e1000e: add support for hardware timestamping on some devices
[linux-2.6/cjktty.git] / kernel / cgroup.c
blob4855892798fdfd6aeee695a4fc1d2a70b96662eb
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 #include <linux/kthread.h>
65 #include <linux/atomic.h>
67 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
68 #define CSS_DEACT_BIAS INT_MIN
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
86 static DEFINE_MUTEX(cgroup_mutex);
87 static DEFINE_MUTEX(cgroup_root_mutex);
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated with the built in subsystems, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
95 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
96 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
97 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
98 #include <linux/cgroup_subsys.h>
101 #define MAX_CGROUP_ROOT_NAMELEN 64
104 * A cgroupfs_root represents the root of a cgroup hierarchy,
105 * and may be associated with a superblock to form an active
106 * hierarchy
108 struct cgroupfs_root {
109 struct super_block *sb;
112 * The bitmask of subsystems intended to be attached to this
113 * hierarchy
115 unsigned long subsys_mask;
117 /* Unique id for this hierarchy. */
118 int hierarchy_id;
120 /* The bitmask of subsystems currently attached to this hierarchy */
121 unsigned long actual_subsys_mask;
123 /* A list running through the attached subsystems */
124 struct list_head subsys_list;
126 /* The root cgroup for this hierarchy */
127 struct cgroup top_cgroup;
129 /* Tracks how many cgroups are currently defined in hierarchy.*/
130 int number_of_cgroups;
132 /* A list running through the active hierarchies */
133 struct list_head root_list;
135 /* All cgroups on this root, cgroup_mutex protected */
136 struct list_head allcg_list;
138 /* Hierarchy-specific flags */
139 unsigned long flags;
141 /* IDs for cgroups in this hierarchy */
142 struct ida cgroup_ida;
144 /* The path to use for release notifications. */
145 char release_agent_path[PATH_MAX];
147 /* The name for this hierarchy - may be empty */
148 char name[MAX_CGROUP_ROOT_NAMELEN];
152 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
153 * subsystems that are otherwise unattached - it never has more than a
154 * single cgroup, and all tasks are part of that cgroup.
156 static struct cgroupfs_root rootnode;
159 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
161 struct cfent {
162 struct list_head node;
163 struct dentry *dentry;
164 struct cftype *type;
168 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
169 * cgroup_subsys->use_id != 0.
171 #define CSS_ID_MAX (65535)
172 struct css_id {
174 * The css to which this ID points. This pointer is set to valid value
175 * after cgroup is populated. If cgroup is removed, this will be NULL.
176 * This pointer is expected to be RCU-safe because destroy()
177 * is called after synchronize_rcu(). But for safe use, css_tryget()
178 * should be used for avoiding race.
180 struct cgroup_subsys_state __rcu *css;
182 * ID of this css.
184 unsigned short id;
186 * Depth in hierarchy which this ID belongs to.
188 unsigned short depth;
190 * ID is freed by RCU. (and lookup routine is RCU safe.)
192 struct rcu_head rcu_head;
194 * Hierarchy of CSS ID belongs to.
196 unsigned short stack[0]; /* Array of Length (depth+1) */
200 * cgroup_event represents events which userspace want to receive.
202 struct cgroup_event {
204 * Cgroup which the event belongs to.
206 struct cgroup *cgrp;
208 * Control file which the event associated.
210 struct cftype *cft;
212 * eventfd to signal userspace about the event.
214 struct eventfd_ctx *eventfd;
216 * Each of these stored in a list by the cgroup.
218 struct list_head list;
220 * All fields below needed to unregister event when
221 * userspace closes eventfd.
223 poll_table pt;
224 wait_queue_head_t *wqh;
225 wait_queue_t wait;
226 struct work_struct remove;
229 /* The list of hierarchy roots */
231 static LIST_HEAD(roots);
232 static int root_count;
234 static DEFINE_IDA(hierarchy_ida);
235 static int next_hierarchy_id;
236 static DEFINE_SPINLOCK(hierarchy_id_lock);
238 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
239 #define dummytop (&rootnode.top_cgroup)
241 /* This flag indicates whether tasks in the fork and exit paths should
242 * check for fork/exit handlers to call. This avoids us having to do
243 * extra work in the fork/exit path if none of the subsystems need to
244 * be called.
246 static int need_forkexit_callback __read_mostly;
248 static int cgroup_destroy_locked(struct cgroup *cgrp);
249 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
250 struct cftype cfts[], bool is_add);
252 #ifdef CONFIG_PROVE_LOCKING
253 int cgroup_lock_is_held(void)
255 return lockdep_is_held(&cgroup_mutex);
257 #else /* #ifdef CONFIG_PROVE_LOCKING */
258 int cgroup_lock_is_held(void)
260 return mutex_is_locked(&cgroup_mutex);
262 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
264 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
266 static int css_unbias_refcnt(int refcnt)
268 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
271 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
272 static int css_refcnt(struct cgroup_subsys_state *css)
274 int v = atomic_read(&css->refcnt);
276 return css_unbias_refcnt(v);
279 /* convenient tests for these bits */
280 inline int cgroup_is_removed(const struct cgroup *cgrp)
282 return test_bit(CGRP_REMOVED, &cgrp->flags);
285 /* bits in struct cgroupfs_root flags field */
286 enum {
287 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
288 ROOT_XATTR, /* supports extended attributes */
291 static int cgroup_is_releasable(const struct cgroup *cgrp)
293 const int bits =
294 (1 << CGRP_RELEASABLE) |
295 (1 << CGRP_NOTIFY_ON_RELEASE);
296 return (cgrp->flags & bits) == bits;
299 static int notify_on_release(const struct cgroup *cgrp)
301 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
305 * for_each_subsys() allows you to iterate on each subsystem attached to
306 * an active hierarchy
308 #define for_each_subsys(_root, _ss) \
309 list_for_each_entry(_ss, &_root->subsys_list, sibling)
311 /* for_each_active_root() allows you to iterate across the active hierarchies */
312 #define for_each_active_root(_root) \
313 list_for_each_entry(_root, &roots, root_list)
315 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
317 return dentry->d_fsdata;
320 static inline struct cfent *__d_cfe(struct dentry *dentry)
322 return dentry->d_fsdata;
325 static inline struct cftype *__d_cft(struct dentry *dentry)
327 return __d_cfe(dentry)->type;
330 /* the list of cgroups eligible for automatic release. Protected by
331 * release_list_lock */
332 static LIST_HEAD(release_list);
333 static DEFINE_RAW_SPINLOCK(release_list_lock);
334 static void cgroup_release_agent(struct work_struct *work);
335 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
336 static void check_for_release(struct cgroup *cgrp);
338 /* Link structure for associating css_set objects with cgroups */
339 struct cg_cgroup_link {
341 * List running through cg_cgroup_links associated with a
342 * cgroup, anchored on cgroup->css_sets
344 struct list_head cgrp_link_list;
345 struct cgroup *cgrp;
347 * List running through cg_cgroup_links pointing at a
348 * single css_set object, anchored on css_set->cg_links
350 struct list_head cg_link_list;
351 struct css_set *cg;
354 /* The default css_set - used by init and its children prior to any
355 * hierarchies being mounted. It contains a pointer to the root state
356 * for each subsystem. Also used to anchor the list of css_sets. Not
357 * reference-counted, to improve performance when child cgroups
358 * haven't been created.
361 static struct css_set init_css_set;
362 static struct cg_cgroup_link init_css_set_link;
364 static int cgroup_init_idr(struct cgroup_subsys *ss,
365 struct cgroup_subsys_state *css);
367 /* css_set_lock protects the list of css_set objects, and the
368 * chain of tasks off each css_set. Nests outside task->alloc_lock
369 * due to cgroup_iter_start() */
370 static DEFINE_RWLOCK(css_set_lock);
371 static int css_set_count;
374 * hash table for cgroup groups. This improves the performance to find
375 * an existing css_set. This hash doesn't (currently) take into
376 * account cgroups in empty hierarchies.
378 #define CSS_SET_HASH_BITS 7
379 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
380 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
382 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
384 int i;
385 int index;
386 unsigned long tmp = 0UL;
388 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
389 tmp += (unsigned long)css[i];
390 tmp = (tmp >> 16) ^ tmp;
392 index = hash_long(tmp, CSS_SET_HASH_BITS);
394 return &css_set_table[index];
397 /* We don't maintain the lists running through each css_set to its
398 * task until after the first call to cgroup_iter_start(). This
399 * reduces the fork()/exit() overhead for people who have cgroups
400 * compiled into their kernel but not actually in use */
401 static int use_task_css_set_links __read_mostly;
403 static void __put_css_set(struct css_set *cg, int taskexit)
405 struct cg_cgroup_link *link;
406 struct cg_cgroup_link *saved_link;
408 * Ensure that the refcount doesn't hit zero while any readers
409 * can see it. Similar to atomic_dec_and_lock(), but for an
410 * rwlock
412 if (atomic_add_unless(&cg->refcount, -1, 1))
413 return;
414 write_lock(&css_set_lock);
415 if (!atomic_dec_and_test(&cg->refcount)) {
416 write_unlock(&css_set_lock);
417 return;
420 /* This css_set is dead. unlink it and release cgroup refcounts */
421 hlist_del(&cg->hlist);
422 css_set_count--;
424 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
425 cg_link_list) {
426 struct cgroup *cgrp = link->cgrp;
427 list_del(&link->cg_link_list);
428 list_del(&link->cgrp_link_list);
429 if (atomic_dec_and_test(&cgrp->count) &&
430 notify_on_release(cgrp)) {
431 if (taskexit)
432 set_bit(CGRP_RELEASABLE, &cgrp->flags);
433 check_for_release(cgrp);
436 kfree(link);
439 write_unlock(&css_set_lock);
440 kfree_rcu(cg, rcu_head);
444 * refcounted get/put for css_set objects
446 static inline void get_css_set(struct css_set *cg)
448 atomic_inc(&cg->refcount);
451 static inline void put_css_set(struct css_set *cg)
453 __put_css_set(cg, 0);
456 static inline void put_css_set_taskexit(struct css_set *cg)
458 __put_css_set(cg, 1);
462 * compare_css_sets - helper function for find_existing_css_set().
463 * @cg: candidate css_set being tested
464 * @old_cg: existing css_set for a task
465 * @new_cgrp: cgroup that's being entered by the task
466 * @template: desired set of css pointers in css_set (pre-calculated)
468 * Returns true if "cg" matches "old_cg" except for the hierarchy
469 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
471 static bool compare_css_sets(struct css_set *cg,
472 struct css_set *old_cg,
473 struct cgroup *new_cgrp,
474 struct cgroup_subsys_state *template[])
476 struct list_head *l1, *l2;
478 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
479 /* Not all subsystems matched */
480 return false;
484 * Compare cgroup pointers in order to distinguish between
485 * different cgroups in heirarchies with no subsystems. We
486 * could get by with just this check alone (and skip the
487 * memcmp above) but on most setups the memcmp check will
488 * avoid the need for this more expensive check on almost all
489 * candidates.
492 l1 = &cg->cg_links;
493 l2 = &old_cg->cg_links;
494 while (1) {
495 struct cg_cgroup_link *cgl1, *cgl2;
496 struct cgroup *cg1, *cg2;
498 l1 = l1->next;
499 l2 = l2->next;
500 /* See if we reached the end - both lists are equal length. */
501 if (l1 == &cg->cg_links) {
502 BUG_ON(l2 != &old_cg->cg_links);
503 break;
504 } else {
505 BUG_ON(l2 == &old_cg->cg_links);
507 /* Locate the cgroups associated with these links. */
508 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
509 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
510 cg1 = cgl1->cgrp;
511 cg2 = cgl2->cgrp;
512 /* Hierarchies should be linked in the same order. */
513 BUG_ON(cg1->root != cg2->root);
516 * If this hierarchy is the hierarchy of the cgroup
517 * that's changing, then we need to check that this
518 * css_set points to the new cgroup; if it's any other
519 * hierarchy, then this css_set should point to the
520 * same cgroup as the old css_set.
522 if (cg1->root == new_cgrp->root) {
523 if (cg1 != new_cgrp)
524 return false;
525 } else {
526 if (cg1 != cg2)
527 return false;
530 return true;
534 * find_existing_css_set() is a helper for
535 * find_css_set(), and checks to see whether an existing
536 * css_set is suitable.
538 * oldcg: the cgroup group that we're using before the cgroup
539 * transition
541 * cgrp: the cgroup that we're moving into
543 * template: location in which to build the desired set of subsystem
544 * state objects for the new cgroup group
546 static struct css_set *find_existing_css_set(
547 struct css_set *oldcg,
548 struct cgroup *cgrp,
549 struct cgroup_subsys_state *template[])
551 int i;
552 struct cgroupfs_root *root = cgrp->root;
553 struct hlist_head *hhead;
554 struct hlist_node *node;
555 struct css_set *cg;
558 * Build the set of subsystem state objects that we want to see in the
559 * new css_set. while subsystems can change globally, the entries here
560 * won't change, so no need for locking.
562 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
563 if (root->subsys_mask & (1UL << i)) {
564 /* Subsystem is in this hierarchy. So we want
565 * the subsystem state from the new
566 * cgroup */
567 template[i] = cgrp->subsys[i];
568 } else {
569 /* Subsystem is not in this hierarchy, so we
570 * don't want to change the subsystem state */
571 template[i] = oldcg->subsys[i];
575 hhead = css_set_hash(template);
576 hlist_for_each_entry(cg, node, hhead, hlist) {
577 if (!compare_css_sets(cg, oldcg, cgrp, template))
578 continue;
580 /* This css_set matches what we need */
581 return cg;
584 /* No existing cgroup group matched */
585 return NULL;
588 static void free_cg_links(struct list_head *tmp)
590 struct cg_cgroup_link *link;
591 struct cg_cgroup_link *saved_link;
593 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
594 list_del(&link->cgrp_link_list);
595 kfree(link);
600 * allocate_cg_links() allocates "count" cg_cgroup_link structures
601 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
602 * success or a negative error
604 static int allocate_cg_links(int count, struct list_head *tmp)
606 struct cg_cgroup_link *link;
607 int i;
608 INIT_LIST_HEAD(tmp);
609 for (i = 0; i < count; i++) {
610 link = kmalloc(sizeof(*link), GFP_KERNEL);
611 if (!link) {
612 free_cg_links(tmp);
613 return -ENOMEM;
615 list_add(&link->cgrp_link_list, tmp);
617 return 0;
621 * link_css_set - a helper function to link a css_set to a cgroup
622 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
623 * @cg: the css_set to be linked
624 * @cgrp: the destination cgroup
626 static void link_css_set(struct list_head *tmp_cg_links,
627 struct css_set *cg, struct cgroup *cgrp)
629 struct cg_cgroup_link *link;
631 BUG_ON(list_empty(tmp_cg_links));
632 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
633 cgrp_link_list);
634 link->cg = cg;
635 link->cgrp = cgrp;
636 atomic_inc(&cgrp->count);
637 list_move(&link->cgrp_link_list, &cgrp->css_sets);
639 * Always add links to the tail of the list so that the list
640 * is sorted by order of hierarchy creation
642 list_add_tail(&link->cg_link_list, &cg->cg_links);
646 * find_css_set() takes an existing cgroup group and a
647 * cgroup object, and returns a css_set object that's
648 * equivalent to the old group, but with the given cgroup
649 * substituted into the appropriate hierarchy. Must be called with
650 * cgroup_mutex held
652 static struct css_set *find_css_set(
653 struct css_set *oldcg, struct cgroup *cgrp)
655 struct css_set *res;
656 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
658 struct list_head tmp_cg_links;
660 struct hlist_head *hhead;
661 struct cg_cgroup_link *link;
663 /* First see if we already have a cgroup group that matches
664 * the desired set */
665 read_lock(&css_set_lock);
666 res = find_existing_css_set(oldcg, cgrp, template);
667 if (res)
668 get_css_set(res);
669 read_unlock(&css_set_lock);
671 if (res)
672 return res;
674 res = kmalloc(sizeof(*res), GFP_KERNEL);
675 if (!res)
676 return NULL;
678 /* Allocate all the cg_cgroup_link objects that we'll need */
679 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
680 kfree(res);
681 return NULL;
684 atomic_set(&res->refcount, 1);
685 INIT_LIST_HEAD(&res->cg_links);
686 INIT_LIST_HEAD(&res->tasks);
687 INIT_HLIST_NODE(&res->hlist);
689 /* Copy the set of subsystem state objects generated in
690 * find_existing_css_set() */
691 memcpy(res->subsys, template, sizeof(res->subsys));
693 write_lock(&css_set_lock);
694 /* Add reference counts and links from the new css_set. */
695 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
696 struct cgroup *c = link->cgrp;
697 if (c->root == cgrp->root)
698 c = cgrp;
699 link_css_set(&tmp_cg_links, res, c);
702 BUG_ON(!list_empty(&tmp_cg_links));
704 css_set_count++;
706 /* Add this cgroup group to the hash table */
707 hhead = css_set_hash(res->subsys);
708 hlist_add_head(&res->hlist, hhead);
710 write_unlock(&css_set_lock);
712 return res;
716 * Return the cgroup for "task" from the given hierarchy. Must be
717 * called with cgroup_mutex held.
719 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
720 struct cgroupfs_root *root)
722 struct css_set *css;
723 struct cgroup *res = NULL;
725 BUG_ON(!mutex_is_locked(&cgroup_mutex));
726 read_lock(&css_set_lock);
728 * No need to lock the task - since we hold cgroup_mutex the
729 * task can't change groups, so the only thing that can happen
730 * is that it exits and its css is set back to init_css_set.
732 css = task->cgroups;
733 if (css == &init_css_set) {
734 res = &root->top_cgroup;
735 } else {
736 struct cg_cgroup_link *link;
737 list_for_each_entry(link, &css->cg_links, cg_link_list) {
738 struct cgroup *c = link->cgrp;
739 if (c->root == root) {
740 res = c;
741 break;
745 read_unlock(&css_set_lock);
746 BUG_ON(!res);
747 return res;
751 * There is one global cgroup mutex. We also require taking
752 * task_lock() when dereferencing a task's cgroup subsys pointers.
753 * See "The task_lock() exception", at the end of this comment.
755 * A task must hold cgroup_mutex to modify cgroups.
757 * Any task can increment and decrement the count field without lock.
758 * So in general, code holding cgroup_mutex can't rely on the count
759 * field not changing. However, if the count goes to zero, then only
760 * cgroup_attach_task() can increment it again. Because a count of zero
761 * means that no tasks are currently attached, therefore there is no
762 * way a task attached to that cgroup can fork (the other way to
763 * increment the count). So code holding cgroup_mutex can safely
764 * assume that if the count is zero, it will stay zero. Similarly, if
765 * a task holds cgroup_mutex on a cgroup with zero count, it
766 * knows that the cgroup won't be removed, as cgroup_rmdir()
767 * needs that mutex.
769 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
770 * (usually) take cgroup_mutex. These are the two most performance
771 * critical pieces of code here. The exception occurs on cgroup_exit(),
772 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
773 * is taken, and if the cgroup count is zero, a usermode call made
774 * to the release agent with the name of the cgroup (path relative to
775 * the root of cgroup file system) as the argument.
