net: introduce build_skb()
[linux-2.6/cjktty.git] / include / linux / skbuff.h
blobabad8a0941e8687049787f604b60e1642b47dacc
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/kmemcheck.h>
19 #include <linux/compiler.h>
20 #include <linux/time.h>
21 #include <linux/cache.h>
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/dmaengine.h>
31 #include <linux/hrtimer.h>
32 #include <linux/dma-mapping.h>
34 /* Don't change this without changing skb_csum_unnecessary! */
35 #define CHECKSUM_NONE 0
36 #define CHECKSUM_UNNECESSARY 1
37 #define CHECKSUM_COMPLETE 2
38 #define CHECKSUM_PARTIAL 3
40 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42 #define SKB_WITH_OVERHEAD(X) \
43 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
44 #define SKB_MAX_ORDER(X, ORDER) \
45 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
46 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49 /* return minimum truesize of one skb containing X bytes of data */
50 #define SKB_TRUESIZE(X) ((X) + \
51 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
52 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
54 /* A. Checksumming of received packets by device.
56 * NONE: device failed to checksum this packet.
57 * skb->csum is undefined.
59 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
60 * skb->csum is undefined.
61 * It is bad option, but, unfortunately, many of vendors do this.
62 * Apparently with secret goal to sell you new device, when you
63 * will add new protocol to your host. F.e. IPv6. 8)
65 * COMPLETE: the most generic way. Device supplied checksum of _all_
66 * the packet as seen by netif_rx in skb->csum.
67 * NOTE: Even if device supports only some protocols, but
68 * is able to produce some skb->csum, it MUST use COMPLETE,
69 * not UNNECESSARY.
71 * PARTIAL: identical to the case for output below. This may occur
72 * on a packet received directly from another Linux OS, e.g.,
73 * a virtualised Linux kernel on the same host. The packet can
74 * be treated in the same way as UNNECESSARY except that on
75 * output (i.e., forwarding) the checksum must be filled in
76 * by the OS or the hardware.
78 * B. Checksumming on output.
80 * NONE: skb is checksummed by protocol or csum is not required.
82 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
83 * from skb->csum_start to the end and to record the checksum
84 * at skb->csum_start + skb->csum_offset.
86 * Device must show its capabilities in dev->features, set
87 * at device setup time.
88 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
89 * everything.
90 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
91 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
92 * TCP/UDP over IPv4. Sigh. Vendors like this
93 * way by an unknown reason. Though, see comment above
94 * about CHECKSUM_UNNECESSARY. 8)
95 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
97 * Any questions? No questions, good. --ANK
100 struct net_device;
101 struct scatterlist;
102 struct pipe_inode_info;
104 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
105 struct nf_conntrack {
106 atomic_t use;
108 #endif
110 #ifdef CONFIG_BRIDGE_NETFILTER
111 struct nf_bridge_info {
112 atomic_t use;
113 struct net_device *physindev;
114 struct net_device *physoutdev;
115 unsigned int mask;
116 unsigned long data[32 / sizeof(unsigned long)];
118 #endif
120 struct sk_buff_head {
121 /* These two members must be first. */
122 struct sk_buff *next;
123 struct sk_buff *prev;
125 __u32 qlen;
126 spinlock_t lock;
129 struct sk_buff;
131 /* To allow 64K frame to be packed as single skb without frag_list. Since
132 * GRO uses frags we allocate at least 16 regardless of page size.
134 #if (65536/PAGE_SIZE + 2) < 16
135 #define MAX_SKB_FRAGS 16UL
136 #else
137 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
138 #endif
140 typedef struct skb_frag_struct skb_frag_t;
142 struct skb_frag_struct {
143 struct {
144 struct page *p;
145 } page;
146 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
147 __u32 page_offset;
148 __u32 size;
149 #else
150 __u16 page_offset;
151 __u16 size;
152 #endif
155 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
157 return frag->size;
160 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
162 frag->size = size;
165 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
167 frag->size += delta;
170 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
172 frag->size -= delta;
175 #define HAVE_HW_TIME_STAMP
178 * struct skb_shared_hwtstamps - hardware time stamps
179 * @hwtstamp: hardware time stamp transformed into duration
180 * since arbitrary point in time
181 * @syststamp: hwtstamp transformed to system time base
183 * Software time stamps generated by ktime_get_real() are stored in
184 * skb->tstamp. The relation between the different kinds of time
185 * stamps is as follows:
187 * syststamp and tstamp can be compared against each other in
188 * arbitrary combinations. The accuracy of a
189 * syststamp/tstamp/"syststamp from other device" comparison is
190 * limited by the accuracy of the transformation into system time
191 * base. This depends on the device driver and its underlying
192 * hardware.
