2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
90 #include <asm/uaccess.h>
91 #include <asm/unistd.h>
93 #include <net/compat.h>
97 #include <linux/netfilter.h>
99 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
100 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
101 unsigned long nr_segs
, loff_t pos
);
102 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
103 unsigned long nr_segs
, loff_t pos
);
104 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
106 static int sock_close(struct inode
*inode
, struct file
*file
);
107 static unsigned int sock_poll(struct file
*file
,
108 struct poll_table_struct
*wait
);
109 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
111 static long compat_sock_ioctl(struct file
*file
,
112 unsigned int cmd
, unsigned long arg
);
114 static int sock_fasync(int fd
, struct file
*filp
, int on
);
115 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
116 int offset
, size_t size
, loff_t
*ppos
, int more
);
117 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
118 struct pipe_inode_info
*pipe
, size_t len
,
122 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
123 * in the operation structures but are done directly via the socketcall() multiplexor.
126 static const struct file_operations socket_file_ops
= {
127 .owner
= THIS_MODULE
,
129 .aio_read
= sock_aio_read
,
130 .aio_write
= sock_aio_write
,
132 .unlocked_ioctl
= sock_ioctl
,
134 .compat_ioctl
= compat_sock_ioctl
,
137 .open
= sock_no_open
, /* special open code to disallow open via /proc */
138 .release
= sock_close
,
139 .fasync
= sock_fasync
,
140 .sendpage
= sock_sendpage
,
141 .splice_write
= generic_splice_sendpage
,
142 .splice_read
= sock_splice_read
,
146 * The protocol list. Each protocol is registered in here.
149 static DEFINE_SPINLOCK(net_family_lock
);
150 static const struct net_proto_family
*net_families
[NPROTO
] __read_mostly
;
153 * Statistics counters of the socket lists
156 static DEFINE_PER_CPU(int, sockets_in_use
) = 0;
160 * Move socket addresses back and forth across the kernel/user
161 * divide and look after the messy bits.
164 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
165 16 for IP, 16 for IPX,
168 must be at least one bigger than
169 the AF_UNIX size (see net/unix/af_unix.c
174 * move_addr_to_kernel - copy a socket address into kernel space
175 * @uaddr: Address in user space
176 * @kaddr: Address in kernel space
177 * @ulen: Length in user space
179 * The address is copied into kernel space. If the provided address is
180 * too long an error code of -EINVAL is returned. If the copy gives
181 * invalid addresses -EFAULT is returned. On a success 0 is returned.
184 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr
*kaddr
)
186 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
190 if (copy_from_user(kaddr
, uaddr
, ulen
))
192 return audit_sockaddr(ulen
, kaddr
);
196 * move_addr_to_user - copy an address to user space
197 * @kaddr: kernel space address
198 * @klen: length of address in kernel
199 * @uaddr: user space address
200 * @ulen: pointer to user length field
202 * The value pointed to by ulen on entry is the buffer length available.
203 * This is overwritten with the buffer space used. -EINVAL is returned
204 * if an overlong buffer is specified or a negative buffer size. -EFAULT
205 * is returned if either the buffer or the length field are not
207 * After copying the data up to the limit the user specifies, the true
208 * length of the data is written over the length limit the user
209 * specified. Zero is returned for a success.
212 int move_addr_to_user(struct sockaddr
*kaddr
, int klen
, void __user
*uaddr
,
218 err
= get_user(len
, ulen
);
223 if (len
< 0 || len
> sizeof(struct sockaddr_storage
))
226 if (audit_sockaddr(klen
, kaddr
))
228 if (copy_to_user(uaddr
, kaddr
, len
))
232 * "fromlen shall refer to the value before truncation.."
235 return __put_user(klen
, ulen
);
238 #define SOCKFS_MAGIC 0x534F434B
240 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
242 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
244 struct socket_alloc
*ei
;
246 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
249 init_waitqueue_head(&ei
->socket
.wait
);
251 ei
->socket
.fasync_list
= NULL
;
252 ei
->socket
.state
= SS_UNCONNECTED
;
253 ei
->socket
.flags
= 0;
254 ei
->socket
.ops
= NULL
;
255 ei
->socket
.sk
= NULL
;
256 ei
->socket
.file
= NULL
;
258 return &ei
->vfs_inode
;
261 static void sock_destroy_inode(struct inode
*inode
)
263 kmem_cache_free(sock_inode_cachep
,
264 container_of(inode
, struct socket_alloc
, vfs_inode
));
267 static void init_once(void *foo
)
269 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
271 inode_init_once(&ei
->vfs_inode
);
274 static int init_inodecache(void)
276 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
277 sizeof(struct socket_alloc
),
279 (SLAB_HWCACHE_ALIGN
|
280 SLAB_RECLAIM_ACCOUNT
|
283 if (sock_inode_cachep
== NULL
)
288 static struct super_operations sockfs_ops
= {
289 .alloc_inode
= sock_alloc_inode
,
290 .destroy_inode
=sock_destroy_inode
,
291 .statfs
= simple_statfs
,
294 static int sockfs_get_sb(struct file_system_type
*fs_type
,
295 int flags
, const char *dev_name
, void *data
,
296 struct vfsmount
*mnt
)
298 return get_sb_pseudo(fs_type
, "socket:", &sockfs_ops
, SOCKFS_MAGIC
,
302 static struct vfsmount
*sock_mnt __read_mostly
;
304 static struct file_system_type sock_fs_type
= {
306 .get_sb
= sockfs_get_sb
,
307 .kill_sb
= kill_anon_super
,
310 static int sockfs_delete_dentry(struct dentry
*dentry
)
313 * At creation time, we pretended this dentry was hashed
314 * (by clearing DCACHE_UNHASHED bit in d_flags)
315 * At delete time, we restore the truth : not hashed.
316 * (so that dput() can proceed correctly)
318 dentry
->d_flags
|= DCACHE_UNHASHED
;
323 * sockfs_dname() is called from d_path().