777 * A cgroup can only be deleted if both its 'count' of using tasks
778 * is zero, and its list of 'children' cgroups is empty. Since all
779 * tasks in the system use _some_ cgroup, and since there is always at
780 * least one task in the system (init, pid == 1), therefore, top_cgroup
781 * always has either children cgroups and/or using tasks. So we don't
782 * need a special hack to ensure that top_cgroup cannot be deleted.
784 * The task_lock() exception
786 * The need for this exception arises from the action of
787 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
788 * another. It does so using cgroup_mutex, however there are
789 * several performance critical places that need to reference
790 * task->cgroup without the expense of grabbing a system global
791 * mutex. Therefore except as noted below, when dereferencing or, as
792 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
793 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
794 * the task_struct routinely used for such matters.
796 * P.S. One more locking exception. RCU is used to guard the
797 * update of a tasks cgroup pointer by cgroup_attach_task()
801 * cgroup_lock - lock out any changes to cgroup structures
804 void cgroup_lock(void)
806 mutex_lock(&cgroup_mutex);
808 EXPORT_SYMBOL_GPL(cgroup_lock);
811 * cgroup_unlock - release lock on cgroup changes
813 * Undo the lock taken in a previous cgroup_lock() call.
815 void cgroup_unlock(void)
817 mutex_unlock(&cgroup_mutex);
819 EXPORT_SYMBOL_GPL(cgroup_unlock);
822 * A couple of forward declarations required, due to cyclic reference loop:
823 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
824 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
825 * -> cgroup_mkdir.
828 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
829 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
830 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
831 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
832 unsigned long subsys_mask);
833 static const struct inode_operations cgroup_dir_inode_operations;
834 static const struct file_operations proc_cgroupstats_operations;
836 static struct backing_dev_info cgroup_backing_dev_info = {
837 .name = "cgroup",
838 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
841 static int alloc_css_id(struct cgroup_subsys *ss,
842 struct cgroup *parent, struct cgroup *child);
844 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
846 struct inode *inode = new_inode(sb);
848 if (inode) {
849 inode->i_ino = get_next_ino();
850 inode->i_mode = mode;
851 inode->i_uid = current_fsuid();
852 inode->i_gid = current_fsgid();
853 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
854 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
856 return inode;
859 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
861 /* is dentry a directory ? if so, kfree() associated cgroup */
862 if (S_ISDIR(inode->i_mode)) {
863 struct cgroup *cgrp = dentry->d_fsdata;
864 struct cgroup_subsys *ss;
865 BUG_ON(!(cgroup_is_removed(cgrp)));
866 /* It's possible for external users to be holding css
867 * reference counts on a cgroup; css_put() needs to
868 * be able to access the cgroup after decrementing
869 * the reference count in order to know if it needs to
870 * queue the cgroup to be handled by the release
871 * agent */
872 synchronize_rcu();
874 mutex_lock(&cgroup_mutex);
876 * Release the subsystem state objects.
878 for_each_subsys(cgrp->root, ss)
879 ss->css_free(cgrp);
881 cgrp->root->number_of_cgroups--;
882 mutex_unlock(&cgroup_mutex);
885 * Drop the active superblock reference that we took when we
886 * created the cgroup
888 deactivate_super(cgrp->root->sb);
891 * if we're getting rid of the cgroup, refcount should ensure
892 * that there are no pidlists left.
894 BUG_ON(!list_empty(&cgrp->pidlists));
896 simple_xattrs_free(&cgrp->xattrs);
898 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
899 kfree_rcu(cgrp, rcu_head);
900 } else {
901 struct cfent *cfe = __d_cfe(dentry);
902 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
903 struct cftype *cft = cfe->type;
905 WARN_ONCE(!list_empty(&cfe->node) &&
906 cgrp != &cgrp->root->top_cgroup,
907 "cfe still linked for %s\n", cfe->type->name);
908 kfree(cfe);
909 simple_xattrs_free(&cft->xattrs);
911 iput(inode);
914 static int cgroup_delete(const struct dentry *d)
916 return 1;
919 static void remove_dir(struct dentry *d)
921 struct dentry *parent = dget(d->d_parent);
923 d_delete(d);
924 simple_rmdir(parent->d_inode, d);
925 dput(parent);
928 static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
930 struct cfent *cfe;
932 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
933 lockdep_assert_held(&cgroup_mutex);
935 list_for_each_entry(cfe, &cgrp->files, node) {
936 struct dentry *d = cfe->dentry;
938 if (cft && cfe->type != cft)
939 continue;
941 dget(d);
942 d_delete(d);
943 simple_unlink(cgrp->dentry->d_inode, d);
944 list_del_init(&cfe->node);
945 dput(d);
947 return 0;
949 return -ENOENT;
953 * cgroup_clear_directory - selective removal of base and subsystem files
954 * @dir: directory containing the files
955 * @base_files: true if the base files should be removed
956 * @subsys_mask: mask of the subsystem ids whose files should be removed
958 static void cgroup_clear_directory(struct dentry *dir, bool base_files,
959 unsigned long subsys_mask)
961 struct cgroup *cgrp = __d_cgrp(dir);
962 struct cgroup_subsys *ss;
964 for_each_subsys(cgrp->root, ss) {
965 struct cftype_set *set;
966 if (!test_bit(ss->subsys_id, &subsys_mask))
967 continue;
968 list_for_each_entry(set, &ss->cftsets, node)
969 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
971 if (base_files) {
972 while (!list_empty(&cgrp->files))
973 cgroup_rm_file(cgrp, NULL);
978 * NOTE : the dentry must have been dget()'ed
980 static void cgroup_d_remove_dir(struct dentry *dentry)
982 struct dentry *parent;
983 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
985 cgroup_clear_directory(dentry, true, root->subsys_mask);
987 parent = dentry->d_parent;
988 spin_lock(&parent->d_lock);
989 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
990 list_del_init(&dentry->d_u.d_child);
991 spin_unlock(&dentry->d_lock);
992 spin_unlock(&parent->d_lock);
993 remove_dir(dentry);
997 * Call with cgroup_mutex held. Drops reference counts on modules, including
998 * any duplicate ones that parse_cgroupfs_options took. If this function
999 * returns an error, no reference counts are touched.
1001 static int rebind_subsystems(struct cgroupfs_root *root,
1002 unsigned long final_subsys_mask)
1004 unsigned long added_mask, removed_mask;
1005 struct cgroup *cgrp = &root->top_cgroup;
1006 int i;
1008 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1009 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1011 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
1012 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
1013 /* Check that any added subsystems are currently free */
1014 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1015 unsigned long bit = 1UL << i;
1016 struct cgroup_subsys *ss = subsys[i];
1017 if (!(bit & added_mask))
1018 continue;
1020 * Nobody should tell us to do a subsys that doesn't exist:
1021 * parse_cgroupfs_options should catch that case and refcounts
1022 * ensure that subsystems won't disappear once selected.
1024 BUG_ON(ss == NULL);
1025 if (ss->root != &rootnode) {
1026 /* Subsystem isn't free */
1027 return -EBUSY;
1031 /* Currently we don't handle adding/removing subsystems when
1032 * any child cgroups exist. This is theoretically supportable
1033 * but involves complex error handling, so it's being left until
1034 * later */
1035 if (root->number_of_cgroups > 1)
1036 return -EBUSY;
1038 /* Process each subsystem */
1039 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1040 struct cgroup_subsys *ss = subsys[i];
1041 unsigned long bit = 1UL << i;
1042 if (bit & added_mask) {
1043 /* We're binding this subsystem to this hierarchy */
1044 BUG_ON(ss == NULL);
1045 BUG_ON(cgrp->subsys[i]);
1046 BUG_ON(!dummytop->subsys[i]);
1047 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1048 cgrp->subsys[i] = dummytop->subsys[i];
1049 cgrp->subsys[i]->cgroup = cgrp;
1050 list_move(&ss->sibling, &root->subsys_list);
1051 ss->root = root;
1052 if (ss->bind)
1053 ss->bind(cgrp);
1054 /* refcount was already taken, and we're keeping it */
1055 } else if (bit & removed_mask) {
1056 /* We're removing this subsystem */
1057 BUG_ON(ss == NULL);
1058 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1059 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1060 if (ss->bind)
1061 ss->bind(dummytop);
1062 dummytop->subsys[i]->cgroup = dummytop;
1063 cgrp->subsys[i] = NULL;
1064 subsys[i]->root = &rootnode;
1065 list_move(&ss->sibling, &rootnode.subsys_list);
1066 /* subsystem is now free - drop reference on module */
1067 module_put(ss->module);
1068 } else if (bit & final_subsys_mask) {
1069 /* Subsystem state should already exist */
1070 BUG_ON(ss == NULL);
1071 BUG_ON(!cgrp->subsys[i]);
1073 * a refcount was taken, but we already had one, so
1074 * drop the extra reference.
1076 module_put(ss->module);
1077 #ifdef CONFIG_MODULE_UNLOAD
1078 BUG_ON(ss->module && !module_refcount(ss->module));
1079 #endif
1080 } else {
1081 /* Subsystem state shouldn't exist */
1082 BUG_ON(cgrp->subsys[i]);
1085 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
1086 synchronize_rcu();
1088 return 0;
1091 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1093 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1094 struct cgroup_subsys *ss;
1096 mutex_lock(&cgroup_root_mutex);
1097 for_each_subsys(root, ss)
1098 seq_printf(seq, ",%s", ss->name);
1099 if (test_bit(ROOT_NOPREFIX, &root->flags))
1100 seq_puts(seq, ",noprefix");
1101 if (test_bit(ROOT_XATTR, &root->flags))
1102 seq_puts(seq, ",xattr");
1103 if (strlen(root->release_agent_path))
1104 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1105 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1106 seq_puts(seq, ",clone_children");
1107 if (strlen(root->name))
1108 seq_printf(seq, ",name=%s", root->name);
1109 mutex_unlock(&cgroup_root_mutex);
1110 return 0;
1113 struct cgroup_sb_opts {
1114 unsigned long subsys_mask;
1115 unsigned long flags;
1116 char *release_agent;
1117 bool cpuset_clone_children;
1118 char *name;
1119 /* User explicitly requested empty subsystem */
1120 bool none;
1122 struct cgroupfs_root *new_root;
1127 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1128 * with cgroup_mutex held to protect the subsys[] array. This function takes
1129 * refcounts on subsystems to be used, unless it returns error, in which case
1130 * no refcounts are taken.
1132 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1134 char *token, *o = data;
1135 bool all_ss = false, one_ss = false;
1136 unsigned long mask = (unsigned long)-1;
1137 int i;
1138 bool module_pin_failed = false;
1140 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1142 #ifdef CONFIG_CPUSETS
1143 mask = ~(1UL << cpuset_subsys_id);
1144 #endif
1146 memset(opts, 0, sizeof(*opts));
1148 while ((token = strsep(&o, ",")) != NULL) {
1149 if (!*token)
1150 return -EINVAL;
1151 if (!strcmp(token, "none")) {
1152 /* Explicitly have no subsystems */
1153 opts->none = true;
1154 continue;
1156 if (!strcmp(token, "all")) {
1157 /* Mutually exclusive option 'all' + subsystem name */
1158 if (one_ss)
1159 return -EINVAL;
1160 all_ss = true;
1161 continue;
1163 if (!strcmp(token, "noprefix")) {
1164 set_bit(ROOT_NOPREFIX, &opts->flags);
1165 continue;
1167 if (!strcmp(token, "clone_children")) {
1168 opts->cpuset_clone_children = true;
1169 continue;
1171 if (!strcmp(token, "xattr")) {
1172 set_bit(ROOT_XATTR, &opts->flags);
1173 continue;
1175 if (!strncmp(token, "release_agent=", 14)) {
1176 /* Specifying two release agents is forbidden */
1177 if (opts->release_agent)
1178 return -EINVAL;
1179 opts->release_agent =
1180 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1181 if (!opts->release_agent)
1182 return -ENOMEM;
1183 continue;
1185 if (!strncmp(token, "name=", 5)) {
1186 const char *name = token + 5;
1187 /* Can't specify an empty name */
1188 if (!strlen(name))
1189 return -EINVAL;
1190 /* Must match [\w.-]+ */
1191 for (i = 0; i < strlen(name); i++) {
1192 char c = name[i];
1193 if (isalnum(c))
1194 continue;
1195 if ((c == '.') || (c == '-') || (c == '_'))
1196 continue;
1197 return -EINVAL;
1199 /* Specifying two names is forbidden */
1200 if (opts->name)
1201 return -EINVAL;
1202 opts->name = kstrndup(name,
1203 MAX_CGROUP_ROOT_NAMELEN - 1,
1204 GFP_KERNEL);
1205 if (!opts->name)
1206 return -ENOMEM;
1208 continue;
1211 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1212 struct cgroup_subsys *ss = subsys[i];
1213 if (ss == NULL)
1214 continue;
1215 if (strcmp(token, ss->name))
1216 continue;
1217 if (ss->disabled)
1218 continue;
1220 /* Mutually exclusive option 'all' + subsystem name */
1221 if (all_ss)
1222 return -EINVAL;
1223 set_bit(i, &opts->subsys_mask);
1224 one_ss = true;
1226 break;
1228 if (i == CGROUP_SUBSYS_COUNT)
1229 return -ENOENT;
1233 * If the 'all' option was specified select all the subsystems,
1234 * otherwise if 'none', 'name=' and a subsystem name options
1235 * were not specified, let's default to 'all'
1237 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1238 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1239 struct cgroup_subsys *ss = subsys[i];
1240 if (ss == NULL)
1241 continue;
1242 if (ss->disabled)
1243 continue;
1244 set_bit(i, &opts->subsys_mask);
1248 /* Consistency checks */
1251 * Option noprefix was introduced just for backward compatibility
1252 * with the old cpuset, so we allow noprefix only if mounting just
1253 * the cpuset subsystem.
1255 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1256 (opts->subsys_mask & mask))
1257 return -EINVAL;
1260 /* Can't specify "none" and some subsystems */
1261 if (opts->subsys_mask && opts->none)
1262 return -EINVAL;
1265 * We either have to specify by name or by subsystems. (So all
1266 * empty hierarchies must have a name).
1268 if (!opts->subsys_mask && !opts->name)
1269 return -EINVAL;
1272 * Grab references on all the modules we'll need, so the subsystems
1273 * don't dance around before rebind_subsystems attaches them. This may
1274 * take duplicate reference counts on a subsystem that's already used,
1275 * but rebind_subsystems handles this case.
1277 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1278 unsigned long bit = 1UL << i;
1280 if (!(bit & opts->subsys_mask))
1281 continue;
1282 if (!try_module_get(subsys[i]->module)) {
1283 module_pin_failed = true;
1284 break;
1287 if (module_pin_failed) {
1289 * oops, one of the modules was going away. this means that we
1290 * raced with a module_delete call, and to the user this is
1291 * essentially a "subsystem doesn't exist" case.
1293 for (i--; i >= 0; i--) {
1294 /* drop refcounts only on the ones we took */
1295 unsigned long bit = 1UL << i;
1297 if (!(bit & opts->subsys_mask))
1298 continue;
1299 module_put(subsys[i]->module);
1301 return -ENOENT;
1304 return 0;
1307 static void drop_parsed_module_refcounts(unsigned long subsys_mask)
1309 int i;
1310 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1311 unsigned long bit = 1UL << i;
1313 if (!(bit & subsys_mask))
1314 continue;
1315 module_put(subsys[i]->module);
1319 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1321 int ret = 0;
1322 struct cgroupfs_root *root = sb->s_fs_info;
1323 struct cgroup *cgrp = &root->top_cgroup;
1324 struct cgroup_sb_opts opts;
1325 unsigned long added_mask, removed_mask;
1327 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1328 mutex_lock(&cgroup_mutex);
1329 mutex_lock(&cgroup_root_mutex);
1331 /* See what subsystems are wanted */
1332 ret = parse_cgroupfs_options(data, &opts);
1333 if (ret)
1334 goto out_unlock;
1336 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
1337 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1338 task_tgid_nr(current), current->comm);
1340 added_mask = opts.subsys_mask & ~root->subsys_mask;
1341 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1343 /* Don't allow flags or name to change at remount */
1344 if (opts.flags != root->flags ||
1345 (opts.name && strcmp(opts.name, root->name))) {
1346 ret = -EINVAL;
1347 drop_parsed_module_refcounts(opts.subsys_mask);
1348 goto out_unlock;
1352 * Clear out the files of subsystems that should be removed, do
1353 * this before rebind_subsystems, since rebind_subsystems may
1354 * change this hierarchy's subsys_list.
