3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
121 #include <net/sock.h>
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
127 #include <trace/events/kmem.h>
129 #include "internal.h"
132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
133 * 0 for faster, smaller code (especially in the critical paths).
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 #ifdef CONFIG_DEBUG_SLAB
144 #define FORCED_DEBUG 1
148 #define FORCED_DEBUG 0
151 /* Shouldn't this be in a header file somewhere? */
152 #define BYTES_PER_WORD sizeof(void *)
153 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 #ifndef ARCH_KMALLOC_FLAGS
156 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 * true if a page was allocated from pfmemalloc reserves for network-based
163 static bool pfmemalloc_active __read_mostly
;
165 /* Legal flag mask for kmem_cache_create(). */
167 # define CREATE_MASK (SLAB_RED_ZONE | \
168 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
171 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
172 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
173 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
175 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
179 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
185 * Bufctl's are used for linking objs within a slab
188 * This implementation relies on "struct page" for locating the cache &
189 * slab an object belongs to.
190 * This allows the bufctl structure to be small (one int), but limits
191 * the number of objects a slab (not a cache) can contain when off-slab
192 * bufctls are used. The limit is the size of the largest general cache
193 * that does not use off-slab slabs.
194 * For 32bit archs with 4 kB pages, is this 56.
195 * This is not serious, as it is only for large objects, when it is unwise
196 * to have too many per slab.
197 * Note: This limit can be raised by introducing a general cache whose size
198 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
201 typedef unsigned int kmem_bufctl_t
;
202 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
203 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
204 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
205 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
210 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
211 * arrange for kmem_freepages to be called via RCU. This is useful if
212 * we need to approach a kernel structure obliquely, from its address
213 * obtained without the usual locking. We can lock the structure to
214 * stabilize it and check it's still at the given address, only if we
215 * can be sure that the memory has not been meanwhile reused for some
216 * other kind of object (which our subsystem's lock might corrupt).
218 * rcu_read_lock before reading the address, then rcu_read_unlock after
219 * taking the spinlock within the structure expected at that address.
222 struct rcu_head head
;
223 struct kmem_cache
*cachep
;
230 * Manages the objs in a slab. Placed either at the beginning of mem allocated
231 * for a slab, or allocated from an general cache.
232 * Slabs are chained into three list: fully used, partial, fully free slabs.
237 struct list_head list
;
238 unsigned long colouroff
;
239 void *s_mem
; /* including colour offset */
240 unsigned int inuse
; /* num of objs active in slab */
242 unsigned short nodeid
;
244 struct slab_rcu __slab_cover_slab_rcu
;
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
256 * The limit is stored in the per-cpu structure to reduce the data cache
263 unsigned int batchcount
;
264 unsigned int touched
;
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
271 * Entries should not be directly dereferenced as
272 * entries belonging to slabs marked pfmemalloc will
273 * have the lower bits set SLAB_OBJ_PFMEMALLOC
277 #define SLAB_OBJ_PFMEMALLOC 1
278 static inline bool is_obj_pfmemalloc(void *objp
)
280 return (unsigned long)objp
& SLAB_OBJ_PFMEMALLOC
;
283 static inline void set_obj_pfmemalloc(void **objp
)
285 *objp
= (void *)((unsigned long)*objp
| SLAB_OBJ_PFMEMALLOC
);
289 static inline void clear_obj_pfmemalloc(void **objp
)
291 *objp
= (void *)((unsigned long)*objp
& ~SLAB_OBJ_PFMEMALLOC
);
295 * bootstrap: The caches do not work without cpuarrays anymore, but the
296 * cpuarrays are allocated from the generic caches...
298 #define BOOT_CPUCACHE_ENTRIES 1
299 struct arraycache_init
{
300 struct array_cache cache
;
301 void *entries
[BOOT_CPUCACHE_ENTRIES
];
305 * The slab lists for all objects.
308 struct list_head slabs_partial
; /* partial list first, better asm code */
309 struct list_head slabs_full
;
310 struct list_head slabs_free
;
311 unsigned long free_objects
;
312 unsigned int free_limit
;
313 unsigned int colour_next
; /* Per-node cache coloring */
314 spinlock_t list_lock
;
315 struct array_cache
*shared
; /* shared per node */
316 struct array_cache
**alien
; /* on other nodes */
317 unsigned long next_reap
; /* updated without locking */
318 int free_touched
; /* updated without locking */
322 * Need this for bootstrapping a per node allocator.
324 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
325 static struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
326 #define CACHE_CACHE 0
327 #define SIZE_AC MAX_NUMNODES
328 #define SIZE_L3 (2 * MAX_NUMNODES)
330 static int drain_freelist(struct kmem_cache
*cache
,
331 struct kmem_list3
*l3
, int tofree
);
332 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
334 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
335 static void cache_reap(struct work_struct
*unused
);
338 * This function must be completely optimized away if a constant is passed to
339 * it. Mostly the same as what is in linux/slab.h except it returns an index.
341 static __always_inline
int index_of(const size_t size
)
343 extern void __bad_size(void);
345 if (__builtin_constant_p(size
)) {
353 #include <linux/kmalloc_sizes.h>
361 static int slab_early_init
= 1;
363 #define INDEX_AC index_of(sizeof(struct arraycache_init))
364 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
366 static void kmem_list3_init(struct kmem_list3
*parent
)
368 INIT_LIST_HEAD(&parent
->slabs_full
);
369 INIT_LIST_HEAD(&parent
->slabs_partial
);
370 INIT_LIST_HEAD(&parent
->slabs_free
);
371 parent
->shared
= NULL
;
372 parent
->alien
= NULL
;
373 parent
->colour_next
= 0;
374 spin_lock_init(&parent
->list_lock
);
375 parent
->free_objects
= 0;
376 parent
->free_touched
= 0;
379 #define MAKE_LIST(cachep, listp, slab, nodeid) \
381 INIT_LIST_HEAD(listp); \
382 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
385 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
387 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
388 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
389 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
392 #define CFLGS_OFF_SLAB (0x80000000UL)
393 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
395 #define BATCHREFILL_LIMIT 16
397 * Optimization question: fewer reaps means less probability for unnessary
398 * cpucache drain/refill cycles.
400 * OTOH the cpuarrays can contain lots of objects,
401 * which could lock up otherwise freeable slabs.
403 #define REAPTIMEOUT_CPUC (2*HZ)
404 #define REAPTIMEOUT_LIST3 (4*HZ)
407 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
408 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
409 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
410 #define STATS_INC_GROWN(x) ((x)->grown++)
411 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
412 #define STATS_SET_HIGH(x) \
414 if ((x)->num_active > (x)->high_mark) \
415 (x)->high_mark = (x)->num_active; \
417 #define STATS_INC_ERR(x) ((x)->errors++)
418 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
419 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
420 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
421 #define STATS_SET_FREEABLE(x, i) \
423 if ((x)->max_freeable < i) \
424 (x)->max_freeable = i; \
426 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
427 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
428 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
429 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
431 #define STATS_INC_ACTIVE(x) do { } while (0)
432 #define STATS_DEC_ACTIVE(x) do { } while (0)
433 #define STATS_INC_ALLOCED(x) do { } while (0)
434 #define STATS_INC_GROWN(x) do { } while (0)
435 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
436 #define STATS_SET_HIGH(x) do { } while (0)
437 #define STATS_INC_ERR(x) do { } while (0)
438 #define STATS_INC_NODEALLOCS(x) do { } while (0)
439 #define STATS_INC_NODEFREES(x) do { } while (0)
440 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
441 #define STATS_SET_FREEABLE(x, i) do { } while (0)
442 #define STATS_INC_ALLOCHIT(x) do { } while (0)
443 #define STATS_INC_ALLOCMISS(x) do { } while (0)
444 #define STATS_INC_FREEHIT(x) do { } while (0)
445 #define STATS_INC_FREEMISS(x) do { } while (0)
451 * memory layout of objects:
453 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
454 * the end of an object is aligned with the end of the real
455 * allocation. Catches writes behind the end of the allocation.
456 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
458 * cachep->obj_offset: The real object.
459 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
460 * cachep->size - 1* BYTES_PER_WORD: last caller address
461 * [BYTES_PER_WORD long]
463 static int obj_offset(struct kmem_cache
*cachep
)
465 return cachep
->obj_offset
;
468 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
470 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
471 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
472 sizeof(unsigned long long));
475 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
477 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
478 if (cachep
->flags
& SLAB_STORE_USER
)
479 return (unsigned long long *)(objp
+ cachep
->size
-
480 sizeof(unsigned long long) -
482 return (unsigned long long *) (objp
+ cachep
->size
-
483 sizeof(unsigned long long));
486 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
488 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
489 return (void **)(objp
+ cachep
->size
- BYTES_PER_WORD
);
494 #define obj_offset(x) 0
495 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
496 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
497 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
502 * Do not go above this order unless 0 objects fit into the slab or
503 * overridden on the command line.
505 #define SLAB_MAX_ORDER_HI 1
506 #define SLAB_MAX_ORDER_LO 0
507 static int slab_max_order
= SLAB_MAX_ORDER_LO
;
508 static bool slab_max_order_set __initdata
;
510 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
512 struct page
*page
= virt_to_head_page(obj
);
513 return page
->slab_cache
;
516 static inline struct slab
*virt_to_slab(const void *obj
)
518 struct page
*page
= virt_to_head_page(obj
);
520 VM_BUG_ON(!PageSlab(page
));
521 return page
->slab_page
;
524 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
527 return slab
->s_mem
+ cache
->size
* idx
;
531 * We want to avoid an expensive divide : (offset / cache->size)
532 * Using the fact that size is a constant for a particular cache,
533 * we can replace (offset / cache->size) by
534 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
536 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
537 const struct slab
*slab
, void *obj
)
539 u32 offset
= (obj
- slab
->s_mem
);
540 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
544 * These are the default caches for kmalloc. Custom caches can have other sizes.
546 struct cache_sizes malloc_sizes
[] = {
547 #define CACHE(x) { .cs_size = (x) },
548 #include <linux/kmalloc_sizes.h>
552 EXPORT_SYMBOL(malloc_sizes
);
554 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
560 static struct cache_names __initdata cache_names
[] = {
561 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
562 #include <linux/kmalloc_sizes.h>
567 static struct arraycache_init initarray_cache __initdata
=
568 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
569 static struct arraycache_init initarray_generic
=
570 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
572 /* internal cache of cache description objs */
573 static struct kmem_list3
*kmem_cache_nodelists
[MAX_NUMNODES
];
574 static struct kmem_cache kmem_cache_boot
= {
575 .nodelists
= kmem_cache_nodelists
,
577 .limit
= BOOT_CPUCACHE_ENTRIES
,
579 .size
= sizeof(struct kmem_cache
),
580 .name
= "kmem_cache",
583 #define BAD_ALIEN_MAGIC 0x01020304ul
585 #ifdef CONFIG_LOCKDEP
588 * Slab sometimes uses the kmalloc slabs to store the slab headers
589 * for other slabs "off slab".
590 * The locking for this is tricky in that it nests within the locks
591 * of all other slabs in a few places; to deal with this special
592 * locking we put on-slab caches into a separate lock-class.
594 * We set lock class for alien array caches which are up during init.
595 * The lock annotation will be lost if all cpus of a node goes down and
596 * then comes back up during hotplug
598 static struct lock_class_key on_slab_l3_key
;
599 static struct lock_class_key on_slab_alc_key
;
601 static struct lock_class_key debugobj_l3_key
;
602 static struct lock_class_key debugobj_alc_key
;
604 static void slab_set_lock_classes(struct kmem_cache
*cachep
,
605 struct lock_class_key
*l3_key
, struct lock_class_key
*alc_key
,
608 struct array_cache
**alc
;
609 struct kmem_list3
*l3
;
612 l3
= cachep
->nodelists
[q
];
616 lockdep_set_class(&l3
->list_lock
, l3_key
);
619 * FIXME: This check for BAD_ALIEN_MAGIC
620 * should go away when common slab code is taught to
621 * work even without alien caches.
622 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
623 * for alloc_alien_cache,
625 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
629 lockdep_set_class(&alc
[r
]->lock
, alc_key
);
633 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
635 slab_set_lock_classes(cachep
, &debugobj_l3_key
, &debugobj_alc_key
, node
);
638 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
642 for_each_online_node(node
)
643 slab_set_debugobj_lock_classes_node(cachep
, node
);
646 static void init_node_lock_keys(int q
)
648 struct cache_sizes
*s
= malloc_sizes
;
653 for (s
= malloc_sizes
; s
->cs_size
!= ULONG_MAX
; s
++) {
654 struct kmem_list3
*l3
;
656 l3
= s
->cs_cachep
->nodelists
[q
];
657 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
660 slab_set_lock_classes(s
->cs_cachep
, &on_slab_l3_key
,
661 &on_slab_alc_key
, q
);
665 static inline void init_lock_keys(void)
670 init_node_lock_keys(node
);
673 static void init_node_lock_keys(int q
)
677 static inline void init_lock_keys(void)
681 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
685 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
690 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
692 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
694 return cachep
->array
[smp_processor_id()];
697 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
700 struct cache_sizes
*csizep
= malloc_sizes
;
703 /* This happens if someone tries to call
704 * kmem_cache_create(), or __kmalloc(), before
705 * the generic caches are initialized.
707 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
710 return ZERO_SIZE_PTR
;
712 while (size
> csizep
->cs_size
)
716 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
717 * has cs_{dma,}cachep==NULL. Thus no special case
718 * for large kmalloc calls required.