325 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
327 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
328 dentry
->d_inode
->i_ino
);
331 static const struct dentry_operations sockfs_dentry_operations
= {
332 .d_delete
= sockfs_delete_dentry
,
333 .d_dname
= sockfs_dname
,
337 * Obtains the first available file descriptor and sets it up for use.
339 * These functions create file structures and maps them to fd space
340 * of the current process. On success it returns file descriptor
341 * and file struct implicitly stored in sock->file.
342 * Note that another thread may close file descriptor before we return
343 * from this function. We use the fact that now we do not refer
344 * to socket after mapping. If one day we will need it, this
345 * function will increment ref. count on file by 1.
347 * In any case returned fd MAY BE not valid!
348 * This race condition is unavoidable
349 * with shared fd spaces, we cannot solve it inside kernel,
350 * but we take care of internal coherence yet.
353 static int sock_alloc_fd(struct file
**filep
, int flags
)
357 fd
= get_unused_fd_flags(flags
);
358 if (likely(fd
>= 0)) {
359 struct file
*file
= get_empty_filp();
362 if (unlikely(!file
)) {
371 static int sock_attach_fd(struct socket
*sock
, struct file
*file
, int flags
)
373 struct dentry
*dentry
;
374 struct qstr name
= { .name
= "" };
376 dentry
= d_alloc(sock_mnt
->mnt_sb
->s_root
, &name
);
377 if (unlikely(!dentry
))
380 dentry
->d_op
= &sockfs_dentry_operations
;
382 * We dont want to push this dentry into global dentry hash table.
383 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
384 * This permits a working /proc/$pid/fd/XXX on sockets
386 dentry
->d_flags
&= ~DCACHE_UNHASHED
;
387 d_instantiate(dentry
, SOCK_INODE(sock
));
390 init_file(file
, sock_mnt
, dentry
, FMODE_READ
| FMODE_WRITE
,
392 SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
393 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
395 file
->private_data
= sock
;
400 int sock_map_fd(struct socket
*sock
, int flags
)
402 struct file
*newfile
;
403 int fd
= sock_alloc_fd(&newfile
, flags
);
405 if (likely(fd
>= 0)) {
406 int err
= sock_attach_fd(sock
, newfile
, flags
);
408 if (unlikely(err
< 0)) {
413 fd_install(fd
, newfile
);
418 static struct socket
*sock_from_file(struct file
*file
, int *err
)
420 if (file
->f_op
== &socket_file_ops
)
421 return file
->private_data
; /* set in sock_map_fd */
428 * sockfd_lookup - Go from a file number to its socket slot
430 * @err: pointer to an error code return
432 * The file handle passed in is locked and the socket it is bound
433 * too is returned. If an error occurs the err pointer is overwritten
434 * with a negative errno code and NULL is returned. The function checks
435 * for both invalid handles and passing a handle which is not a socket.
437 * On a success the socket object pointer is returned.
440 struct socket
*sockfd_lookup(int fd
, int *err
)
451 sock
= sock_from_file(file
, err
);
457 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
463 file
= fget_light(fd
, fput_needed
);
465 sock
= sock_from_file(file
, err
);
468 fput_light(file
, *fput_needed
);
474 * sock_alloc - allocate a socket
476 * Allocate a new inode and socket object. The two are bound together
477 * and initialised. The socket is then returned. If we are out of inodes
481 static struct socket
*sock_alloc(void)
486 inode
= new_inode(sock_mnt
->mnt_sb
);
490 sock
= SOCKET_I(inode
);
492 kmemcheck_annotate_bitfield(sock
, type
);
493 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
494 inode
->i_uid
= current_fsuid();
495 inode
->i_gid
= current_fsgid();
497 percpu_add(sockets_in_use
, 1);
502 * In theory you can't get an open on this inode, but /proc provides
503 * a back door. Remember to keep it shut otherwise you'll let the
504 * creepy crawlies in.
507 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
512 const struct file_operations bad_sock_fops
= {
513 .owner
= THIS_MODULE
,
514 .open
= sock_no_open
,
518 * sock_release - close a socket
519 * @sock: socket to close
521 * The socket is released from the protocol stack if it has a release
522 * callback, and the inode is then released if the socket is bound to
523 * an inode not a file.