1356 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1358 ret = rebind_subsystems(root, opts.subsys_mask);
1359 if (ret) {
1360 /* rebind_subsystems failed, re-populate the removed files */
1361 cgroup_populate_dir(cgrp, false, removed_mask);
1362 drop_parsed_module_refcounts(opts.subsys_mask);
1363 goto out_unlock;
1366 /* re-populate subsystem files */
1367 cgroup_populate_dir(cgrp, false, added_mask);
1369 if (opts.release_agent)
1370 strcpy(root->release_agent_path, opts.release_agent);
1371 out_unlock:
1372 kfree(opts.release_agent);
1373 kfree(opts.name);
1374 mutex_unlock(&cgroup_root_mutex);
1375 mutex_unlock(&cgroup_mutex);
1376 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1377 return ret;
1380 static const struct super_operations cgroup_ops = {
1381 .statfs = simple_statfs,
1382 .drop_inode = generic_delete_inode,
1383 .show_options = cgroup_show_options,
1384 .remount_fs = cgroup_remount,
1387 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1389 INIT_LIST_HEAD(&cgrp->sibling);
1390 INIT_LIST_HEAD(&cgrp->children);
1391 INIT_LIST_HEAD(&cgrp->files);
1392 INIT_LIST_HEAD(&cgrp->css_sets);
1393 INIT_LIST_HEAD(&cgrp->allcg_node);
1394 INIT_LIST_HEAD(&cgrp->release_list);
1395 INIT_LIST_HEAD(&cgrp->pidlists);
1396 mutex_init(&cgrp->pidlist_mutex);
1397 INIT_LIST_HEAD(&cgrp->event_list);
1398 spin_lock_init(&cgrp->event_list_lock);
1399 simple_xattrs_init(&cgrp->xattrs);
1402 static void init_cgroup_root(struct cgroupfs_root *root)
1404 struct cgroup *cgrp = &root->top_cgroup;
1406 INIT_LIST_HEAD(&root->subsys_list);
1407 INIT_LIST_HEAD(&root->root_list);
1408 INIT_LIST_HEAD(&root->allcg_list);
1409 root->number_of_cgroups = 1;
1410 cgrp->root = root;
1411 cgrp->top_cgroup = cgrp;
1412 init_cgroup_housekeeping(cgrp);
1413 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1416 static bool init_root_id(struct cgroupfs_root *root)
1418 int ret = 0;
1420 do {
1421 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1422 return false;
1423 spin_lock(&hierarchy_id_lock);
1424 /* Try to allocate the next unused ID */
1425 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1426 &root->hierarchy_id);
1427 if (ret == -ENOSPC)
1428 /* Try again starting from 0 */
1429 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1430 if (!ret) {
1431 next_hierarchy_id = root->hierarchy_id + 1;
1432 } else if (ret != -EAGAIN) {
1433 /* Can only get here if the 31-bit IDR is full ... */
1434 BUG_ON(ret);
1436 spin_unlock(&hierarchy_id_lock);
1437 } while (ret);
1438 return true;
1441 static int cgroup_test_super(struct super_block *sb, void *data)
1443 struct cgroup_sb_opts *opts = data;
1444 struct cgroupfs_root *root = sb->s_fs_info;
1446 /* If we asked for a name then it must match */
1447 if (opts->name && strcmp(opts->name, root->name))
1448 return 0;
1451 * If we asked for subsystems (or explicitly for no
1452 * subsystems) then they must match
1454 if ((opts->subsys_mask || opts->none)
1455 && (opts->subsys_mask != root->subsys_mask))
1456 return 0;
1458 return 1;
1461 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1463 struct cgroupfs_root *root;
1465 if (!opts->subsys_mask && !opts->none)
1466 return NULL;
1468 root = kzalloc(sizeof(*root), GFP_KERNEL);
1469 if (!root)
1470 return ERR_PTR(-ENOMEM);
1472 if (!init_root_id(root)) {
1473 kfree(root);
1474 return ERR_PTR(-ENOMEM);
1476 init_cgroup_root(root);
1478 root->subsys_mask = opts->subsys_mask;
1479 root->flags = opts->flags;
1480 ida_init(&root->cgroup_ida);
1481 if (opts->release_agent)
1482 strcpy(root->release_agent_path, opts->release_agent);
1483 if (opts->name)
1484 strcpy(root->name, opts->name);
1485 if (opts->cpuset_clone_children)
1486 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1487 return root;
1490 static void cgroup_drop_root(struct cgroupfs_root *root)
1492 if (!root)
1493 return;
1495 BUG_ON(!root->hierarchy_id);
1496 spin_lock(&hierarchy_id_lock);
1497 ida_remove(&hierarchy_ida, root->hierarchy_id);
1498 spin_unlock(&hierarchy_id_lock);
1499 ida_destroy(&root->cgroup_ida);
1500 kfree(root);
1503 static int cgroup_set_super(struct super_block *sb, void *data)
1505 int ret;
1506 struct cgroup_sb_opts *opts = data;
1508 /* If we don't have a new root, we can't set up a new sb */
1509 if (!opts->new_root)
1510 return -EINVAL;
1512 BUG_ON(!opts->subsys_mask && !opts->none);
1514 ret = set_anon_super(sb, NULL);
1515 if (ret)
1516 return ret;
1518 sb->s_fs_info = opts->new_root;
1519 opts->new_root->sb = sb;
1521 sb->s_blocksize = PAGE_CACHE_SIZE;
1522 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1523 sb->s_magic = CGROUP_SUPER_MAGIC;
1524 sb->s_op = &cgroup_ops;
1526 return 0;
1529 static int cgroup_get_rootdir(struct super_block *sb)
1531 static const struct dentry_operations cgroup_dops = {
1532 .d_iput = cgroup_diput,
1533 .d_delete = cgroup_delete,
1536 struct inode *inode =
1537 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1539 if (!inode)
1540 return -ENOMEM;
1542 inode->i_fop = &simple_dir_operations;
1543 inode->i_op = &cgroup_dir_inode_operations;
1544 /* directories start off with i_nlink == 2 (for "." entry) */
1545 inc_nlink(inode);
1546 sb->s_root = d_make_root(inode);
1547 if (!sb->s_root)
1548 return -ENOMEM;
1549 /* for everything else we want ->d_op set */
1550 sb->s_d_op = &cgroup_dops;
1551 return 0;
1554 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1555 int flags, const char *unused_dev_name,
1556 void *data)
1558 struct cgroup_sb_opts opts;
1559 struct cgroupfs_root *root;
1560 int ret = 0;
1561 struct super_block *sb;
1562 struct cgroupfs_root *new_root;
1563 struct inode *inode;
1565 /* First find the desired set of subsystems */
1566 mutex_lock(&cgroup_mutex);
1567 ret = parse_cgroupfs_options(data, &opts);
1568 mutex_unlock(&cgroup_mutex);
1569 if (ret)
1570 goto out_err;
1573 * Allocate a new cgroup root. We may not need it if we're
1574 * reusing an existing hierarchy.
1576 new_root = cgroup_root_from_opts(&opts);
1577 if (IS_ERR(new_root)) {
1578 ret = PTR_ERR(new_root);
1579 goto drop_modules;
1581 opts.new_root = new_root;
1583 /* Locate an existing or new sb for this hierarchy */
1584 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1585 if (IS_ERR(sb)) {
1586 ret = PTR_ERR(sb);
1587 cgroup_drop_root(opts.new_root);
1588 goto drop_modules;
1591 root = sb->s_fs_info;
1592 BUG_ON(!root);
1593 if (root == opts.new_root) {
1594 /* We used the new root structure, so this is a new hierarchy */
1595 struct list_head tmp_cg_links;
1596 struct cgroup *root_cgrp = &root->top_cgroup;
1597 struct cgroupfs_root *existing_root;
1598 const struct cred *cred;
1599 int i;
1601 BUG_ON(sb->s_root != NULL);
1603 ret = cgroup_get_rootdir(sb);
1604 if (ret)
1605 goto drop_new_super;
1606 inode = sb->s_root->d_inode;
1608 mutex_lock(&inode->i_mutex);
1609 mutex_lock(&cgroup_mutex);
1610 mutex_lock(&cgroup_root_mutex);
1612 /* Check for name clashes with existing mounts */
1613 ret = -EBUSY;
1614 if (strlen(root->name))
1615 for_each_active_root(existing_root)
1616 if (!strcmp(existing_root->name, root->name))
1617 goto unlock_drop;
1620 * We're accessing css_set_count without locking
1621 * css_set_lock here, but that's OK - it can only be
1622 * increased by someone holding cgroup_lock, and
1623 * that's us. The worst that can happen is that we
1624 * have some link structures left over
1626 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1627 if (ret)
1628 goto unlock_drop;
1630 ret = rebind_subsystems(root, root->subsys_mask);
1631 if (ret == -EBUSY) {
1632 free_cg_links(&tmp_cg_links);
1633 goto unlock_drop;
1636 * There must be no failure case after here, since rebinding
1637 * takes care of subsystems' refcounts, which are explicitly
1638 * dropped in the failure exit path.
1641 /* EBUSY should be the only error here */
1642 BUG_ON(ret);
1644 list_add(&root->root_list, &roots);
1645 root_count++;
1647 sb->s_root->d_fsdata = root_cgrp;
1648 root->top_cgroup.dentry = sb->s_root;
1650 /* Link the top cgroup in this hierarchy into all
1651 * the css_set objects */
1652 write_lock(&css_set_lock);
1653 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1654 struct hlist_head *hhead = &css_set_table[i];
1655 struct hlist_node *node;
1656 struct css_set *cg;
1658 hlist_for_each_entry(cg, node, hhead, hlist)
1659 link_css_set(&tmp_cg_links, cg, root_cgrp);
1661 write_unlock(&css_set_lock);
1663 free_cg_links(&tmp_cg_links);
1665 BUG_ON(!list_empty(&root_cgrp->children));
1666 BUG_ON(root->number_of_cgroups != 1);
1668 cred = override_creds(&init_cred);
1669 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
1670 revert_creds(cred);
1671 mutex_unlock(&cgroup_root_mutex);
1672 mutex_unlock(&cgroup_mutex);
1673 mutex_unlock(&inode->i_mutex);
1674 } else {
1676 * We re-used an existing hierarchy - the new root (if
1677 * any) is not needed
1679 cgroup_drop_root(opts.new_root);
1680 /* no subsys rebinding, so refcounts don't change */
1681 drop_parsed_module_refcounts(opts.subsys_mask);
1684 kfree(opts.release_agent);
1685 kfree(opts.name);
1686 return dget(sb->s_root);
1688 unlock_drop:
1689 mutex_unlock(&cgroup_root_mutex);
1690 mutex_unlock(&cgroup_mutex);
1691 mutex_unlock(&inode->i_mutex);
1692 drop_new_super:
1693 deactivate_locked_super(sb);
1694 drop_modules:
1695 drop_parsed_module_refcounts(opts.subsys_mask);
1696 out_err:
1697 kfree(opts.release_agent);
1698 kfree(opts.name);
1699 return ERR_PTR(ret);
1702 static void cgroup_kill_sb(struct super_block *sb) {
1703 struct cgroupfs_root *root = sb->s_fs_info;
1704 struct cgroup *cgrp = &root->top_cgroup;
1705 int ret;
1706 struct cg_cgroup_link *link;
1707 struct cg_cgroup_link *saved_link;
1709 BUG_ON(!root);
1711 BUG_ON(root->number_of_cgroups != 1);
1712 BUG_ON(!list_empty(&cgrp->children));
1714 mutex_lock(&cgroup_mutex);
1715 mutex_lock(&cgroup_root_mutex);
1717 /* Rebind all subsystems back to the default hierarchy */
1718 ret = rebind_subsystems(root, 0);
1719 /* Shouldn't be able to fail ... */
1720 BUG_ON(ret);
1723 * Release all the links from css_sets to this hierarchy's
1724 * root cgroup
1726 write_lock(&css_set_lock);
1728 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1729 cgrp_link_list) {
1730 list_del(&link->cg_link_list);
1731 list_del(&link->cgrp_link_list);
1732 kfree(link);
1734 write_unlock(&css_set_lock);
1736 if (!list_empty(&root->root_list)) {
1737 list_del(&root->root_list);
1738 root_count--;
1741 mutex_unlock(&cgroup_root_mutex);
1742 mutex_unlock(&cgroup_mutex);
1744 simple_xattrs_free(&cgrp->xattrs);
1746 kill_litter_super(sb);
1747 cgroup_drop_root(root);
1750 static struct file_system_type cgroup_fs_type = {
1751 .name = "cgroup",
1752 .mount = cgroup_mount,
1753 .kill_sb = cgroup_kill_sb,
1756 static struct kobject *cgroup_kobj;
1759 * cgroup_path - generate the path of a cgroup
1760 * @cgrp: the cgroup in question
1761 * @buf: the buffer to write the path into
1762 * @buflen: the length of the buffer
1764 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1765 * reference. Writes path of cgroup into buf. Returns 0 on success,
1766 * -errno on error.
1768 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1770 struct dentry *dentry = cgrp->dentry;
1771 char *start;
1773 rcu_lockdep_assert(rcu_read_lock_held() || cgroup_lock_is_held(),
1774 "cgroup_path() called without proper locking");
1776 if (!dentry || cgrp == dummytop) {
1778 * Inactive subsystems have no dentry for their root
1779 * cgroup
1781 strcpy(buf, "/");
1782 return 0;
1785 start = buf + buflen - 1;
1787 *start = '\0';
1788 for (;;) {
1789 int len = dentry->d_name.len;
1791 if ((start -= len) < buf)
1792 return -ENAMETOOLONG;
1793 memcpy(start, dentry->d_name.name, len);
1794 cgrp = cgrp->parent;
1795 if (!cgrp)
1796 break;
1798 dentry = cgrp->dentry;
1799 if (!cgrp->parent)
1800 continue;
1801 if (--start < buf)
1802 return -ENAMETOOLONG;
1803 *start = '/';
1805 memmove(buf, start, buf + buflen - start);
1806 return 0;
1808 EXPORT_SYMBOL_GPL(cgroup_path);
1811 * Control Group taskset
1813 struct task_and_cgroup {
1814 struct task_struct *task;
1815 struct cgroup *cgrp;
1816 struct css_set *cg;
1819 struct cgroup_taskset {
1820 struct task_and_cgroup single;
1821 struct flex_array *tc_array;
1822 int tc_array_len;
1823 int idx;
1824 struct cgroup *cur_cgrp;
1828 * cgroup_taskset_first - reset taskset and return the first task
1829 * @tset: taskset of interest
1831 * @tset iteration is initialized and the first task is returned.
1833 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1835 if (tset->tc_array) {
1836 tset->idx = 0;
1837 return cgroup_taskset_next(tset);
1838 } else {
1839 tset->cur_cgrp = tset->single.cgrp;
1840 return tset->single.task;
1843 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1846 * cgroup_taskset_next - iterate to the next task in taskset
1847 * @tset: taskset of interest
1849 * Return the next task in @tset. Iteration must have been initialized
1850 * with cgroup_taskset_first().
1852 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1854 struct task_and_cgroup *tc;
1856 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1857 return NULL;
1859 tc = flex_array_get(tset->tc_array, tset->idx++);
1860 tset->cur_cgrp = tc->cgrp;
1861 return tc->task;
1863 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1866 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1867 * @tset: taskset of interest
1869 * Return the cgroup for the current (last returned) task of @tset. This
1870 * function must be preceded by either cgroup_taskset_first() or
1871 * cgroup_taskset_next().
1873 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1875 return tset->cur_cgrp;
1877 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1880 * cgroup_taskset_size - return the number of tasks in taskset
1881 * @tset: taskset of interest
1883 int cgroup_taskset_size(struct cgroup_taskset *tset)
1885 return tset->tc_array ? tset->tc_array_len : 1;
1887 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1891 * cgroup_task_migrate - move a task from one cgroup to another.
1893 * Must be called with cgroup_mutex and threadgroup locked.
1895 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1896 struct task_struct *tsk, struct css_set *newcg)
1898 struct css_set *oldcg;
1901 * We are synchronized through threadgroup_lock() against PF_EXITING
1902 * setting such that we can't race against cgroup_exit() changing the
1903 * css_set to init_css_set and dropping the old one.
1905 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1906 oldcg = tsk->cgroups;
1908 task_lock(tsk);
1909 rcu_assign_pointer(tsk->cgroups, newcg);
1910 task_unlock(tsk);
1912 /* Update the css_set linked lists if we're using them */
1913 write_lock(&css_set_lock);
1914 if (!list_empty(&tsk->cg_list))
1915 list_move(&tsk->cg_list, &newcg->tasks);
1916 write_unlock(&css_set_lock);
1919 * We just gained a reference on oldcg by taking it from the task. As
1920 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1921 * it here; it will be freed under RCU.
1923 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1924 put_css_set(oldcg);
1928 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1929 * @cgrp: the cgroup the task is attaching to
1930 * @tsk: the task to be attached
1932 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1933 * @tsk during call.
1935 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1937 int retval = 0;
1938 struct cgroup_subsys *ss, *failed_ss = NULL;
1939 struct cgroup *oldcgrp;
1940 struct cgroupfs_root *root = cgrp->root;
1941 struct cgroup_taskset tset = { };
1942 struct css_set *newcg;
1944 /* @tsk either already exited or can't exit until the end */
1945 if (tsk->flags & PF_EXITING)
1946 return -ESRCH;
1948 /* Nothing to do if the task is already in that cgroup */
1949 oldcgrp = task_cgroup_from_root(tsk, root);
1950 if (cgrp == oldcgrp)
1951 return 0;
1953 tset.single.task = tsk;
1954 tset.single.cgrp = oldcgrp;
1956 for_each_subsys(root, ss) {
1957 if (ss->can_attach) {
1958 retval = ss->can_attach(cgrp, &tset);
1959 if (retval) {
1961 * Remember on which subsystem the can_attach()
1962 * failed, so that we only call cancel_attach()
1963 * against the subsystems whose can_attach()
1964 * succeeded. (See below)
1966 failed_ss = ss;
1967 goto out;
1972 newcg = find_css_set(tsk->cgroups, cgrp);
1973 if (!newcg) {
1974 retval = -ENOMEM;
1975 goto out;
1978 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1980 for_each_subsys(root, ss) {
1981 if (ss->attach)
1982 ss->attach(cgrp, &tset);
1985 synchronize_rcu();
1986 out:
1987 if (retval) {
1988 for_each_subsys(root, ss) {
1989 if (ss == failed_ss)
1991 * This subsystem was the one that failed the
1992 * can_attach() check earlier, so we don't need
1993 * to call cancel_attach() against it or any
1994 * remaining subsystems.
1996 break;
1997 if (ss->cancel_attach)
1998 ss->cancel_attach(cgrp, &tset);
2001 return retval;
2005 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2006 * @from: attach to all cgroups of a given task
2007 * @tsk: the task to be attached
2009 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2011 struct cgroupfs_root *root;
2012 int retval = 0;
2014 cgroup_lock();
2015 for_each_active_root(root) {
2016 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2018 retval = cgroup_attach_task(from_cg, tsk);
2019 if (retval)
2020 break;
2022 cgroup_unlock();
2024 return retval;
2026 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2029 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2030 * @cgrp: the cgroup to attach to
2031 * @leader: the threadgroup leader task_struct of the group to be attached
2033 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2034 * task_lock of each thread in leader's threadgroup individually in turn.
2036 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2038 int retval, i, group_size;
2039 struct cgroup_subsys *ss, *failed_ss = NULL;
2040 /* guaranteed to be initialized later, but the compiler needs this */
2041 struct cgroupfs_root *root = cgrp->root;
2042 /* threadgroup list cursor and array */
2043 struct task_struct *tsk;
2044 struct task_and_cgroup *tc;
2045 struct flex_array *group;
2046 struct cgroup_taskset tset = { };
2049 * step 0: in order to do expensive, possibly blocking operations for
2050 * every thread, we cannot iterate the thread group list, since it needs
2051 * rcu or tasklist locked. instead, build an array of all threads in the
2052 * group - group_rwsem prevents new threads from appearing, and if
2053 * threads exit, this will just be an over-estimate.
2055 group_size = get_nr_threads(leader);
2056 /* flex_array supports very large thread-groups better than kmalloc. */
2057 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2058 if (!group)
2059 return -ENOMEM;
2060 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2061 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2062 if (retval)
2063 goto out_free_group_list;
2065 tsk = leader;
2066 i = 0;
2068 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2069 * already PF_EXITING could be freed from underneath us unless we
2070 * take an rcu_read_lock.
2072 rcu_read_lock();
2073 do {
2074 struct task_and_cgroup ent;
2076 /* @tsk either already exited or can't exit until the end */
2077 if (tsk->flags & PF_EXITING)
2078 continue;
2080 /* as per above, nr_threads may decrease, but not increase. */
2081 BUG_ON(i >= group_size);
2082 ent.task = tsk;
2083 ent.cgrp = task_cgroup_from_root(tsk, root);
2084 /* nothing to do if this task is already in the cgroup */
2085 if (ent.cgrp == cgrp)
2086 continue;
2088 * saying GFP_ATOMIC has no effect here because we did prealloc
2089 * earlier, but it's good form to communicate our expectations.
2091 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2092 BUG_ON(retval != 0);
2093 i++;
2094 } while_each_thread(leader, tsk);
2095 rcu_read_unlock();
2096 /* remember the number of threads in the array for later. */
2097 group_size = i;
2098 tset.tc_array = group;
2099 tset.tc_array_len = group_size;
2101 /* methods shouldn't be called if no task is actually migrating */
2102 retval = 0;
2103 if (!group_size)
2104 goto out_free_group_list;
2107 * step 1: check that we can legitimately attach to the cgroup.
