
690 struct hrtimer_clock_base *base,
691 int wakeup)
693 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
694 if (wakeup) {
695 raw_spin_unlock(&base->cpu_base->lock);
696 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
697 raw_spin_lock(&base->cpu_base->lock);
698 } else
699 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
701 return 1;
704 return 0;
708 * Switch to high resolution mode
710 static int hrtimer_switch_to_hres(void)
712 int cpu = smp_processor_id();
713 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
714 unsigned long flags;
716 if (base->hres_active)
717 return 1;
719 local_irq_save(flags);
721 if (tick_init_highres()) {
722 local_irq_restore(flags);
723 printk(KERN_WARNING "Could not switch to high resolution "
724 "mode on CPU %d\n", cpu);
725 return 0;
727 base->hres_active = 1;
728 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
729 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
731 tick_setup_sched_timer();
733 /* "Retrigger" the interrupt to get things going */
734 retrigger_next_event(NULL);
735 local_irq_restore(flags);
736 return 1;
739 #else
741 static inline int hrtimer_hres_active(void) { return 0; }
742 static inline int hrtimer_is_hres_enabled(void) { return 0; }
743 static inline int hrtimer_switch_to_hres(void) { return 0; }
744 static inline void
745 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
746 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
747 struct hrtimer_clock_base *base,
748 int wakeup)
750 return 0;
752 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
753 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
755 #endif /* CONFIG_HIGH_RES_TIMERS */
757 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
759 #ifdef CONFIG_TIMER_STATS
760 if (timer->start_site)
761 return;
762 timer->start_site = __builtin_return_address(0);
763 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
764 timer->start_pid = current->pid;
765 #endif
768 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
770 #ifdef CONFIG_TIMER_STATS
771 timer->start_site = NULL;
772 #endif
775 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
777 #ifdef CONFIG_TIMER_STATS
778 if (likely(!timer_stats_active))
779 return;
780 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
781 timer->function, timer->start_comm, 0);
782 #endif
786 * Counterpart to lock_hrtimer_base above:
788 static inline
789 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
791 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
795 * hrtimer_forward - forward the timer expiry
796 * @timer: hrtimer to forward
797 * @now: forward past this time
798 * @interval: the interval to forward
800 * Forward the timer expiry so it will expire in the future.
801 * Returns the number of overruns.
803 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
805 u64 orun = 1;
806 ktime_t delta;
808 delta = ktime_sub(now, hrtimer_get_expires(timer));
810 if (delta.tv64 < 0)
811 return 0;
813 if (interval.tv64 < timer->base->resolution.tv64)
814 interval.tv64 = timer->base->resolution.tv64;
816 if (unlikely(delta.tv64 >= interval.tv64)) {
817 s64 incr = ktime_to_ns(interval);
819 orun = ktime_divns(delta, incr);
820 hrtimer_add_expires_ns(timer, incr * orun);
821 if (hrtimer_get_expires_tv64(timer) > now.tv64)
822 return orun;
824 * This (and the ktime_add() below) is the
825 * correction for exact:
827 orun++;
829 hrtimer_add_expires(timer, interval);
831 return orun;
833 EXPORT_SYMBOL_GPL(hrtimer_forward);
836 * enqueue_hrtimer - internal function to (re)start a timer
838 * The timer is inserted in expiry order. Insertion into the
839 * red black tree is O(log(n)). Must hold the base lock.
841 * Returns 1 when the new timer is the leftmost timer in the tree.
843 static int enqueue_hrtimer(struct hrtimer *timer,
844 struct hrtimer_clock_base *base)
846 debug_activate(timer);
848 timerqueue_add(&base->active, &timer->node);
851 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
852 * state of a possibly running callback.
854 timer->state |= HRTIMER_STATE_ENQUEUED;
856 return (&timer->node == base->active.next);
860 * __remove_hrtimer - internal function to remove a timer
862 * Caller must hold the base lock.