194 * hwtstamps can only be compared against other hwtstamps from
195 * the same device.
197 * This structure is attached to packets as part of the
198 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
200 struct skb_shared_hwtstamps {
201 ktime_t hwtstamp;
202 ktime_t syststamp;
205 /* Definitions for tx_flags in struct skb_shared_info */
206 enum {
207 /* generate hardware time stamp */
208 SKBTX_HW_TSTAMP = 1 << 0,
210 /* generate software time stamp */
211 SKBTX_SW_TSTAMP = 1 << 1,
213 /* device driver is going to provide hardware time stamp */
214 SKBTX_IN_PROGRESS = 1 << 2,
216 /* ensure the originating sk reference is available on driver level */
217 SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
219 /* device driver supports TX zero-copy buffers */
220 SKBTX_DEV_ZEROCOPY = 1 << 4,
224 * The callback notifies userspace to release buffers when skb DMA is done in
225 * lower device, the skb last reference should be 0 when calling this.
226 * The desc is used to track userspace buffer index.
228 struct ubuf_info {
229 void (*callback)(void *);
230 void *arg;
231 unsigned long desc;
234 /* This data is invariant across clones and lives at
235 * the end of the header data, ie. at skb->end.
237 struct skb_shared_info {
238 unsigned short nr_frags;
239 unsigned short gso_size;
240 /* Warning: this field is not always filled in (UFO)! */
241 unsigned short gso_segs;
242 unsigned short gso_type;
243 __be32 ip6_frag_id;
244 __u8 tx_flags;
245 struct sk_buff *frag_list;
246 struct skb_shared_hwtstamps hwtstamps;
249 * Warning : all fields before dataref are cleared in __alloc_skb()
251 atomic_t dataref;
253 /* Intermediate layers must ensure that destructor_arg
254 * remains valid until skb destructor */
255 void * destructor_arg;
257 /* must be last field, see pskb_expand_head() */
258 skb_frag_t frags[MAX_SKB_FRAGS];
261 /* We divide dataref into two halves. The higher 16 bits hold references
262 * to the payload part of skb->data. The lower 16 bits hold references to
263 * the entire skb->data. A clone of a headerless skb holds the length of
264 * the header in skb->hdr_len.
266 * All users must obey the rule that the skb->data reference count must be
267 * greater than or equal to the payload reference count.
269 * Holding a reference to the payload part means that the user does not
270 * care about modifications to the header part of skb->data.
272 #define SKB_DATAREF_SHIFT 16
273 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
276 enum {
277 SKB_FCLONE_UNAVAILABLE,
278 SKB_FCLONE_ORIG,
279 SKB_FCLONE_CLONE,
282 enum {
283 SKB_GSO_TCPV4 = 1 << 0,
284 SKB_GSO_UDP = 1 << 1,
286 /* This indicates the skb is from an untrusted source. */
287 SKB_GSO_DODGY = 1 << 2,
289 /* This indicates the tcp segment has CWR set. */
290 SKB_GSO_TCP_ECN = 1 << 3,
292 SKB_GSO_TCPV6 = 1 << 4,
294 SKB_GSO_FCOE = 1 << 5,
297 #if BITS_PER_LONG > 32
298 #define NET_SKBUFF_DATA_USES_OFFSET 1
299 #endif
301 #ifdef NET_SKBUFF_DATA_USES_OFFSET
302 typedef unsigned int sk_buff_data_t;
303 #else
304 typedef unsigned char *sk_buff_data_t;
305 #endif
307 #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
308 defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
309 #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
310 #endif
312 /**
313 * struct sk_buff - socket buffer
314 * @next: Next buffer in list
315 * @prev: Previous buffer in list
316 * @tstamp: Time we arrived
317 * @sk: Socket we are owned by
318 * @dev: Device we arrived on/are leaving by
319 * @cb: Control buffer. Free for use by every layer. Put private vars here
320 * @_skb_refdst: destination entry (with norefcount bit)
321 * @sp: the security path, used for xfrm
322 * @len: Length of actual data
323 * @data_len: Data length
324 * @mac_len: Length of link layer header
325 * @hdr_len: writable header length of cloned skb
326 * @csum: Checksum (must include start/offset pair)
327 * @csum_start: Offset from skb->head where checksumming should start
328 * @csum_offset: Offset from csum_start where checksum should be stored
329 * @priority: Packet queueing priority
330 * @local_df: allow local fragmentation
331 * @cloned: Head may be cloned (check refcnt to be sure)