2109 for_each_subsys(root, ss) {
2110 if (ss->can_attach) {
2111 retval = ss->can_attach(cgrp, &tset);
2112 if (retval) {
2113 failed_ss = ss;
2114 goto out_cancel_attach;
2120 * step 2: make sure css_sets exist for all threads to be migrated.
2121 * we use find_css_set, which allocates a new one if necessary.
2123 for (i = 0; i < group_size; i++) {
2124 tc = flex_array_get(group, i);
2125 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2126 if (!tc->cg) {
2127 retval = -ENOMEM;
2128 goto out_put_css_set_refs;
2133 * step 3: now that we're guaranteed success wrt the css_sets,
2134 * proceed to move all tasks to the new cgroup. There are no
2135 * failure cases after here, so this is the commit point.
2137 for (i = 0; i < group_size; i++) {
2138 tc = flex_array_get(group, i);
2139 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2141 /* nothing is sensitive to fork() after this point. */
2144 * step 4: do subsystem attach callbacks.
2146 for_each_subsys(root, ss) {
2147 if (ss->attach)
2148 ss->attach(cgrp, &tset);
2152 * step 5: success! and cleanup
2154 synchronize_rcu();
2155 retval = 0;
2156 out_put_css_set_refs:
2157 if (retval) {
2158 for (i = 0; i < group_size; i++) {
2159 tc = flex_array_get(group, i);
2160 if (!tc->cg)
2161 break;
2162 put_css_set(tc->cg);
2165 out_cancel_attach:
2166 if (retval) {
2167 for_each_subsys(root, ss) {
2168 if (ss == failed_ss)
2169 break;
2170 if (ss->cancel_attach)
2171 ss->cancel_attach(cgrp, &tset);
2174 out_free_group_list:
2175 flex_array_free(group);
2176 return retval;
2180 * Find the task_struct of the task to attach by vpid and pass it along to the
2181 * function to attach either it or all tasks in its threadgroup. Will lock
2182 * cgroup_mutex and threadgroup; may take task_lock of task.
2184 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2186 struct task_struct *tsk;
2187 const struct cred *cred = current_cred(), *tcred;
2188 int ret;
2190 if (!cgroup_lock_live_group(cgrp))
2191 return -ENODEV;
2193 retry_find_task:
2194 rcu_read_lock();
2195 if (pid) {
2196 tsk = find_task_by_vpid(pid);
2197 if (!tsk) {
2198 rcu_read_unlock();
2199 ret= -ESRCH;
2200 goto out_unlock_cgroup;
2203 * even if we're attaching all tasks in the thread group, we
2204 * only need to check permissions on one of them.
2206 tcred = __task_cred(tsk);
2207 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2208 !uid_eq(cred->euid, tcred->uid) &&
2209 !uid_eq(cred->euid, tcred->suid)) {
2210 rcu_read_unlock();
2211 ret = -EACCES;
2212 goto out_unlock_cgroup;
2214 } else
2215 tsk = current;
2217 if (threadgroup)
2218 tsk = tsk->group_leader;
2221 * Workqueue threads may acquire PF_THREAD_BOUND and become
2222 * trapped in a cpuset, or RT worker may be born in a cgroup
2223 * with no rt_runtime allocated. Just say no.
2225 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2226 ret = -EINVAL;
2227 rcu_read_unlock();
2228 goto out_unlock_cgroup;
2231 get_task_struct(tsk);
2232 rcu_read_unlock();
2234 threadgroup_lock(tsk);
2235 if (threadgroup) {
2236 if (!thread_group_leader(tsk)) {
2238 * a race with de_thread from another thread's exec()
2239 * may strip us of our leadership, if this happens,
2240 * there is no choice but to throw this task away and
2241 * try again; this is
2242 * "double-double-toil-and-trouble-check locking".
2244 threadgroup_unlock(tsk);
2245 put_task_struct(tsk);
2246 goto retry_find_task;
2248 ret = cgroup_attach_proc(cgrp, tsk);
2249 } else
2250 ret = cgroup_attach_task(cgrp, tsk);
2251 threadgroup_unlock(tsk);
2253 put_task_struct(tsk);
2254 out_unlock_cgroup:
2255 cgroup_unlock();
2256 return ret;
2259 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2261 return attach_task_by_pid(cgrp, pid, false);
2264 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2266 return attach_task_by_pid(cgrp, tgid, true);
2270 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2271 * @cgrp: the cgroup to be checked for liveness
2273 * On success, returns true; the lock should be later released with
2274 * cgroup_unlock(). On failure returns false with no lock held.
2276 bool cgroup_lock_live_group(struct cgroup *cgrp)
2278 mutex_lock(&cgroup_mutex);
2279 if (cgroup_is_removed(cgrp)) {
2280 mutex_unlock(&cgroup_mutex);
2281 return false;
2283 return true;
2285 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2287 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2288 const char *buffer)
2290 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2291 if (strlen(buffer) >= PATH_MAX)
2292 return -EINVAL;
2293 if (!cgroup_lock_live_group(cgrp))
2294 return -ENODEV;
2295 mutex_lock(&cgroup_root_mutex);
2296 strcpy(cgrp->root->release_agent_path, buffer);
2297 mutex_unlock(&cgroup_root_mutex);
2298 cgroup_unlock();
2299 return 0;
2302 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2303 struct seq_file *seq)
2305 if (!cgroup_lock_live_group(cgrp))
2306 return -ENODEV;
2307 seq_puts(seq, cgrp->root->release_agent_path);
2308 seq_putc(seq, '\n');
2309 cgroup_unlock();
2310 return 0;
2313 /* A buffer size big enough for numbers or short strings */
2314 #define CGROUP_LOCAL_BUFFER_SIZE 64
2316 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2317 struct file *file,
2318 const char __user *userbuf,
2319 size_t nbytes, loff_t *unused_ppos)
2321 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2322 int retval = 0;
2323 char *end;
2325 if (!nbytes)
2326 return -EINVAL;
2327 if (nbytes >= sizeof(buffer))
2328 return -E2BIG;
2329 if (copy_from_user(buffer, userbuf, nbytes))
2330 return -EFAULT;
2332 buffer[nbytes] = 0; /* nul-terminate */
2333 if (cft->write_u64) {
2334 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2335 if (*end)
2336 return -EINVAL;
2337 retval = cft->write_u64(cgrp, cft, val);
2338 } else {
2339 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2340 if (*end)
2341 return -EINVAL;
2342 retval = cft->write_s64(cgrp, cft, val);
2344 if (!retval)
2345 retval = nbytes;
2346 return retval;
2349 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2350 struct file *file,
2351 const char __user *userbuf,
2352 size_t nbytes, loff_t *unused_ppos)
2354 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2355 int retval = 0;
2356 size_t max_bytes = cft->max_write_len;
2357 char *buffer = local_buffer;
2359 if (!max_bytes)
2360 max_bytes = sizeof(local_buffer) - 1;
2361 if (nbytes >= max_bytes)
2362 return -E2BIG;
2363 /* Allocate a dynamic buffer if we need one */
2364 if (nbytes >= sizeof(local_buffer)) {
2365 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2366 if (buffer == NULL)
2367 return -ENOMEM;
2369 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2370 retval = -EFAULT;
2371 goto out;
2374 buffer[nbytes] = 0; /* nul-terminate */
2375 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2376 if (!retval)
2377 retval = nbytes;
2378 out:
2379 if (buffer != local_buffer)
2380 kfree(buffer);
2381 return retval;
2384 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2385 size_t nbytes, loff_t *ppos)
2387 struct cftype *cft = __d_cft(file->f_dentry);
2388 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2390 if (cgroup_is_removed(cgrp))
2391 return -ENODEV;
2392 if (cft->write)
2393 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2394 if (cft->write_u64 || cft->write_s64)
2395 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2396 if (cft->write_string)
2397 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2398 if (cft->trigger) {
2399 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2400 return ret ? ret : nbytes;
2402 return -EINVAL;
2405 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2406 struct file *file,
2407 char __user *buf, size_t nbytes,
2408 loff_t *ppos)
2410 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2411 u64 val = cft->read_u64(cgrp, cft);
2412 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2414 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2417 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2418 struct file *file,
2419 char __user *buf, size_t nbytes,
2420 loff_t *ppos)
2422 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2423 s64 val = cft->read_s64(cgrp, cft);
2424 int len = sprintf(tmp, "%lld\n", (long long) val);
2426 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2429 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2430 size_t nbytes, loff_t *ppos)
2432 struct cftype *cft = __d_cft(file->f_dentry);
2433 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2435 if (cgroup_is_removed(cgrp))
2436 return -ENODEV;
2438 if (cft->read)
2439 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2440 if (cft->read_u64)
2441 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2442 if (cft->read_s64)
2443 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2444 return -EINVAL;
2448 * seqfile ops/methods for returning structured data. Currently just
2449 * supports string->u64 maps, but can be extended in future.
2452 struct cgroup_seqfile_state {
2453 struct cftype *cft;
2454 struct cgroup *cgroup;
2457 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2459 struct seq_file *sf = cb->state;
2460 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2463 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2465 struct cgroup_seqfile_state *state = m->private;
2466 struct cftype *cft = state->cft;
2467 if (cft->read_map) {
2468 struct cgroup_map_cb cb = {
2469 .fill = cgroup_map_add,
2470 .state = m,
2472 return cft->read_map(state->cgroup, cft, &cb);
2474 return cft->read_seq_string(state->cgroup, cft, m);
2477 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2479 struct seq_file *seq = file->private_data;
2480 kfree(seq->private);
2481 return single_release(inode, file);
2484 static const struct file_operations cgroup_seqfile_operations = {
2485 .read = seq_read,
2486 .write = cgroup_file_write,
2487 .llseek = seq_lseek,
2488 .release = cgroup_seqfile_release,
2491 static int cgroup_file_open(struct inode *inode, struct file *file)
2493 int err;
2494 struct cftype *cft;
2496 err = generic_file_open(inode, file);
2497 if (err)
2498 return err;
2499 cft = __d_cft(file->f_dentry);
2501 if (cft->read_map || cft->read_seq_string) {
2502 struct cgroup_seqfile_state *state =
2503 kzalloc(sizeof(*state), GFP_USER);
2504 if (!state)
2505 return -ENOMEM;
2506 state->cft = cft;
2507 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2508 file->f_op = &cgroup_seqfile_operations;
2509 err = single_open(file, cgroup_seqfile_show, state);
2510 if (err < 0)
2511 kfree(state);
2512 } else if (cft->open)
2513 err = cft->open(inode, file);
2514 else
2515 err = 0;
2517 return err;
2520 static int cgroup_file_release(struct inode *inode, struct file *file)
2522 struct cftype *cft = __d_cft(file->f_dentry);
2523 if (cft->release)
2524 return cft->release(inode, file);
2525 return 0;
2529 * cgroup_rename - Only allow simple rename of directories in place.
2531 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2532 struct inode *new_dir, struct dentry *new_dentry)
2534 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2535 return -ENOTDIR;
2536 if (new_dentry->d_inode)
2537 return -EEXIST;
2538 if (old_dir != new_dir)
2539 return -EIO;
2540 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2543 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2545 if (S_ISDIR(dentry->d_inode->i_mode))
2546 return &__d_cgrp(dentry)->xattrs;
2547 else
2548 return &__d_cft(dentry)->xattrs;
2551 static inline int xattr_enabled(struct dentry *dentry)
2553 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2554 return test_bit(ROOT_XATTR, &root->flags);
2557 static bool is_valid_xattr(const char *name)
2559 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2560 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2561 return true;
2562 return false;
2565 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2566 const void *val, size_t size, int flags)
2568 if (!xattr_enabled(dentry))
2569 return -EOPNOTSUPP;
2570 if (!is_valid_xattr(name))
2571 return -EINVAL;
2572 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2575 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2577 if (!xattr_enabled(dentry))
2578 return -EOPNOTSUPP;
2579 if (!is_valid_xattr(name))
2580 return -EINVAL;
2581 return simple_xattr_remove(__d_xattrs(dentry), name);
2584 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2585 void *buf, size_t size)
2587 if (!xattr_enabled(dentry))
2588 return -EOPNOTSUPP;
2589 if (!is_valid_xattr(name))
2590 return -EINVAL;
2591 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2594 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2596 if (!xattr_enabled(dentry))
2597 return -EOPNOTSUPP;
2598 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2601 static const struct file_operations cgroup_file_operations = {
2602 .read = cgroup_file_read,
2603 .write = cgroup_file_write,
2604 .llseek = generic_file_llseek,
2605 .open = cgroup_file_open,
2606 .release = cgroup_file_release,
2609 static const struct inode_operations cgroup_file_inode_operations = {
2610 .setxattr = cgroup_setxattr,
2611 .getxattr = cgroup_getxattr,
2612 .listxattr = cgroup_listxattr,
2613 .removexattr = cgroup_removexattr,
2616 static const struct inode_operations cgroup_dir_inode_operations = {
2617 .lookup = cgroup_lookup,
2618 .mkdir = cgroup_mkdir,
2619 .rmdir = cgroup_rmdir,
2620 .rename = cgroup_rename,
2621 .setxattr = cgroup_setxattr,
2622 .getxattr = cgroup_getxattr,
2623 .listxattr = cgroup_listxattr,
2624 .removexattr = cgroup_removexattr,
2627 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2629 if (dentry->d_name.len > NAME_MAX)
2630 return ERR_PTR(-ENAMETOOLONG);
2631 d_add(dentry, NULL);
2632 return NULL;
2636 * Check if a file is a control file
2638 static inline struct cftype *__file_cft(struct file *file)
2640 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2641 return ERR_PTR(-EINVAL);
2642 return __d_cft(file->f_dentry);
2645 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2646 struct super_block *sb)
2648 struct inode *inode;
2650 if (!dentry)
2651 return -ENOENT;
2652 if (dentry->d_inode)
2653 return -EEXIST;
2655 inode = cgroup_new_inode(mode, sb);
2656 if (!inode)
2657 return -ENOMEM;
2659 if (S_ISDIR(mode)) {
2660 inode->i_op = &cgroup_dir_inode_operations;
2661 inode->i_fop = &simple_dir_operations;
2663 /* start off with i_nlink == 2 (for "." entry) */
2664 inc_nlink(inode);
2665 inc_nlink(dentry->d_parent->d_inode);
2668 * Control reaches here with cgroup_mutex held.
2669 * @inode->i_mutex should nest outside cgroup_mutex but we
2670 * want to populate it immediately without releasing
2671 * cgroup_mutex. As @inode isn't visible to anyone else
2672 * yet, trylock will always succeed without affecting
2673 * lockdep checks.
2675 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2676 } else if (S_ISREG(mode)) {
2677 inode->i_size = 0;
2678 inode->i_fop = &cgroup_file_operations;
2679 inode->i_op = &cgroup_file_inode_operations;
2681 d_instantiate(dentry, inode);
2682 dget(dentry); /* Extra count - pin the dentry in core */
2683 return 0;
2687 * cgroup_file_mode - deduce file mode of a control file
2688 * @cft: the control file in question
2690 * returns cft->mode if ->mode is not 0
2691 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2692 * returns S_IRUGO if it has only a read handler
2693 * returns S_IWUSR if it has only a write hander
2695 static umode_t cgroup_file_mode(const struct cftype *cft)
2697 umode_t mode = 0;
2699 if (cft->mode)
2700 return cft->mode;
2702 if (cft->read || cft->read_u64 || cft->read_s64 ||
2703 cft->read_map || cft->read_seq_string)
2704 mode |= S_IRUGO;
2706 if (cft->write || cft->write_u64 || cft->write_s64 ||
2707 cft->write_string || cft->trigger)
2708 mode |= S_IWUSR;
2710 return mode;
2713 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2714 struct cftype *cft)
2716 struct dentry *dir = cgrp->dentry;
2717 struct cgroup *parent = __d_cgrp(dir);
2718 struct dentry *dentry;
2719 struct cfent *cfe;
2720 int error;
2721 umode_t mode;
2722 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2724 simple_xattrs_init(&cft->xattrs);
2726 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2727 strcpy(name, subsys->name);
2728 strcat(name, ".");
2730 strcat(name, cft->name);
2732 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2734 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2735 if (!cfe)
2736 return -ENOMEM;
2738 dentry = lookup_one_len(name, dir, strlen(name));
2739 if (IS_ERR(dentry)) {
2740 error = PTR_ERR(dentry);
2741 goto out;
2744 mode = cgroup_file_mode(cft);
2745 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2746 if (!error) {
2747 cfe->type = (void *)cft;
2748 cfe->dentry = dentry;
2749 dentry->d_fsdata = cfe;
2750 list_add_tail(&cfe->node, &parent->files);
2751 cfe = NULL;
2753 dput(dentry);
2754 out:
2755 kfree(cfe);
2756 return error;
2759 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2760 struct cftype cfts[], bool is_add)
2762 struct cftype *cft;
2763 int err, ret = 0;
2765 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2766 /* does cft->flags tell us to skip this file on @cgrp? */
2767 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2768 continue;
2769 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2770 continue;
2772 if (is_add)
2773 err = cgroup_add_file(cgrp, subsys, cft);
2774 else
2775 err = cgroup_rm_file(cgrp, cft);
2776 if (err) {
2777 pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2778 is_add ? "add" : "remove", cft->name, err);
2779 ret = err;
2782 return ret;
2785 static DEFINE_MUTEX(cgroup_cft_mutex);
2787 static void cgroup_cfts_prepare(void)
2788 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2791 * Thanks to the entanglement with vfs inode locking, we can't walk
2792 * the existing cgroups under cgroup_mutex and create files.
2793 * Instead, we increment reference on all cgroups and build list of
2794 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2795 * exclusive access to the field.
2797 mutex_lock(&cgroup_cft_mutex);
2798 mutex_lock(&cgroup_mutex);
2801 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2802 struct cftype *cfts, bool is_add)
2803 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2805 LIST_HEAD(pending);
2806 struct cgroup *cgrp, *n;
2808 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2809 if (cfts && ss->root != &rootnode) {
2810 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2811 dget(cgrp->dentry);
2812 list_add_tail(&cgrp->cft_q_node, &pending);
2816 mutex_unlock(&cgroup_mutex);
2819 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2820 * files for all cgroups which were created before.
2822 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2823 struct inode *inode = cgrp->dentry->d_inode;
2825 mutex_lock(&inode->i_mutex);
2826 mutex_lock(&cgroup_mutex);
2827 if (!cgroup_is_removed(cgrp))
2828 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2829 mutex_unlock(&cgroup_mutex);
2830 mutex_unlock(&inode->i_mutex);
2832 list_del_init(&cgrp->cft_q_node);
2833 dput(cgrp->dentry);
2836 mutex_unlock(&cgroup_cft_mutex);
2840 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2841 * @ss: target cgroup subsystem
2842 * @cfts: zero-length name terminated array of cftypes
2844 * Register @cfts to @ss. Files described by @cfts are created for all
2845 * existing cgroups to which @ss is attached and all future cgroups will
2846 * have them too. This function can be called anytime whether @ss is
2847 * attached or not.
2849 * Returns 0 on successful registration, -errno on failure. Note that this
2850 * function currently returns 0 as long as @cfts registration is successful
2851 * even if some file creation attempts on existing cgroups fail.