864 * High resolution timer mode reprograms the clock event device when the
865 * timer is the one which expires next. The caller can disable this by setting
866 * reprogram to zero. This is useful, when the context does a reprogramming
867 * anyway (e.g. timer interrupt)
869 static void __remove_hrtimer(struct hrtimer *timer,
870 struct hrtimer_clock_base *base,
871 unsigned long newstate, int reprogram)
873 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
874 goto out;
876 if (&timer->node == timerqueue_getnext(&base->active)) {
877 #ifdef CONFIG_HIGH_RES_TIMERS
878 /* Reprogram the clock event device. if enabled */
879 if (reprogram && hrtimer_hres_active()) {
880 ktime_t expires;
882 expires = ktime_sub(hrtimer_get_expires(timer),
883 base->offset);
884 if (base->cpu_base->expires_next.tv64 == expires.tv64)
885 hrtimer_force_reprogram(base->cpu_base, 1);
887 #endif
889 timerqueue_del(&base->active, &timer->node);
890 out:
891 timer->state = newstate;
895 * remove hrtimer, called with base lock held
897 static inline int
898 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
900 if (hrtimer_is_queued(timer)) {
901 unsigned long state;
902 int reprogram;
905 * Remove the timer and force reprogramming when high
906 * resolution mode is active and the timer is on the current
907 * CPU. If we remove a timer on another CPU, reprogramming is
908 * skipped. The interrupt event on this CPU is fired and
909 * reprogramming happens in the interrupt handler. This is a
910 * rare case and less expensive than a smp call.
912 debug_deactivate(timer);
913 timer_stats_hrtimer_clear_start_info(timer);
914 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
916 * We must preserve the CALLBACK state flag here,
917 * otherwise we could move the timer base in
918 * switch_hrtimer_base.
920 state = timer->state & HRTIMER_STATE_CALLBACK;
921 __remove_hrtimer(timer, base, state, reprogram);
922 return 1;
924 return 0;
927 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
928 unsigned long delta_ns, const enum hrtimer_mode mode,
929 int wakeup)
931 struct hrtimer_clock_base *base, *new_base;
932 unsigned long flags;
933 int ret, leftmost;
935 base = lock_hrtimer_base(timer, &flags);
937 /* Remove an active timer from the queue: */
938 ret = remove_hrtimer(timer, base);
940 /* Switch the timer base, if necessary: */
941 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
943 if (mode & HRTIMER_MODE_REL) {
944 tim = ktime_add_safe(tim, new_base->get_time());
946 * CONFIG_TIME_LOW_RES is a temporary way for architectures
947 * to signal that they simply return xtime in
948 * do_gettimeoffset(). In this case we want to round up by
949 * resolution when starting a relative timer, to avoid short
950 * timeouts. This will go away with the GTOD framework.
952 #ifdef CONFIG_TIME_LOW_RES
953 tim = ktime_add_safe(tim, base->resolution);
954 #endif
957 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
959 timer_stats_hrtimer_set_start_info(timer);
961 leftmost = enqueue_hrtimer(timer, new_base);
964 * Only allow reprogramming if the new base is on this CPU.
965 * (it might still be on another CPU if the timer was pending)
967 * XXX send_remote_softirq() ?
969 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
970 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
972 unlock_hrtimer_base(timer, &flags);
974 return ret;
978 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
979 * @timer: the timer to be added
980 * @tim: expiry time
981 * @delta_ns: "slack" range for the timer
982 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
984 * Returns:
985 * 0 on success
986 * 1 when the timer was active
988 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
989 unsigned long delta_ns, const enum hrtimer_mode mode)
991 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
993 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
996 * hrtimer_start - (re)start an hrtimer on the current CPU
997 * @timer: the timer to be added
998 * @tim: expiry time
999 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1001 * Returns:
1002 * 0 on success
1003 * 1 when the timer was active
1006 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1008 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1010 EXPORT_SYMBOL_GPL(hrtimer_start);
1014 * hrtimer_try_to_cancel - try to deactivate a timer
1015 * @timer: hrtimer to stop
1017 * Returns:
1018 * 0 when the timer was not active
1019 * 1 when the timer was active
1020 * -1 when the timer is currently excuting the callback function and
1021 * cannot be stopped
1023 int hrtimer_try_to_cancel(struct hrtimer *timer)
1025 struct hrtimer_clock_base *base;
1026 unsigned long flags;
1027 int ret = -1;
1029 base = lock_hrtimer_base(timer, &flags);
1031 if (!hrtimer_callback_running(timer))
1032 ret = remove_hrtimer(timer, base);
1034 unlock_hrtimer_base(timer, &flags);
1036 return ret;
1039 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1042 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1043 * @timer: the timer to be cancelled
1045 * Returns:
1046 * 0 when the timer was not active
1047 * 1 when the timer was active
1049 int hrtimer_cancel(struct hrtimer *timer)
1051 for (;;) {
1052 int ret = hrtimer_try_to_cancel(timer);
1054 if (ret >= 0)
1055 return ret;
1056 cpu_relax();
1059 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1062 * hrtimer_get_remaining - get remaining time for the timer
1063 * @timer: the timer to read
1065 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1067 unsigned long flags;
1068 ktime_t rem;
1070 lock_hrtimer_base(timer, &flags);
1071 rem = hrtimer_expires_remaining(timer);
1072 unlock_hrtimer_base(timer, &flags);
1074 return rem;
1076 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1078 #ifdef CONFIG_NO_HZ
1080 * hrtimer_get_next_event - get the time until next expiry event
1082 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1083 * is pending.