720 #ifdef CONFIG_ZONE_DMA
721 if (unlikely(gfpflags
& GFP_DMA
))
722 return csizep
->cs_dmacachep
;
724 return csizep
->cs_cachep
;
727 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
729 return __find_general_cachep(size
, gfpflags
);
732 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
734 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
738 * Calculate the number of objects and left-over bytes for a given buffer size.
740 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
741 size_t align
, int flags
, size_t *left_over
,
746 size_t slab_size
= PAGE_SIZE
<< gfporder
;
749 * The slab management structure can be either off the slab or
750 * on it. For the latter case, the memory allocated for a
754 * - One kmem_bufctl_t for each object
755 * - Padding to respect alignment of @align
756 * - @buffer_size bytes for each object
758 * If the slab management structure is off the slab, then the
759 * alignment will already be calculated into the size. Because
760 * the slabs are all pages aligned, the objects will be at the
761 * correct alignment when allocated.
763 if (flags
& CFLGS_OFF_SLAB
) {
765 nr_objs
= slab_size
/ buffer_size
;
767 if (nr_objs
> SLAB_LIMIT
)
768 nr_objs
= SLAB_LIMIT
;
771 * Ignore padding for the initial guess. The padding
772 * is at most @align-1 bytes, and @buffer_size is at
773 * least @align. In the worst case, this result will
774 * be one greater than the number of objects that fit
775 * into the memory allocation when taking the padding
778 nr_objs
= (slab_size
- sizeof(struct slab
)) /
779 (buffer_size
+ sizeof(kmem_bufctl_t
));
782 * This calculated number will be either the right
783 * amount, or one greater than what we want.
785 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
789 if (nr_objs
> SLAB_LIMIT
)
790 nr_objs
= SLAB_LIMIT
;
792 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
795 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
799 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
801 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
804 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
805 function
, cachep
->name
, msg
);
807 add_taint(TAINT_BAD_PAGE
);
812 * By default on NUMA we use alien caches to stage the freeing of
813 * objects allocated from other nodes. This causes massive memory
814 * inefficiencies when using fake NUMA setup to split memory into a
815 * large number of small nodes, so it can be disabled on the command
819 static int use_alien_caches __read_mostly
= 1;
820 static int __init
noaliencache_setup(char *s
)
822 use_alien_caches
= 0;
825 __setup("noaliencache", noaliencache_setup
);
827 static int __init
slab_max_order_setup(char *str
)
829 get_option(&str
, &slab_max_order
);
830 slab_max_order
= slab_max_order
< 0 ? 0 :
831 min(slab_max_order
, MAX_ORDER
- 1);
832 slab_max_order_set
= true;
836 __setup("slab_max_order=", slab_max_order_setup
);
840 * Special reaping functions for NUMA systems called from cache_reap().
841 * These take care of doing round robin flushing of alien caches (containing
842 * objects freed on different nodes from which they were allocated) and the
843 * flushing of remote pcps by calling drain_node_pages.
845 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
847 static void init_reap_node(int cpu
)
851 node
= next_node(cpu_to_mem(cpu
), node_online_map
);
852 if (node
== MAX_NUMNODES
)
853 node
= first_node(node_online_map
);
855 per_cpu(slab_reap_node
, cpu
) = node
;
858 static void next_reap_node(void)
860 int node
= __this_cpu_read(slab_reap_node
);
862 node
= next_node(node
, node_online_map
);
863 if (unlikely(node
>= MAX_NUMNODES
))
864 node
= first_node(node_online_map
);
865 __this_cpu_write(slab_reap_node
, node
);
869 #define init_reap_node(cpu) do { } while (0)
870 #define next_reap_node(void) do { } while (0)
874 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
875 * via the workqueue/eventd.
876 * Add the CPU number into the expiration time to minimize the possibility of
877 * the CPUs getting into lockstep and contending for the global cache chain
880 static void __cpuinit
start_cpu_timer(int cpu
)
882 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
885 * When this gets called from do_initcalls via cpucache_init(),
886 * init_workqueues() has already run, so keventd will be setup
889 if (keventd_up() && reap_work
->work
.func
== NULL
) {
891 INIT_DEFERRABLE_WORK(reap_work
, cache_reap
);
892 schedule_delayed_work_on(cpu
, reap_work
,
893 __round_jiffies_relative(HZ
, cpu
));
897 static struct array_cache
*alloc_arraycache(int node
, int entries
,
898 int batchcount
, gfp_t gfp
)
900 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
901 struct array_cache
*nc
= NULL
;
903 nc
= kmalloc_node(memsize
, gfp
, node
);
905 * The array_cache structures contain pointers to free object.
906 * However, when such objects are allocated or transferred to another
907 * cache the pointers are not cleared and they could be counted as
908 * valid references during a kmemleak scan. Therefore, kmemleak must
909 * not scan such objects.
911 kmemleak_no_scan(nc
);
915 nc
->batchcount
= batchcount
;
917 spin_lock_init(&nc
->lock
);
922 static inline bool is_slab_pfmemalloc(struct slab
*slabp
)
924 struct page
*page
= virt_to_page(slabp
->s_mem
);
926 return PageSlabPfmemalloc(page
);
929 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
930 static void recheck_pfmemalloc_active(struct kmem_cache
*cachep
,
931 struct array_cache
*ac
)
933 struct kmem_list3
*l3
= cachep
->nodelists
[numa_mem_id()];
937 if (!pfmemalloc_active
)
940 spin_lock_irqsave(&l3
->list_lock
, flags
);
941 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
942 if (is_slab_pfmemalloc(slabp
))
945 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
946 if (is_slab_pfmemalloc(slabp
))
949 list_for_each_entry(slabp
, &l3
->slabs_free
, list
)
950 if (is_slab_pfmemalloc(slabp
))
953 pfmemalloc_active
= false;
955 spin_unlock_irqrestore(&l3
->list_lock
, flags
);
958 static void *__ac_get_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
959 gfp_t flags
, bool force_refill
)
962 void *objp
= ac
->entry
[--ac
->avail
];
964 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
965 if (unlikely(is_obj_pfmemalloc(objp
))) {
966 struct kmem_list3
*l3
;
968 if (gfp_pfmemalloc_allowed(flags
)) {
969 clear_obj_pfmemalloc(&objp
);
973 /* The caller cannot use PFMEMALLOC objects, find another one */
974 for (i
= 0; i
< ac
->avail
; i
++) {
975 /* If a !PFMEMALLOC object is found, swap them */
976 if (!is_obj_pfmemalloc(ac
->entry
[i
])) {
978 ac
->entry
[i
] = ac
->entry
[ac
->avail
];
979 ac
->entry
[ac
->avail
] = objp
;
985 * If there are empty slabs on the slabs_free list and we are
986 * being forced to refill the cache, mark this one !pfmemalloc.
988 l3
= cachep
->nodelists
[numa_mem_id()];
989 if (!list_empty(&l3
->slabs_free
) && force_refill
) {
990 struct slab
*slabp
= virt_to_slab(objp
);
991 ClearPageSlabPfmemalloc(virt_to_head_page(slabp
->s_mem
));
992 clear_obj_pfmemalloc(&objp
);
993 recheck_pfmemalloc_active(cachep
, ac
);
997 /* No !PFMEMALLOC objects available */
1005 static inline void *ac_get_obj(struct kmem_cache
*cachep
,
1006 struct array_cache
*ac
, gfp_t flags
, bool force_refill
)
1010 if (unlikely(sk_memalloc_socks()))
1011 objp
= __ac_get_obj(cachep
, ac
, flags
, force_refill
);
1013 objp
= ac
->entry
[--ac
->avail
];
1018 static void *__ac_put_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
1021 if (unlikely(pfmemalloc_active
)) {
1022 /* Some pfmemalloc slabs exist, check if this is one */
1023 struct page
*page
= virt_to_head_page(objp
);
1024 if (PageSlabPfmemalloc(page
))
1025 set_obj_pfmemalloc(&objp
);
1031 static inline void ac_put_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
1034 if (unlikely(sk_memalloc_socks()))
1035 objp
= __ac_put_obj(cachep
, ac
, objp
);
1037 ac
->entry
[ac
->avail
++] = objp
;
1041 * Transfer objects in one arraycache to another.
1042 * Locking must be handled by the caller.
1044 * Return the number of entries transferred.
1046 static int transfer_objects(struct array_cache
*to
,
1047 struct array_cache
*from
, unsigned int max
)
1049 /* Figure out how many entries to transfer */
1050 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
1055 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
1056 sizeof(void *) *nr
);
1065 #define drain_alien_cache(cachep, alien) do { } while (0)
1066 #define reap_alien(cachep, l3) do { } while (0)
1068 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
1070 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
1073 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1077 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1082 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1088 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1089 gfp_t flags
, int nodeid
)
1094 #else /* CONFIG_NUMA */
1096 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1097 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1099 static struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
1101 struct array_cache
**ac_ptr
;
1102 int memsize
= sizeof(void *) * nr_node_ids
;
1107 ac_ptr
= kzalloc_node(memsize
, gfp
, node
);
1110 if (i
== node
|| !node_online(i
))
1112 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d, gfp
);
1114 for (i
--; i
>= 0; i
--)
1124 static void free_alien_cache(struct array_cache
**ac_ptr
)
1135 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1136 struct array_cache
*ac
, int node
)
1138 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1141 spin_lock(&rl3
->list_lock
);
1143 * Stuff objects into the remote nodes shared array first.
1144 * That way we could avoid the overhead of putting the objects
1145 * into the free lists and getting them back later.
1148 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1150 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1152 spin_unlock(&rl3
->list_lock
);
1157 * Called from cache_reap() to regularly drain alien caches round robin.
1159 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1161 int node
= __this_cpu_read(slab_reap_node
);
1164 struct array_cache
*ac
= l3
->alien
[node
];
1166 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1167 __drain_alien_cache(cachep
, ac
, node
);
1168 spin_unlock_irq(&ac
->lock
);
1173 static void drain_alien_cache(struct kmem_cache
*cachep
,
1174 struct array_cache
**alien
)
1177 struct array_cache
*ac
;
1178 unsigned long flags
;
1180 for_each_online_node(i
) {
1183 spin_lock_irqsave(&ac
->lock
, flags
);
1184 __drain_alien_cache(cachep
, ac
, i
);
1185 spin_unlock_irqrestore(&ac
->lock
, flags
);
1190 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1192 struct slab
*slabp
= virt_to_slab(objp
);
1193 int nodeid
= slabp
->nodeid
;
1194 struct kmem_list3
*l3
;
1195 struct array_cache
*alien
= NULL
;
1198 node
= numa_mem_id();
1201 * Make sure we are not freeing a object from another node to the array
1202 * cache on this cpu.
1204 if (likely(slabp
->nodeid
== node
))
1207 l3
= cachep
->nodelists
[node
];
1208 STATS_INC_NODEFREES(cachep
);
1209 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1210 alien
= l3
->alien
[nodeid
];
1211 spin_lock(&alien
->lock
);
1212 if (unlikely(alien
->avail
== alien
->limit
)) {
1213 STATS_INC_ACOVERFLOW(cachep
);
1214 __drain_alien_cache(cachep
, alien
, nodeid
);
1216 ac_put_obj(cachep
, alien
, objp
);
1217 spin_unlock(&alien
->lock
);
1219 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1220 free_block(cachep
, &objp
, 1, nodeid
);
1221 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1228 * Allocates and initializes nodelists for a node on each slab cache, used for
1229 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1230 * will be allocated off-node since memory is not yet online for the new node.
1231 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1234 * Must hold slab_mutex.
1236 static int init_cache_nodelists_node(int node
)
1238 struct kmem_cache
*cachep
;
1239 struct kmem_list3
*l3
;
1240 const int memsize
= sizeof(struct kmem_list3
);
1242 list_for_each_entry(cachep
, &slab_caches
, list
) {
1244 * Set up the size64 kmemlist for cpu before we can
1245 * begin anything. Make sure some other cpu on this
1246 * node has not already allocated this
1248 if (!cachep
->nodelists
[node
]) {
1249 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1252 kmem_list3_init(l3
);
1253 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1254 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1257 * The l3s don't come and go as CPUs come and
1258 * go. slab_mutex is sufficient
1261 cachep
->nodelists
[node
] = l3
;
1264 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1265 cachep
->nodelists
[node
]->free_limit
=
1266 (1 + nr_cpus_node(node
)) *
1267 cachep
->batchcount
+ cachep
->num
;
1268 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1273 static void __cpuinit
cpuup_canceled(long cpu
)
1275 struct kmem_cache
*cachep
;
1276 struct kmem_list3
*l3
= NULL
;
1277 int node
= cpu_to_mem(cpu
);
1278 const struct cpumask
*mask
= cpumask_of_node(node
);
1280 list_for_each_entry(cachep
, &slab_caches
, list
) {
1281 struct array_cache
*nc
;
1282 struct array_cache
*shared
;
1283 struct array_cache
**alien
;
1285 /* cpu is dead; no one can alloc from it. */
1286 nc
= cachep
->array
[cpu
];
1287 cachep
->array
[cpu
] = NULL
;
1288 l3
= cachep
->nodelists
[node
];
1291 goto free_array_cache
;
1293 spin_lock_irq(&l3
->list_lock
);
1295 /* Free limit for this kmem_list3 */
1296 l3
->free_limit
-= cachep
->batchcount
;
1298 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1300 if (!cpumask_empty(mask
)) {
1301 spin_unlock_irq(&l3
->list_lock
);
1302 goto free_array_cache
;
1305 shared
= l3
->shared
;
1307 free_block(cachep
, shared
->entry
,
1308 shared
->avail
, node
);
1315 spin_unlock_irq(&l3
->list_lock
);
1319 drain_alien_cache(cachep
, alien
);
1320 free_alien_cache(alien
);
1326 * In the previous loop, all the objects were freed to
1327 * the respective cache's slabs, now we can go ahead and
1328 * shrink each nodelist to its limit.