2853 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2855 struct cftype_set *set;
2857 set = kzalloc(sizeof(*set), GFP_KERNEL);
2858 if (!set)
2859 return -ENOMEM;
2861 cgroup_cfts_prepare();
2862 set->cfts = cfts;
2863 list_add_tail(&set->node, &ss->cftsets);
2864 cgroup_cfts_commit(ss, cfts, true);
2866 return 0;
2868 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2871 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2872 * @ss: target cgroup subsystem
2873 * @cfts: zero-length name terminated array of cftypes
2875 * Unregister @cfts from @ss. Files described by @cfts are removed from
2876 * all existing cgroups to which @ss is attached and all future cgroups
2877 * won't have them either. This function can be called anytime whether @ss
2878 * is attached or not.
2880 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2881 * registered with @ss.
2883 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2885 struct cftype_set *set;
2887 cgroup_cfts_prepare();
2889 list_for_each_entry(set, &ss->cftsets, node) {
2890 if (set->cfts == cfts) {
2891 list_del_init(&set->node);
2892 cgroup_cfts_commit(ss, cfts, false);
2893 return 0;
2897 cgroup_cfts_commit(ss, NULL, false);
2898 return -ENOENT;
2902 * cgroup_task_count - count the number of tasks in a cgroup.
2903 * @cgrp: the cgroup in question
2905 * Return the number of tasks in the cgroup.
2907 int cgroup_task_count(const struct cgroup *cgrp)
2909 int count = 0;
2910 struct cg_cgroup_link *link;
2912 read_lock(&css_set_lock);
2913 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2914 count += atomic_read(&link->cg->refcount);
2916 read_unlock(&css_set_lock);
2917 return count;
2921 * Advance a list_head iterator. The iterator should be positioned at
2922 * the start of a css_set
2924 static void cgroup_advance_iter(struct cgroup *cgrp,
2925 struct cgroup_iter *it)
2927 struct list_head *l = it->cg_link;
2928 struct cg_cgroup_link *link;
2929 struct css_set *cg;
2931 /* Advance to the next non-empty css_set */
2932 do {
2933 l = l->next;
2934 if (l == &cgrp->css_sets) {
2935 it->cg_link = NULL;
2936 return;
2938 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2939 cg = link->cg;
2940 } while (list_empty(&cg->tasks));
2941 it->cg_link = l;
2942 it->task = cg->tasks.next;
2946 * To reduce the fork() overhead for systems that are not actually
2947 * using their cgroups capability, we don't maintain the lists running
2948 * through each css_set to its tasks until we see the list actually
2949 * used - in other words after the first call to cgroup_iter_start().
2951 static void cgroup_enable_task_cg_lists(void)
2953 struct task_struct *p, *g;
2954 write_lock(&css_set_lock);
2955 use_task_css_set_links = 1;
2957 * We need tasklist_lock because RCU is not safe against
2958 * while_each_thread(). Besides, a forking task that has passed
2959 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2960 * is not guaranteed to have its child immediately visible in the
2961 * tasklist if we walk through it with RCU.
2963 read_lock(&tasklist_lock);
2964 do_each_thread(g, p) {
2965 task_lock(p);
2967 * We should check if the process is exiting, otherwise
2968 * it will race with cgroup_exit() in that the list
2969 * entry won't be deleted though the process has exited.
2971 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2972 list_add(&p->cg_list, &p->cgroups->tasks);
2973 task_unlock(p);
2974 } while_each_thread(g, p);
2975 read_unlock(&tasklist_lock);
2976 write_unlock(&css_set_lock);
2980 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
2981 * @pos: the current position (%NULL to initiate traversal)
2982 * @cgroup: cgroup whose descendants to walk
2984 * To be used by cgroup_for_each_descendant_pre(). Find the next
2985 * descendant to visit for pre-order traversal of @cgroup's descendants.
2987 struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
2988 struct cgroup *cgroup)
2990 struct cgroup *next;
2992 WARN_ON_ONCE(!rcu_read_lock_held());
2994 /* if first iteration, pretend we just visited @cgroup */
2995 if (!pos) {
2996 if (list_empty(&cgroup->children))
2997 return NULL;
2998 pos = cgroup;
3001 /* visit the first child if exists */
3002 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3003 if (next)
3004 return next;
3006 /* no child, visit my or the closest ancestor's next sibling */
3007 do {
3008 next = list_entry_rcu(pos->sibling.next, struct cgroup,
3009 sibling);
3010 if (&next->sibling != &pos->parent->children)
3011 return next;
3013 pos = pos->parent;
3014 } while (pos != cgroup);
3016 return NULL;
3018 EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3020 static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3022 struct cgroup *last;
3024 do {
3025 last = pos;
3026 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3027 sibling);
3028 } while (pos);
3030 return last;
3034 * cgroup_next_descendant_post - find the next descendant for post-order walk
3035 * @pos: the current position (%NULL to initiate traversal)
3036 * @cgroup: cgroup whose descendants to walk
3038 * To be used by cgroup_for_each_descendant_post(). Find the next
3039 * descendant to visit for post-order traversal of @cgroup's descendants.
3041 struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3042 struct cgroup *cgroup)
3044 struct cgroup *next;
3046 WARN_ON_ONCE(!rcu_read_lock_held());
3048 /* if first iteration, visit the leftmost descendant */
3049 if (!pos) {
3050 next = cgroup_leftmost_descendant(cgroup);
3051 return next != cgroup ? next : NULL;
3054 /* if there's an unvisited sibling, visit its leftmost descendant */
3055 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3056 if (&next->sibling != &pos->parent->children)
3057 return cgroup_leftmost_descendant(next);
3059 /* no sibling left, visit parent */
3060 next = pos->parent;
3061 return next != cgroup ? next : NULL;
3063 EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3065 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3066 __acquires(css_set_lock)
3069 * The first time anyone tries to iterate across a cgroup,
3070 * we need to enable the list linking each css_set to its
3071 * tasks, and fix up all existing tasks.
3073 if (!use_task_css_set_links)
3074 cgroup_enable_task_cg_lists();
3076 read_lock(&css_set_lock);
3077 it->cg_link = &cgrp->css_sets;
3078 cgroup_advance_iter(cgrp, it);
3081 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3082 struct cgroup_iter *it)
3084 struct task_struct *res;
3085 struct list_head *l = it->task;
3086 struct cg_cgroup_link *link;
3088 /* If the iterator cg is NULL, we have no tasks */
3089 if (!it->cg_link)
3090 return NULL;
3091 res = list_entry(l, struct task_struct, cg_list);
3092 /* Advance iterator to find next entry */
3093 l = l->next;
3094 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3095 if (l == &link->cg->tasks) {
3096 /* We reached the end of this task list - move on to
3097 * the next cg_cgroup_link */
3098 cgroup_advance_iter(cgrp, it);
3099 } else {
3100 it->task = l;
3102 return res;
3105 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3106 __releases(css_set_lock)
3108 read_unlock(&css_set_lock);
3111 static inline int started_after_time(struct task_struct *t1,
3112 struct timespec *time,
3113 struct task_struct *t2)
3115 int start_diff = timespec_compare(&t1->start_time, time);
3116 if (start_diff > 0) {
3117 return 1;
3118 } else if (start_diff < 0) {
3119 return 0;
3120 } else {
3122 * Arbitrarily, if two processes started at the same
3123 * time, we'll say that the lower pointer value
3124 * started first. Note that t2 may have exited by now
3125 * so this may not be a valid pointer any longer, but
3126 * that's fine - it still serves to distinguish
3127 * between two tasks started (effectively) simultaneously.
3129 return t1 > t2;
3134 * This function is a callback from heap_insert() and is used to order
3135 * the heap.
3136 * In this case we order the heap in descending task start time.
3138 static inline int started_after(void *p1, void *p2)
3140 struct task_struct *t1 = p1;
3141 struct task_struct *t2 = p2;
3142 return started_after_time(t1, &t2->start_time, t2);
3146 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3147 * @scan: struct cgroup_scanner containing arguments for the scan
3149 * Arguments include pointers to callback functions test_task() and
3150 * process_task().
3151 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3152 * and if it returns true, call process_task() for it also.
3153 * The test_task pointer may be NULL, meaning always true (select all tasks).
3154 * Effectively duplicates cgroup_iter_{start,next,end}()
3155 * but does not lock css_set_lock for the call to process_task().
3156 * The struct cgroup_scanner may be embedded in any structure of the caller's
3157 * creation.
3158 * It is guaranteed that process_task() will act on every task that
3159 * is a member of the cgroup for the duration of this call. This
3160 * function may or may not call process_task() for tasks that exit
3161 * or move to a different cgroup during the call, or are forked or
3162 * move into the cgroup during the call.
3164 * Note that test_task() may be called with locks held, and may in some
3165 * situations be called multiple times for the same task, so it should
3166 * be cheap.
3167 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3168 * pre-allocated and will be used for heap operations (and its "gt" member will
3169 * be overwritten), else a temporary heap will be used (allocation of which
3170 * may cause this function to fail).
3172 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3174 int retval, i;
3175 struct cgroup_iter it;
3176 struct task_struct *p, *dropped;
3177 /* Never dereference latest_task, since it's not refcounted */
3178 struct task_struct *latest_task = NULL;
3179 struct ptr_heap tmp_heap;
3180 struct ptr_heap *heap;
3181 struct timespec latest_time = { 0, 0 };
3183 if (scan->heap) {
3184 /* The caller supplied our heap and pre-allocated its memory */
3185 heap = scan->heap;
3186 heap->gt = &started_after;
3187 } else {
3188 /* We need to allocate our own heap memory */
3189 heap = &tmp_heap;
3190 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3191 if (retval)
3192 /* cannot allocate the heap */
3193 return retval;
3196 again:
3198 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3199 * to determine which are of interest, and using the scanner's
3200 * "process_task" callback to process any of them that need an update.
3201 * Since we don't want to hold any locks during the task updates,
3202 * gather tasks to be processed in a heap structure.
3203 * The heap is sorted by descending task start time.
3204 * If the statically-sized heap fills up, we overflow tasks that
3205 * started later, and in future iterations only consider tasks that
3206 * started after the latest task in the previous pass. This
3207 * guarantees forward progress and that we don't miss any tasks.
3209 heap->size = 0;
3210 cgroup_iter_start(scan->cg, &it);
3211 while ((p = cgroup_iter_next(scan->cg, &it))) {
3213 * Only affect tasks that qualify per the caller's callback,
3214 * if he provided one
3216 if (scan->test_task && !scan->test_task(p, scan))
3217 continue;
3219 * Only process tasks that started after the last task
3220 * we processed
3222 if (!started_after_time(p, &latest_time, latest_task))
3223 continue;
3224 dropped = heap_insert(heap, p);
3225 if (dropped == NULL) {
3227 * The new task was inserted; the heap wasn't
3228 * previously full
3230 get_task_struct(p);
3231 } else if (dropped != p) {
3233 * The new task was inserted, and pushed out a
3234 * different task
3236 get_task_struct(p);
3237 put_task_struct(dropped);
3240 * Else the new task was newer than anything already in
3241 * the heap and wasn't inserted
3244 cgroup_iter_end(scan->cg, &it);
3246 if (heap->size) {
3247 for (i = 0; i < heap->size; i++) {
3248 struct task_struct *q = heap->ptrs[i];
3249 if (i == 0) {
3250 latest_time = q->start_time;
3251 latest_task = q;
3253 /* Process the task per the caller's callback */
3254 scan->process_task(q, scan);
3255 put_task_struct(q);
3258 * If we had to process any tasks at all, scan again
3259 * in case some of them were in the middle of forking
3260 * children that didn't get processed.
3261 * Not the most efficient way to do it, but it avoids
3262 * having to take callback_mutex in the fork path
3264 goto again;
3266 if (heap == &tmp_heap)
3267 heap_free(&tmp_heap);
3268 return 0;
3272 * Stuff for reading the 'tasks'/'procs' files.
3274 * Reading this file can return large amounts of data if a cgroup has
3275 * *lots* of attached tasks. So it may need several calls to read(),
3276 * but we cannot guarantee that the information we produce is correct
3277 * unless we produce it entirely atomically.
3281 /* which pidlist file are we talking about? */
3282 enum cgroup_filetype {
3283 CGROUP_FILE_PROCS,
3284 CGROUP_FILE_TASKS,
3288 * A pidlist is a list of pids that virtually represents the contents of one
3289 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3290 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3291 * to the cgroup.
3293 struct cgroup_pidlist {
3295 * used to find which pidlist is wanted. doesn't change as long as
3296 * this particular list stays in the list.
3298 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3299 /* array of xids */
3300 pid_t *list;
3301 /* how many elements the above list has */
3302 int length;
3303 /* how many files are using the current array */
3304 int use_count;
3305 /* each of these stored in a list by its cgroup */
3306 struct list_head links;
3307 /* pointer to the cgroup we belong to, for list removal purposes */
3308 struct cgroup *owner;
3309 /* protects the other fields */
3310 struct rw_semaphore mutex;
3314 * The following two functions "fix" the issue where there are more pids
3315 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3316 * TODO: replace with a kernel-wide solution to this problem
3318 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3319 static void *pidlist_allocate(int count)
3321 if (PIDLIST_TOO_LARGE(count))
3322 return vmalloc(count * sizeof(pid_t));
3323 else
3324 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3326 static void pidlist_free(void *p)
3328 if (is_vmalloc_addr(p))
3329 vfree(p);
3330 else
3331 kfree(p);
3333 static void *pidlist_resize(void *p, int newcount)
3335 void *newlist;
3336 /* note: if new alloc fails, old p will still be valid either way */
3337 if (is_vmalloc_addr(p)) {
3338 newlist = vmalloc(newcount * sizeof(pid_t));
3339 if (!newlist)
3340 return NULL;
3341 memcpy(newlist, p, newcount * sizeof(pid_t));
3342 vfree(p);
3343 } else {
3344 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3346 return newlist;
3350 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3351 * If the new stripped list is sufficiently smaller and there's enough memory
3352 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3353 * number of unique elements.
3355 /* is the size difference enough that we should re-allocate the array? */
3356 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3357 static int pidlist_uniq(pid_t **p, int length)
3359 int src, dest = 1;
3360 pid_t *list = *p;
3361 pid_t *newlist;
3364 * we presume the 0th element is unique, so i starts at 1. trivial
3365 * edge cases first; no work needs to be done for either
3367 if (length == 0 || length == 1)
3368 return length;
3369 /* src and dest walk down the list; dest counts unique elements */
3370 for (src = 1; src < length; src++) {
3371 /* find next unique element */
3372 while (list[src] == list[src-1]) {
3373 src++;
3374 if (src == length)
3375 goto after;
3377 /* dest always points to where the next unique element goes */
3378 list[dest] = list[src];
3379 dest++;
3381 after:
3383 * if the length difference is large enough, we want to allocate a
3384 * smaller buffer to save memory. if this fails due to out of memory,
3385 * we'll just stay with what we've got.
3387 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3388 newlist = pidlist_resize(list, dest);
3389 if (newlist)
3390 *p = newlist;
3392 return dest;
3395 static int cmppid(const void *a, const void *b)
3397 return *(pid_t *)a - *(pid_t *)b;
3401 * find the appropriate pidlist for our purpose (given procs vs tasks)
3402 * returns with the lock on that pidlist already held, and takes care
3403 * of the use count, or returns NULL with no locks held if we're out of
3404 * memory.
3406 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3407 enum cgroup_filetype type)
3409 struct cgroup_pidlist *l;
3410 /* don't need task_nsproxy() if we're looking at ourself */
3411 struct pid_namespace *ns = task_active_pid_ns(current);
3414 * We can't drop the pidlist_mutex before taking the l->mutex in case
3415 * the last ref-holder is trying to remove l from the list at the same
3416 * time. Holding the pidlist_mutex precludes somebody taking whichever
3417 * list we find out from under us - compare release_pid_array().
3419 mutex_lock(&cgrp->pidlist_mutex);
3420 list_for_each_entry(l, &cgrp->pidlists, links) {
3421 if (l->key.type == type && l->key.ns == ns) {
3422 /* make sure l doesn't vanish out from under us */
3423 down_write(&l->mutex);
3424 mutex_unlock(&cgrp->pidlist_mutex);
3425 return l;
3428 /* entry not found; create a new one */
3429 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3430 if (!l) {
3431 mutex_unlock(&cgrp->pidlist_mutex);
3432 return l;
3434 init_rwsem(&l->mutex);
3435 down_write(&l->mutex);
3436 l->key.type = type;
3437 l->key.ns = get_pid_ns(ns);
3438 l->use_count = 0; /* don't increment here */
3439 l->list = NULL;
3440 l->owner = cgrp;
3441 list_add(&l->links, &cgrp->pidlists);
3442 mutex_unlock(&cgrp->pidlist_mutex);
3443 return l;
3447 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3449 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3450 struct cgroup_pidlist **lp)
3452 pid_t *array;
3453 int length;
3454 int pid, n = 0; /* used for populating the array */
3455 struct cgroup_iter it;
3456 struct task_struct *tsk;
3457 struct cgroup_pidlist *l;
3460 * If cgroup gets more users after we read count, we won't have
3461 * enough space - tough. This race is indistinguishable to the
3462 * caller from the case that the additional cgroup users didn't
3463 * show up until sometime later on.
3465 length = cgroup_task_count(cgrp);
3466 array = pidlist_allocate(length);
3467 if (!array)
3468 return -ENOMEM;
3469 /* now, populate the array */
3470 cgroup_iter_start(cgrp, &it);
3471 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3472 if (unlikely(n == length))
3473 break;
3474 /* get tgid or pid for procs or tasks file respectively */
3475 if (type == CGROUP_FILE_PROCS)
3476 pid = task_tgid_vnr(tsk);
3477 else
3478 pid = task_pid_vnr(tsk);
3479 if (pid > 0) /* make sure to only use valid results */
3480 array[n++] = pid;
3482 cgroup_iter_end(cgrp, &it);
3483 length = n;
3484 /* now sort & (if procs) strip out duplicates */
3485 sort(array, length, sizeof(pid_t), cmppid, NULL);
3486 if (type == CGROUP_FILE_PROCS)
3487 length = pidlist_uniq(&array, length);
3488 l = cgroup_pidlist_find(cgrp, type);
3489 if (!l) {
3490 pidlist_free(array);
3491 return -ENOMEM;
3493 /* store array, freeing old if necessary - lock already held */
3494 pidlist_free(l->list);
3495 l->list = array;
3496 l->length = length;
3497 l->use_count++;
3498 up_write(&l->mutex);
3499 *lp = l;
3500 return 0;
3504 * cgroupstats_build - build and fill cgroupstats
3505 * @stats: cgroupstats to fill information into
3506 * @dentry: A dentry entry belonging to the cgroup for which stats have
3507 * been requested.
3509 * Build and fill cgroupstats so that taskstats can export it to user
3510 * space.
3512 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3514 int ret = -EINVAL;
3515 struct cgroup *cgrp;
3516 struct cgroup_iter it;
3517 struct task_struct *tsk;
3520 * Validate dentry by checking the superblock operations,
3521 * and make sure it's a directory.