1085 ktime_t hrtimer_get_next_event(void)
1087 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1088 struct hrtimer_clock_base *base = cpu_base->clock_base;
1089 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1090 unsigned long flags;
1091 int i;
1093 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1095 if (!hrtimer_hres_active()) {
1096 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1097 struct hrtimer *timer;
1098 struct timerqueue_node *next;
1100 next = timerqueue_getnext(&base->active);
1101 if (!next)
1102 continue;
1104 timer = container_of(next, struct hrtimer, node);
1105 delta.tv64 = hrtimer_get_expires_tv64(timer);
1106 delta = ktime_sub(delta, base->get_time());
1107 if (delta.tv64 < mindelta.tv64)
1108 mindelta.tv64 = delta.tv64;
1112 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1114 if (mindelta.tv64 < 0)
1115 mindelta.tv64 = 0;
1116 return mindelta;
1118 #endif
1120 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1121 enum hrtimer_mode mode)
1123 struct hrtimer_cpu_base *cpu_base;
1125 memset(timer, 0, sizeof(struct hrtimer));
1127 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1129 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1130 clock_id = CLOCK_MONOTONIC;
1132 timer->base = &cpu_base->clock_base[clock_id];
1133 hrtimer_init_timer_hres(timer);
1134 timerqueue_init(&timer->node);
1136 #ifdef CONFIG_TIMER_STATS
1137 timer->start_site = NULL;
1138 timer->start_pid = -1;
1139 memset(timer->start_comm, 0, TASK_COMM_LEN);
1140 #endif
1144 * hrtimer_init - initialize a timer to the given clock
1145 * @timer: the timer to be initialized
1146 * @clock_id: the clock to be used
1147 * @mode: timer mode abs/rel
1149 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1150 enum hrtimer_mode mode)
1152 debug_init(timer, clock_id, mode);
1153 __hrtimer_init(timer, clock_id, mode);
1155 EXPORT_SYMBOL_GPL(hrtimer_init);
1158 * hrtimer_get_res - get the timer resolution for a clock
1159 * @which_clock: which clock to query
1160 * @tp: pointer to timespec variable to store the resolution
1162 * Store the resolution of the clock selected by @which_clock in the
1163 * variable pointed to by @tp.
1165 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1167 struct hrtimer_cpu_base *cpu_base;
1169 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1170 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1172 return 0;
1174 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1176 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1178 struct hrtimer_clock_base *base = timer->base;
1179 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1180 enum hrtimer_restart (*fn)(struct hrtimer *);
1181 int restart;
1183 WARN_ON(!irqs_disabled());
1185 debug_deactivate(timer);
1186 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1187 timer_stats_account_hrtimer(timer);
1188 fn = timer->function;
1191 * Because we run timers from hardirq context, there is no chance
1192 * they get migrated to another cpu, therefore its safe to unlock
1193 * the timer base.