1330 list_for_each_entry(cachep
, &slab_caches
, list
) {
1331 l3
= cachep
->nodelists
[node
];
1334 drain_freelist(cachep
, l3
, l3
->free_objects
);
1338 static int __cpuinit
cpuup_prepare(long cpu
)
1340 struct kmem_cache
*cachep
;
1341 struct kmem_list3
*l3
= NULL
;
1342 int node
= cpu_to_mem(cpu
);
1346 * We need to do this right in the beginning since
1347 * alloc_arraycache's are going to use this list.
1348 * kmalloc_node allows us to add the slab to the right
1349 * kmem_list3 and not this cpu's kmem_list3
1351 err
= init_cache_nodelists_node(node
);
1356 * Now we can go ahead with allocating the shared arrays and
1359 list_for_each_entry(cachep
, &slab_caches
, list
) {
1360 struct array_cache
*nc
;
1361 struct array_cache
*shared
= NULL
;
1362 struct array_cache
**alien
= NULL
;
1364 nc
= alloc_arraycache(node
, cachep
->limit
,
1365 cachep
->batchcount
, GFP_KERNEL
);
1368 if (cachep
->shared
) {
1369 shared
= alloc_arraycache(node
,
1370 cachep
->shared
* cachep
->batchcount
,
1371 0xbaadf00d, GFP_KERNEL
);
1377 if (use_alien_caches
) {
1378 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1385 cachep
->array
[cpu
] = nc
;
1386 l3
= cachep
->nodelists
[node
];
1389 spin_lock_irq(&l3
->list_lock
);
1392 * We are serialised from CPU_DEAD or
1393 * CPU_UP_CANCELLED by the cpucontrol lock
1395 l3
->shared
= shared
;
1404 spin_unlock_irq(&l3
->list_lock
);
1406 free_alien_cache(alien
);
1407 if (cachep
->flags
& SLAB_DEBUG_OBJECTS
)
1408 slab_set_debugobj_lock_classes_node(cachep
, node
);
1410 init_node_lock_keys(node
);
1414 cpuup_canceled(cpu
);
1418 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1419 unsigned long action
, void *hcpu
)
1421 long cpu
= (long)hcpu
;
1425 case CPU_UP_PREPARE
:
1426 case CPU_UP_PREPARE_FROZEN
:
1427 mutex_lock(&slab_mutex
);
1428 err
= cpuup_prepare(cpu
);
1429 mutex_unlock(&slab_mutex
);
1432 case CPU_ONLINE_FROZEN
:
1433 start_cpu_timer(cpu
);
1435 #ifdef CONFIG_HOTPLUG_CPU
1436 case CPU_DOWN_PREPARE
:
1437 case CPU_DOWN_PREPARE_FROZEN
:
1439 * Shutdown cache reaper. Note that the slab_mutex is
1440 * held so that if cache_reap() is invoked it cannot do
1441 * anything expensive but will only modify reap_work
1442 * and reschedule the timer.
1444 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1445 /* Now the cache_reaper is guaranteed to be not running. */
1446 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1448 case CPU_DOWN_FAILED
:
1449 case CPU_DOWN_FAILED_FROZEN
:
1450 start_cpu_timer(cpu
);
1453 case CPU_DEAD_FROZEN
:
1455 * Even if all the cpus of a node are down, we don't free the
1456 * kmem_list3 of any cache. This to avoid a race between
1457 * cpu_down, and a kmalloc allocation from another cpu for
1458 * memory from the node of the cpu going down. The list3
1459 * structure is usually allocated from kmem_cache_create() and
1460 * gets destroyed at kmem_cache_destroy().
1464 case CPU_UP_CANCELED
:
1465 case CPU_UP_CANCELED_FROZEN
:
1466 mutex_lock(&slab_mutex
);
1467 cpuup_canceled(cpu
);
1468 mutex_unlock(&slab_mutex
);
1471 return notifier_from_errno(err
);
1474 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1475 &cpuup_callback
, NULL
, 0
1478 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1480 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1481 * Returns -EBUSY if all objects cannot be drained so that the node is not
1484 * Must hold slab_mutex.
1486 static int __meminit
drain_cache_nodelists_node(int node
)
1488 struct kmem_cache
*cachep
;
1491 list_for_each_entry(cachep
, &slab_caches
, list
) {
1492 struct kmem_list3
*l3
;
1494 l3
= cachep
->nodelists
[node
];
1498 drain_freelist(cachep
, l3
, l3
->free_objects
);
1500 if (!list_empty(&l3
->slabs_full
) ||
1501 !list_empty(&l3
->slabs_partial
)) {
1509 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1510 unsigned long action
, void *arg
)
1512 struct memory_notify
*mnb
= arg
;
1516 nid
= mnb
->status_change_nid
;
1521 case MEM_GOING_ONLINE
:
1522 mutex_lock(&slab_mutex
);
1523 ret
= init_cache_nodelists_node(nid
);
1524 mutex_unlock(&slab_mutex
);
1526 case MEM_GOING_OFFLINE
:
1527 mutex_lock(&slab_mutex
);
1528 ret
= drain_cache_nodelists_node(nid
);
1529 mutex_unlock(&slab_mutex
);
1533 case MEM_CANCEL_ONLINE
:
1534 case MEM_CANCEL_OFFLINE
:
1538 return notifier_from_errno(ret
);
1540 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1543 * swap the static kmem_list3 with kmalloced memory
1545 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1548 struct kmem_list3
*ptr
;
1550 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_NOWAIT
, nodeid
);
1553 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1555 * Do not assume that spinlocks can be initialized via memcpy:
1557 spin_lock_init(&ptr
->list_lock
);
1559 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1560 cachep
->nodelists
[nodeid
] = ptr
;
1564 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1565 * size of kmem_list3.
1567 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1571 for_each_online_node(node
) {
1572 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1573 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1575 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1580 * Initialisation. Called after the page allocator have been initialised and
1581 * before smp_init().
1583 void __init
kmem_cache_init(void)
1586 struct cache_sizes
*sizes
;
1587 struct cache_names
*names
;
1592 kmem_cache
= &kmem_cache_boot
;
1594 if (num_possible_nodes() == 1)
1595 use_alien_caches
= 0;
1597 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1598 kmem_list3_init(&initkmem_list3
[i
]);
1599 if (i
< MAX_NUMNODES
)
1600 kmem_cache
->nodelists
[i
] = NULL
;
1602 set_up_list3s(kmem_cache
, CACHE_CACHE
);
1605 * Fragmentation resistance on low memory - only use bigger
1606 * page orders on machines with more than 32MB of memory if
1607 * not overridden on the command line.
1609 if (!slab_max_order_set
&& totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1610 slab_max_order
= SLAB_MAX_ORDER_HI
;
1612 /* Bootstrap is tricky, because several objects are allocated
1613 * from caches that do not exist yet:
1614 * 1) initialize the kmem_cache cache: it contains the struct
1615 * kmem_cache structures of all caches, except kmem_cache itself:
1616 * kmem_cache is statically allocated.
1617 * Initially an __init data area is used for the head array and the
1618 * kmem_list3 structures, it's replaced with a kmalloc allocated
1619 * array at the end of the bootstrap.
1620 * 2) Create the first kmalloc cache.
1621 * The struct kmem_cache for the new cache is allocated normally.
1622 * An __init data area is used for the head array.
1623 * 3) Create the remaining kmalloc caches, with minimally sized
1625 * 4) Replace the __init data head arrays for kmem_cache and the first
1626 * kmalloc cache with kmalloc allocated arrays.
1627 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1628 * the other cache's with kmalloc allocated memory.
1629 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1632 node
= numa_mem_id();
1634 /* 1) create the kmem_cache */
1635 INIT_LIST_HEAD(&slab_caches
);
1636 list_add(&kmem_cache
->list
, &slab_caches
);
1637 kmem_cache
->colour_off
= cache_line_size();
1638 kmem_cache
->array
[smp_processor_id()] = &initarray_cache
.cache
;
1639 kmem_cache
->nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
+ node
];
1642 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1644 kmem_cache
->size
= offsetof(struct kmem_cache
, array
[nr_cpu_ids
]) +
1645 nr_node_ids
* sizeof(struct kmem_list3
*);
1646 kmem_cache
->object_size
= kmem_cache
->size
;
1647 kmem_cache
->size
= ALIGN(kmem_cache
->object_size
,
1649 kmem_cache
->reciprocal_buffer_size
=
1650 reciprocal_value(kmem_cache
->size
);
1652 for (order
= 0; order
< MAX_ORDER
; order
++) {
1653 cache_estimate(order
, kmem_cache
->size
,
1654 cache_line_size(), 0, &left_over
, &kmem_cache
->num
);
1655 if (kmem_cache
->num
)
1658 BUG_ON(!kmem_cache
->num
);
1659 kmem_cache
->gfporder
= order
;
1660 kmem_cache
->colour
= left_over
/ kmem_cache
->colour_off
;
1661 kmem_cache
->slab_size
= ALIGN(kmem_cache
->num
* sizeof(kmem_bufctl_t
) +
1662 sizeof(struct slab
), cache_line_size());
1664 /* 2+3) create the kmalloc caches */
1665 sizes
= malloc_sizes
;
1666 names
= cache_names
;
1669 * Initialize the caches that provide memory for the array cache and the
1670 * kmem_list3 structures first. Without this, further allocations will
1674 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
1675 sizes
[INDEX_AC
].cs_cachep
->name
= names
[INDEX_AC
].name
;
1676 sizes
[INDEX_AC
].cs_cachep
->size
= sizes
[INDEX_AC
].cs_size
;
1677 sizes
[INDEX_AC
].cs_cachep
->object_size
= sizes
[INDEX_AC
].cs_size
;
1678 sizes
[INDEX_AC
].cs_cachep
->align
= ARCH_KMALLOC_MINALIGN
;
1679 __kmem_cache_create(sizes
[INDEX_AC
].cs_cachep
, ARCH_KMALLOC_FLAGS
|SLAB_PANIC
);
1680 list_add(&sizes
[INDEX_AC
].cs_cachep
->list
, &slab_caches
);
1682 if (INDEX_AC
!= INDEX_L3
) {
1683 sizes
[INDEX_L3
].cs_cachep
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
1684 sizes
[INDEX_L3
].cs_cachep
->name
= names
[INDEX_L3
].name
;
1685 sizes
[INDEX_L3
].cs_cachep
->size
= sizes
[INDEX_L3
].cs_size
;
1686 sizes
[INDEX_L3
].cs_cachep
->object_size
= sizes
[INDEX_L3
].cs_size
;
1687 sizes
[INDEX_L3
].cs_cachep
->align
= ARCH_KMALLOC_MINALIGN
;
1688 __kmem_cache_create(sizes
[INDEX_L3
].cs_cachep
, ARCH_KMALLOC_FLAGS
|SLAB_PANIC
);
1689 list_add(&sizes
[INDEX_L3
].cs_cachep
->list
, &slab_caches
);
1692 slab_early_init
= 0;
1694 while (sizes
->cs_size
!= ULONG_MAX
) {
1696 * For performance, all the general caches are L1 aligned.
1697 * This should be particularly beneficial on SMP boxes, as it
1698 * eliminates "false sharing".
1699 * Note for systems short on memory removing the alignment will
1700 * allow tighter packing of the smaller caches.
1702 if (!sizes
->cs_cachep
) {
1703 sizes
->cs_cachep
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
1704 sizes
->cs_cachep
->name
= names
->name
;
1705 sizes
->cs_cachep
->size
= sizes
->cs_size
;
1706 sizes
->cs_cachep
->object_size
= sizes
->cs_size
;
1707 sizes
->cs_cachep
->align
= ARCH_KMALLOC_MINALIGN
;
1708 __kmem_cache_create(sizes
->cs_cachep
, ARCH_KMALLOC_FLAGS
|SLAB_PANIC
);
1709 list_add(&sizes
->cs_cachep
->list
, &slab_caches
);
1711 #ifdef CONFIG_ZONE_DMA
1712 sizes
->cs_dmacachep
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
1713 sizes
->cs_dmacachep
->name
= names
->name_dma
;
1714 sizes
->cs_dmacachep
->size
= sizes
->cs_size
;
1715 sizes
->cs_dmacachep
->object_size
= sizes
->cs_size
;
1716 sizes
->cs_dmacachep
->align
= ARCH_KMALLOC_MINALIGN
;
1717 __kmem_cache_create(sizes
->cs_dmacachep
,
1718 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
| SLAB_PANIC
);
1719 list_add(&sizes
->cs_dmacachep
->list
, &slab_caches
);
1724 /* 4) Replace the bootstrap head arrays */
1726 struct array_cache
*ptr
;
1728 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1730 BUG_ON(cpu_cache_get(kmem_cache
) != &initarray_cache
.cache
);
1731 memcpy(ptr
, cpu_cache_get(kmem_cache
),
1732 sizeof(struct arraycache_init
));
1734 * Do not assume that spinlocks can be initialized via memcpy:
1736 spin_lock_init(&ptr
->lock
);
1738 kmem_cache
->array
[smp_processor_id()] = ptr
;
1740 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1742 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1743 != &initarray_generic
.cache
);
1744 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1745 sizeof(struct arraycache_init
));
1747 * Do not assume that spinlocks can be initialized via memcpy:
1749 spin_lock_init(&ptr
->lock
);
1751 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1754 /* 5) Replace the bootstrap kmem_list3's */
1758 for_each_online_node(nid
) {
1759 init_list(kmem_cache
, &initkmem_list3
[CACHE_CACHE
+ nid
], nid
);
1761 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1762 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1764 if (INDEX_AC
!= INDEX_L3
) {
1765 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1766 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1774 void __init
kmem_cache_init_late(void)
1776 struct kmem_cache
*cachep
;
1780 /* 6) resize the head arrays to their final sizes */
1781 mutex_lock(&slab_mutex
);
1782 list_for_each_entry(cachep
, &slab_caches
, list
)
1783 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1785 mutex_unlock(&slab_mutex
);
1787 /* Annotate slab for lockdep -- annotate the malloc caches */
1794 * Register a cpu startup notifier callback that initializes
1795 * cpu_cache_get for all new cpus
1797 register_cpu_notifier(&cpucache_notifier
);
1801 * Register a memory hotplug callback that initializes and frees
1804 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1808 * The reap timers are started later, with a module init call: That part
1809 * of the kernel is not yet operational.