3523 if (dentry->d_sb->s_op != &cgroup_ops ||
3524 !S_ISDIR(dentry->d_inode->i_mode))
3525 goto err;
3527 ret = 0;
3528 cgrp = dentry->d_fsdata;
3530 cgroup_iter_start(cgrp, &it);
3531 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3532 switch (tsk->state) {
3533 case TASK_RUNNING:
3534 stats->nr_running++;
3535 break;
3536 case TASK_INTERRUPTIBLE:
3537 stats->nr_sleeping++;
3538 break;
3539 case TASK_UNINTERRUPTIBLE:
3540 stats->nr_uninterruptible++;
3541 break;
3542 case TASK_STOPPED:
3543 stats->nr_stopped++;
3544 break;
3545 default:
3546 if (delayacct_is_task_waiting_on_io(tsk))
3547 stats->nr_io_wait++;
3548 break;
3551 cgroup_iter_end(cgrp, &it);
3553 err:
3554 return ret;
3559 * seq_file methods for the tasks/procs files. The seq_file position is the
3560 * next pid to display; the seq_file iterator is a pointer to the pid
3561 * in the cgroup->l->list array.
3564 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3567 * Initially we receive a position value that corresponds to
3568 * one more than the last pid shown (or 0 on the first call or
3569 * after a seek to the start). Use a binary-search to find the
3570 * next pid to display, if any
3572 struct cgroup_pidlist *l = s->private;
3573 int index = 0, pid = *pos;
3574 int *iter;
3576 down_read(&l->mutex);
3577 if (pid) {
3578 int end = l->length;
3580 while (index < end) {
3581 int mid = (index + end) / 2;
3582 if (l->list[mid] == pid) {
3583 index = mid;
3584 break;
3585 } else if (l->list[mid] <= pid)
3586 index = mid + 1;
3587 else
3588 end = mid;
3591 /* If we're off the end of the array, we're done */
3592 if (index >= l->length)
3593 return NULL;
3594 /* Update the abstract position to be the actual pid that we found */
3595 iter = l->list + index;
3596 *pos = *iter;
3597 return iter;
3600 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3602 struct cgroup_pidlist *l = s->private;
3603 up_read(&l->mutex);
3606 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3608 struct cgroup_pidlist *l = s->private;
3609 pid_t *p = v;
3610 pid_t *end = l->list + l->length;
3612 * Advance to the next pid in the array. If this goes off the
3613 * end, we're done
3615 p++;
3616 if (p >= end) {
3617 return NULL;
3618 } else {
3619 *pos = *p;
3620 return p;
3624 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3626 return seq_printf(s, "%d\n", *(int *)v);
3630 * seq_operations functions for iterating on pidlists through seq_file -
3631 * independent of whether it's tasks or procs
3633 static const struct seq_operations cgroup_pidlist_seq_operations = {
3634 .start = cgroup_pidlist_start,
3635 .stop = cgroup_pidlist_stop,
3636 .next = cgroup_pidlist_next,
3637 .show = cgroup_pidlist_show,
3640 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3643 * the case where we're the last user of this particular pidlist will
3644 * have us remove it from the cgroup's list, which entails taking the
3645 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3646 * pidlist_mutex, we have to take pidlist_mutex first.
3648 mutex_lock(&l->owner->pidlist_mutex);
3649 down_write(&l->mutex);
3650 BUG_ON(!l->use_count);
3651 if (!--l->use_count) {
3652 /* we're the last user if refcount is 0; remove and free */
3653 list_del(&l->links);
3654 mutex_unlock(&l->owner->pidlist_mutex);
3655 pidlist_free(l->list);
3656 put_pid_ns(l->key.ns);
3657 up_write(&l->mutex);
3658 kfree(l);
3659 return;
3661 mutex_unlock(&l->owner->pidlist_mutex);
3662 up_write(&l->mutex);
3665 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3667 struct cgroup_pidlist *l;
3668 if (!(file->f_mode & FMODE_READ))
3669 return 0;
3671 * the seq_file will only be initialized if the file was opened for
3672 * reading; hence we check if it's not null only in that case.
3674 l = ((struct seq_file *)file->private_data)->private;
3675 cgroup_release_pid_array(l);
3676 return seq_release(inode, file);
3679 static const struct file_operations cgroup_pidlist_operations = {
3680 .read = seq_read,
3681 .llseek = seq_lseek,
3682 .write = cgroup_file_write,
3683 .release = cgroup_pidlist_release,
3687 * The following functions handle opens on a file that displays a pidlist
3688 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3689 * in the cgroup.
3691 /* helper function for the two below it */
3692 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3694 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3695 struct cgroup_pidlist *l;
3696 int retval;
3698 /* Nothing to do for write-only files */
3699 if (!(file->f_mode & FMODE_READ))
3700 return 0;
3702 /* have the array populated */
3703 retval = pidlist_array_load(cgrp, type, &l);
3704 if (retval)
3705 return retval;
3706 /* configure file information */
3707 file->f_op = &cgroup_pidlist_operations;
3709 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3710 if (retval) {
3711 cgroup_release_pid_array(l);
3712 return retval;
3714 ((struct seq_file *)file->private_data)->private = l;
3715 return 0;
3717 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3719 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3721 static int cgroup_procs_open(struct inode *unused, struct file *file)
3723 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3726 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3727 struct cftype *cft)
3729 return notify_on_release(cgrp);
3732 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3733 struct cftype *cft,
3734 u64 val)
3736 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3737 if (val)
3738 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3739 else
3740 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3741 return 0;
3745 * Unregister event and free resources.
3747 * Gets called from workqueue.
3749 static void cgroup_event_remove(struct work_struct *work)
3751 struct cgroup_event *event = container_of(work, struct cgroup_event,
3752 remove);
3753 struct cgroup *cgrp = event->cgrp;
3755 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3757 eventfd_ctx_put(event->eventfd);
3758 kfree(event);
3759 dput(cgrp->dentry);
3763 * Gets called on POLLHUP on eventfd when user closes it.
3765 * Called with wqh->lock held and interrupts disabled.
3767 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3768 int sync, void *key)
3770 struct cgroup_event *event = container_of(wait,
3771 struct cgroup_event, wait);
3772 struct cgroup *cgrp = event->cgrp;
3773 unsigned long flags = (unsigned long)key;
3775 if (flags & POLLHUP) {
3776 __remove_wait_queue(event->wqh, &event->wait);
3777 spin_lock(&cgrp->event_list_lock);
3778 list_del_init(&event->list);
3779 spin_unlock(&cgrp->event_list_lock);
3781 * We are in atomic context, but cgroup_event_remove() may
3782 * sleep, so we have to call it in workqueue.
3784 schedule_work(&event->remove);
3787 return 0;
3790 static void cgroup_event_ptable_queue_proc(struct file *file,
3791 wait_queue_head_t *wqh, poll_table *pt)
3793 struct cgroup_event *event = container_of(pt,
3794 struct cgroup_event, pt);
3796 event->wqh = wqh;
3797 add_wait_queue(wqh, &event->wait);
3801 * Parse input and register new cgroup event handler.
3803 * Input must be in format '<event_fd> <control_fd> <args>'.
3804 * Interpretation of args is defined by control file implementation.
3806 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3807 const char *buffer)
3809 struct cgroup_event *event = NULL;
3810 unsigned int efd, cfd;
3811 struct file *efile = NULL;
3812 struct file *cfile = NULL;
3813 char *endp;
3814 int ret;
3816 efd = simple_strtoul(buffer, &endp, 10);
3817 if (*endp != ' ')
3818 return -EINVAL;
3819 buffer = endp + 1;
3821 cfd = simple_strtoul(buffer, &endp, 10);
3822 if ((*endp != ' ') && (*endp != '\0'))
3823 return -EINVAL;
3824 buffer = endp + 1;
3826 event = kzalloc(sizeof(*event), GFP_KERNEL);
3827 if (!event)
3828 return -ENOMEM;
3829 event->cgrp = cgrp;
3830 INIT_LIST_HEAD(&event->list);
3831 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3832 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3833 INIT_WORK(&event->remove, cgroup_event_remove);
3835 efile = eventfd_fget(efd);
3836 if (IS_ERR(efile)) {
3837 ret = PTR_ERR(efile);
3838 goto fail;
3841 event->eventfd = eventfd_ctx_fileget(efile);
3842 if (IS_ERR(event->eventfd)) {
3843 ret = PTR_ERR(event->eventfd);
3844 goto fail;
3847 cfile = fget(cfd);
3848 if (!cfile) {
3849 ret = -EBADF;
3850 goto fail;
3853 /* the process need read permission on control file */
3854 /* AV: shouldn't we check that it's been opened for read instead? */
3855 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3856 if (ret < 0)
3857 goto fail;
3859 event->cft = __file_cft(cfile);
3860 if (IS_ERR(event->cft)) {
3861 ret = PTR_ERR(event->cft);
3862 goto fail;
3865 if (!event->cft->register_event || !event->cft->unregister_event) {
3866 ret = -EINVAL;
3867 goto fail;
3870 ret = event->cft->register_event(cgrp, event->cft,
3871 event->eventfd, buffer);
3872 if (ret)
3873 goto fail;
3875 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3876 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3877 ret = 0;
3878 goto fail;
3882 * Events should be removed after rmdir of cgroup directory, but before
3883 * destroying subsystem state objects. Let's take reference to cgroup
3884 * directory dentry to do that.
3886 dget(cgrp->dentry);
3888 spin_lock(&cgrp->event_list_lock);
3889 list_add(&event->list, &cgrp->event_list);
3890 spin_unlock(&cgrp->event_list_lock);
3892 fput(cfile);
3893 fput(efile);
3895 return 0;
3897 fail:
3898 if (cfile)
3899 fput(cfile);
3901 if (event && event->eventfd && !IS_ERR(event->eventfd))
3902 eventfd_ctx_put(event->eventfd);
3904 if (!IS_ERR_OR_NULL(efile))
3905 fput(efile);
3907 kfree(event);
3909 return ret;
3912 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3913 struct cftype *cft)
3915 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3918 static int cgroup_clone_children_write(struct cgroup *cgrp,
3919 struct cftype *cft,
3920 u64 val)
3922 if (val)
3923 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3924 else
3925 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3926 return 0;
3930 * for the common functions, 'private' gives the type of file
3932 /* for hysterical raisins, we can't put this on the older files */
3933 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3934 static struct cftype files[] = {
3936 .name = "tasks",
3937 .open = cgroup_tasks_open,
3938 .write_u64 = cgroup_tasks_write,
3939 .release = cgroup_pidlist_release,
3940 .mode = S_IRUGO | S_IWUSR,
3943 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3944 .open = cgroup_procs_open,
3945 .write_u64 = cgroup_procs_write,
3946 .release = cgroup_pidlist_release,
3947 .mode = S_IRUGO | S_IWUSR,
3950 .name = "notify_on_release",
3951 .read_u64 = cgroup_read_notify_on_release,
3952 .write_u64 = cgroup_write_notify_on_release,
3955 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3956 .write_string = cgroup_write_event_control,
3957 .mode = S_IWUGO,
3960 .name = "cgroup.clone_children",
3961 .read_u64 = cgroup_clone_children_read,
3962 .write_u64 = cgroup_clone_children_write,
3965 .name = "release_agent",
3966 .flags = CFTYPE_ONLY_ON_ROOT,
3967 .read_seq_string = cgroup_release_agent_show,
3968 .write_string = cgroup_release_agent_write,
3969 .max_write_len = PATH_MAX,
3971 { } /* terminate */
3975 * cgroup_populate_dir - selectively creation of files in a directory
3976 * @cgrp: target cgroup
3977 * @base_files: true if the base files should be added
3978 * @subsys_mask: mask of the subsystem ids whose files should be added
3980 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
3981 unsigned long subsys_mask)
3983 int err;
3984 struct cgroup_subsys *ss;
3986 if (base_files) {
3987 err = cgroup_addrm_files(cgrp, NULL, files, true);
3988 if (err < 0)
3989 return err;
3992 /* process cftsets of each subsystem */
3993 for_each_subsys(cgrp->root, ss) {
3994 struct cftype_set *set;
3995 if (!test_bit(ss->subsys_id, &subsys_mask))
3996 continue;
3998 list_for_each_entry(set, &ss->cftsets, node)
3999 cgroup_addrm_files(cgrp, ss, set->cfts, true);
4002 /* This cgroup is ready now */
4003 for_each_subsys(cgrp->root, ss) {
4004 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4006 * Update id->css pointer and make this css visible from
4007 * CSS ID functions. This pointer will be dereferened
4008 * from RCU-read-side without locks.
4010 if (css->id)
4011 rcu_assign_pointer(css->id->css, css);
4014 return 0;
4017 static void css_dput_fn(struct work_struct *work)
4019 struct cgroup_subsys_state *css =
4020 container_of(work, struct cgroup_subsys_state, dput_work);
4021 struct dentry *dentry = css->cgroup->dentry;
4022 struct super_block *sb = dentry->d_sb;
4024 atomic_inc(&sb->s_active);
4025 dput(dentry);
4026 deactivate_super(sb);
4029 static void init_cgroup_css(struct cgroup_subsys_state *css,
4030 struct cgroup_subsys *ss,
4031 struct cgroup *cgrp)
4033 css->cgroup = cgrp;
4034 atomic_set(&css->refcnt, 1);
4035 css->flags = 0;
4036 css->id = NULL;
4037 if (cgrp == dummytop)
4038 css->flags |= CSS_ROOT;
4039 BUG_ON(cgrp->subsys[ss->subsys_id]);
4040 cgrp->subsys[ss->subsys_id] = css;
4043 * css holds an extra ref to @cgrp->dentry which is put on the last
4044 * css_put(). dput() requires process context, which css_put() may
4045 * be called without. @css->dput_work will be used to invoke
4046 * dput() asynchronously from css_put().
4048 INIT_WORK(&css->dput_work, css_dput_fn);
4051 /* invoke ->post_create() on a new CSS and mark it online if successful */
4052 static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4054 int ret = 0;
4056 lockdep_assert_held(&cgroup_mutex);
4058 if (ss->css_online)
4059 ret = ss->css_online(cgrp);
4060 if (!ret)
4061 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4062 return ret;
4065 /* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4066 static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4067 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4069 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4071 lockdep_assert_held(&cgroup_mutex);
4073 if (!(css->flags & CSS_ONLINE))
4074 return;
4077 * css_offline() should be called with cgroup_mutex unlocked. See
4078 * 3fa59dfbc3 ("cgroup: fix potential deadlock in pre_destroy") for
4079 * details. This temporary unlocking should go away once
4080 * cgroup_mutex is unexported from controllers.
4082 if (ss->css_offline) {
4083 mutex_unlock(&cgroup_mutex);
4084 ss->css_offline(cgrp);
4085 mutex_lock(&cgroup_mutex);
4088 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4092 * cgroup_create - create a cgroup
4093 * @parent: cgroup that will be parent of the new cgroup
4094 * @dentry: dentry of the new cgroup
4095 * @mode: mode to set on new inode
4097 * Must be called with the mutex on the parent inode held
4099 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4100 umode_t mode)
4102 struct cgroup *cgrp;
4103 struct cgroupfs_root *root = parent->root;
4104 int err = 0;
4105 struct cgroup_subsys *ss;
4106 struct super_block *sb = root->sb;
4108 /* allocate the cgroup and its ID, 0 is reserved for the root */
4109 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4110 if (!cgrp)
4111 return -ENOMEM;
4113 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4114 if (cgrp->id < 0)
4115 goto err_free_cgrp;
4118 * Only live parents can have children. Note that the liveliness
4119 * check isn't strictly necessary because cgroup_mkdir() and
4120 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4121 * anyway so that locking is contained inside cgroup proper and we
4122 * don't get nasty surprises if we ever grow another caller.
4124 if (!cgroup_lock_live_group(parent)) {
4125 err = -ENODEV;
4126 goto err_free_id;
4129 /* Grab a reference on the superblock so the hierarchy doesn't
4130 * get deleted on unmount if there are child cgroups. This
4131 * can be done outside cgroup_mutex, since the sb can't
4132 * disappear while someone has an open control file on the
4133 * fs */
4134 atomic_inc(&sb->s_active);
4136 init_cgroup_housekeeping(cgrp);
4138 cgrp->parent = parent;
4139 cgrp->root = parent->root;
4140 cgrp->top_cgroup = parent->top_cgroup;
4142 if (notify_on_release(parent))
4143 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4145 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4146 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4148 for_each_subsys(root, ss) {
4149 struct cgroup_subsys_state *css;
4151 css = ss->css_alloc(cgrp);
4152 if (IS_ERR(css)) {
4153 err = PTR_ERR(css);
4154 goto err_free_all;
4156 init_cgroup_css(css, ss, cgrp);
4157 if (ss->use_id) {
4158 err = alloc_css_id(ss, parent, cgrp);
4159 if (err)
4160 goto err_free_all;
4165 * Create directory. cgroup_create_file() returns with the new
4166 * directory locked on success so that it can be populated without
4167 * dropping cgroup_mutex.
4169 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4170 if (err < 0)
4171 goto err_free_all;
4172 lockdep_assert_held(&dentry->d_inode->i_mutex);
4174 /* allocation complete, commit to creation */
4175 dentry->d_fsdata = cgrp;
4176 cgrp->dentry = dentry;
4177 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4178 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4179 root->number_of_cgroups++;
4181 /* each css holds a ref to the cgroup's dentry */
4182 for_each_subsys(root, ss)
4183 dget(dentry);
4185 /* creation succeeded, notify subsystems */
4186 for_each_subsys(root, ss) {
4187 err = online_css(ss, cgrp);
4188 if (err)
4189 goto err_destroy;
4191 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4192 parent->parent) {
4193 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4194 current->comm, current->pid, ss->name);
4195 if (!strcmp(ss->name, "memory"))
4196 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4197 ss->warned_broken_hierarchy = true;
4201 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4202 if (err)
4203 goto err_destroy;
4205 mutex_unlock(&cgroup_mutex);
4206 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4208 return 0;
4210 err_free_all:
4211 for_each_subsys(root, ss) {
4212 if (cgrp->subsys[ss->subsys_id])
4213 ss->css_free(cgrp);
4215 mutex_unlock(&cgroup_mutex);
4216 /* Release the reference count that we took on the superblock */
4217 deactivate_super(sb);
4218 err_free_id:
4219 ida_simple_remove(&root->cgroup_ida, cgrp->id);
4220 err_free_cgrp:
4221 kfree(cgrp);
4222 return err;
4224 err_destroy:
4225 cgroup_destroy_locked(cgrp);
4226 mutex_unlock(&cgroup_mutex);
4227 mutex_unlock(&dentry->d_inode->i_mutex);
4228 return err;
4231 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4233 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4235 /* the vfs holds inode->i_mutex already */
4236 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4240 * Check the reference count on each subsystem. Since we already
4241 * established that there are no tasks in the cgroup, if the css refcount
4242 * is also 1, then there should be no outstanding references, so the
4243 * subsystem is safe to destroy. We scan across all subsystems rather than
4244 * using the per-hierarchy linked list of mounted subsystems since we can
4245 * be called via check_for_release() with no synchronization other than
4246 * RCU, and the subsystem linked list isn't RCU-safe.