1195 raw_spin_unlock(&cpu_base->lock);
1196 trace_hrtimer_expire_entry(timer, now);
1197 restart = fn(timer);
1198 trace_hrtimer_expire_exit(timer);
1199 raw_spin_lock(&cpu_base->lock);
1202 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1203 * we do not reprogramm the event hardware. Happens either in
1204 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1206 if (restart != HRTIMER_NORESTART) {
1207 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1208 enqueue_hrtimer(timer, base);
1211 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1213 timer->state &= ~HRTIMER_STATE_CALLBACK;
1216 #ifdef CONFIG_HIGH_RES_TIMERS
1219 * High resolution timer interrupt
1220 * Called with interrupts disabled
1222 void hrtimer_interrupt(struct clock_event_device *dev)
1224 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1225 struct hrtimer_clock_base *base;
1226 ktime_t expires_next, now, entry_time, delta;
1227 int i, retries = 0;
1229 BUG_ON(!cpu_base->hres_active);
1230 cpu_base->nr_events++;
1231 dev->next_event.tv64 = KTIME_MAX;
1233 entry_time = now = ktime_get();
1234 retry:
1235 expires_next.tv64 = KTIME_MAX;
1237 raw_spin_lock(&cpu_base->lock);
1239 * We set expires_next to KTIME_MAX here with cpu_base->lock
1240 * held to prevent that a timer is enqueued in our queue via
1241 * the migration code. This does not affect enqueueing of
1242 * timers which run their callback and need to be requeued on
1243 * this CPU.
1245 cpu_base->expires_next.tv64 = KTIME_MAX;
1247 base = cpu_base->clock_base;
1249 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1250 ktime_t basenow;
1251 struct timerqueue_node *node;
1253 basenow = ktime_add(now, base->offset);
1255 while ((node = timerqueue_getnext(&base->active))) {
1256 struct hrtimer *timer;
1258 timer = container_of(node, struct hrtimer, node);
1261 * The immediate goal for using the softexpires is
1262 * minimizing wakeups, not running timers at the
1263 * earliest interrupt after their soft expiration.
1264 * This allows us to avoid using a Priority Search
1265 * Tree, which can answer a stabbing querry for
1266 * overlapping intervals and instead use the simple
1267 * BST we already have.
1268 * We don't add extra wakeups by delaying timers that
1269 * are right-of a not yet expired timer, because that
1270 * timer will have to trigger a wakeup anyway.
1273 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1274 ktime_t expires;
1276 expires = ktime_sub(hrtimer_get_expires(timer),
1277 base->offset);
1278 if (expires.tv64 < expires_next.tv64)
1279 expires_next = expires;
1280 break;
1283 __run_hrtimer(timer, &basenow);
1285 base++;
1289 * Store the new expiry value so the migration code can verify
1290 * against it.
1292 cpu_base->expires_next = expires_next;
1293 raw_spin_unlock(&cpu_base->lock);
1295 /* Reprogramming necessary ? */
1296 if (expires_next.tv64 == KTIME_MAX ||
1297 !tick_program_event(expires_next, 0)) {
1298 cpu_base->hang_detected = 0;
1299 return;
1303 * The next timer was already expired due to:
1304 * - tracing
1305 * - long lasting callbacks
1306 * - being scheduled away when running in a VM
1308 * We need to prevent that we loop forever in the hrtimer
1309 * interrupt routine. We give it 3 attempts to avoid
1310 * overreacting on some spurious event.
1312 now = ktime_get();
1313 cpu_base->nr_retries++;
1314 if (++retries < 3)
1315 goto retry;
1317 * Give the system a chance to do something else than looping
1318 * here. We stored the entry time, so we know exactly how long
1319 * we spent here. We schedule the next event this amount of
1320 * time away.
1322 cpu_base->nr_hangs++;
1323 cpu_base->hang_detected = 1;
1324 delta = ktime_sub(now, entry_time);
1325 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1326 cpu_base->max_hang_time = delta;
1328 * Limit it to a sensible value as we enforce a longer
1329 * delay. Give the CPU at least 100ms to catch up.
1331 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1332 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1333 else
1334 expires_next = ktime_add(now, delta);
1335 tick_program_event(expires_next, 1);
1336 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1337 ktime_to_ns(delta));
1341 * local version of hrtimer_peek_ahead_timers() called with interrupts
1342 * disabled.