526 void sock_release(struct socket
*sock
)
529 struct module
*owner
= sock
->ops
->owner
;
531 sock
->ops
->release(sock
);
536 if (sock
->fasync_list
)
537 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
539 percpu_sub(sockets_in_use
, 1);
541 iput(SOCK_INODE(sock
));
547 int sock_tx_timestamp(struct msghdr
*msg
, struct sock
*sk
,
548 union skb_shared_tx
*shtx
)
551 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
553 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
557 EXPORT_SYMBOL(sock_tx_timestamp
);
559 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
560 struct msghdr
*msg
, size_t size
)
562 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
570 err
= security_socket_sendmsg(sock
, msg
, size
);
574 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
577 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
580 struct sock_iocb siocb
;
583 init_sync_kiocb(&iocb
, NULL
);
584 iocb
.private = &siocb
;
585 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
586 if (-EIOCBQUEUED
== ret
)
587 ret
= wait_on_sync_kiocb(&iocb
);
591 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
592 struct kvec
*vec
, size_t num
, size_t size
)
594 mm_segment_t oldfs
= get_fs();
599 * the following is safe, since for compiler definitions of kvec and
600 * iovec are identical, yielding the same in-core layout and alignment
602 msg
->msg_iov
= (struct iovec
*)vec
;
603 msg
->msg_iovlen
= num
;
604 result
= sock_sendmsg(sock
, msg
, size
);
609 static int ktime2ts(ktime_t kt
, struct timespec
*ts
)
612 *ts
= ktime_to_timespec(kt
);
620 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
622 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
625 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
626 struct timespec ts
[3];
628 struct skb_shared_hwtstamps
*shhwtstamps
=
631 /* Race occurred between timestamp enabling and packet
632 receiving. Fill in the current time for now. */
633 if (need_software_tstamp
&& skb
->tstamp
.tv64
== 0)
634 __net_timestamp(skb
);
636 if (need_software_tstamp
) {
637 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
639 skb_get_timestamp(skb
, &tv
);
640 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
644 skb_get_timestampns(skb
, &ts
);
645 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
651 memset(ts
, 0, sizeof(ts
));
652 if (skb
->tstamp
.tv64
&&
653 sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
)) {
654 skb_get_timestampns(skb
, ts
+ 0);
658 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
) &&
659 ktime2ts(shhwtstamps
->syststamp
, ts
+ 1))
661 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
) &&
662 ktime2ts(shhwtstamps
->hwtstamp
, ts
+ 2))
666 put_cmsg(msg
, SOL_SOCKET
,
667 SCM_TIMESTAMPING
, sizeof(ts
), &ts
);
670 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
672 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
673 struct msghdr
*msg
, size_t size
, int flags
)
676 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
684 err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
688 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
691 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
692 size_t size
, int flags
)
695 struct sock_iocb siocb
;
698 init_sync_kiocb(&iocb
, NULL
);
699 iocb
.private = &siocb
;
700 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
701 if (-EIOCBQUEUED
== ret
)
702 ret
= wait_on_sync_kiocb(&iocb
);
706 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
707 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
709 mm_segment_t oldfs
= get_fs();
714 * the following is safe, since for compiler definitions of kvec and
715 * iovec are identical, yielding the same in-core layout and alignment
717 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
718 result
= sock_recvmsg(sock
, msg
, size
, flags
);
723 static void sock_aio_dtor(struct kiocb
*iocb
)
725 kfree(iocb
->private);
728 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
729 int offset
, size_t size
, loff_t
*ppos
, int more
)
734 sock
= file
->private_data
;
736 flags
= !(file
->f_flags
& O_NONBLOCK
) ? 0 : MSG_DONTWAIT
;
740 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
743 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
744 struct pipe_inode_info
*pipe
, size_t len
,
747 struct socket
*sock
= file
->private_data
;
749 if (unlikely(!sock
->ops
->splice_read
))
752 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
755 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
756 struct sock_iocb
*siocb
)
758 if (!is_sync_kiocb(iocb
)) {
759 siocb
= kmalloc(sizeof(*siocb
), GFP_KERNEL
);
762 iocb
->ki_dtor
= sock_aio_dtor
;
766 iocb
->private = siocb
;
770 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
771 struct file
*file
, const struct iovec
*iov
,
772 unsigned long nr_segs
)
774 struct socket
*sock
= file
->private_data
;
778 for (i
= 0; i
< nr_segs
; i
++)
779 size
+= iov
[i
].iov_len
;
781 msg
->msg_name
= NULL
;
782 msg
->msg_namelen
= 0;
783 msg
->msg_control
= NULL
;
784 msg
->msg_controllen
= 0;
785 msg
->msg_iov
= (struct iovec
*)iov
;
786 msg
->msg_iovlen
= nr_segs
;
787 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
789 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
792 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
793 unsigned long nr_segs
, loff_t pos
)
795 struct sock_iocb siocb
, *x
;
800 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
804 x
= alloc_sock_iocb(iocb
, &siocb
);
807 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
810 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
811 struct file
*file
, const struct iovec
*iov
,
812 unsigned long nr_segs
)
814 struct socket
*sock
= file
->private_data
;
818 for (i
= 0; i
< nr_segs
; i
++)
819 size
+= iov
[i
].iov_len
;
821 msg
->msg_name
= NULL
;
822 msg
->msg_namelen
= 0;
823 msg
->msg_control
= NULL
;
824 msg
->msg_controllen
= 0;
825 msg
->msg_iov
= (struct iovec
*)iov
;
826 msg
->msg_iovlen
= nr_segs
;
827 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
828 if (sock
->type
== SOCK_SEQPACKET
)
829 msg
->msg_flags
|= MSG_EOR
;
831 return __sock_sendmsg(iocb
, sock
, msg
, size
);
834 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
835 unsigned long nr_segs
, loff_t pos
)
837 struct sock_iocb siocb
, *x
;
842 x
= alloc_sock_iocb(iocb
, &siocb
);
846 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
850 * Atomic setting of ioctl hooks to avoid race
851 * with module unload.
854 static DEFINE_MUTEX(br_ioctl_mutex
);
855 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
) = NULL
;
857 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
859 mutex_lock(&br_ioctl_mutex
);
860 br_ioctl_hook
= hook
;
861 mutex_unlock(&br_ioctl_mutex
);
864 EXPORT_SYMBOL(brioctl_set
);
866 static DEFINE_MUTEX(vlan_ioctl_mutex
);
867 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
869 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
871 mutex_lock(&vlan_ioctl_mutex
);
872 vlan_ioctl_hook
= hook
;
873 mutex_unlock(&vlan_ioctl_mutex
);
876 EXPORT_SYMBOL(vlan_ioctl_set
);
878 static DEFINE_MUTEX(dlci_ioctl_mutex
);
879 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
881 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
883 mutex_lock(&dlci_ioctl_mutex
);
884 dlci_ioctl_hook
= hook
;
885 mutex_unlock(&dlci_ioctl_mutex
);
888 EXPORT_SYMBOL(dlci_ioctl_set
);
891 * With an ioctl, arg may well be a user mode pointer, but we don't know
892 * what to do with it - that's up to the protocol still.