4248 static int cgroup_has_css_refs(struct cgroup *cgrp)
4250 int i;
4253 * We won't need to lock the subsys array, because the subsystems
4254 * we're concerned about aren't going anywhere since our cgroup root
4255 * has a reference on them.
4257 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4258 struct cgroup_subsys *ss = subsys[i];
4259 struct cgroup_subsys_state *css;
4261 /* Skip subsystems not present or not in this hierarchy */
4262 if (ss == NULL || ss->root != cgrp->root)
4263 continue;
4265 css = cgrp->subsys[ss->subsys_id];
4267 * When called from check_for_release() it's possible
4268 * that by this point the cgroup has been removed
4269 * and the css deleted. But a false-positive doesn't
4270 * matter, since it can only happen if the cgroup
4271 * has been deleted and hence no longer needs the
4272 * release agent to be called anyway.
4274 if (css && css_refcnt(css) > 1)
4275 return 1;
4277 return 0;
4280 static int cgroup_destroy_locked(struct cgroup *cgrp)
4281 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4283 struct dentry *d = cgrp->dentry;
4284 struct cgroup *parent = cgrp->parent;
4285 DEFINE_WAIT(wait);
4286 struct cgroup_event *event, *tmp;
4287 struct cgroup_subsys *ss;
4288 LIST_HEAD(tmp_list);
4290 lockdep_assert_held(&d->d_inode->i_mutex);
4291 lockdep_assert_held(&cgroup_mutex);
4293 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children))
4294 return -EBUSY;
4297 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4298 * removed. This makes future css_tryget() and child creation
4299 * attempts fail thus maintaining the removal conditions verified
4300 * above.
4302 for_each_subsys(cgrp->root, ss) {
4303 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4305 WARN_ON(atomic_read(&css->refcnt) < 0);
4306 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4308 set_bit(CGRP_REMOVED, &cgrp->flags);
4310 /* tell subsystems to initate destruction */
4311 for_each_subsys(cgrp->root, ss)
4312 offline_css(ss, cgrp);
4315 * Put all the base refs. Each css holds an extra reference to the
4316 * cgroup's dentry and cgroup removal proceeds regardless of css
4317 * refs. On the last put of each css, whenever that may be, the
4318 * extra dentry ref is put so that dentry destruction happens only
4319 * after all css's are released.
4321 for_each_subsys(cgrp->root, ss)
4322 css_put(cgrp->subsys[ss->subsys_id]);
4324 raw_spin_lock(&release_list_lock);
4325 if (!list_empty(&cgrp->release_list))
4326 list_del_init(&cgrp->release_list);
4327 raw_spin_unlock(&release_list_lock);
4329 /* delete this cgroup from parent->children */
4330 list_del_rcu(&cgrp->sibling);
4331 list_del_init(&cgrp->allcg_node);
4333 dget(d);
4334 cgroup_d_remove_dir(d);
4335 dput(d);
4337 set_bit(CGRP_RELEASABLE, &parent->flags);
4338 check_for_release(parent);
4341 * Unregister events and notify userspace.
4342 * Notify userspace about cgroup removing only after rmdir of cgroup
4343 * directory to avoid race between userspace and kernelspace. Use
4344 * a temporary list to avoid a deadlock with cgroup_event_wake(). Since
4345 * cgroup_event_wake() is called with the wait queue head locked,
4346 * remove_wait_queue() cannot be called while holding event_list_lock.
4348 spin_lock(&cgrp->event_list_lock);
4349 list_splice_init(&cgrp->event_list, &tmp_list);
4350 spin_unlock(&cgrp->event_list_lock);
4351 list_for_each_entry_safe(event, tmp, &tmp_list, list) {
4352 list_del_init(&event->list);
4353 remove_wait_queue(event->wqh, &event->wait);
4354 eventfd_signal(event->eventfd, 1);
4355 schedule_work(&event->remove);
4358 return 0;
4361 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4363 int ret;
4365 mutex_lock(&cgroup_mutex);
4366 ret = cgroup_destroy_locked(dentry->d_fsdata);
4367 mutex_unlock(&cgroup_mutex);
4369 return ret;
4372 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4374 INIT_LIST_HEAD(&ss->cftsets);
4377 * base_cftset is embedded in subsys itself, no need to worry about
4378 * deregistration.
4380 if (ss->base_cftypes) {
4381 ss->base_cftset.cfts = ss->base_cftypes;
4382 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4386 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4388 struct cgroup_subsys_state *css;
4390 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4392 mutex_lock(&cgroup_mutex);
4394 /* init base cftset */
4395 cgroup_init_cftsets(ss);
4397 /* Create the top cgroup state for this subsystem */
4398 list_add(&ss->sibling, &rootnode.subsys_list);
4399 ss->root = &rootnode;
4400 css = ss->css_alloc(dummytop);
4401 /* We don't handle early failures gracefully */
4402 BUG_ON(IS_ERR(css));
4403 init_cgroup_css(css, ss, dummytop);
4405 /* Update the init_css_set to contain a subsys
4406 * pointer to this state - since the subsystem is
4407 * newly registered, all tasks and hence the
4408 * init_css_set is in the subsystem's top cgroup. */
4409 init_css_set.subsys[ss->subsys_id] = css;
4411 need_forkexit_callback |= ss->fork || ss->exit;
4413 /* At system boot, before all subsystems have been
4414 * registered, no tasks have been forked, so we don't
4415 * need to invoke fork callbacks here. */
4416 BUG_ON(!list_empty(&init_task.tasks));
4418 ss->active = 1;
4419 BUG_ON(online_css(ss, dummytop));
4421 mutex_unlock(&cgroup_mutex);
4423 /* this function shouldn't be used with modular subsystems, since they
4424 * need to register a subsys_id, among other things */
4425 BUG_ON(ss->module);
4429 * cgroup_load_subsys: load and register a modular subsystem at runtime
4430 * @ss: the subsystem to load
4432 * This function should be called in a modular subsystem's initcall. If the
4433 * subsystem is built as a module, it will be assigned a new subsys_id and set
4434 * up for use. If the subsystem is built-in anyway, work is delegated to the
4435 * simpler cgroup_init_subsys.
4437 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4439 struct cgroup_subsys_state *css;
4440 int i, ret;
4442 /* check name and function validity */
4443 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4444 ss->css_alloc == NULL || ss->css_free == NULL)
4445 return -EINVAL;
4448 * we don't support callbacks in modular subsystems. this check is
4449 * before the ss->module check for consistency; a subsystem that could
4450 * be a module should still have no callbacks even if the user isn't
4451 * compiling it as one.
4453 if (ss->fork || ss->exit)
4454 return -EINVAL;
4457 * an optionally modular subsystem is built-in: we want to do nothing,
4458 * since cgroup_init_subsys will have already taken care of it.
4460 if (ss->module == NULL) {
4461 /* a sanity check */
4462 BUG_ON(subsys[ss->subsys_id] != ss);
4463 return 0;
4466 /* init base cftset */
4467 cgroup_init_cftsets(ss);
4469 mutex_lock(&cgroup_mutex);
4470 subsys[ss->subsys_id] = ss;
4473 * no ss->css_alloc seems to need anything important in the ss
4474 * struct, so this can happen first (i.e. before the rootnode
4475 * attachment).
4477 css = ss->css_alloc(dummytop);
4478 if (IS_ERR(css)) {
4479 /* failure case - need to deassign the subsys[] slot. */
4480 subsys[ss->subsys_id] = NULL;
4481 mutex_unlock(&cgroup_mutex);
4482 return PTR_ERR(css);
4485 list_add(&ss->sibling, &rootnode.subsys_list);
4486 ss->root = &rootnode;
4488 /* our new subsystem will be attached to the dummy hierarchy. */
4489 init_cgroup_css(css, ss, dummytop);
4490 /* init_idr must be after init_cgroup_css because it sets css->id. */
4491 if (ss->use_id) {
4492 ret = cgroup_init_idr(ss, css);
4493 if (ret)
4494 goto err_unload;
4498 * Now we need to entangle the css into the existing css_sets. unlike
4499 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4500 * will need a new pointer to it; done by iterating the css_set_table.
4501 * furthermore, modifying the existing css_sets will corrupt the hash
4502 * table state, so each changed css_set will need its hash recomputed.
4503 * this is all done under the css_set_lock.
4505 write_lock(&css_set_lock);
4506 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4507 struct css_set *cg;
4508 struct hlist_node *node, *tmp;
4509 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4511 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4512 /* skip entries that we already rehashed */
4513 if (cg->subsys[ss->subsys_id])
4514 continue;
4515 /* remove existing entry */
4516 hlist_del(&cg->hlist);
4517 /* set new value */
4518 cg->subsys[ss->subsys_id] = css;
4519 /* recompute hash and restore entry */
4520 new_bucket = css_set_hash(cg->subsys);
4521 hlist_add_head(&cg->hlist, new_bucket);
4524 write_unlock(&css_set_lock);
4526 ss->active = 1;
4527 ret = online_css(ss, dummytop);
4528 if (ret)
4529 goto err_unload;
4531 /* success! */
4532 mutex_unlock(&cgroup_mutex);
4533 return 0;
4535 err_unload:
4536 mutex_unlock(&cgroup_mutex);
4537 /* @ss can't be mounted here as try_module_get() would fail */
4538 cgroup_unload_subsys(ss);
4539 return ret;
4541 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4544 * cgroup_unload_subsys: unload a modular subsystem
4545 * @ss: the subsystem to unload
4547 * This function should be called in a modular subsystem's exitcall. When this
4548 * function is invoked, the refcount on the subsystem's module will be 0, so
4549 * the subsystem will not be attached to any hierarchy.
4551 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4553 struct cg_cgroup_link *link;
4554 struct hlist_head *hhead;
4556 BUG_ON(ss->module == NULL);
4559 * we shouldn't be called if the subsystem is in use, and the use of
4560 * try_module_get in parse_cgroupfs_options should ensure that it
4561 * doesn't start being used while we're killing it off.
4563 BUG_ON(ss->root != &rootnode);
4565 mutex_lock(&cgroup_mutex);
4567 offline_css(ss, dummytop);
4568 ss->active = 0;
4570 if (ss->use_id) {
4571 idr_remove_all(&ss->idr);
4572 idr_destroy(&ss->idr);
4575 /* deassign the subsys_id */
4576 subsys[ss->subsys_id] = NULL;
4578 /* remove subsystem from rootnode's list of subsystems */
4579 list_del_init(&ss->sibling);
4582 * disentangle the css from all css_sets attached to the dummytop. as
4583 * in loading, we need to pay our respects to the hashtable gods.
4585 write_lock(&css_set_lock);
4586 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4587 struct css_set *cg = link->cg;
4589 hlist_del(&cg->hlist);
4590 cg->subsys[ss->subsys_id] = NULL;
4591 hhead = css_set_hash(cg->subsys);
4592 hlist_add_head(&cg->hlist, hhead);
4594 write_unlock(&css_set_lock);
4597 * remove subsystem's css from the dummytop and free it - need to
4598 * free before marking as null because ss->css_free needs the
4599 * cgrp->subsys pointer to find their state. note that this also
4600 * takes care of freeing the css_id.
4602 ss->css_free(dummytop);
4603 dummytop->subsys[ss->subsys_id] = NULL;
4605 mutex_unlock(&cgroup_mutex);
4607 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4610 * cgroup_init_early - cgroup initialization at system boot
4612 * Initialize cgroups at system boot, and initialize any
4613 * subsystems that request early init.
4615 int __init cgroup_init_early(void)
4617 int i;
4618 atomic_set(&init_css_set.refcount, 1);
4619 INIT_LIST_HEAD(&init_css_set.cg_links);
4620 INIT_LIST_HEAD(&init_css_set.tasks);
4621 INIT_HLIST_NODE(&init_css_set.hlist);
4622 css_set_count = 1;
4623 init_cgroup_root(&rootnode);
4624 root_count = 1;
4625 init_task.cgroups = &init_css_set;
4627 init_css_set_link.cg = &init_css_set;
4628 init_css_set_link.cgrp = dummytop;
4629 list_add(&init_css_set_link.cgrp_link_list,
4630 &rootnode.top_cgroup.css_sets);
4631 list_add(&init_css_set_link.cg_link_list,
4632 &init_css_set.cg_links);
4634 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4635 INIT_HLIST_HEAD(&css_set_table[i]);
4637 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4638 struct cgroup_subsys *ss = subsys[i];
4640 /* at bootup time, we don't worry about modular subsystems */
4641 if (!ss || ss->module)
4642 continue;
4644 BUG_ON(!ss->name);
4645 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4646 BUG_ON(!ss->css_alloc);
4647 BUG_ON(!ss->css_free);
4648 if (ss->subsys_id != i) {
4649 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4650 ss->name, ss->subsys_id);
4651 BUG();
4654 if (ss->early_init)
4655 cgroup_init_subsys(ss);
4657 return 0;
4661 * cgroup_init - cgroup initialization
4663 * Register cgroup filesystem and /proc file, and initialize
4664 * any subsystems that didn't request early init.
4666 int __init cgroup_init(void)
4668 int err;
4669 int i;
4670 struct hlist_head *hhead;
4672 err = bdi_init(&cgroup_backing_dev_info);
4673 if (err)
4674 return err;
4676 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4677 struct cgroup_subsys *ss = subsys[i];
4679 /* at bootup time, we don't worry about modular subsystems */
4680 if (!ss || ss->module)
4681 continue;
4682 if (!ss->early_init)
4683 cgroup_init_subsys(ss);
4684 if (ss->use_id)
4685 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4688 /* Add init_css_set to the hash table */
4689 hhead = css_set_hash(init_css_set.subsys);
4690 hlist_add_head(&init_css_set.hlist, hhead);
4691 BUG_ON(!init_root_id(&rootnode));
4693 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4694 if (!cgroup_kobj) {
4695 err = -ENOMEM;
4696 goto out;
4699 err = register_filesystem(&cgroup_fs_type);
4700 if (err < 0) {
4701 kobject_put(cgroup_kobj);
4702 goto out;
4705 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4707 out:
4708 if (err)
4709 bdi_destroy(&cgroup_backing_dev_info);
4711 return err;
4715 * proc_cgroup_show()
4716 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4717 * - Used for /proc/<pid>/cgroup.
4718 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4719 * doesn't really matter if tsk->cgroup changes after we read it,
4720 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4721 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4722 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4723 * cgroup to top_cgroup.
4726 /* TODO: Use a proper seq_file iterator */
4727 static int proc_cgroup_show(struct seq_file *m, void *v)
4729 struct pid *pid;
4730 struct task_struct *tsk;
4731 char *buf;
4732 int retval;
4733 struct cgroupfs_root *root;
4735 retval = -ENOMEM;
4736 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4737 if (!buf)
4738 goto out;
4740 retval = -ESRCH;
4741 pid = m->private;
4742 tsk = get_pid_task(pid, PIDTYPE_PID);
4743 if (!tsk)
4744 goto out_free;
4746 retval = 0;
4748 mutex_lock(&cgroup_mutex);
4750 for_each_active_root(root) {
4751 struct cgroup_subsys *ss;
4752 struct cgroup *cgrp;
4753 int count = 0;
4755 seq_printf(m, "%d:", root->hierarchy_id);
4756 for_each_subsys(root, ss)
4757 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4758 if (strlen(root->name))
4759 seq_printf(m, "%sname=%s", count ? "," : "",
4760 root->name);
4761 seq_putc(m, ':');
4762 cgrp = task_cgroup_from_root(tsk, root);
4763 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4764 if (retval < 0)
4765 goto out_unlock;
4766 seq_puts(m, buf);
4767 seq_putc(m, '\n');
4770 out_unlock:
4771 mutex_unlock(&cgroup_mutex);
4772 put_task_struct(tsk);
4773 out_free:
4774 kfree(buf);
4775 out:
4776 return retval;
4779 static int cgroup_open(struct inode *inode, struct file *file)
4781 struct pid *pid = PROC_I(inode)->pid;
4782 return single_open(file, proc_cgroup_show, pid);
4785 const struct file_operations proc_cgroup_operations = {
4786 .open = cgroup_open,
4787 .read = seq_read,
4788 .llseek = seq_lseek,
4789 .release = single_release,
4792 /* Display information about each subsystem and each hierarchy */
4793 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4795 int i;
4797 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4799 * ideally we don't want subsystems moving around while we do this.
4800 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4801 * subsys/hierarchy state.
4803 mutex_lock(&cgroup_mutex);
4804 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4805 struct cgroup_subsys *ss = subsys[i];
4806 if (ss == NULL)
4807 continue;
4808 seq_printf(m, "%s\t%d\t%d\t%d\n",
4809 ss->name, ss->root->hierarchy_id,
4810 ss->root->number_of_cgroups, !ss->disabled);
4812 mutex_unlock(&cgroup_mutex);
4813 return 0;
4816 static int cgroupstats_open(struct inode *inode, struct file *file)
4818 return single_open(file, proc_cgroupstats_show, NULL);
4821 static const struct file_operations proc_cgroupstats_operations = {
4822 .open = cgroupstats_open,
4823 .read = seq_read,
4824 .llseek = seq_lseek,
4825 .release = single_release,
4829 * cgroup_fork - attach newly forked task to its parents cgroup.
4830 * @child: pointer to task_struct of forking parent process.
4832 * Description: A task inherits its parent's cgroup at fork().
4834 * A pointer to the shared css_set was automatically copied in
4835 * fork.c by dup_task_struct(). However, we ignore that copy, since
4836 * it was not made under the protection of RCU or cgroup_mutex, so
4837 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4838 * have already changed current->cgroups, allowing the previously
4839 * referenced cgroup group to be removed and freed.
4841 * At the point that cgroup_fork() is called, 'current' is the parent
4842 * task, and the passed argument 'child' points to the child task.
4844 void cgroup_fork(struct task_struct *child)
4846 task_lock(current);
4847 child->cgroups = current->cgroups;
4848 get_css_set(child->cgroups);
4849 task_unlock(current);
4850 INIT_LIST_HEAD(&child->cg_list);
4854 * cgroup_post_fork - called on a new task after adding it to the task list
4855 * @child: the task in question
4857 * Adds the task to the list running through its css_set if necessary and
4858 * call the subsystem fork() callbacks. Has to be after the task is
4859 * visible on the task list in case we race with the first call to
4860 * cgroup_iter_start() - to guarantee that the new task ends up on its
4861 * list.
4863 void cgroup_post_fork(struct task_struct *child)
4865 int i;
4868 * use_task_css_set_links is set to 1 before we walk the tasklist
4869 * under the tasklist_lock and we read it here after we added the child
4870 * to the tasklist under the tasklist_lock as well. If the child wasn't
4871 * yet in the tasklist when we walked through it from
4872 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4873 * should be visible now due to the paired locking and barriers implied
4874 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4875 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4876 * lock on fork.
4878 if (use_task_css_set_links) {
4879 write_lock(&css_set_lock);
4880 task_lock(child);
4881 if (list_empty(&child->cg_list))
4882 list_add(&child->cg_list, &child->cgroups->tasks);
4883 task_unlock(child);
4884 write_unlock(&css_set_lock);
4888 * Call ss->fork(). This must happen after @child is linked on
4889 * css_set; otherwise, @child might change state between ->fork()
4890 * and addition to css_set.