1344 static void __hrtimer_peek_ahead_timers(void)
1346 struct tick_device *td;
1348 if (!hrtimer_hres_active())
1349 return;
1351 td = &__get_cpu_var(tick_cpu_device);
1352 if (td && td->evtdev)
1353 hrtimer_interrupt(td->evtdev);
1357 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1359 * hrtimer_peek_ahead_timers will peek at the timer queue of
1360 * the current cpu and check if there are any timers for which
1361 * the soft expires time has passed. If any such timers exist,
1362 * they are run immediately and then removed from the timer queue.
1365 void hrtimer_peek_ahead_timers(void)
1367 unsigned long flags;
1369 local_irq_save(flags);
1370 __hrtimer_peek_ahead_timers();
1371 local_irq_restore(flags);
1374 static void run_hrtimer_softirq(struct softirq_action *h)
1376 hrtimer_peek_ahead_timers();
1379 #else /* CONFIG_HIGH_RES_TIMERS */
1381 static inline void __hrtimer_peek_ahead_timers(void) { }
1383 #endif /* !CONFIG_HIGH_RES_TIMERS */
1386 * Called from timer softirq every jiffy, expire hrtimers:
1388 * For HRT its the fall back code to run the softirq in the timer
1389 * softirq context in case the hrtimer initialization failed or has
1390 * not been done yet.
1392 void hrtimer_run_pending(void)
1394 if (hrtimer_hres_active())
1395 return;
1398 * This _is_ ugly: We have to check in the softirq context,
1399 * whether we can switch to highres and / or nohz mode. The
1400 * clocksource switch happens in the timer interrupt with
1401 * xtime_lock held. Notification from there only sets the
1402 * check bit in the tick_oneshot code, otherwise we might
1403 * deadlock vs. xtime_lock.
1405 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1406 hrtimer_switch_to_hres();
1410 * Called from hardirq context every jiffy
1412 void hrtimer_run_queues(void)
1414 struct timerqueue_node *node;
1415 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1416 struct hrtimer_clock_base *base;
1417 int index, gettime = 1;
1419 if (hrtimer_hres_active())
1420 return;
1422 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1423 base = &cpu_base->clock_base[index];
1424 if (!timerqueue_getnext(&base->active))
1425 continue;
1427 if (gettime) {
1428 hrtimer_get_softirq_time(cpu_base);
1429 gettime = 0;
1432 raw_spin_lock(&cpu_base->lock);
1434 while ((node = timerqueue_getnext(&base->active))) {
1435 struct hrtimer *timer;
1437 timer = container_of(node, struct hrtimer, node);
1438 if (base->softirq_time.tv64 <=
1439 hrtimer_get_expires_tv64(timer))
1440 break;
1442 __run_hrtimer(timer, &base->softirq_time);
1444 raw_spin_unlock(&cpu_base->lock);
1449 * Sleep related functions:
1451 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1453 struct hrtimer_sleeper *t =
1454 container_of(timer, struct hrtimer_sleeper, timer);
1455 struct task_struct *task = t->task;
1457 t->task = NULL;
1458 if (task)
1459 wake_up_process(task);
1461 return HRTIMER_NORESTART;
1464 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1466 sl->timer.function = hrtimer_wakeup;
1467 sl->task = task;
1469 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1471 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1473 hrtimer_init_sleeper(t, current);
1475 do {
1476 set_current_state(TASK_INTERRUPTIBLE);
1477 hrtimer_start_expires(&t->timer, mode);
1478 if (!hrtimer_active(&t->timer))
1479 t->task = NULL;
1481 if (likely(t->task))
1482 schedule();
1484 hrtimer_cancel(&t->timer);
1485 mode = HRTIMER_MODE_ABS;
1487 } while (t->task && !signal_pending(current));
1489 __set_current_state(TASK_RUNNING);
1491 return t->task == NULL;
1494 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1496 struct timespec rmt;
1497 ktime_t rem;
1499 rem = hrtimer_expires_remaining(timer);
1500 if (rem.tv64 <= 0)
1501 return 0;
1502 rmt = ktime_to_timespec(rem);
1504 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1505 return -EFAULT;
1507 return 1;