895 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
899 void __user
*argp
= (void __user
*)arg
;
903 sock
= file
->private_data
;
906 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
907 err
= dev_ioctl(net
, cmd
, argp
);
909 #ifdef CONFIG_WIRELESS_EXT
910 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
911 err
= dev_ioctl(net
, cmd
, argp
);
913 #endif /* CONFIG_WIRELESS_EXT */
918 if (get_user(pid
, (int __user
*)argp
))
920 err
= f_setown(sock
->file
, pid
, 1);
924 err
= put_user(f_getown(sock
->file
),
933 request_module("bridge");
935 mutex_lock(&br_ioctl_mutex
);
937 err
= br_ioctl_hook(net
, cmd
, argp
);
938 mutex_unlock(&br_ioctl_mutex
);
943 if (!vlan_ioctl_hook
)
944 request_module("8021q");
946 mutex_lock(&vlan_ioctl_mutex
);
948 err
= vlan_ioctl_hook(net
, argp
);
949 mutex_unlock(&vlan_ioctl_mutex
);
954 if (!dlci_ioctl_hook
)
955 request_module("dlci");
957 mutex_lock(&dlci_ioctl_mutex
);
959 err
= dlci_ioctl_hook(cmd
, argp
);
960 mutex_unlock(&dlci_ioctl_mutex
);
963 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
966 * If this ioctl is unknown try to hand it down
969 if (err
== -ENOIOCTLCMD
)
970 err
= dev_ioctl(net
, cmd
, argp
);
976 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
979 struct socket
*sock
= NULL
;
981 err
= security_socket_create(family
, type
, protocol
, 1);
992 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1005 /* No kernel lock held - perfect */
1006 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
1008 struct socket
*sock
;
1011 * We can't return errors to poll, so it's either yes or no.
1013 sock
= file
->private_data
;
1014 return sock
->ops
->poll(file
, sock
, wait
);
1017 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1019 struct socket
*sock
= file
->private_data
;
1021 return sock
->ops
->mmap(file
, sock
, vma
);
1024 static int sock_close(struct inode
*inode
, struct file
*filp
)
1027 * It was possible the inode is NULL we were
1028 * closing an unfinished socket.
1032 printk(KERN_DEBUG
"sock_close: NULL inode\n");
1035 sock_release(SOCKET_I(inode
));
1040 * Update the socket async list
1042 * Fasync_list locking strategy.
1044 * 1. fasync_list is modified only under process context socket lock
1045 * i.e. under semaphore.
1046 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1047 * or under socket lock.
1048 * 3. fasync_list can be used from softirq context, so that
1049 * modification under socket lock have to be enhanced with
1050 * write_lock_bh(&sk->sk_callback_lock).
1054 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1056 struct fasync_struct
*fa
, *fna
= NULL
, **prev
;
1057 struct socket
*sock
;
1061 fna
= kmalloc(sizeof(struct fasync_struct
), GFP_KERNEL
);
1066 sock
= filp
->private_data
;
1076 spin_lock(&filp
->f_lock
);
1078 filp
->f_flags
|= FASYNC
;
1080 filp
->f_flags
&= ~FASYNC
;
1081 spin_unlock(&filp
->f_lock
);
1083 prev
= &(sock
->fasync_list
);
1085 for (fa
= *prev
; fa
!= NULL
; prev
= &fa
->fa_next
, fa
= *prev
)
1086 if (fa
->fa_file
== filp
)
1091 write_lock_bh(&sk
->sk_callback_lock
);
1093 write_unlock_bh(&sk
->sk_callback_lock
);
1098 fna
->fa_file
= filp
;
1100 fna
->magic
= FASYNC_MAGIC
;
1101 fna
->fa_next
= sock
->fasync_list
;
1102 write_lock_bh(&sk
->sk_callback_lock
);
1103 sock
->fasync_list
= fna
;
1104 write_unlock_bh(&sk
->sk_callback_lock
);
1107 write_lock_bh(&sk
->sk_callback_lock
);
1108 *prev
= fa
->fa_next
;
1109 write_unlock_bh(&sk
->sk_callback_lock
);
1115 release_sock(sock
->sk
);
1119 /* This function may be called only under socket lock or callback_lock */
1121 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1123 if (!sock
|| !sock
->fasync_list
)
1126 case SOCK_WAKE_WAITD
:
1127 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1130 case SOCK_WAKE_SPACE
:
1131 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1136 __kill_fasync(sock
->fasync_list
, SIGIO
, band
);
1139 __kill_fasync(sock
->fasync_list
, SIGURG
, band
);
1144 static int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1145 struct socket
**res
, int kern
)
1148 struct socket
*sock
;
1149 const struct net_proto_family
*pf
;
1152 * Check protocol is in range
1154 if (family
< 0 || family
>= NPROTO
)
1155 return -EAFNOSUPPORT
;
1156 if (type
< 0 || type
>= SOCK_MAX
)
1161 This uglymoron is moved from INET layer to here to avoid
1162 deadlock in module load.
1164 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1168 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1174 err
= security_socket_create(family
, type
, protocol
, kern
);
1179 * Allocate the socket and allow the family to set things up. if
1180 * the protocol is 0, the family is instructed to select an appropriate
1183 sock
= sock_alloc();
1185 if (net_ratelimit())
1186 printk(KERN_WARNING
"socket: no more sockets\n");
1187 return -ENFILE
; /* Not exactly a match, but its the
1188 closest posix thing */
1193 #ifdef CONFIG_MODULES
1194 /* Attempt to load a protocol module if the find failed.
1196 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1197 * requested real, full-featured networking support upon configuration.
1198 * Otherwise module support will break!
1200 if (net_families
[family
] == NULL
)
1201 request_module("net-pf-%d", family
);
1205 pf
= rcu_dereference(net_families
[family
]);
1206 err
= -EAFNOSUPPORT
;
1211 * We will call the ->create function, that possibly is in a loadable
1212 * module, so we have to bump that loadable module refcnt first.
1214 if (!try_module_get(pf
->owner
))
1217 /* Now protected by module ref count */
1220 err
= pf
->create(net
, sock
, protocol
);
1222 goto out_module_put
;
1225 * Now to bump the refcnt of the [loadable] module that owns this
1226 * socket at sock_release time we decrement its refcnt.