4892 if (need_forkexit_callback) {
4893 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4894 struct cgroup_subsys *ss = subsys[i];
4897 * fork/exit callbacks are supported only for
4898 * builtin subsystems and we don't need further
4899 * synchronization as they never go away.
4901 if (!ss || ss->module)
4902 continue;
4904 if (ss->fork)
4905 ss->fork(child);
4911 * cgroup_exit - detach cgroup from exiting task
4912 * @tsk: pointer to task_struct of exiting process
4913 * @run_callback: run exit callbacks?
4915 * Description: Detach cgroup from @tsk and release it.
4917 * Note that cgroups marked notify_on_release force every task in
4918 * them to take the global cgroup_mutex mutex when exiting.
4919 * This could impact scaling on very large systems. Be reluctant to
4920 * use notify_on_release cgroups where very high task exit scaling
4921 * is required on large systems.
4923 * the_top_cgroup_hack:
4925 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4927 * We call cgroup_exit() while the task is still competent to
4928 * handle notify_on_release(), then leave the task attached to the
4929 * root cgroup in each hierarchy for the remainder of its exit.
4931 * To do this properly, we would increment the reference count on
4932 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4933 * code we would add a second cgroup function call, to drop that
4934 * reference. This would just create an unnecessary hot spot on
4935 * the top_cgroup reference count, to no avail.
4937 * Normally, holding a reference to a cgroup without bumping its
4938 * count is unsafe. The cgroup could go away, or someone could
4939 * attach us to a different cgroup, decrementing the count on
4940 * the first cgroup that we never incremented. But in this case,
4941 * top_cgroup isn't going away, and either task has PF_EXITING set,
4942 * which wards off any cgroup_attach_task() attempts, or task is a failed
4943 * fork, never visible to cgroup_attach_task.
4945 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4947 struct css_set *cg;
4948 int i;
4951 * Unlink from the css_set task list if necessary.
4952 * Optimistically check cg_list before taking
4953 * css_set_lock
4955 if (!list_empty(&tsk->cg_list)) {
4956 write_lock(&css_set_lock);
4957 if (!list_empty(&tsk->cg_list))
4958 list_del_init(&tsk->cg_list);
4959 write_unlock(&css_set_lock);
4962 /* Reassign the task to the init_css_set. */
4963 task_lock(tsk);
4964 cg = tsk->cgroups;
4965 tsk->cgroups = &init_css_set;
4967 if (run_callbacks && need_forkexit_callback) {
4968 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4969 struct cgroup_subsys *ss = subsys[i];
4971 /* modular subsystems can't use callbacks */
4972 if (!ss || ss->module)
4973 continue;
4975 if (ss->exit) {
4976 struct cgroup *old_cgrp =
4977 rcu_dereference_raw(cg->subsys[i])->cgroup;
4978 struct cgroup *cgrp = task_cgroup(tsk, i);
4979 ss->exit(cgrp, old_cgrp, tsk);
4983 task_unlock(tsk);
4985 if (cg)
4986 put_css_set_taskexit(cg);
4990 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4991 * @cgrp: the cgroup in question
4992 * @task: the task in question
4994 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4995 * hierarchy.
4997 * If we are sending in dummytop, then presumably we are creating
4998 * the top cgroup in the subsystem.
5000 * Called only by the ns (nsproxy) cgroup.
5002 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
5004 int ret;
5005 struct cgroup *target;
5007 if (cgrp == dummytop)
5008 return 1;
5010 target = task_cgroup_from_root(task, cgrp->root);
5011 while (cgrp != target && cgrp!= cgrp->top_cgroup)
5012 cgrp = cgrp->parent;
5013 ret = (cgrp == target);
5014 return ret;
5017 static void check_for_release(struct cgroup *cgrp)
5019 /* All of these checks rely on RCU to keep the cgroup
5020 * structure alive */
5021 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
5022 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
5023 /* Control Group is currently removeable. If it's not
5024 * already queued for a userspace notification, queue
5025 * it now */
5026 int need_schedule_work = 0;
5027 raw_spin_lock(&release_list_lock);
5028 if (!cgroup_is_removed(cgrp) &&
5029 list_empty(&cgrp->release_list)) {
5030 list_add(&cgrp->release_list, &release_list);
5031 need_schedule_work = 1;
5033 raw_spin_unlock(&release_list_lock);
5034 if (need_schedule_work)
5035 schedule_work(&release_agent_work);
5039 /* Caller must verify that the css is not for root cgroup */
5040 bool __css_tryget(struct cgroup_subsys_state *css)
5042 while (true) {
5043 int t, v;
5045 v = css_refcnt(css);
5046 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
5047 if (likely(t == v))
5048 return true;
5049 else if (t < 0)
5050 return false;
5051 cpu_relax();
5054 EXPORT_SYMBOL_GPL(__css_tryget);
5056 /* Caller must verify that the css is not for root cgroup */
5057 void __css_put(struct cgroup_subsys_state *css)
5059 struct cgroup *cgrp = css->cgroup;
5060 int v;
5062 rcu_read_lock();
5063 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
5065 switch (v) {
5066 case 1:
5067 if (notify_on_release(cgrp)) {
5068 set_bit(CGRP_RELEASABLE, &cgrp->flags);
5069 check_for_release(cgrp);
5071 break;
5072 case 0:
5073 schedule_work(&css->dput_work);
5074 break;
5076 rcu_read_unlock();
5078 EXPORT_SYMBOL_GPL(__css_put);
5081 * Notify userspace when a cgroup is released, by running the
5082 * configured release agent with the name of the cgroup (path
5083 * relative to the root of cgroup file system) as the argument.
5085 * Most likely, this user command will try to rmdir this cgroup.
5087 * This races with the possibility that some other task will be
5088 * attached to this cgroup before it is removed, or that some other
5089 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5090 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5091 * unused, and this cgroup will be reprieved from its death sentence,
5092 * to continue to serve a useful existence. Next time it's released,
5093 * we will get notified again, if it still has 'notify_on_release' set.
5095 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5096 * means only wait until the task is successfully execve()'d. The
5097 * separate release agent task is forked by call_usermodehelper(),
5098 * then control in this thread returns here, without waiting for the
5099 * release agent task. We don't bother to wait because the caller of
5100 * this routine has no use for the exit status of the release agent
5101 * task, so no sense holding our caller up for that.
5103 static void cgroup_release_agent(struct work_struct *work)
5105 BUG_ON(work != &release_agent_work);
5106 mutex_lock(&cgroup_mutex);
5107 raw_spin_lock(&release_list_lock);
5108 while (!list_empty(&release_list)) {
5109 char *argv[3], *envp[3];
5110 int i;
5111 char *pathbuf = NULL, *agentbuf = NULL;
5112 struct cgroup *cgrp = list_entry(release_list.next,
5113 struct cgroup,
5114 release_list);
5115 list_del_init(&cgrp->release_list);
5116 raw_spin_unlock(&release_list_lock);
5117 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5118 if (!pathbuf)
5119 goto continue_free;
5120 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5121 goto continue_free;
5122 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5123 if (!agentbuf)
5124 goto continue_free;
5126 i = 0;
5127 argv[i++] = agentbuf;
5128 argv[i++] = pathbuf;
5129 argv[i] = NULL;
5131 i = 0;
5132 /* minimal command environment */
5133 envp[i++] = "HOME=/";
5134 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5135 envp[i] = NULL;
5137 /* Drop the lock while we invoke the usermode helper,
5138 * since the exec could involve hitting disk and hence
5139 * be a slow process */
5140 mutex_unlock(&cgroup_mutex);
5141 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5142 mutex_lock(&cgroup_mutex);
5143 continue_free:
5144 kfree(pathbuf);
5145 kfree(agentbuf);
5146 raw_spin_lock(&release_list_lock);
5148 raw_spin_unlock(&release_list_lock);
5149 mutex_unlock(&cgroup_mutex);
5152 static int __init cgroup_disable(char *str)
5154 int i;
5155 char *token;
5157 while ((token = strsep(&str, ",")) != NULL) {
5158 if (!*token)
5159 continue;
5160 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
5161 struct cgroup_subsys *ss = subsys[i];
5164 * cgroup_disable, being at boot time, can't
5165 * know about module subsystems, so we don't
5166 * worry about them.
5168 if (!ss || ss->module)
5169 continue;
5171 if (!strcmp(token, ss->name)) {
5172 ss->disabled = 1;
5173 printk(KERN_INFO "Disabling %s control group"
5174 " subsystem\n", ss->name);
5175 break;
5179 return 1;
5181 __setup("cgroup_disable=", cgroup_disable);
5184 * Functons for CSS ID.
5188 *To get ID other than 0, this should be called when !cgroup_is_removed().
5190 unsigned short css_id(struct cgroup_subsys_state *css)
5192 struct css_id *cssid;
5195 * This css_id() can return correct value when somone has refcnt
5196 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5197 * it's unchanged until freed.
5199 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5201 if (cssid)
5202 return cssid->id;
5203 return 0;
5205 EXPORT_SYMBOL_GPL(css_id);
5207 unsigned short css_depth(struct cgroup_subsys_state *css)
5209 struct css_id *cssid;
5211 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5213 if (cssid)
5214 return cssid->depth;
5215 return 0;
5217 EXPORT_SYMBOL_GPL(css_depth);
5220 * css_is_ancestor - test "root" css is an ancestor of "child"
5221 * @child: the css to be tested.
5222 * @root: the css supporsed to be an ancestor of the child.
5224 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5225 * this function reads css->id, the caller must hold rcu_read_lock().
5226 * But, considering usual usage, the csses should be valid objects after test.
5227 * Assuming that the caller will do some action to the child if this returns
5228 * returns true, the caller must take "child";s reference count.
5229 * If "child" is valid object and this returns true, "root" is valid, too.
5232 bool css_is_ancestor(struct cgroup_subsys_state *child,
5233 const struct cgroup_subsys_state *root)
5235 struct css_id *child_id;
5236 struct css_id *root_id;
5238 child_id = rcu_dereference(child->id);
5239 if (!child_id)
5240 return false;
5241 root_id = rcu_dereference(root->id);
5242 if (!root_id)
5243 return false;
5244 if (child_id->depth < root_id->depth)
5245 return false;
5246 if (child_id->stack[root_id->depth] != root_id->id)
5247 return false;
5248 return true;
5251 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5253 struct css_id *id = css->id;
5254 /* When this is called before css_id initialization, id can be NULL */
5255 if (!id)
5256 return;
5258 BUG_ON(!ss->use_id);
5260 rcu_assign_pointer(id->css, NULL);
5261 rcu_assign_pointer(css->id, NULL);
5262 spin_lock(&ss->id_lock);
5263 idr_remove(&ss->idr, id->id);
5264 spin_unlock(&ss->id_lock);
5265 kfree_rcu(id, rcu_head);
5267 EXPORT_SYMBOL_GPL(free_css_id);
5270 * This is called by init or create(). Then, calls to this function are
5271 * always serialized (By cgroup_mutex() at create()).
5274 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5276 struct css_id *newid;
5277 int myid, error, size;
5279 BUG_ON(!ss->use_id);
5281 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5282 newid = kzalloc(size, GFP_KERNEL);
5283 if (!newid)
5284 return ERR_PTR(-ENOMEM);
5285 /* get id */
5286 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5287 error = -ENOMEM;
5288 goto err_out;
5290 spin_lock(&ss->id_lock);
5291 /* Don't use 0. allocates an ID of 1-65535 */
5292 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5293 spin_unlock(&ss->id_lock);
5295 /* Returns error when there are no free spaces for new ID.*/
5296 if (error) {
5297 error = -ENOSPC;
5298 goto err_out;
5300 if (myid > CSS_ID_MAX)
5301 goto remove_idr;
5303 newid->id = myid;
5304 newid->depth = depth;
5305 return newid;
5306 remove_idr:
5307 error = -ENOSPC;
5308 spin_lock(&ss->id_lock);
5309 idr_remove(&ss->idr, myid);
5310 spin_unlock(&ss->id_lock);
5311 err_out:
5312 kfree(newid);
5313 return ERR_PTR(error);
5317 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5318 struct cgroup_subsys_state *rootcss)
5320 struct css_id *newid;
5322 spin_lock_init(&ss->id_lock);
5323 idr_init(&ss->idr);
5325 newid = get_new_cssid(ss, 0);
5326 if (IS_ERR(newid))
5327 return PTR_ERR(newid);
5329 newid->stack[0] = newid->id;
5330 newid->css = rootcss;
5331 rootcss->id = newid;
5332 return 0;
5335 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5336 struct cgroup *child)
5338 int subsys_id, i, depth = 0;
5339 struct cgroup_subsys_state *parent_css, *child_css;
5340 struct css_id *child_id, *parent_id;
5342 subsys_id = ss->subsys_id;
5343 parent_css = parent->subsys[subsys_id];
5344 child_css = child->subsys[subsys_id];
5345 parent_id = parent_css->id;
5346 depth = parent_id->depth + 1;
5348 child_id = get_new_cssid(ss, depth);
5349 if (IS_ERR(child_id))
5350 return PTR_ERR(child_id);
5352 for (i = 0; i < depth; i++)
5353 child_id->stack[i] = parent_id->stack[i];
5354 child_id->stack[depth] = child_id->id;
5356 * child_id->css pointer will be set after this cgroup is available
5357 * see cgroup_populate_dir()
5359 rcu_assign_pointer(child_css->id, child_id);
5361 return 0;
5365 * css_lookup - lookup css by id
5366 * @ss: cgroup subsys to be looked into.
5367 * @id: the id
5369 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5370 * NULL if not. Should be called under rcu_read_lock()
5372 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5374 struct css_id *cssid = NULL;
5376 BUG_ON(!ss->use_id);
5377 cssid = idr_find(&ss->idr, id);
5379 if (unlikely(!cssid))
5380 return NULL;
5382 return rcu_dereference(cssid->css);
5384 EXPORT_SYMBOL_GPL(css_lookup);
5387 * css_get_next - lookup next cgroup under specified hierarchy.
5388 * @ss: pointer to subsystem
5389 * @id: current position of iteration.
5390 * @root: pointer to css. search tree under this.
5391 * @foundid: position of found object.
5393 * Search next css under the specified hierarchy of rootid. Calling under
5394 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5396 struct cgroup_subsys_state *
5397 css_get_next(struct cgroup_subsys *ss, int id,
5398 struct cgroup_subsys_state *root, int *foundid)
5400 struct cgroup_subsys_state *ret = NULL;
5401 struct css_id *tmp;
5402 int tmpid;
5403 int rootid = css_id(root);
5404 int depth = css_depth(root);
5406 if (!rootid)
5407 return NULL;
5409 BUG_ON(!ss->use_id);
5410 WARN_ON_ONCE(!rcu_read_lock_held());
5412 /* fill start point for scan */
5413 tmpid = id;
5414 while (1) {
5416 * scan next entry from bitmap(tree), tmpid is updated after
5417 * idr_get_next().
5419 tmp = idr_get_next(&ss->idr, &tmpid);
5420 if (!tmp)
5421 break;
5422 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5423 ret = rcu_dereference(tmp->css);
5424 if (ret) {
5425 *foundid = tmpid;
5426 break;
5429 /* continue to scan from next id */
5430 tmpid = tmpid + 1;
5432 return ret;
5436 * get corresponding css from file open on cgroupfs directory
5438 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5440 struct cgroup *cgrp;
5441 struct inode *inode;
5442 struct cgroup_subsys_state *css;
5444 inode = f->f_dentry->d_inode;
5445 /* check in cgroup filesystem dir */
5446 if (inode->i_op != &cgroup_dir_inode_operations)
5447 return ERR_PTR(-EBADF);
5449 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5450 return ERR_PTR(-EINVAL);
5452 /* get cgroup */
5453 cgrp = __d_cgrp(f->f_dentry);
5454 css = cgrp->subsys[id];
5455 return css ? css : ERR_PTR(-ENOENT);
5458 #ifdef CONFIG_CGROUP_DEBUG
5459 static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
5461 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5463 if (!css)
5464 return ERR_PTR(-ENOMEM);
5466 return css;
5469 static void debug_css_free(struct cgroup *cont)
5471 kfree(cont->subsys[debug_subsys_id]);
5474 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5476 return atomic_read(&cont->count);
5479 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5481 return cgroup_task_count(cont);
5484 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5486 return (u64)(unsigned long)current->cgroups;
5489 static u64 current_css_set_refcount_read(struct cgroup *cont,
5490 struct cftype *cft)
5492 u64 count;
5494 rcu_read_lock();
5495 count = atomic_read(&current->cgroups->refcount);
5496 rcu_read_unlock();
5497 return count;
5500 static int current_css_set_cg_links_read(struct cgroup *cont,
5501 struct cftype *cft,
5502 struct seq_file *seq)
5504 struct cg_cgroup_link *link;
5505 struct css_set *cg;
5507 read_lock(&css_set_lock);
5508 rcu_read_lock();
5509 cg = rcu_dereference(current->cgroups);
5510 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5511 struct cgroup *c = link->cgrp;
5512 const char *name;
5514 if (c->dentry)
5515 name = c->dentry->d_name.name;
5516 else
5517 name = "?";
5518 seq_printf(seq, "Root %d group %s\n",
5519 c->root->hierarchy_id, name);
5521 rcu_read_unlock();
5522 read_unlock(&css_set_lock);
5523 return 0;
5526 #define MAX_TASKS_SHOWN_PER_CSS 25
5527 static int cgroup_css_links_read(struct cgroup *cont,
5528 struct cftype *cft,
5529 struct seq_file *seq)
5531 struct cg_cgroup_link *link;
5533 read_lock(&css_set_lock);
5534 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5535 struct css_set *cg = link->cg;
5536 struct task_struct *task;
5537 int count = 0;
5538 seq_printf(seq, "css_set %p\n", cg);
5539 list_for_each_entry(task, &cg->tasks, cg_list) {
5540 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5541 seq_puts(seq, " ...\n");
5542 break;
5543 } else {
5544 seq_printf(seq, " task %d\n",
5545 task_pid_vnr(task));
5549 read_unlock(&css_set_lock);
5550 return 0;
5553 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5555 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5558 static struct cftype debug_files[] = {
5560 .name = "cgroup_refcount",
5561 .read_u64 = cgroup_refcount_read,
5564 .name = "taskcount",
5565 .read_u64 = debug_taskcount_read,
5569 .name = "current_css_set",
5570 .read_u64 = current_css_set_read,
5574 .name = "current_css_set_refcount",
5575 .read_u64 = current_css_set_refcount_read,
5579 .name = "current_css_set_cg_links",
5580 .read_seq_string = current_css_set_cg_links_read,
5584 .name = "cgroup_css_links",
5585 .read_seq_string = cgroup_css_links_read,
5589 .name = "releasable",
5590 .read_u64 = releasable_read,
5593 { } /* terminate */
5596 struct cgroup_subsys debug_subsys = {
5597 .name = "debug",
5598 .css_alloc = debug_css_alloc,
5599 .css_free = debug_css_free,
5600 .subsys_id = debug_subsys_id,
5601 .base_cftypes = debug_files,
5603 #endif /* CONFIG_CGROUP_DEBUG */