1510 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1512 struct hrtimer_sleeper t;
1513 struct timespec __user *rmtp;
1514 int ret = 0;
1516 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1517 HRTIMER_MODE_ABS);
1518 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1520 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1521 goto out;
1523 rmtp = restart->nanosleep.rmtp;
1524 if (rmtp) {
1525 ret = update_rmtp(&t.timer, rmtp);
1526 if (ret <= 0)
1527 goto out;
1530 /* The other values in restart are already filled in */
1531 ret = -ERESTART_RESTARTBLOCK;
1532 out:
1533 destroy_hrtimer_on_stack(&t.timer);
1534 return ret;
1537 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1538 const enum hrtimer_mode mode, const clockid_t clockid)
1540 struct restart_block *restart;
1541 struct hrtimer_sleeper t;
1542 int ret = 0;
1543 unsigned long slack;
1545 slack = current->timer_slack_ns;
1546 if (rt_task(current))
1547 slack = 0;
1549 hrtimer_init_on_stack(&t.timer, clockid, mode);
1550 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1551 if (do_nanosleep(&t, mode))
1552 goto out;
1554 /* Absolute timers do not update the rmtp value and restart: */
1555 if (mode == HRTIMER_MODE_ABS) {
1556 ret = -ERESTARTNOHAND;
1557 goto out;
1560 if (rmtp) {
1561 ret = update_rmtp(&t.timer, rmtp);
1562 if (ret <= 0)
1563 goto out;
1566 restart = &current_thread_info()->restart_block;
1567 restart->fn = hrtimer_nanosleep_restart;
1568 restart->nanosleep.index = t.timer.base->index;
1569 restart->nanosleep.rmtp = rmtp;
1570 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1572 ret = -ERESTART_RESTARTBLOCK;
1573 out:
1574 destroy_hrtimer_on_stack(&t.timer);
1575 return ret;
1578 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1579 struct timespec __user *, rmtp)
1581 struct timespec tu;
1583 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1584 return -EFAULT;
1586 if (!timespec_valid(&tu))
1587 return -EINVAL;
1589 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1593 * Functions related to boot-time initialization:
1595 static void __cpuinit init_hrtimers_cpu(int cpu)
1597 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1598 int i;
1600 raw_spin_lock_init(&cpu_base->lock);
1602 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1603 cpu_base->clock_base[i].cpu_base = cpu_base;
1604 timerqueue_init_head(&cpu_base->clock_base[i].active);
1607 hrtimer_init_hres(cpu_base);
1610 #ifdef CONFIG_HOTPLUG_CPU
1612 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1613 struct hrtimer_clock_base *new_base)
1615 struct hrtimer *timer;
1616 struct timerqueue_node *node;
1618 while ((node = timerqueue_getnext(&old_base->active))) {
1619 timer = container_of(node, struct hrtimer, node);
1620 BUG_ON(hrtimer_callback_running(timer));
1621 debug_deactivate(timer);
1624 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1625 * timer could be seen as !active and just vanish away
1626 * under us on another CPU
1628 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1629 timer->base = new_base;
1631 * Enqueue the timers on the new cpu. This does not
1632 * reprogram the event device in case the timer
1633 * expires before the earliest on this CPU, but we run
1634 * hrtimer_interrupt after we migrated everything to
1635 * sort out already expired timers and reprogram the
1636 * event device.
1638 enqueue_hrtimer(timer, new_base);
1640 /* Clear the migration state bit */
1641 timer->state &= ~HRTIMER_STATE_MIGRATE;
1645 static void migrate_hrtimers(int scpu)
1647 struct hrtimer_cpu_base *old_base, *new_base;
1648 int i;
1650 BUG_ON(cpu_online(scpu));
1651 tick_cancel_sched_timer(scpu);
1653 local_irq_disable();
1654 old_base = &per_cpu(hrtimer_bases, scpu);
1655 new_base = &__get_cpu_var(hrtimer_bases);
1657 * The caller is globally serialized and nobody else
1658 * takes two locks at once, deadlock is not possible.