1813 static int __init
cpucache_init(void)
1818 * Register the timers that return unneeded pages to the page allocator
1820 for_each_online_cpu(cpu
)
1821 start_cpu_timer(cpu
);
1827 __initcall(cpucache_init
);
1829 static noinline
void
1830 slab_out_of_memory(struct kmem_cache
*cachep
, gfp_t gfpflags
, int nodeid
)
1832 struct kmem_list3
*l3
;
1834 unsigned long flags
;
1838 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1840 printk(KERN_WARNING
" cache: %s, object size: %d, order: %d\n",
1841 cachep
->name
, cachep
->size
, cachep
->gfporder
);
1843 for_each_online_node(node
) {
1844 unsigned long active_objs
= 0, num_objs
= 0, free_objects
= 0;
1845 unsigned long active_slabs
= 0, num_slabs
= 0;
1847 l3
= cachep
->nodelists
[node
];
1851 spin_lock_irqsave(&l3
->list_lock
, flags
);
1852 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
1853 active_objs
+= cachep
->num
;
1856 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
1857 active_objs
+= slabp
->inuse
;
1860 list_for_each_entry(slabp
, &l3
->slabs_free
, list
)
1863 free_objects
+= l3
->free_objects
;
1864 spin_unlock_irqrestore(&l3
->list_lock
, flags
);
1866 num_slabs
+= active_slabs
;
1867 num_objs
= num_slabs
* cachep
->num
;
1869 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1870 node
, active_slabs
, num_slabs
, active_objs
, num_objs
,
1876 * Interface to system's page allocator. No need to hold the cache-lock.
1878 * If we requested dmaable memory, we will get it. Even if we
1879 * did not request dmaable memory, we might get it, but that
1880 * would be relatively rare and ignorable.
1882 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1890 * Nommu uses slab's for process anonymous memory allocations, and thus
1891 * requires __GFP_COMP to properly refcount higher order allocations
1893 flags
|= __GFP_COMP
;
1896 flags
|= cachep
->allocflags
;
1897 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1898 flags
|= __GFP_RECLAIMABLE
;
1900 page
= alloc_pages_exact_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1902 if (!(flags
& __GFP_NOWARN
) && printk_ratelimit())
1903 slab_out_of_memory(cachep
, flags
, nodeid
);
1907 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1908 if (unlikely(page
->pfmemalloc
))
1909 pfmemalloc_active
= true;
1911 nr_pages
= (1 << cachep
->gfporder
);
1912 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1913 add_zone_page_state(page_zone(page
),
1914 NR_SLAB_RECLAIMABLE
, nr_pages
);
1916 add_zone_page_state(page_zone(page
),
1917 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1918 for (i
= 0; i
< nr_pages
; i
++) {
1919 __SetPageSlab(page
+ i
);
1921 if (page
->pfmemalloc
)
1922 SetPageSlabPfmemalloc(page
+ i
);
1925 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1926 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1929 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1931 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1934 return page_address(page
);
1938 * Interface to system's page release.
1940 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1942 unsigned long i
= (1 << cachep
->gfporder
);
1943 struct page
*page
= virt_to_page(addr
);
1944 const unsigned long nr_freed
= i
;
1946 kmemcheck_free_shadow(page
, cachep
->gfporder
);
1948 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1949 sub_zone_page_state(page_zone(page
),
1950 NR_SLAB_RECLAIMABLE
, nr_freed
);
1952 sub_zone_page_state(page_zone(page
),
1953 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1955 BUG_ON(!PageSlab(page
));
1956 __ClearPageSlabPfmemalloc(page
);
1957 __ClearPageSlab(page
);
1960 if (current
->reclaim_state
)
1961 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1962 free_pages((unsigned long)addr
, cachep
->gfporder
);
1965 static void kmem_rcu_free(struct rcu_head
*head
)
1967 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1968 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1970 kmem_freepages(cachep
, slab_rcu
->addr
);
1971 if (OFF_SLAB(cachep
))
1972 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1977 #ifdef CONFIG_DEBUG_PAGEALLOC
1978 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1979 unsigned long caller
)
1981 int size
= cachep
->object_size
;
1983 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1985 if (size
< 5 * sizeof(unsigned long))
1988 *addr
++ = 0x12345678;
1990 *addr
++ = smp_processor_id();
1991 size
-= 3 * sizeof(unsigned long);
1993 unsigned long *sptr
= &caller
;
1994 unsigned long svalue
;
1996 while (!kstack_end(sptr
)) {
1998 if (kernel_text_address(svalue
)) {
2000 size
-= sizeof(unsigned long);
2001 if (size
<= sizeof(unsigned long))
2007 *addr
++ = 0x87654321;
2011 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
2013 int size
= cachep
->object_size
;
2014 addr
= &((char *)addr
)[obj_offset(cachep
)];
2016 memset(addr
, val
, size
);
2017 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
2020 static void dump_line(char *data
, int offset
, int limit
)
2023 unsigned char error
= 0;
2026 printk(KERN_ERR
"%03x: ", offset
);
2027 for (i
= 0; i
< limit
; i
++) {
2028 if (data
[offset
+ i
] != POISON_FREE
) {
2029 error
= data
[offset
+ i
];
2033 print_hex_dump(KERN_CONT
, "", 0, 16, 1,
2034 &data
[offset
], limit
, 1);
2036 if (bad_count
== 1) {
2037 error
^= POISON_FREE
;
2038 if (!(error
& (error
- 1))) {
2039 printk(KERN_ERR
"Single bit error detected. Probably "
2042 printk(KERN_ERR
"Run memtest86+ or a similar memory "
2045 printk(KERN_ERR
"Run a memory test tool.\n");
2054 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
2059 if (cachep
->flags
& SLAB_RED_ZONE
) {
2060 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
2061 *dbg_redzone1(cachep
, objp
),
2062 *dbg_redzone2(cachep
, objp
));
2065 if (cachep
->flags
& SLAB_STORE_USER
) {
2066 printk(KERN_ERR
"Last user: [<%p>]",
2067 *dbg_userword(cachep
, objp
));
2068 print_symbol("(%s)",
2069 (unsigned long)*dbg_userword(cachep
, objp
));
2072 realobj
= (char *)objp
+ obj_offset(cachep
);
2073 size
= cachep
->object_size
;
2074 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
2077 if (i
+ limit
> size
)
2079 dump_line(realobj
, i
, limit
);
2083 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
2089 realobj
= (char *)objp
+ obj_offset(cachep
);
2090 size
= cachep
->object_size
;
2092 for (i
= 0; i
< size
; i
++) {
2093 char exp
= POISON_FREE
;
2096 if (realobj
[i
] != exp
) {
2102 "Slab corruption (%s): %s start=%p, len=%d\n",
2103 print_tainted(), cachep
->name
, realobj
, size
);
2104 print_objinfo(cachep
, objp
, 0);
2106 /* Hexdump the affected line */
2109 if (i
+ limit
> size
)
2111 dump_line(realobj
, i
, limit
);
2114 /* Limit to 5 lines */
2120 /* Print some data about the neighboring objects, if they
2123 struct slab
*slabp
= virt_to_slab(objp
);
2126 objnr
= obj_to_index(cachep
, slabp
, objp
);
2128 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
2129 realobj
= (char *)objp
+ obj_offset(cachep
);
2130 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
2132 print_objinfo(cachep
, objp
, 2);
2134 if (objnr
+ 1 < cachep
->num
) {
2135 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
2136 realobj
= (char *)objp
+ obj_offset(cachep
);
2137 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
2139 print_objinfo(cachep
, objp
, 2);
2146 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
2149 for (i
= 0; i
< cachep
->num
; i
++) {
2150 void *objp
= index_to_obj(cachep
, slabp
, i
);
2152 if (cachep
->flags
& SLAB_POISON
) {
2153 #ifdef CONFIG_DEBUG_PAGEALLOC
2154 if (cachep
->size
% PAGE_SIZE
== 0 &&
2156 kernel_map_pages(virt_to_page(objp
),
2157 cachep
->size
/ PAGE_SIZE
, 1);
2159 check_poison_obj(cachep
, objp
);
2161 check_poison_obj(cachep
, objp
);
2164 if (cachep
->flags
& SLAB_RED_ZONE
) {
2165 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2166 slab_error(cachep
, "start of a freed object "
2168 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2169 slab_error(cachep
, "end of a freed object "
2175 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
2181 * slab_destroy - destroy and release all objects in a slab
2182 * @cachep: cache pointer being destroyed
2183 * @slabp: slab pointer being destroyed
2185 * Destroy all the objs in a slab, and release the mem back to the system.
2186 * Before calling the slab must have been unlinked from the cache. The
2187 * cache-lock is not held/needed.
2189 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
2191 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
2193 slab_destroy_debugcheck(cachep
, slabp
);
2194 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
2195 struct slab_rcu
*slab_rcu
;
2197 slab_rcu
= (struct slab_rcu
*)slabp
;
2198 slab_rcu
->cachep
= cachep
;
2199 slab_rcu
->addr
= addr
;
2200 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
2202 kmem_freepages(cachep
, addr
);
2203 if (OFF_SLAB(cachep
))
2204 kmem_cache_free(cachep
->slabp_cache
, slabp
);
2209 * calculate_slab_order - calculate size (page order) of slabs
2210 * @cachep: pointer to the cache that is being created
2211 * @size: size of objects to be created in this cache.
2212 * @align: required alignment for the objects.
2213 * @flags: slab allocation flags
2215 * Also calculates the number of objects per slab.
2217 * This could be made much more intelligent. For now, try to avoid using
2218 * high order pages for slabs. When the gfp() functions are more friendly
2219 * towards high-order requests, this should be changed.
2221 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2222 size_t size
, size_t align
, unsigned long flags
)
2224 unsigned long offslab_limit
;
2225 size_t left_over
= 0;
2228 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2232 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2236 if (flags
& CFLGS_OFF_SLAB
) {
2238 * Max number of objs-per-slab for caches which
2239 * use off-slab slabs. Needed to avoid a possible
2240 * looping condition in cache_grow().
2242 offslab_limit
= size
- sizeof(struct slab
);
2243 offslab_limit
/= sizeof(kmem_bufctl_t
);
2245 if (num
> offslab_limit
)
2249 /* Found something acceptable - save it away */
2251 cachep
->gfporder
= gfporder
;
2252 left_over
= remainder
;
2255 * A VFS-reclaimable slab tends to have most allocations
2256 * as GFP_NOFS and we really don't want to have to be allocating
2257 * higher-order pages when we are unable to shrink dcache.
2259 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2263 * Large number of objects is good, but very large slabs are
2264 * currently bad for the gfp()s.
2266 if (gfporder
>= slab_max_order
)
2270 * Acceptable internal fragmentation?
2272 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2278 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2280 if (slab_state
>= FULL
)
2281 return enable_cpucache(cachep
, gfp
);
2283 if (slab_state
== DOWN
) {
2285 * Note: the first kmem_cache_create must create the cache
2286 * that's used by kmalloc(24), otherwise the creation of
2287 * further caches will BUG().
2289 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2292 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2293 * the first cache, then we need to set up all its list3s,
2294 * otherwise the creation of further caches will BUG().
2296 set_up_list3s(cachep
, SIZE_AC
);
2297 if (INDEX_AC
== INDEX_L3
)
2298 slab_state
= PARTIAL_L3
;
2300 slab_state
= PARTIAL_ARRAYCACHE
;
2302 cachep
->array
[smp_processor_id()] =
2303 kmalloc(sizeof(struct arraycache_init
), gfp
);
2305 if (slab_state
== PARTIAL_ARRAYCACHE
) {
2306 set_up_list3s(cachep
, SIZE_L3
);
2307 slab_state
= PARTIAL_L3
;
2310 for_each_online_node(node
) {
2311 cachep
->nodelists
[node
] =
2312 kmalloc_node(sizeof(struct kmem_list3
),
2314 BUG_ON(!cachep
->nodelists
[node
]);
2315 kmem_list3_init(cachep
->nodelists
[node
]);
2319 cachep
->nodelists
[numa_mem_id()]->next_reap
=
2320 jiffies
+ REAPTIMEOUT_LIST3
+
2321 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2323 cpu_cache_get(cachep
)->avail
= 0;
2324 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2325 cpu_cache_get(cachep
)->batchcount
= 1;
2326 cpu_cache_get(cachep
)->touched
= 0;
2327 cachep
->batchcount
= 1;
2328 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2333 * __kmem_cache_create - Create a cache.
2334 * @name: A string which is used in /proc/slabinfo to identify this cache.
2335 * @size: The size of objects to be created in this cache.