1228 if (!try_module_get(sock
->ops
->owner
))
1229 goto out_module_busy
;
1232 * Now that we're done with the ->create function, the [loadable]
1233 * module can have its refcnt decremented
1235 module_put(pf
->owner
);
1236 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1238 goto out_sock_release
;
1244 err
= -EAFNOSUPPORT
;
1247 module_put(pf
->owner
);
1254 goto out_sock_release
;
1257 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1259 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1262 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1264 return __sock_create(&init_net
, family
, type
, protocol
, res
, 1);
1267 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1270 struct socket
*sock
;
1273 /* Check the SOCK_* constants for consistency. */
1274 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1275 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1276 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1277 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1279 flags
= type
& ~SOCK_TYPE_MASK
;
1280 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1282 type
&= SOCK_TYPE_MASK
;
1284 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1285 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1287 retval
= sock_create(family
, type
, protocol
, &sock
);
1291 retval
= sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1296 /* It may be already another descriptor 8) Not kernel problem. */
1305 * Create a pair of connected sockets.
1308 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1309 int __user
*, usockvec
)
1311 struct socket
*sock1
, *sock2
;
1313 struct file
*newfile1
, *newfile2
;
1316 flags
= type
& ~SOCK_TYPE_MASK
;
1317 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1319 type
&= SOCK_TYPE_MASK
;
1321 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1322 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1325 * Obtain the first socket and check if the underlying protocol
1326 * supports the socketpair call.
1329 err
= sock_create(family
, type
, protocol
, &sock1
);
1333 err
= sock_create(family
, type
, protocol
, &sock2
);
1337 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1339 goto out_release_both
;
1341 fd1
= sock_alloc_fd(&newfile1
, flags
& O_CLOEXEC
);
1342 if (unlikely(fd1
< 0)) {
1344 goto out_release_both
;
1347 fd2
= sock_alloc_fd(&newfile2
, flags
& O_CLOEXEC
);
1348 if (unlikely(fd2
< 0)) {
1352 goto out_release_both
;
1355 err
= sock_attach_fd(sock1
, newfile1
, flags
& O_NONBLOCK
);
1356 if (unlikely(err
< 0)) {
1360 err
= sock_attach_fd(sock2
, newfile2
, flags
& O_NONBLOCK
);
1361 if (unlikely(err
< 0)) {
1366 audit_fd_pair(fd1
, fd2
);
1367 fd_install(fd1
, newfile1
);
1368 fd_install(fd2
, newfile2
);
1369 /* fd1 and fd2 may be already another descriptors.
1370 * Not kernel problem.
1373 err
= put_user(fd1
, &usockvec
[0]);
1375 err
= put_user(fd2
, &usockvec
[1]);
1384 sock_release(sock2
);
1386 sock_release(sock1
);
1392 sock_release(sock1
);
1395 sock_release(sock2
);
1402 * Bind a name to a socket. Nothing much to do here since it's
1403 * the protocol's responsibility to handle the local address.
1405 * We move the socket address to kernel space before we call
1406 * the protocol layer (having also checked the address is ok).
1409 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1411 struct socket
*sock
;
1412 struct sockaddr_storage address
;
1413 int err
, fput_needed
;
1415 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1417 err
= move_addr_to_kernel(umyaddr
, addrlen
, (struct sockaddr
*)&address
);
1419 err
= security_socket_bind(sock
,
1420 (struct sockaddr
*)&address
,
1423 err
= sock
->ops
->bind(sock
,
1427 fput_light(sock
->file
, fput_needed
);
1433 * Perform a listen. Basically, we allow the protocol to do anything
1434 * necessary for a listen, and if that works, we mark the socket as
1435 * ready for listening.
1438 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1440 struct socket
*sock
;
1441 int err
, fput_needed
;
1444 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1446 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1447 if ((unsigned)backlog
> somaxconn
)
1448 backlog
= somaxconn
;
1450 err
= security_socket_listen(sock
, backlog
);
1452 err
= sock
->ops
->listen(sock
, backlog
);
1454 fput_light(sock
->file
, fput_needed
);
1460 * For accept, we attempt to create a new socket, set up the link
1461 * with the client, wake up the client, then return the new
1462 * connected fd. We collect the address of the connector in kernel
1463 * space and move it to user at the very end. This is unclean because
1464 * we open the socket then return an error.
1466 * 1003.1g adds the ability to recvmsg() to query connection pending
1467 * status to recvmsg. We need to add that support in a way thats
1468 * clean when we restucture accept also.
1471 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1472 int __user
*, upeer_addrlen
, int, flags
)
1474 struct socket
*sock
, *newsock
;
1475 struct file
*newfile
;
1476 int err
, len
, newfd
, fput_needed
;
1477 struct sockaddr_storage address
;
1479 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1482 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1483 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1485 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1490 if (!(newsock
= sock_alloc()))
1493 newsock
->type
= sock
->type
;
1494 newsock
->ops
= sock
->ops
;
1497 * We don't need try_module_get here, as the listening socket (sock)
1498 * has the protocol module (sock->ops->owner) held.
1500 __module_get(newsock
->ops
->owner
);
1502 newfd
= sock_alloc_fd(&newfile
, flags
& O_CLOEXEC
);
1503 if (unlikely(newfd
< 0)) {
1505 sock_release(newsock
);
1509 err
= sock_attach_fd(newsock
, newfile
, flags
& O_NONBLOCK
);
1513 err
= security_socket_accept(sock
, newsock
);
1517 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1521 if (upeer_sockaddr
) {
1522 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)&address
,
1524 err
= -ECONNABORTED
;
1527 err
= move_addr_to_user((struct sockaddr
*)&address
,
1528 len
, upeer_sockaddr
, upeer_addrlen
);
1533 /* File flags are not inherited via accept() unlike another OSes. */
1535 fd_install(newfd
, newfile
);
1539 fput_light(sock
->file
, fput_needed
);
1543 sock_release(newsock
);
1545 put_unused_fd(newfd
);
1549 put_unused_fd(newfd
);
1553 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1554 int __user
*, upeer_addrlen
)
1556 return sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1560 * Attempt to connect to a socket with the server address. The address
1561 * is in user space so we verify it is OK and move it to kernel space.