332 * @ip_summed: Driver fed us an IP checksum
333 * @nohdr: Payload reference only, must not modify header
334 * @nfctinfo: Relationship of this skb to the connection
335 * @pkt_type: Packet class
336 * @fclone: skbuff clone status
337 * @ipvs_property: skbuff is owned by ipvs
338 * @peeked: this packet has been seen already, so stats have been
339 * done for it, don't do them again
340 * @nf_trace: netfilter packet trace flag
341 * @protocol: Packet protocol from driver
342 * @destructor: Destruct function
343 * @nfct: Associated connection, if any
344 * @nfct_reasm: netfilter conntrack re-assembly pointer
345 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
346 * @skb_iif: ifindex of device we arrived on
347 * @tc_index: Traffic control index
348 * @tc_verd: traffic control verdict
349 * @rxhash: the packet hash computed on receive
350 * @queue_mapping: Queue mapping for multiqueue devices
351 * @ndisc_nodetype: router type (from link layer)
352 * @ooo_okay: allow the mapping of a socket to a queue to be changed
353 * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
354 * ports.
355 * @dma_cookie: a cookie to one of several possible DMA operations
356 * done by skb DMA functions
357 * @secmark: security marking
358 * @mark: Generic packet mark
359 * @dropcount: total number of sk_receive_queue overflows
360 * @vlan_tci: vlan tag control information
361 * @transport_header: Transport layer header
362 * @network_header: Network layer header
363 * @mac_header: Link layer header
364 * @tail: Tail pointer
365 * @end: End pointer
366 * @head: Head of buffer
367 * @data: Data head pointer
368 * @truesize: Buffer size
369 * @users: User count - see {datagram,tcp}.c
372 struct sk_buff {
373 /* These two members must be first. */
374 struct sk_buff *next;
375 struct sk_buff *prev;
377 ktime_t tstamp;
379 struct sock *sk;
380 struct net_device *dev;
383 * This is the control buffer. It is free to use for every
384 * layer. Please put your private variables there. If you
385 * want to keep them across layers you have to do a skb_clone()
386 * first. This is owned by whoever has the skb queued ATM.
388 char cb[48] __aligned(8);
390 unsigned long _skb_refdst;
391 #ifdef CONFIG_XFRM
392 struct sec_path *sp;
393 #endif
394 unsigned int len,
395 data_len;
396 __u16 mac_len,
397 hdr_len;
398 union {
399 __wsum csum;
400 struct {
401 __u16 csum_start;
402 __u16 csum_offset;
405 __u32 priority;
406 kmemcheck_bitfield_begin(flags1);
407 __u8 local_df:1,
408 cloned:1,
409 ip_summed:2,
410 nohdr:1,
411 nfctinfo:3;
412 __u8 pkt_type:3,
413 fclone:2,
414 ipvs_property:1,
415 peeked:1,
416 nf_trace:1;
417 kmemcheck_bitfield_end(flags1);
418 __be16 protocol;
420 void (*destructor)(struct sk_buff *skb);
421 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
422 struct nf_conntrack *nfct;
423 #endif
424 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
425 struct sk_buff *nfct_reasm;
426 #endif
427 #ifdef CONFIG_BRIDGE_NETFILTER
428 struct nf_bridge_info *nf_bridge;
429 #endif
431 int skb_iif;
432 #ifdef CONFIG_NET_SCHED
433 __u16 tc_index; /* traffic control index */
434 #ifdef CONFIG_NET_CLS_ACT
435 __u16 tc_verd; /* traffic control verdict */
436 #endif
437 #endif
439 __u32 rxhash;
441 __u16 queue_mapping;
442 kmemcheck_bitfield_begin(flags2);
443 #ifdef CONFIG_IPV6_NDISC_NODETYPE
444 __u8 ndisc_nodetype:2;
445 #endif
446 __u8 ooo_okay:1;
447 __u8 l4_rxhash:1;
448 kmemcheck_bitfield_end(flags2);
450 /* 0/13 bit hole */
452 #ifdef CONFIG_NET_DMA
453 dma_cookie_t dma_cookie;
454 #endif
455 #ifdef CONFIG_NETWORK_SECMARK
456 __u32 secmark;
457 #endif
458 union {
459 __u32 mark;
460 __u32 dropcount;
463 __u16 vlan_tci;
465 sk_buff_data_t transport_header;
466 sk_buff_data_t network_header;
467 sk_buff_data_t mac_header;
468 /* These elements must be at the end, see alloc_skb() for details. */
469 sk_buff_data_t tail;
470 sk_buff_data_t end;
471 unsigned char *head,
472 *data;
473 unsigned int truesize;
474 atomic_t users;
477 #ifdef __KERNEL__
479 * Handling routines are only of interest to the kernel
481 #include <linux/slab.h>
483 #include <asm/system.h>
486 * skb might have a dst pointer attached, refcounted or not.