2336 * @align: The required alignment for the objects.
2337 * @flags: SLAB flags
2338 * @ctor: A constructor for the objects.
2340 * Returns a ptr to the cache on success, NULL on failure.
2341 * Cannot be called within a int, but can be interrupted.
2342 * The @ctor is run when new pages are allocated by the cache.
2346 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2347 * to catch references to uninitialised memory.
2349 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2350 * for buffer overruns.
2352 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2353 * cacheline. This can be beneficial if you're counting cycles as closely
2357 __kmem_cache_create (struct kmem_cache
*cachep
, unsigned long flags
)
2359 size_t left_over
, slab_size
, ralign
;
2362 size_t size
= cachep
->size
;
2367 * Enable redzoning and last user accounting, except for caches with
2368 * large objects, if the increased size would increase the object size
2369 * above the next power of two: caches with object sizes just above a
2370 * power of two have a significant amount of internal fragmentation.
2372 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2373 2 * sizeof(unsigned long long)))
2374 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2375 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2376 flags
|= SLAB_POISON
;
2378 if (flags
& SLAB_DESTROY_BY_RCU
)
2379 BUG_ON(flags
& SLAB_POISON
);
2382 * Always checks flags, a caller might be expecting debug support which
2385 BUG_ON(flags
& ~CREATE_MASK
);
2388 * Check that size is in terms of words. This is needed to avoid
2389 * unaligned accesses for some archs when redzoning is used, and makes
2390 * sure any on-slab bufctl's are also correctly aligned.
2392 if (size
& (BYTES_PER_WORD
- 1)) {
2393 size
+= (BYTES_PER_WORD
- 1);
2394 size
&= ~(BYTES_PER_WORD
- 1);
2397 /* calculate the final buffer alignment: */
2399 /* 1) arch recommendation: can be overridden for debug */
2400 if (flags
& SLAB_HWCACHE_ALIGN
) {
2402 * Default alignment: as specified by the arch code. Except if
2403 * an object is really small, then squeeze multiple objects into
2406 ralign
= cache_line_size();
2407 while (size
<= ralign
/ 2)
2410 ralign
= BYTES_PER_WORD
;
2414 * Redzoning and user store require word alignment or possibly larger.
2415 * Note this will be overridden by architecture or caller mandated
2416 * alignment if either is greater than BYTES_PER_WORD.
2418 if (flags
& SLAB_STORE_USER
)
2419 ralign
= BYTES_PER_WORD
;
2421 if (flags
& SLAB_RED_ZONE
) {
2422 ralign
= REDZONE_ALIGN
;
2423 /* If redzoning, ensure that the second redzone is suitably
2424 * aligned, by adjusting the object size accordingly. */
2425 size
+= REDZONE_ALIGN
- 1;
2426 size
&= ~(REDZONE_ALIGN
- 1);
2429 /* 2) arch mandated alignment */
2430 if (ralign
< ARCH_SLAB_MINALIGN
) {
2431 ralign
= ARCH_SLAB_MINALIGN
;
2433 /* 3) caller mandated alignment */
2434 if (ralign
< cachep
->align
) {
2435 ralign
= cachep
->align
;
2437 /* disable debug if necessary */
2438 if (ralign
> __alignof__(unsigned long long))
2439 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2443 cachep
->align
= ralign
;
2445 if (slab_is_available())
2450 cachep
->nodelists
= (struct kmem_list3
**)&cachep
->array
[nr_cpu_ids
];
2454 * Both debugging options require word-alignment which is calculated
2457 if (flags
& SLAB_RED_ZONE
) {
2458 /* add space for red zone words */
2459 cachep
->obj_offset
+= sizeof(unsigned long long);
2460 size
+= 2 * sizeof(unsigned long long);
2462 if (flags
& SLAB_STORE_USER
) {
2463 /* user store requires one word storage behind the end of
2464 * the real object. But if the second red zone needs to be
2465 * aligned to 64 bits, we must allow that much space.
2467 if (flags
& SLAB_RED_ZONE
)
2468 size
+= REDZONE_ALIGN
;
2470 size
+= BYTES_PER_WORD
;
2472 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2473 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2474 && cachep
->object_size
> cache_line_size()
2475 && ALIGN(size
, cachep
->align
) < PAGE_SIZE
) {
2476 cachep
->obj_offset
+= PAGE_SIZE
- ALIGN(size
, cachep
->align
);
2483 * Determine if the slab management is 'on' or 'off' slab.
2484 * (bootstrapping cannot cope with offslab caches so don't do
2485 * it too early on. Always use on-slab management when
2486 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2488 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
&&
2489 !(flags
& SLAB_NOLEAKTRACE
))
2491 * Size is large, assume best to place the slab management obj
2492 * off-slab (should allow better packing of objs).
2494 flags
|= CFLGS_OFF_SLAB
;
2496 size
= ALIGN(size
, cachep
->align
);
2498 left_over
= calculate_slab_order(cachep
, size
, cachep
->align
, flags
);
2503 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2504 + sizeof(struct slab
), cachep
->align
);
2507 * If the slab has been placed off-slab, and we have enough space then
2508 * move it on-slab. This is at the expense of any extra colouring.
2510 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2511 flags
&= ~CFLGS_OFF_SLAB
;
2512 left_over
-= slab_size
;
2515 if (flags
& CFLGS_OFF_SLAB
) {
2516 /* really off slab. No need for manual alignment */
2518 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2520 #ifdef CONFIG_PAGE_POISONING
2521 /* If we're going to use the generic kernel_map_pages()
2522 * poisoning, then it's going to smash the contents of
2523 * the redzone and userword anyhow, so switch them off.
2525 if (size
% PAGE_SIZE
== 0 && flags
& SLAB_POISON
)
2526 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2530 cachep
->colour_off
= cache_line_size();
2531 /* Offset must be a multiple of the alignment. */
2532 if (cachep
->colour_off
< cachep
->align
)
2533 cachep
->colour_off
= cachep
->align
;
2534 cachep
->colour
= left_over
/ cachep
->colour_off
;
2535 cachep
->slab_size
= slab_size
;
2536 cachep
->flags
= flags
;
2537 cachep
->allocflags
= 0;
2538 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2539 cachep
->allocflags
|= GFP_DMA
;
2540 cachep
->size
= size
;
2541 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2543 if (flags
& CFLGS_OFF_SLAB
) {
2544 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2546 * This is a possibility for one of the malloc_sizes caches.
2547 * But since we go off slab only for object size greater than
2548 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2549 * this should not happen at all.
2550 * But leave a BUG_ON for some lucky dude.
2552 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2555 err
= setup_cpu_cache(cachep
, gfp
);
2557 __kmem_cache_shutdown(cachep
);
2561 if (flags
& SLAB_DEBUG_OBJECTS
) {
2563 * Would deadlock through slab_destroy()->call_rcu()->
2564 * debug_object_activate()->kmem_cache_alloc().
2566 WARN_ON_ONCE(flags
& SLAB_DESTROY_BY_RCU
);
2568 slab_set_debugobj_lock_classes(cachep
);
2575 static void check_irq_off(void)
2577 BUG_ON(!irqs_disabled());
2580 static void check_irq_on(void)
2582 BUG_ON(irqs_disabled());
2585 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2589 assert_spin_locked(&cachep
->nodelists
[numa_mem_id()]->list_lock
);
2593 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2597 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2602 #define check_irq_off() do { } while(0)
2603 #define check_irq_on() do { } while(0)
2604 #define check_spinlock_acquired(x) do { } while(0)
2605 #define check_spinlock_acquired_node(x, y) do { } while(0)
2608 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2609 struct array_cache
*ac
,
2610 int force
, int node
);
2612 static void do_drain(void *arg
)
2614 struct kmem_cache
*cachep
= arg
;
2615 struct array_cache
*ac
;
2616 int node
= numa_mem_id();
2619 ac
= cpu_cache_get(cachep
);
2620 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2621 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2622 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2626 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2628 struct kmem_list3
*l3
;
2631 on_each_cpu(do_drain
, cachep
, 1);
2633 for_each_online_node(node
) {
2634 l3
= cachep
->nodelists
[node
];
2635 if (l3
&& l3
->alien
)
2636 drain_alien_cache(cachep
, l3
->alien
);
2639 for_each_online_node(node
) {
2640 l3
= cachep
->nodelists
[node
];
2642 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2647 * Remove slabs from the list of free slabs.
2648 * Specify the number of slabs to drain in tofree.
2650 * Returns the actual number of slabs released.
2652 static int drain_freelist(struct kmem_cache
*cache
,
2653 struct kmem_list3
*l3
, int tofree
)
2655 struct list_head
*p
;
2660 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2662 spin_lock_irq(&l3
->list_lock
);
2663 p
= l3
->slabs_free
.prev
;
2664 if (p
== &l3
->slabs_free
) {
2665 spin_unlock_irq(&l3
->list_lock
);
2669 slabp
= list_entry(p
, struct slab
, list
);
2671 BUG_ON(slabp
->inuse
);
2673 list_del(&slabp
->list
);
2675 * Safe to drop the lock. The slab is no longer linked
2678 l3
->free_objects
-= cache
->num
;
2679 spin_unlock_irq(&l3
->list_lock
);
2680 slab_destroy(cache
, slabp
);
2687 /* Called with slab_mutex held to protect against cpu hotplug */
2688 static int __cache_shrink(struct kmem_cache
*cachep
)
2691 struct kmem_list3
*l3
;
2693 drain_cpu_caches(cachep
);
2696 for_each_online_node(i
) {
2697 l3
= cachep
->nodelists
[i
];
2701 drain_freelist(cachep
, l3
, l3
->free_objects
);
2703 ret
+= !list_empty(&l3
->slabs_full
) ||
2704 !list_empty(&l3
->slabs_partial
);
2706 return (ret
? 1 : 0);
2710 * kmem_cache_shrink - Shrink a cache.
2711 * @cachep: The cache to shrink.
2713 * Releases as many slabs as possible for a cache.
2714 * To help debugging, a zero exit status indicates all slabs were released.
2716 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2719 BUG_ON(!cachep
|| in_interrupt());
2722 mutex_lock(&slab_mutex
);
2723 ret
= __cache_shrink(cachep
);
2724 mutex_unlock(&slab_mutex
);
2728 EXPORT_SYMBOL(kmem_cache_shrink
);
2730 int __kmem_cache_shutdown(struct kmem_cache
*cachep
)
2733 struct kmem_list3
*l3
;
2734 int rc
= __cache_shrink(cachep
);
2739 for_each_online_cpu(i
)
2740 kfree(cachep
->array
[i
]);
2742 /* NUMA: free the list3 structures */
2743 for_each_online_node(i
) {
2744 l3
= cachep
->nodelists
[i
];
2747 free_alien_cache(l3
->alien
);
2755 * Get the memory for a slab management obj.
2756 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2757 * always come from malloc_sizes caches. The slab descriptor cannot
2758 * come from the same cache which is getting created because,
2759 * when we are searching for an appropriate cache for these
2760 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2761 * If we are creating a malloc_sizes cache here it would not be visible to
2762 * kmem_find_general_cachep till the initialization is complete.
2763 * Hence we cannot have slabp_cache same as the original cache.
2765 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2766 int colour_off
, gfp_t local_flags
,
2771 if (OFF_SLAB(cachep
)) {
2772 /* Slab management obj is off-slab. */
2773 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2774 local_flags
, nodeid
);
2776 * If the first object in the slab is leaked (it's allocated
2777 * but no one has a reference to it), we want to make sure
2778 * kmemleak does not treat the ->s_mem pointer as a reference
2779 * to the object. Otherwise we will not report the leak.
2781 kmemleak_scan_area(&slabp
->list
, sizeof(struct list_head
),
2786 slabp
= objp
+ colour_off
;
2787 colour_off
+= cachep
->slab_size
;
2790 slabp
->colouroff
= colour_off
;
2791 slabp
->s_mem
= objp
+ colour_off
;
2792 slabp
->nodeid
= nodeid
;
2797 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2799 return (kmem_bufctl_t
*) (slabp
+ 1);
2802 static void cache_init_objs(struct kmem_cache
*cachep
,
2807 for (i
= 0; i
< cachep
->num
; i
++) {
2808 void *objp
= index_to_obj(cachep
, slabp
, i
);
2810 /* need to poison the objs? */
2811 if (cachep
->flags
& SLAB_POISON
)
2812 poison_obj(cachep
, objp
, POISON_FREE
);
2813 if (cachep
->flags
& SLAB_STORE_USER
)
2814 *dbg_userword(cachep
, objp
) = NULL
;
2816 if (cachep
->flags
& SLAB_RED_ZONE
) {
2817 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2818 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2821 * Constructors are not allowed to allocate memory from the same
2822 * cache which they are a constructor for. Otherwise, deadlock.
2823 * They must also be threaded.