1563 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1566 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1567 * other SEQPACKET protocols that take time to connect() as it doesn't
1568 * include the -EINPROGRESS status for such sockets.
1571 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1574 struct socket
*sock
;
1575 struct sockaddr_storage address
;
1576 int err
, fput_needed
;
1578 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1581 err
= move_addr_to_kernel(uservaddr
, addrlen
, (struct sockaddr
*)&address
);
1586 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1590 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1591 sock
->file
->f_flags
);
1593 fput_light(sock
->file
, fput_needed
);
1599 * Get the local address ('name') of a socket object. Move the obtained
1600 * name to user space.
1603 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1604 int __user
*, usockaddr_len
)
1606 struct socket
*sock
;
1607 struct sockaddr_storage address
;
1608 int len
, err
, fput_needed
;
1610 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1614 err
= security_socket_getsockname(sock
);
1618 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
, 0);
1621 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
, usockaddr_len
);
1624 fput_light(sock
->file
, fput_needed
);
1630 * Get the remote address ('name') of a socket object. Move the obtained
1631 * name to user space.
1634 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1635 int __user
*, usockaddr_len
)
1637 struct socket
*sock
;
1638 struct sockaddr_storage address
;
1639 int len
, err
, fput_needed
;
1641 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1643 err
= security_socket_getpeername(sock
);
1645 fput_light(sock
->file
, fput_needed
);
1650 sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, &len
,
1653 err
= move_addr_to_user((struct sockaddr
*)&address
, len
, usockaddr
,
1655 fput_light(sock
->file
, fput_needed
);
1661 * Send a datagram to a given address. We move the address into kernel
1662 * space and check the user space data area is readable before invoking
1666 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1667 unsigned, flags
, struct sockaddr __user
*, addr
,
1670 struct socket
*sock
;
1671 struct sockaddr_storage address
;
1677 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1681 iov
.iov_base
= buff
;
1683 msg
.msg_name
= NULL
;
1686 msg
.msg_control
= NULL
;
1687 msg
.msg_controllen
= 0;
1688 msg
.msg_namelen
= 0;
1690 err
= move_addr_to_kernel(addr
, addr_len
, (struct sockaddr
*)&address
);
1693 msg
.msg_name
= (struct sockaddr
*)&address
;
1694 msg
.msg_namelen
= addr_len
;
1696 if (sock
->file
->f_flags
& O_NONBLOCK
)
1697 flags
|= MSG_DONTWAIT
;
1698 msg
.msg_flags
= flags
;
1699 err
= sock_sendmsg(sock
, &msg
, len
);
1702 fput_light(sock
->file
, fput_needed
);
1708 * Send a datagram down a socket.
1711 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1714 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1718 * Receive a frame from the socket and optionally record the address of the
1719 * sender. We verify the buffers are writable and if needed move the
1720 * sender address from kernel to user space.
1723 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1724 unsigned, flags
, struct sockaddr __user
*, addr
,
1725 int __user
*, addr_len
)
1727 struct socket
*sock
;
1730 struct sockaddr_storage address
;
1734 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1738 msg
.msg_control
= NULL
;
1739 msg
.msg_controllen
= 0;
1743 iov
.iov_base
= ubuf
;
1744 msg
.msg_name
= (struct sockaddr
*)&address
;
1745 msg
.msg_namelen
= sizeof(address
);
1746 if (sock
->file
->f_flags
& O_NONBLOCK
)
1747 flags
|= MSG_DONTWAIT
;
1748 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1750 if (err
>= 0 && addr
!= NULL
) {
1751 err2
= move_addr_to_user((struct sockaddr
*)&address
,
1752 msg
.msg_namelen
, addr
, addr_len
);
1757 fput_light(sock
->file
, fput_needed
);
1763 * Receive a datagram from a socket.
1766 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1769 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1773 * Set a socket option. Because we don't know the option lengths we have
1774 * to pass the user mode parameter for the protocols to sort out.
1777 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1778 char __user
*, optval
, int, optlen
)
1780 int err
, fput_needed
;
1781 struct socket
*sock
;
1786 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1788 err
= security_socket_setsockopt(sock
, level
, optname
);
1792 if (level
== SOL_SOCKET
)
1794 sock_setsockopt(sock
, level
, optname
, optval
,
1798 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1801 fput_light(sock
->file
, fput_needed
);
1807 * Get a socket option. Because we don't know the option lengths we have
1808 * to pass a user mode parameter for the protocols to sort out.
1811 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1812 char __user
*, optval
, int __user
*, optlen
)
1814 int err
, fput_needed
;
1815 struct socket
*sock
;
1817 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1819 err
= security_socket_getsockopt(sock
, level
, optname
);
1823 if (level
== SOL_SOCKET
)
1825 sock_getsockopt(sock
, level
, optname
, optval
,
1829 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1832 fput_light(sock
->file
, fput_needed
);
1838 * Shutdown a socket.
1841 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1843 int err
, fput_needed
;
1844 struct socket
*sock
;
1846 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1848 err
= security_socket_shutdown(sock
, how
);
1850 err
= sock
->ops
->shutdown(sock
, how
);
1851 fput_light(sock
->file
, fput_needed
);
1856 /* A couple of helpful macros for getting the address of the 32/64 bit
1857 * fields which are the same type (int / unsigned) on our platforms.