1660 raw_spin_lock(&new_base->lock);
1661 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1663 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1664 migrate_hrtimer_list(&old_base->clock_base[i],
1665 &new_base->clock_base[i]);
1668 raw_spin_unlock(&old_base->lock);
1669 raw_spin_unlock(&new_base->lock);
1671 /* Check, if we got expired work to do */
1672 __hrtimer_peek_ahead_timers();
1673 local_irq_enable();
1676 #endif /* CONFIG_HOTPLUG_CPU */
1678 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1679 unsigned long action, void *hcpu)
1681 int scpu = (long)hcpu;
1683 switch (action) {
1685 case CPU_UP_PREPARE:
1686 case CPU_UP_PREPARE_FROZEN:
1687 init_hrtimers_cpu(scpu);
1688 break;
1690 #ifdef CONFIG_HOTPLUG_CPU
1691 case CPU_DYING:
1692 case CPU_DYING_FROZEN:
1693 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1694 break;
1695 case CPU_DEAD:
1696 case CPU_DEAD_FROZEN:
1698 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1699 migrate_hrtimers(scpu);
1700 break;
1702 #endif
1704 default:
1705 break;
1708 return NOTIFY_OK;
1711 static struct notifier_block __cpuinitdata hrtimers_nb = {
1712 .notifier_call = hrtimer_cpu_notify,
1715 void __init hrtimers_init(void)
1717 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1718 (void *)(long)smp_processor_id());
1719 register_cpu_notifier(&hrtimers_nb);
1720 #ifdef CONFIG_HIGH_RES_TIMERS
1721 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1722 #endif
1726 * schedule_hrtimeout_range_clock - sleep until timeout
1727 * @expires: timeout value (ktime_t)
1728 * @delta: slack in expires timeout (ktime_t)
1729 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1730 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1732 int __sched
1733 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1734 const enum hrtimer_mode mode, int clock)
1736 struct hrtimer_sleeper t;
1739 * Optimize when a zero timeout value is given. It does not
1740 * matter whether this is an absolute or a relative time.
1742 if (expires && !expires->tv64) {
1743 __set_current_state(TASK_RUNNING);
1744 return 0;
1748 * A NULL parameter means "infinite"
1750 if (!expires) {
1751 schedule();
1752 __set_current_state(TASK_RUNNING);
1753 return -EINTR;
1756 hrtimer_init_on_stack(&t.timer, clock, mode);
1757 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1759 hrtimer_init_sleeper(&t, current);
1761 hrtimer_start_expires(&t.timer, mode);
1762 if (!hrtimer_active(&t.timer))
1763 t.task = NULL;
1765 if (likely(t.task))
1766 schedule();
1768 hrtimer_cancel(&t.timer);
1769 destroy_hrtimer_on_stack(&t.timer);
1771 __set_current_state(TASK_RUNNING);
1773 return !t.task ? 0 : -EINTR;
1777 * schedule_hrtimeout_range - sleep until timeout
1778 * @expires: timeout value (ktime_t)
1779 * @delta: slack in expires timeout (ktime_t)
1780 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1782 * Make the current task sleep until the given expiry time has
1783 * elapsed. The routine will return immediately unless
1784 * the current task state has been set (see set_current_state()).
1786 * The @delta argument gives the kernel the freedom to schedule the
1787 * actual wakeup to a time that is both power and performance friendly.
1788 * The kernel give the normal best effort behavior for "@expires+@delta",
1789 * but may decide to fire the timer earlier, but no earlier than @expires.
1791 * You can set the task state as follows -
1793 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1794 * pass before the routine returns.
1796 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1797 * delivered to the current task.
1799 * The current task state is guaranteed to be TASK_RUNNING when this
1800 * routine returns.
1802 * Returns 0 when the timer has expired otherwise -EINTR
1804 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1805 const enum hrtimer_mode mode)
1807 return schedule_hrtimeout_range_clock(expires, delta, mode,
1808 CLOCK_MONOTONIC);
1810 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1813 * schedule_hrtimeout - sleep until timeout
1814 * @expires: timeout value (ktime_t)
1815 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1817 * Make the current task sleep until the given expiry time has
1818 * elapsed. The routine will return immediately unless
1819 * the current task state has been set (see set_current_state()).
1821 * You can set the task state as follows -
1823 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1824 * pass before the routine returns.
1826 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1827 * delivered to the current task.
1829 * The current task state is guaranteed to be TASK_RUNNING when this
1830 * routine returns.
1832 * Returns 0 when the timer has expired otherwise -EINTR
1834 int __sched schedule_hrtimeout(ktime_t *expires,
1835 const enum hrtimer_mode mode)
1837 return schedule_hrtimeout_range(expires, 0, mode);
1839 EXPORT_SYMBOL_GPL(schedule_hrtimeout);