2825 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2826 cachep
->ctor(objp
+ obj_offset(cachep
));
2828 if (cachep
->flags
& SLAB_RED_ZONE
) {
2829 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2830 slab_error(cachep
, "constructor overwrote the"
2831 " end of an object");
2832 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2833 slab_error(cachep
, "constructor overwrote the"
2834 " start of an object");
2836 if ((cachep
->size
% PAGE_SIZE
) == 0 &&
2837 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2838 kernel_map_pages(virt_to_page(objp
),
2839 cachep
->size
/ PAGE_SIZE
, 0);
2844 slab_bufctl(slabp
)[i
] = i
+ 1;
2846 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2849 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2851 if (CONFIG_ZONE_DMA_FLAG
) {
2852 if (flags
& GFP_DMA
)
2853 BUG_ON(!(cachep
->allocflags
& GFP_DMA
));
2855 BUG_ON(cachep
->allocflags
& GFP_DMA
);
2859 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2862 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2866 next
= slab_bufctl(slabp
)[slabp
->free
];
2868 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2869 WARN_ON(slabp
->nodeid
!= nodeid
);
2876 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2877 void *objp
, int nodeid
)
2879 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2882 /* Verify that the slab belongs to the intended node */
2883 WARN_ON(slabp
->nodeid
!= nodeid
);
2885 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2886 printk(KERN_ERR
"slab: double free detected in cache "
2887 "'%s', objp %p\n", cachep
->name
, objp
);
2891 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2892 slabp
->free
= objnr
;
2897 * Map pages beginning at addr to the given cache and slab. This is required
2898 * for the slab allocator to be able to lookup the cache and slab of a
2899 * virtual address for kfree, ksize, and slab debugging.
2901 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2907 page
= virt_to_page(addr
);
2910 if (likely(!PageCompound(page
)))
2911 nr_pages
<<= cache
->gfporder
;
2914 page
->slab_cache
= cache
;
2915 page
->slab_page
= slab
;
2917 } while (--nr_pages
);
2921 * Grow (by 1) the number of slabs within a cache. This is called by
2922 * kmem_cache_alloc() when there are no active objs left in a cache.
2924 static int cache_grow(struct kmem_cache
*cachep
,
2925 gfp_t flags
, int nodeid
, void *objp
)
2930 struct kmem_list3
*l3
;
2933 * Be lazy and only check for valid flags here, keeping it out of the
2934 * critical path in kmem_cache_alloc().
2936 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2937 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2939 /* Take the l3 list lock to change the colour_next on this node */
2941 l3
= cachep
->nodelists
[nodeid
];
2942 spin_lock(&l3
->list_lock
);
2944 /* Get colour for the slab, and cal the next value. */
2945 offset
= l3
->colour_next
;
2947 if (l3
->colour_next
>= cachep
->colour
)
2948 l3
->colour_next
= 0;
2949 spin_unlock(&l3
->list_lock
);
2951 offset
*= cachep
->colour_off
;
2953 if (local_flags
& __GFP_WAIT
)
2957 * The test for missing atomic flag is performed here, rather than
2958 * the more obvious place, simply to reduce the critical path length
2959 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2960 * will eventually be caught here (where it matters).
2962 kmem_flagcheck(cachep
, flags
);
2965 * Get mem for the objs. Attempt to allocate a physical page from
2969 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2973 /* Get slab management. */
2974 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2975 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2979 slab_map_pages(cachep
, slabp
, objp
);
2981 cache_init_objs(cachep
, slabp
);
2983 if (local_flags
& __GFP_WAIT
)
2984 local_irq_disable();
2986 spin_lock(&l3
->list_lock
);
2988 /* Make slab active. */
2989 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2990 STATS_INC_GROWN(cachep
);
2991 l3
->free_objects
+= cachep
->num
;
2992 spin_unlock(&l3
->list_lock
);
2995 kmem_freepages(cachep
, objp
);
2997 if (local_flags
& __GFP_WAIT
)
2998 local_irq_disable();
3005 * Perform extra freeing checks:
3006 * - detect bad pointers.
3007 * - POISON/RED_ZONE checking
3009 static void kfree_debugcheck(const void *objp
)
3011 if (!virt_addr_valid(objp
)) {
3012 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
3013 (unsigned long)objp
);
3018 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
3020 unsigned long long redzone1
, redzone2
;
3022 redzone1
= *dbg_redzone1(cache
, obj
);
3023 redzone2
= *dbg_redzone2(cache
, obj
);
3028 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
3031 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
3032 slab_error(cache
, "double free detected");
3034 slab_error(cache
, "memory outside object was overwritten");
3036 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3037 obj
, redzone1
, redzone2
);
3040 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
3041 unsigned long caller
)
3047 BUG_ON(virt_to_cache(objp
) != cachep
);
3049 objp
-= obj_offset(cachep
);
3050 kfree_debugcheck(objp
);
3051 page
= virt_to_head_page(objp
);
3053 slabp
= page
->slab_page
;
3055 if (cachep
->flags
& SLAB_RED_ZONE
) {
3056 verify_redzone_free(cachep
, objp
);
3057 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
3058 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
3060 if (cachep
->flags
& SLAB_STORE_USER
)
3061 *dbg_userword(cachep
, objp
) = (void *)caller
;
3063 objnr
= obj_to_index(cachep
, slabp
, objp
);
3065 BUG_ON(objnr
>= cachep
->num
);
3066 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
3068 #ifdef CONFIG_DEBUG_SLAB_LEAK
3069 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
3071 if (cachep
->flags
& SLAB_POISON
) {
3072 #ifdef CONFIG_DEBUG_PAGEALLOC
3073 if ((cachep
->size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
3074 store_stackinfo(cachep
, objp
, caller
);
3075 kernel_map_pages(virt_to_page(objp
),
3076 cachep
->size
/ PAGE_SIZE
, 0);
3078 poison_obj(cachep
, objp
, POISON_FREE
);
3081 poison_obj(cachep
, objp
, POISON_FREE
);
3087 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
3092 /* Check slab's freelist to see if this obj is there. */
3093 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
3095 if (entries
> cachep
->num
|| i
>= cachep
->num
)
3098 if (entries
!= cachep
->num
- slabp
->inuse
) {
3100 printk(KERN_ERR
"slab: Internal list corruption detected in "
3101 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3102 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
,
3104 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, slabp
,
3105 sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
),
3111 #define kfree_debugcheck(x) do { } while(0)
3112 #define cache_free_debugcheck(x,objp,z) (objp)
3113 #define check_slabp(x,y) do { } while(0)
3116 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
,
3120 struct kmem_list3
*l3
;
3121 struct array_cache
*ac
;
3125 node
= numa_mem_id();
3126 if (unlikely(force_refill
))
3129 ac
= cpu_cache_get(cachep
);
3130 batchcount
= ac
->batchcount
;
3131 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
3133 * If there was little recent activity on this cache, then
3134 * perform only a partial refill. Otherwise we could generate
3137 batchcount
= BATCHREFILL_LIMIT
;
3139 l3
= cachep
->nodelists
[node
];
3141 BUG_ON(ac
->avail
> 0 || !l3
);
3142 spin_lock(&l3
->list_lock
);
3144 /* See if we can refill from the shared array */
3145 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
)) {
3146 l3
->shared
->touched
= 1;
3150 while (batchcount
> 0) {
3151 struct list_head
*entry
;
3153 /* Get slab alloc is to come from. */
3154 entry
= l3
->slabs_partial
.next
;
3155 if (entry
== &l3
->slabs_partial
) {
3156 l3
->free_touched
= 1;
3157 entry
= l3
->slabs_free
.next
;
3158 if (entry
== &l3
->slabs_free
)
3162 slabp
= list_entry(entry
, struct slab
, list
);
3163 check_slabp(cachep
, slabp
);
3164 check_spinlock_acquired(cachep
);
3167 * The slab was either on partial or free list so
3168 * there must be at least one object available for
3171 BUG_ON(slabp
->inuse
>= cachep
->num
);
3173 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3174 STATS_INC_ALLOCED(cachep
);
3175 STATS_INC_ACTIVE(cachep
);
3176 STATS_SET_HIGH(cachep
);
3178 ac_put_obj(cachep
, ac
, slab_get_obj(cachep
, slabp
,
3181 check_slabp(cachep
, slabp
);
3183 /* move slabp to correct slabp list: */
3184 list_del(&slabp
->list
);
3185 if (slabp
->free
== BUFCTL_END
)
3186 list_add(&slabp
->list
, &l3
->slabs_full
);
3188 list_add(&slabp
->list
, &l3
->slabs_partial
);
3192 l3
->free_objects
-= ac
->avail
;
3194 spin_unlock(&l3
->list_lock
);
3196 if (unlikely(!ac
->avail
)) {
3199 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3201 /* cache_grow can reenable interrupts, then ac could change. */
3202 ac
= cpu_cache_get(cachep
);
3203 node
= numa_mem_id();
3205 /* no objects in sight? abort */
3206 if (!x
&& (ac
->avail
== 0 || force_refill
))
3209 if (!ac
->avail
) /* objects refilled by interrupt? */
3214 return ac_get_obj(cachep
, ac
, flags
, force_refill
);
3217 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3220 might_sleep_if(flags
& __GFP_WAIT
);
3222 kmem_flagcheck(cachep
, flags
);
3227 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3228 gfp_t flags
, void *objp
, unsigned long caller
)
3232 if (cachep
->flags
& SLAB_POISON
) {
3233 #ifdef CONFIG_DEBUG_PAGEALLOC
3234 if ((cachep
->size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3235 kernel_map_pages(virt_to_page(objp
),
3236 cachep
->size
/ PAGE_SIZE
, 1);
3238 check_poison_obj(cachep
, objp
);
3240 check_poison_obj(cachep
, objp
);
3242 poison_obj(cachep
, objp
, POISON_INUSE
);
3244 if (cachep
->flags
& SLAB_STORE_USER
)
3245 *dbg_userword(cachep
, objp
) = (void *)caller
;
3247 if (cachep
->flags
& SLAB_RED_ZONE
) {
3248 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3249 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3250 slab_error(cachep
, "double free, or memory outside"
3251 " object was overwritten");
3253 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3254 objp
, *dbg_redzone1(cachep
, objp
),
3255 *dbg_redzone2(cachep
, objp
));
3257 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3258 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3260 #ifdef CONFIG_DEBUG_SLAB_LEAK
3265 slabp
= virt_to_head_page(objp
)->slab_page
;
3266 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->size
;
3267 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3270 objp
+= obj_offset(cachep
);
3271 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3273 if (ARCH_SLAB_MINALIGN
&&
3274 ((unsigned long)objp
& (ARCH_SLAB_MINALIGN
-1))) {
3275 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3276 objp
, (int)ARCH_SLAB_MINALIGN
);
3281 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3284 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3286 if (cachep
== kmem_cache
)
3289 return should_failslab(cachep
->object_size
, flags
, cachep
->flags
);
3292 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3295 struct array_cache
*ac
;
3296 bool force_refill
= false;
3300 ac
= cpu_cache_get(cachep
);
3301 if (likely(ac
->avail
)) {
3303 objp
= ac_get_obj(cachep
, ac
, flags
, false);
3306 * Allow for the possibility all avail objects are not allowed
3307 * by the current flags
3310 STATS_INC_ALLOCHIT(cachep
);
3313 force_refill
= true;
3316 STATS_INC_ALLOCMISS(cachep
);
3317 objp
= cache_alloc_refill(cachep
, flags
, force_refill
);
3319 * the 'ac' may be updated by cache_alloc_refill(),
3320 * and kmemleak_erase() requires its correct value.
3322 ac
= cpu_cache_get(cachep
);
3326 * To avoid a false negative, if an object that is in one of the
3327 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3328 * treat the array pointers as a reference to the object.
3331 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3337 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3339 * If we are in_interrupt, then process context, including cpusets and
3340 * mempolicy, may not apply and should not be used for allocation policy.
3342 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3344 int nid_alloc
, nid_here
;
3346 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3348 nid_alloc
= nid_here
= numa_mem_id();
3349 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3350 nid_alloc
= cpuset_slab_spread_node();
3351 else if (current
->mempolicy
)
3352 nid_alloc
= slab_node();
3353 if (nid_alloc
!= nid_here
)
3354 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3359 * Fallback function if there was no memory available and no objects on a
3360 * certain node and fall back is permitted. First we scan all the
3361 * available nodelists for available objects. If that fails then we
3362 * perform an allocation without specifying a node. This allows the page
3363 * allocator to do its reclaim / fallback magic. We then insert the
3364 * slab into the proper nodelist and then allocate from it.
3366 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3368 struct zonelist
*zonelist
;
3372 enum zone_type high_zoneidx
= gfp_zone(flags
);
3375 unsigned int cpuset_mems_cookie
;
3377 if (flags
& __GFP_THISNODE
)
3380 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3383 cpuset_mems_cookie
= get_mems_allowed();
3384 zonelist
= node_zonelist(slab_node(), flags
);
3388 * Look through allowed nodes for objects available
3389 * from existing per node queues.
3391 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3392 nid
= zone_to_nid(zone
);
3394 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3395 cache
->nodelists
[nid
] &&
3396 cache
->nodelists
[nid
]->free_objects
) {
3397 obj
= ____cache_alloc_node(cache
,
3398 flags
| GFP_THISNODE
, nid
);
3406 * This allocation will be performed within the constraints
3407 * of the current cpuset / memory policy requirements.
3408 * We may trigger various forms of reclaim on the allowed
3409 * set and go into memory reserves if necessary.
3411 if (local_flags
& __GFP_WAIT
)
3413 kmem_flagcheck(cache
, flags
);
3414 obj
= kmem_getpages(cache
, local_flags
, numa_mem_id());
3415 if (local_flags
& __GFP_WAIT
)
3416 local_irq_disable();
3419 * Insert into the appropriate per node queues
3421 nid
= page_to_nid(virt_to_page(obj
));
3422 if (cache_grow(cache
, flags
, nid
, obj
)) {
3423 obj
= ____cache_alloc_node(cache
,
3424 flags
| GFP_THISNODE
, nid
);
3427 * Another processor may allocate the
3428 * objects in the slab since we are
3429 * not holding any locks.