1859 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1860 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1861 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1864 * BSD sendmsg interface
1867 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct msghdr __user
*, msg
, unsigned, flags
)
1869 struct compat_msghdr __user
*msg_compat
=
1870 (struct compat_msghdr __user
*)msg
;
1871 struct socket
*sock
;
1872 struct sockaddr_storage address
;
1873 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1874 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1875 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1876 /* 20 is size of ipv6_pktinfo */
1877 unsigned char *ctl_buf
= ctl
;
1878 struct msghdr msg_sys
;
1879 int err
, ctl_len
, iov_size
, total_len
;
1883 if (MSG_CMSG_COMPAT
& flags
) {
1884 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1887 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1890 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1894 /* do not move before msg_sys is valid */
1896 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1899 /* Check whether to allocate the iovec area */
1901 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1902 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1903 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1908 /* This will also move the address data into kernel space */
1909 if (MSG_CMSG_COMPAT
& flags
) {
1910 err
= verify_compat_iovec(&msg_sys
, iov
,
1911 (struct sockaddr
*)&address
,
1914 err
= verify_iovec(&msg_sys
, iov
,
1915 (struct sockaddr
*)&address
,
1923 if (msg_sys
.msg_controllen
> INT_MAX
)
1925 ctl_len
= msg_sys
.msg_controllen
;
1926 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1928 cmsghdr_from_user_compat_to_kern(&msg_sys
, sock
->sk
, ctl
,
1932 ctl_buf
= msg_sys
.msg_control
;
1933 ctl_len
= msg_sys
.msg_controllen
;
1934 } else if (ctl_len
) {
1935 if (ctl_len
> sizeof(ctl
)) {
1936 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1937 if (ctl_buf
== NULL
)
1942 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1943 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1944 * checking falls down on this.
1946 if (copy_from_user(ctl_buf
, (void __user
*)msg_sys
.msg_control
,
1949 msg_sys
.msg_control
= ctl_buf
;
1951 msg_sys
.msg_flags
= flags
;
1953 if (sock
->file
->f_flags
& O_NONBLOCK
)
1954 msg_sys
.msg_flags
|= MSG_DONTWAIT
;
1955 err
= sock_sendmsg(sock
, &msg_sys
, total_len
);
1959 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1961 if (iov
!= iovstack
)
1962 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1964 fput_light(sock
->file
, fput_needed
);
1970 * BSD recvmsg interface
1973 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct msghdr __user
*, msg
,
1974 unsigned int, flags
)
1976 struct compat_msghdr __user
*msg_compat
=
1977 (struct compat_msghdr __user
*)msg
;
1978 struct socket
*sock
;
1979 struct iovec iovstack
[UIO_FASTIOV
];
1980 struct iovec
*iov
= iovstack
;
1981 struct msghdr msg_sys
;
1982 unsigned long cmsg_ptr
;
1983 int err
, iov_size
, total_len
, len
;
1986 /* kernel mode address */
1987 struct sockaddr_storage addr
;
1989 /* user mode address pointers */
1990 struct sockaddr __user
*uaddr
;
1991 int __user
*uaddr_len
;
1993 if (MSG_CMSG_COMPAT
& flags
) {
1994 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1997 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
2000 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2005 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
2008 /* Check whether to allocate the iovec area */
2010 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
2011 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
2012 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
2018 * Save the user-mode address (verify_iovec will change the
2019 * kernel msghdr to use the kernel address space)
2022 uaddr
= (__force
void __user
*)msg_sys
.msg_name
;
2023 uaddr_len
= COMPAT_NAMELEN(msg
);
2024 if (MSG_CMSG_COMPAT
& flags
) {
2025 err
= verify_compat_iovec(&msg_sys
, iov
,
2026 (struct sockaddr
*)&addr
,
2029 err
= verify_iovec(&msg_sys
, iov
,
2030 (struct sockaddr
*)&addr
,
2036 cmsg_ptr
= (unsigned long)msg_sys
.msg_control
;
2037 msg_sys
.msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2039 if (sock
->file
->f_flags
& O_NONBLOCK
)
2040 flags
|= MSG_DONTWAIT
;
2041 err
= sock_recvmsg(sock
, &msg_sys
, total_len
, flags
);
2046 if (uaddr
!= NULL
) {
2047 err
= move_addr_to_user((struct sockaddr
*)&addr
,
2048 msg_sys
.msg_namelen
, uaddr
,
2053 err
= __put_user((msg_sys
.msg_flags
& ~MSG_CMSG_COMPAT
),
2057 if (MSG_CMSG_COMPAT
& flags
)
2058 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
2059 &msg_compat
->msg_controllen
);
2061 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
2062 &msg
->msg_controllen
);
2068 if (iov
!= iovstack
)
2069 sock_kfree_s(sock
->sk
, iov
, iov_size
);
2071 fput_light(sock
->file
, fput_needed
);
2076 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2078 /* Argument list sizes for sys_socketcall */
2079 #define AL(x) ((x) * sizeof(unsigned long))
2080 static const unsigned char nargs
[19]={
2081 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2082 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2083 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2090 * System call vectors.
2092 * Argument checking cleaned up. Saved 20% in size.
2093 * This function doesn't need to set the kernel lock because
2094 * it is set by the callees.
2097 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2100 unsigned long a0
, a1
;
2103 if (call
< 1 || call
> SYS_ACCEPT4
)
2106 /* copy_from_user should be SMP safe. */
2107 if (copy_from_user(a
, args
, nargs
[call
]))
2110 audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2117 err
= sys_socket(a0
, a1
, a
[2]);
2120 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2123 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2126 err
= sys_listen(a0
, a1
);
2129 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2130 (int __user
*)a
[2], 0);
2132 case SYS_GETSOCKNAME
:
2134 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2135 (int __user
*)a
[2]);
2137 case SYS_GETPEERNAME
:
2139 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2140 (int __user
*)a
[2]);
2142 case SYS_SOCKETPAIR
:
2143 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2146 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2149 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2150 (struct sockaddr __user
*)a
[4], a
[5]);
2153 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2156 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2157 (struct sockaddr __user
*)a
[4],
2158 (int __user
*)a
[5]);
2161 err
= sys_shutdown(a0
, a1
);
2163 case SYS_SETSOCKOPT
:
2164 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2166 case SYS_GETSOCKOPT
:
2168 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2169 (int __user
*)a
[4]);
2172 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2175 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2178 err
= sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2179 (int __user
*)a
[2], a
[3]);
2188 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2191 * sock_register - add a socket protocol handler
2192 * @ops: description of protocol
2194 * This function is called by a protocol handler that wants to
2195 * advertise its address family, and have it linked into the
2196 * socket interface. The value ops->family coresponds to the
2197 * socket system call protocol family.