487 * _skb_refdst low order bit is set if refcount was _not_ taken
489 #define SKB_DST_NOREF 1UL
490 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
493 * skb_dst - returns skb dst_entry
494 * @skb: buffer
496 * Returns skb dst_entry, regardless of reference taken or not.
498 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
500 /* If refdst was not refcounted, check we still are in a
501 * rcu_read_lock section
503 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
504 !rcu_read_lock_held() &&
505 !rcu_read_lock_bh_held());
506 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
510 * skb_dst_set - sets skb dst
511 * @skb: buffer
512 * @dst: dst entry
514 * Sets skb dst, assuming a reference was taken on dst and should
515 * be released by skb_dst_drop()
517 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
519 skb->_skb_refdst = (unsigned long)dst;
522 extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
525 * skb_dst_is_noref - Test if skb dst isn't refcounted
526 * @skb: buffer
528 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
530 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
533 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
535 return (struct rtable *)skb_dst(skb);
538 extern void kfree_skb(struct sk_buff *skb);
539 extern void consume_skb(struct sk_buff *skb);
540 extern void __kfree_skb(struct sk_buff *skb);
541 extern struct sk_buff *__alloc_skb(unsigned int size,
542 gfp_t priority, int fclone, int node);
543 extern struct sk_buff *build_skb(void *data);
544 static inline struct sk_buff *alloc_skb(unsigned int size,
545 gfp_t priority)
547 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
550 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
551 gfp_t priority)
553 return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
556 extern void skb_recycle(struct sk_buff *skb);
557 extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
559 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
560 extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
561 extern struct sk_buff *skb_clone(struct sk_buff *skb,
562 gfp_t priority);
563 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
564 gfp_t priority);
565 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
566 gfp_t gfp_mask);
567 extern int pskb_expand_head(struct sk_buff *skb,
568 int nhead, int ntail,
569 gfp_t gfp_mask);
570 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
571 unsigned int headroom);
572 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
573 int newheadroom, int newtailroom,
574 gfp_t priority);
575 extern int skb_to_sgvec(struct sk_buff *skb,
576 struct scatterlist *sg, int offset,
577 int len);
578 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
579 struct sk_buff **trailer);
580 extern int skb_pad(struct sk_buff *skb, int pad);
581 #define dev_kfree_skb(a) consume_skb(a)
583 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
584 int getfrag(void *from, char *to, int offset,
585 int len,int odd, struct sk_buff *skb),
586 void *from, int length);
588 struct skb_seq_state {
589 __u32 lower_offset;
590 __u32 upper_offset;
591 __u32 frag_idx;
592 __u32 stepped_offset;
593 struct sk_buff *root_skb;
594 struct sk_buff *cur_skb;
595 __u8 *frag_data;
598 extern void skb_prepare_seq_read(struct sk_buff *skb,
599 unsigned int from, unsigned int to,
600 struct skb_seq_state *st);
601 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
602 struct skb_seq_state *st);
603 extern void skb_abort_seq_read(struct skb_seq_state *st);
605 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
606 unsigned int to, struct ts_config *config,
607 struct ts_state *state);
609 extern void __skb_get_rxhash(struct sk_buff *skb);
610 static inline __u32 skb_get_rxhash(struct sk_buff *skb)
612 if (!skb->rxhash)
613 __skb_get_rxhash(skb);
615 return skb->rxhash;
618 #ifdef NET_SKBUFF_DATA_USES_OFFSET
619 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
621 return skb->head + skb->end;
623 #else
624 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
626 return skb->end;
628 #endif
630 /* Internal */
631 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
633 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
635 return &skb_shinfo(skb)->hwtstamps;
639 * skb_queue_empty - check if a queue is empty
640 * @list: queue head
642 * Returns true if the queue is empty, false otherwise.