3433 /* cache_grow already freed obj */
3439 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !obj
))
3445 * A interface to enable slab creation on nodeid
3447 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3450 struct list_head
*entry
;
3452 struct kmem_list3
*l3
;
3456 l3
= cachep
->nodelists
[nodeid
];
3461 spin_lock(&l3
->list_lock
);
3462 entry
= l3
->slabs_partial
.next
;
3463 if (entry
== &l3
->slabs_partial
) {
3464 l3
->free_touched
= 1;
3465 entry
= l3
->slabs_free
.next
;
3466 if (entry
== &l3
->slabs_free
)
3470 slabp
= list_entry(entry
, struct slab
, list
);
3471 check_spinlock_acquired_node(cachep
, nodeid
);
3472 check_slabp(cachep
, slabp
);
3474 STATS_INC_NODEALLOCS(cachep
);
3475 STATS_INC_ACTIVE(cachep
);
3476 STATS_SET_HIGH(cachep
);
3478 BUG_ON(slabp
->inuse
== cachep
->num
);
3480 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3481 check_slabp(cachep
, slabp
);
3483 /* move slabp to correct slabp list: */
3484 list_del(&slabp
->list
);
3486 if (slabp
->free
== BUFCTL_END
)
3487 list_add(&slabp
->list
, &l3
->slabs_full
);
3489 list_add(&slabp
->list
, &l3
->slabs_partial
);
3491 spin_unlock(&l3
->list_lock
);
3495 spin_unlock(&l3
->list_lock
);
3496 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3500 return fallback_alloc(cachep
, flags
);
3507 * kmem_cache_alloc_node - Allocate an object on the specified node
3508 * @cachep: The cache to allocate from.
3509 * @flags: See kmalloc().
3510 * @nodeid: node number of the target node.
3511 * @caller: return address of caller, used for debug information
3513 * Identical to kmem_cache_alloc but it will allocate memory on the given
3514 * node, which can improve the performance for cpu bound structures.
3516 * Fallback to other node is possible if __GFP_THISNODE is not set.
3518 static __always_inline
void *
3519 slab_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3520 unsigned long caller
)
3522 unsigned long save_flags
;
3524 int slab_node
= numa_mem_id();
3526 flags
&= gfp_allowed_mask
;
3528 lockdep_trace_alloc(flags
);
3530 if (slab_should_failslab(cachep
, flags
))
3533 cache_alloc_debugcheck_before(cachep
, flags
);
3534 local_irq_save(save_flags
);
3536 if (nodeid
== NUMA_NO_NODE
)
3539 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3540 /* Node not bootstrapped yet */
3541 ptr
= fallback_alloc(cachep
, flags
);
3545 if (nodeid
== slab_node
) {
3547 * Use the locally cached objects if possible.
3548 * However ____cache_alloc does not allow fallback
3549 * to other nodes. It may fail while we still have
3550 * objects on other nodes available.
3552 ptr
= ____cache_alloc(cachep
, flags
);
3556 /* ___cache_alloc_node can fall back to other nodes */
3557 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3559 local_irq_restore(save_flags
);
3560 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3561 kmemleak_alloc_recursive(ptr
, cachep
->object_size
, 1, cachep
->flags
,
3565 kmemcheck_slab_alloc(cachep
, flags
, ptr
, cachep
->object_size
);
3567 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3568 memset(ptr
, 0, cachep
->object_size
);
3573 static __always_inline
void *
3574 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3578 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3579 objp
= alternate_node_alloc(cache
, flags
);
3583 objp
= ____cache_alloc(cache
, flags
);
3586 * We may just have run out of memory on the local node.
3587 * ____cache_alloc_node() knows how to locate memory on other nodes
3590 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3597 static __always_inline
void *
3598 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3600 return ____cache_alloc(cachep
, flags
);
3603 #endif /* CONFIG_NUMA */
3605 static __always_inline
void *
3606 slab_alloc(struct kmem_cache
*cachep
, gfp_t flags
, unsigned long caller
)
3608 unsigned long save_flags
;
3611 flags
&= gfp_allowed_mask
;
3613 lockdep_trace_alloc(flags
);
3615 if (slab_should_failslab(cachep
, flags
))
3618 cache_alloc_debugcheck_before(cachep
, flags
);
3619 local_irq_save(save_flags
);
3620 objp
= __do_cache_alloc(cachep
, flags
);
3621 local_irq_restore(save_flags
);
3622 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3623 kmemleak_alloc_recursive(objp
, cachep
->object_size
, 1, cachep
->flags
,
3628 kmemcheck_slab_alloc(cachep
, flags
, objp
, cachep
->object_size
);
3630 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3631 memset(objp
, 0, cachep
->object_size
);
3637 * Caller needs to acquire correct kmem_list's list_lock
3639 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3643 struct kmem_list3
*l3
;
3645 for (i
= 0; i
< nr_objects
; i
++) {
3649 clear_obj_pfmemalloc(&objpp
[i
]);
3652 slabp
= virt_to_slab(objp
);
3653 l3
= cachep
->nodelists
[node
];
3654 list_del(&slabp
->list
);
3655 check_spinlock_acquired_node(cachep
, node
);
3656 check_slabp(cachep
, slabp
);
3657 slab_put_obj(cachep
, slabp
, objp
, node
);
3658 STATS_DEC_ACTIVE(cachep
);
3660 check_slabp(cachep
, slabp
);
3662 /* fixup slab chains */
3663 if (slabp
->inuse
== 0) {
3664 if (l3
->free_objects
> l3
->free_limit
) {
3665 l3
->free_objects
-= cachep
->num
;
3666 /* No need to drop any previously held
3667 * lock here, even if we have a off-slab slab
3668 * descriptor it is guaranteed to come from
3669 * a different cache, refer to comments before
3672 slab_destroy(cachep
, slabp
);
3674 list_add(&slabp
->list
, &l3
->slabs_free
);
3677 /* Unconditionally move a slab to the end of the
3678 * partial list on free - maximum time for the
3679 * other objects to be freed, too.
3681 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3686 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3689 struct kmem_list3
*l3
;
3690 int node
= numa_mem_id();
3692 batchcount
= ac
->batchcount
;
3694 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3697 l3
= cachep
->nodelists
[node
];
3698 spin_lock(&l3
->list_lock
);
3700 struct array_cache
*shared_array
= l3
->shared
;
3701 int max
= shared_array
->limit
- shared_array
->avail
;
3703 if (batchcount
> max
)
3705 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3706 ac
->entry
, sizeof(void *) * batchcount
);
3707 shared_array
->avail
+= batchcount
;
3712 free_block(cachep
, ac
->entry
, batchcount
, node
);
3717 struct list_head
*p
;
3719 p
= l3
->slabs_free
.next
;
3720 while (p
!= &(l3
->slabs_free
)) {
3723 slabp
= list_entry(p
, struct slab
, list
);
3724 BUG_ON(slabp
->inuse
);
3729 STATS_SET_FREEABLE(cachep
, i
);
3732 spin_unlock(&l3
->list_lock
);
3733 ac
->avail
-= batchcount
;
3734 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3738 * Release an obj back to its cache. If the obj has a constructed state, it must
3739 * be in this state _before_ it is released. Called with disabled ints.
3741 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
,
3742 unsigned long caller
)
3744 struct array_cache
*ac
= cpu_cache_get(cachep
);
3747 kmemleak_free_recursive(objp
, cachep
->flags
);
3748 objp
= cache_free_debugcheck(cachep
, objp
, caller
);
3750 kmemcheck_slab_free(cachep
, objp
, cachep
->object_size
);
3753 * Skip calling cache_free_alien() when the platform is not numa.
3754 * This will avoid cache misses that happen while accessing slabp (which
3755 * is per page memory reference) to get nodeid. Instead use a global
3756 * variable to skip the call, which is mostly likely to be present in
3759 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3762 if (likely(ac
->avail
< ac
->limit
)) {
3763 STATS_INC_FREEHIT(cachep
);
3765 STATS_INC_FREEMISS(cachep
);
3766 cache_flusharray(cachep
, ac
);
3769 ac_put_obj(cachep
, ac
, objp
);
3773 * kmem_cache_alloc - Allocate an object
3774 * @cachep: The cache to allocate from.
3775 * @flags: See kmalloc().
3777 * Allocate an object from this cache. The flags are only relevant
3778 * if the cache has no available objects.
3780 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3782 void *ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3784 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3785 cachep
->object_size
, cachep
->size
, flags
);
3789 EXPORT_SYMBOL(kmem_cache_alloc
);
3791 #ifdef CONFIG_TRACING
3793 kmem_cache_alloc_trace(struct kmem_cache
*cachep
, gfp_t flags
, size_t size
)
3797 ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3799 trace_kmalloc(_RET_IP_
, ret
,
3800 size
, cachep
->size
, flags
);
3803 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3807 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3809 void *ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3811 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3812 cachep
->object_size
, cachep
->size
,
3817 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3819 #ifdef CONFIG_TRACING
3820 void *kmem_cache_alloc_node_trace(struct kmem_cache
*cachep
,
3827 ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3829 trace_kmalloc_node(_RET_IP_
, ret
,
3834 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3837 static __always_inline
void *
3838 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, unsigned long caller
)
3840 struct kmem_cache
*cachep
;
3842 cachep
= kmem_find_general_cachep(size
, flags
);
3843 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3845 return kmem_cache_alloc_node_trace(cachep
, flags
, node
, size
);
3848 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3849 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3851 return __do_kmalloc_node(size
, flags
, node
, _RET_IP_
);
3853 EXPORT_SYMBOL(__kmalloc_node
);
3855 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3856 int node
, unsigned long caller
)
3858 return __do_kmalloc_node(size
, flags
, node
, caller
);
3860 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3862 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3864 return __do_kmalloc_node(size
, flags
, node
, 0);
3866 EXPORT_SYMBOL(__kmalloc_node
);
3867 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3868 #endif /* CONFIG_NUMA */
3871 * __do_kmalloc - allocate memory
3872 * @size: how many bytes of memory are required.
3873 * @flags: the type of memory to allocate (see kmalloc).
3874 * @caller: function caller for debug tracking of the caller
3876 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3877 unsigned long caller
)
3879 struct kmem_cache
*cachep
;
3882 /* If you want to save a few bytes .text space: replace
3884 * Then kmalloc uses the uninlined functions instead of the inline
3887 cachep
= __find_general_cachep(size
, flags
);
3888 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3890 ret
= slab_alloc(cachep
, flags
, caller
);
3892 trace_kmalloc(caller
, ret
,
3893 size
, cachep
->size
, flags
);
3899 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3900 void *__kmalloc(size_t size
, gfp_t flags
)
3902 return __do_kmalloc(size
, flags
, _RET_IP_
);
3904 EXPORT_SYMBOL(__kmalloc
);
3906 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3908 return __do_kmalloc(size
, flags
, caller
);
3910 EXPORT_SYMBOL(__kmalloc_track_caller
);
3913 void *__kmalloc(size_t size
, gfp_t flags
)
3915 return __do_kmalloc(size
, flags
, 0);
3917 EXPORT_SYMBOL(__kmalloc
);
3921 * kmem_cache_free - Deallocate an object
3922 * @cachep: The cache the allocation was from.
3923 * @objp: The previously allocated object.
3925 * Free an object which was previously allocated from this
3928 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3930 unsigned long flags
;
3932 local_irq_save(flags
);
3933 debug_check_no_locks_freed(objp
, cachep
->object_size
);
3934 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3935 debug_check_no_obj_freed(objp
, cachep
->object_size
);
3936 __cache_free(cachep
, objp
, _RET_IP_
);
3937 local_irq_restore(flags
);
3939 trace_kmem_cache_free(_RET_IP_
, objp
);
3941 EXPORT_SYMBOL(kmem_cache_free
);
3944 * kfree - free previously allocated memory
3945 * @objp: pointer returned by kmalloc.
3947 * If @objp is NULL, no operation is performed.
3949 * Don't free memory not originally allocated by kmalloc()
3950 * or you will run into trouble.
3952 void kfree(const void *objp
)
3954 struct kmem_cache
*c
;
3955 unsigned long flags
;
3957 trace_kfree(_RET_IP_
, objp
);
3959 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3961 local_irq_save(flags
);
3962 kfree_debugcheck(objp
);
3963 c
= virt_to_cache(objp
);
3964 debug_check_no_locks_freed(objp
, c
->object_size
);
3966 debug_check_no_obj_freed(objp
, c
->object_size
);
3967 __cache_free(c
, (void *)objp
, _RET_IP_
);
3968 local_irq_restore(flags
);
3970 EXPORT_SYMBOL(kfree
);
3972 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3974 return cachep
->object_size
;
3976 EXPORT_SYMBOL(kmem_cache_size
);
3979 * This initializes kmem_list3 or resizes various caches for all nodes.