2199 int sock_register(const struct net_proto_family
*ops
)
2203 if (ops
->family
>= NPROTO
) {
2204 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2209 spin_lock(&net_family_lock
);
2210 if (net_families
[ops
->family
])
2213 net_families
[ops
->family
] = ops
;
2216 spin_unlock(&net_family_lock
);
2218 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2223 * sock_unregister - remove a protocol handler
2224 * @family: protocol family to remove
2226 * This function is called by a protocol handler that wants to
2227 * remove its address family, and have it unlinked from the
2228 * new socket creation.
2230 * If protocol handler is a module, then it can use module reference
2231 * counts to protect against new references. If protocol handler is not
2232 * a module then it needs to provide its own protection in
2233 * the ops->create routine.
2235 void sock_unregister(int family
)
2237 BUG_ON(family
< 0 || family
>= NPROTO
);
2239 spin_lock(&net_family_lock
);
2240 net_families
[family
] = NULL
;
2241 spin_unlock(&net_family_lock
);
2245 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2248 static int __init
sock_init(void)
2251 * Initialize sock SLAB cache.
2257 * Initialize skbuff SLAB cache
2262 * Initialize the protocols module.
2266 register_filesystem(&sock_fs_type
);
2267 sock_mnt
= kern_mount(&sock_fs_type
);
2269 /* The real protocol initialization is performed in later initcalls.
2272 #ifdef CONFIG_NETFILTER
2279 core_initcall(sock_init
); /* early initcall */
2281 #ifdef CONFIG_PROC_FS
2282 void socket_seq_show(struct seq_file
*seq
)
2287 for_each_possible_cpu(cpu
)
2288 counter
+= per_cpu(sockets_in_use
, cpu
);
2290 /* It can be negative, by the way. 8) */
2294 seq_printf(seq
, "sockets: used %d\n", counter
);
2296 #endif /* CONFIG_PROC_FS */
2298 #ifdef CONFIG_COMPAT
2299 static long compat_sock_ioctl(struct file
*file
, unsigned cmd
,
2302 struct socket
*sock
= file
->private_data
;
2303 int ret
= -ENOIOCTLCMD
;
2310 if (sock
->ops
->compat_ioctl
)
2311 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
2313 if (ret
== -ENOIOCTLCMD
&&
2314 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
2315 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
2321 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
2323 return sock
->ops
->bind(sock
, addr
, addrlen
);
2326 int kernel_listen(struct socket
*sock
, int backlog
)
2328 return sock
->ops
->listen(sock
, backlog
);
2331 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
2333 struct sock
*sk
= sock
->sk
;
2336 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
2341 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
2343 sock_release(*newsock
);
2348 (*newsock
)->ops
= sock
->ops
;
2349 __module_get((*newsock
)->ops
->owner
);
2355 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
2358 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
2361 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
2364 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
2367 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
2370 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
2373 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
2374 char *optval
, int *optlen
)
2376 mm_segment_t oldfs
= get_fs();
2380 if (level
== SOL_SOCKET
)
2381 err
= sock_getsockopt(sock
, level
, optname
, optval
, optlen
);
2383 err
= sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
2389 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
2390 char *optval
, int optlen
)
2392 mm_segment_t oldfs
= get_fs();
2396 if (level
== SOL_SOCKET
)
2397 err
= sock_setsockopt(sock
, level
, optname
, optval
, optlen
);
2399 err
= sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
2405 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
2406 size_t size
, int flags
)
2408 if (sock
->ops
->sendpage
)
2409 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
2411 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
2414 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
2416 mm_segment_t oldfs
= get_fs();
2420 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
2426 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
2428 return sock
->ops
->shutdown(sock
, how
);
2431 EXPORT_SYMBOL(sock_create
);
2432 EXPORT_SYMBOL(sock_create_kern
);
2433 EXPORT_SYMBOL(sock_create_lite
);
2434 EXPORT_SYMBOL(sock_map_fd
);
2435 EXPORT_SYMBOL(sock_recvmsg
);
2436 EXPORT_SYMBOL(sock_register
);
2437 EXPORT_SYMBOL(sock_release
);
2438 EXPORT_SYMBOL(sock_sendmsg
);
2439 EXPORT_SYMBOL(sock_unregister
);
2440 EXPORT_SYMBOL(sock_wake_async
);
2441 EXPORT_SYMBOL(sockfd_lookup
);
2442 EXPORT_SYMBOL(kernel_sendmsg
);
2443 EXPORT_SYMBOL(kernel_recvmsg
);
2444 EXPORT_SYMBOL(kernel_bind
);
2445 EXPORT_SYMBOL(kernel_listen
);
2446 EXPORT_SYMBOL(kernel_accept
);
2447 EXPORT_SYMBOL(kernel_connect
);
2448 EXPORT_SYMBOL(kernel_getsockname
);
2449 EXPORT_SYMBOL(kernel_getpeername
);
2450 EXPORT_SYMBOL(kernel_getsockopt
);
2451 EXPORT_SYMBOL(kernel_setsockopt
);
2452 EXPORT_SYMBOL(kernel_sendpage
);
2453 EXPORT_SYMBOL(kernel_sock_ioctl
);
2454 EXPORT_SYMBOL(kernel_sock_shutdown
);