644 static inline int skb_queue_empty(const struct sk_buff_head *list)
646 return list->next == (struct sk_buff *)list;
650 * skb_queue_is_last - check if skb is the last entry in the queue
651 * @list: queue head
652 * @skb: buffer
654 * Returns true if @skb is the last buffer on the list.
656 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
657 const struct sk_buff *skb)
659 return skb->next == (struct sk_buff *)list;
663 * skb_queue_is_first - check if skb is the first entry in the queue
664 * @list: queue head
665 * @skb: buffer
667 * Returns true if @skb is the first buffer on the list.
669 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
670 const struct sk_buff *skb)
672 return skb->prev == (struct sk_buff *)list;
676 * skb_queue_next - return the next packet in the queue
677 * @list: queue head
678 * @skb: current buffer
680 * Return the next packet in @list after @skb. It is only valid to
681 * call this if skb_queue_is_last() evaluates to false.
683 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
684 const struct sk_buff *skb)
686 /* This BUG_ON may seem severe, but if we just return then we
687 * are going to dereference garbage.
689 BUG_ON(skb_queue_is_last(list, skb));
690 return skb->next;
694 * skb_queue_prev - return the prev packet in the queue
695 * @list: queue head
696 * @skb: current buffer
698 * Return the prev packet in @list before @skb. It is only valid to
699 * call this if skb_queue_is_first() evaluates to false.
701 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
702 const struct sk_buff *skb)
704 /* This BUG_ON may seem severe, but if we just return then we
705 * are going to dereference garbage.
707 BUG_ON(skb_queue_is_first(list, skb));
708 return skb->prev;
712 * skb_get - reference buffer
713 * @skb: buffer to reference
715 * Makes another reference to a socket buffer and returns a pointer
716 * to the buffer.
718 static inline struct sk_buff *skb_get(struct sk_buff *skb)
720 atomic_inc(&skb->users);
721 return skb;
725 * If users == 1, we are the only owner and are can avoid redundant
726 * atomic change.
730 * skb_cloned - is the buffer a clone
731 * @skb: buffer to check
733 * Returns true if the buffer was generated with skb_clone() and is
734 * one of multiple shared copies of the buffer. Cloned buffers are
735 * shared data so must not be written to under normal circumstances.
737 static inline int skb_cloned(const struct sk_buff *skb)
739 return skb->cloned &&
740 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
744 * skb_header_cloned - is the header a clone
745 * @skb: buffer to check
747 * Returns true if modifying the header part of the buffer requires
748 * the data to be copied.
750 static inline int skb_header_cloned(const struct sk_buff *skb)
752 int dataref;
754 if (!skb->cloned)
755 return 0;
757 dataref = atomic_read(&skb_shinfo(skb)->dataref);
758 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
759 return dataref != 1;
763 * skb_header_release - release reference to header
764 * @skb: buffer to operate on
766 * Drop a reference to the header part of the buffer. This is done
767 * by acquiring a payload reference. You must not read from the header
768 * part of skb->data after this.
770 static inline void skb_header_release(struct sk_buff *skb)
772 BUG_ON(skb->nohdr);
773 skb->nohdr = 1;
774 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
778 * skb_shared - is the buffer shared
779 * @skb: buffer to check
781 * Returns true if more than one person has a reference to this
782 * buffer.
784 static inline int skb_shared(const struct sk_buff *skb)
786 return atomic_read(&skb->users) != 1;
790 * skb_share_check - check if buffer is shared and if so clone it
791 * @skb: buffer to check
792 * @pri: priority for memory allocation
794 * If the buffer is shared the buffer is cloned and the old copy
795 * drops a reference. A new clone with a single reference is returned.