3981 static int alloc_kmemlist(struct kmem_cache
*cachep
, gfp_t gfp
)
3984 struct kmem_list3
*l3
;
3985 struct array_cache
*new_shared
;
3986 struct array_cache
**new_alien
= NULL
;
3988 for_each_online_node(node
) {
3990 if (use_alien_caches
) {
3991 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3997 if (cachep
->shared
) {
3998 new_shared
= alloc_arraycache(node
,
3999 cachep
->shared
*cachep
->batchcount
,
4002 free_alien_cache(new_alien
);
4007 l3
= cachep
->nodelists
[node
];
4009 struct array_cache
*shared
= l3
->shared
;
4011 spin_lock_irq(&l3
->list_lock
);
4014 free_block(cachep
, shared
->entry
,
4015 shared
->avail
, node
);
4017 l3
->shared
= new_shared
;
4019 l3
->alien
= new_alien
;
4022 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
4023 cachep
->batchcount
+ cachep
->num
;
4024 spin_unlock_irq(&l3
->list_lock
);
4026 free_alien_cache(new_alien
);
4029 l3
= kmalloc_node(sizeof(struct kmem_list3
), gfp
, node
);
4031 free_alien_cache(new_alien
);
4036 kmem_list3_init(l3
);
4037 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
4038 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
4039 l3
->shared
= new_shared
;
4040 l3
->alien
= new_alien
;
4041 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
4042 cachep
->batchcount
+ cachep
->num
;
4043 cachep
->nodelists
[node
] = l3
;
4048 if (!cachep
->list
.next
) {
4049 /* Cache is not active yet. Roll back what we did */
4052 if (cachep
->nodelists
[node
]) {
4053 l3
= cachep
->nodelists
[node
];
4056 free_alien_cache(l3
->alien
);
4058 cachep
->nodelists
[node
] = NULL
;
4066 struct ccupdate_struct
{
4067 struct kmem_cache
*cachep
;
4068 struct array_cache
*new[0];
4071 static void do_ccupdate_local(void *info
)
4073 struct ccupdate_struct
*new = info
;
4074 struct array_cache
*old
;
4077 old
= cpu_cache_get(new->cachep
);
4079 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
4080 new->new[smp_processor_id()] = old
;
4083 /* Always called with the slab_mutex held */
4084 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
4085 int batchcount
, int shared
, gfp_t gfp
)
4087 struct ccupdate_struct
*new;
4090 new = kzalloc(sizeof(*new) + nr_cpu_ids
* sizeof(struct array_cache
*),
4095 for_each_online_cpu(i
) {
4096 new->new[i
] = alloc_arraycache(cpu_to_mem(i
), limit
,
4099 for (i
--; i
>= 0; i
--)
4105 new->cachep
= cachep
;
4107 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
4110 cachep
->batchcount
= batchcount
;
4111 cachep
->limit
= limit
;
4112 cachep
->shared
= shared
;
4114 for_each_online_cpu(i
) {
4115 struct array_cache
*ccold
= new->new[i
];
4118 spin_lock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
4119 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_mem(i
));
4120 spin_unlock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
4124 return alloc_kmemlist(cachep
, gfp
);
4127 /* Called with slab_mutex held always */
4128 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
4134 * The head array serves three purposes:
4135 * - create a LIFO ordering, i.e. return objects that are cache-warm
4136 * - reduce the number of spinlock operations.
4137 * - reduce the number of linked list operations on the slab and
4138 * bufctl chains: array operations are cheaper.
4139 * The numbers are guessed, we should auto-tune as described by
4142 if (cachep
->size
> 131072)
4144 else if (cachep
->size
> PAGE_SIZE
)
4146 else if (cachep
->size
> 1024)
4148 else if (cachep
->size
> 256)
4154 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4155 * allocation behaviour: Most allocs on one cpu, most free operations
4156 * on another cpu. For these cases, an efficient object passing between
4157 * cpus is necessary. This is provided by a shared array. The array
4158 * replaces Bonwick's magazine layer.
4159 * On uniprocessor, it's functionally equivalent (but less efficient)
4160 * to a larger limit. Thus disabled by default.
4163 if (cachep
->size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
4168 * With debugging enabled, large batchcount lead to excessively long
4169 * periods with disabled local interrupts. Limit the batchcount
4174 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
, gfp
);
4176 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4177 cachep
->name
, -err
);
4182 * Drain an array if it contains any elements taking the l3 lock only if
4183 * necessary. Note that the l3 listlock also protects the array_cache
4184 * if drain_array() is used on the shared array.
4186 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4187 struct array_cache
*ac
, int force
, int node
)
4191 if (!ac
|| !ac
->avail
)
4193 if (ac
->touched
&& !force
) {
4196 spin_lock_irq(&l3
->list_lock
);
4198 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4199 if (tofree
> ac
->avail
)
4200 tofree
= (ac
->avail
+ 1) / 2;
4201 free_block(cachep
, ac
->entry
, tofree
, node
);
4202 ac
->avail
-= tofree
;
4203 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4204 sizeof(void *) * ac
->avail
);
4206 spin_unlock_irq(&l3
->list_lock
);
4211 * cache_reap - Reclaim memory from caches.
4212 * @w: work descriptor
4214 * Called from workqueue/eventd every few seconds.
4216 * - clear the per-cpu caches for this CPU.
4217 * - return freeable pages to the main free memory pool.
4219 * If we cannot acquire the cache chain mutex then just give up - we'll try
4220 * again on the next iteration.
4222 static void cache_reap(struct work_struct
*w
)
4224 struct kmem_cache
*searchp
;
4225 struct kmem_list3
*l3
;
4226 int node
= numa_mem_id();
4227 struct delayed_work
*work
= to_delayed_work(w
);
4229 if (!mutex_trylock(&slab_mutex
))
4230 /* Give up. Setup the next iteration. */
4233 list_for_each_entry(searchp
, &slab_caches
, list
) {
4237 * We only take the l3 lock if absolutely necessary and we
4238 * have established with reasonable certainty that
4239 * we can do some work if the lock was obtained.
4241 l3
= searchp
->nodelists
[node
];
4243 reap_alien(searchp
, l3
);
4245 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4248 * These are racy checks but it does not matter
4249 * if we skip one check or scan twice.
4251 if (time_after(l3
->next_reap
, jiffies
))
4254 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4256 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4258 if (l3
->free_touched
)
4259 l3
->free_touched
= 0;
4263 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4264 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4265 STATS_ADD_REAPED(searchp
, freed
);
4271 mutex_unlock(&slab_mutex
);
4274 /* Set up the next iteration */
4275 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4278 #ifdef CONFIG_SLABINFO
4280 static void print_slabinfo_header(struct seq_file
*m
)
4283 * Output format version, so at least we can change it
4284 * without _too_ many complaints.
4287 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4289 seq_puts(m
, "slabinfo - version: 2.1\n");
4291 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4292 "<objperslab> <pagesperslab>");
4293 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4294 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4296 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4297 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4298 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4303 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4307 mutex_lock(&slab_mutex
);
4309 print_slabinfo_header(m
);
4311 return seq_list_start(&slab_caches
, *pos
);
4314 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4316 return seq_list_next(p
, &slab_caches
, pos
);
4319 static void s_stop(struct seq_file
*m
, void *p
)
4321 mutex_unlock(&slab_mutex
);
4324 static int s_show(struct seq_file
*m
, void *p
)
4326 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, list
);
4328 unsigned long active_objs
;
4329 unsigned long num_objs
;
4330 unsigned long active_slabs
= 0;
4331 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4335 struct kmem_list3
*l3
;
4339 for_each_online_node(node
) {
4340 l3
= cachep
->nodelists
[node
];
4345 spin_lock_irq(&l3
->list_lock
);
4347 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4348 if (slabp
->inuse
!= cachep
->num
&& !error
)
4349 error
= "slabs_full accounting error";
4350 active_objs
+= cachep
->num
;
4353 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4354 if (slabp
->inuse
== cachep
->num
&& !error
)
4355 error
= "slabs_partial inuse accounting error";
4356 if (!slabp
->inuse
&& !error
)
4357 error
= "slabs_partial/inuse accounting error";
4358 active_objs
+= slabp
->inuse
;
4361 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4362 if (slabp
->inuse
&& !error
)
4363 error
= "slabs_free/inuse accounting error";
4366 free_objects
+= l3
->free_objects
;
4368 shared_avail
+= l3
->shared
->avail
;
4370 spin_unlock_irq(&l3
->list_lock
);
4372 num_slabs
+= active_slabs
;
4373 num_objs
= num_slabs
* cachep
->num
;
4374 if (num_objs
- active_objs
!= free_objects
&& !error
)
4375 error
= "free_objects accounting error";
4377 name
= cachep
->name
;
4379 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4381 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4382 name
, active_objs
, num_objs
, cachep
->size
,
4383 cachep
->num
, (1 << cachep
->gfporder
));
4384 seq_printf(m
, " : tunables %4u %4u %4u",
4385 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4386 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4387 active_slabs
, num_slabs
, shared_avail
);
4390 unsigned long high
= cachep
->high_mark
;
4391 unsigned long allocs
= cachep
->num_allocations
;
4392 unsigned long grown
= cachep
->grown
;
4393 unsigned long reaped
= cachep
->reaped
;
4394 unsigned long errors
= cachep
->errors
;
4395 unsigned long max_freeable
= cachep
->max_freeable
;
4396 unsigned long node_allocs
= cachep
->node_allocs
;
4397 unsigned long node_frees
= cachep
->node_frees
;
4398 unsigned long overflows
= cachep
->node_overflow
;
4400 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu "
4401 "%4lu %4lu %4lu %4lu %4lu",
4402 allocs
, high
, grown
,
4403 reaped
, errors
, max_freeable
, node_allocs
,
4404 node_frees
, overflows
);
4408 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4409 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4410 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4411 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4413 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4414 allochit
, allocmiss
, freehit
, freemiss
);
4422 * slabinfo_op - iterator that generates /proc/slabinfo
4431 * num-pages-per-slab
4432 * + further values on SMP and with statistics enabled
4435 static const struct seq_operations slabinfo_op
= {
4442 #define MAX_SLABINFO_WRITE 128
4444 * slabinfo_write - Tuning for the slab allocator
4446 * @buffer: user buffer
4447 * @count: data length
4450 static ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4451 size_t count
, loff_t
*ppos
)
4453 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4454 int limit
, batchcount
, shared
, res
;
4455 struct kmem_cache
*cachep
;
4457 if (count
> MAX_SLABINFO_WRITE
)
4459 if (copy_from_user(&kbuf
, buffer
, count
))
4461 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4463 tmp
= strchr(kbuf
, ' ');
4468 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4471 /* Find the cache in the chain of caches. */
4472 mutex_lock(&slab_mutex
);
4474 list_for_each_entry(cachep
, &slab_caches
, list
) {
4475 if (!strcmp(cachep
->name
, kbuf
)) {
4476 if (limit
< 1 || batchcount
< 1 ||
4477 batchcount
> limit
|| shared
< 0) {
4480 res
= do_tune_cpucache(cachep
, limit
,
4487 mutex_unlock(&slab_mutex
);
4493 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4495 return seq_open(file
, &slabinfo_op
);
4498 static const struct file_operations proc_slabinfo_operations
= {
4499 .open
= slabinfo_open
,
4501 .write
= slabinfo_write
,
4502 .llseek
= seq_lseek
,
4503 .release
= seq_release
,
4506 #ifdef CONFIG_DEBUG_SLAB_LEAK
4508 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4510 mutex_lock(&slab_mutex
);
4511 return seq_list_start(&slab_caches
, *pos
);
4514 static inline int add_caller(unsigned long *n
, unsigned long v
)
4524 unsigned long *q
= p
+ 2 * i
;
4538 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4544 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4550 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->size
) {
4551 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4553 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4558 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4560 #ifdef CONFIG_KALLSYMS
4561 unsigned long offset
, size
;
4562 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4564 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4565 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4567 seq_printf(m
, " [%s]", modname
);
4571 seq_printf(m
, "%p", (void *)address
);
4574 static int leaks_show(struct seq_file
*m
, void *p
)
4576 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, list
);
4578 struct kmem_list3
*l3
;
4580 unsigned long *n
= m
->private;
4584 if (!(cachep
->flags
& SLAB_STORE_USER
))
4586 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4589 /* OK, we can do it */
4593 for_each_online_node(node
) {
4594 l3
= cachep
->nodelists
[node
];
4599 spin_lock_irq(&l3
->list_lock
);
4601 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4602 handle_slab(n
, cachep
, slabp
);
4603 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4604 handle_slab(n
, cachep
, slabp
);
4605 spin_unlock_irq(&l3
->list_lock
);
4607 name
= cachep
->name
;
4609 /* Increase the buffer size */
4610 mutex_unlock(&slab_mutex
);
4611 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4613 /* Too bad, we are really out */
4615 mutex_lock(&slab_mutex
);
4618 *(unsigned long *)m
->private = n
[0] * 2;
4620 mutex_lock(&slab_mutex
);
4621 /* Now make sure this entry will be retried */
4625 for (i
= 0; i
< n
[1]; i
++) {
4626 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4627 show_symbol(m
, n
[2*i
+2]);
4634 static const struct seq_operations slabstats_op
= {
4635 .start
= leaks_start
,
4641 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4643 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4646 ret
= seq_open(file
, &slabstats_op
);
4648 struct seq_file
*m
= file
->private_data
;
4649 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4658 static const struct file_operations proc_slabstats_operations
= {
4659 .open
= slabstats_open
,
4661 .llseek
= seq_lseek
,
4662 .release
= seq_release_private
,
4666 static int __init
slab_proc_init(void)
4668 proc_create("slabinfo",S_IWUSR
|S_IRUSR
,NULL
,&proc_slabinfo_operations
);
4669 #ifdef CONFIG_DEBUG_SLAB_LEAK
4670 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4674 module_init(slab_proc_init
);
4678 * ksize - get the actual amount of memory allocated for a given object
4679 * @objp: Pointer to the object
4681 * kmalloc may internally round up allocations and return more memory
4682 * than requested. ksize() can be used to determine the actual amount of
4683 * memory allocated. The caller may use this additional memory, even though
4684 * a smaller amount of memory was initially specified with the kmalloc call.
4685 * The caller must guarantee that objp points to a valid object previously
4686 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4687 * must not be freed during the duration of the call.
4689 size_t ksize(const void *objp
)
4692 if (unlikely(objp
== ZERO_SIZE_PTR
))
4695 return virt_to_cache(objp
)->object_size
;
4697 EXPORT_SYMBOL(ksize
);