796 * If the buffer is not shared the original buffer is returned. When
797 * being called from interrupt status or with spinlocks held pri must
798 * be GFP_ATOMIC.
800 * NULL is returned on a memory allocation failure.
802 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
803 gfp_t pri)
805 might_sleep_if(pri & __GFP_WAIT);
806 if (skb_shared(skb)) {
807 struct sk_buff *nskb = skb_clone(skb, pri);
808 kfree_skb(skb);
809 skb = nskb;
811 return skb;
815 * Copy shared buffers into a new sk_buff. We effectively do COW on
816 * packets to handle cases where we have a local reader and forward
817 * and a couple of other messy ones. The normal one is tcpdumping
818 * a packet thats being forwarded.
822 * skb_unshare - make a copy of a shared buffer
823 * @skb: buffer to check
824 * @pri: priority for memory allocation
826 * If the socket buffer is a clone then this function creates a new
827 * copy of the data, drops a reference count on the old copy and returns
828 * the new copy with the reference count at 1. If the buffer is not a clone
829 * the original buffer is returned. When called with a spinlock held or
830 * from interrupt state @pri must be %GFP_ATOMIC
832 * %NULL is returned on a memory allocation failure.
834 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
835 gfp_t pri)
837 might_sleep_if(pri & __GFP_WAIT);
838 if (skb_cloned(skb)) {
839 struct sk_buff *nskb = skb_copy(skb, pri);
840 kfree_skb(skb); /* Free our shared copy */
841 skb = nskb;
843 return skb;
847 * skb_peek - peek at the head of an &sk_buff_head
848 * @list_: list to peek at
850 * Peek an &sk_buff. Unlike most other operations you _MUST_
851 * be careful with this one. A peek leaves the buffer on the
852 * list and someone else may run off with it. You must hold
853 * the appropriate locks or have a private queue to do this.
855 * Returns %NULL for an empty list or a pointer to the head element.
856 * The reference count is not incremented and the reference is therefore
857 * volatile. Use with caution.
859 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
861 struct sk_buff *list = ((const struct sk_buff *)list_)->next;
862 if (list == (struct sk_buff *)list_)
863 list = NULL;
864 return list;
868 * skb_peek_tail - peek at the tail of an &sk_buff_head
869 * @list_: list to peek at
871 * Peek an &sk_buff. Unlike most other operations you _MUST_
872 * be careful with this one. A peek leaves the buffer on the
873 * list and someone else may run off with it. You must hold
874 * the appropriate locks or have a private queue to do this.
876 * Returns %NULL for an empty list or a pointer to the tail element.
877 * The reference count is not incremented and the reference is therefore
878 * volatile. Use with caution.
880 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
882 struct sk_buff *list = ((const struct sk_buff *)list_)->prev;
883 if (list == (struct sk_buff *)list_)
884 list = NULL;
885 return list;
889 * skb_queue_len - get queue length
890 * @list_: list to measure
892 * Return the length of an &sk_buff queue.
894 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
896 return list_->qlen;
900 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
901 * @list: queue to initialize
903 * This initializes only the list and queue length aspects of
904 * an sk_buff_head object. This allows to initialize the list
905 * aspects of an sk_buff_head without reinitializing things like
906 * the spinlock. It can also be used for on-stack sk_buff_head
907 * objects where the spinlock is known to not be used.
909 static inline void __skb_queue_head_init(struct sk_buff_head *list)
911 list->prev = list->next = (struct sk_buff *)list;
912 list->qlen = 0;
916 * This function creates a split out lock class for each invocation;
917 * this is needed for now since a whole lot of users of the skb-queue
918 * infrastructure in drivers have different locking usage (in hardirq)
919 * than the networking core (in softirq only). In the long run either the
920 * network layer or drivers should need annotation to consolidate the
921 * main types of usage into 3 classes.
923 static inline void skb_queue_head_init(struct sk_buff_head *list)
925 spin_lock_init(&list->lock);
926 __skb_queue_head_init(list);
929 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
930 struct lock_class_key *class)
932 skb_queue_head_init(list);
933 lockdep_set_class(&list->lock, class);
937 * Insert an sk_buff on a list.
939 * The "__skb_xxxx()" functions are the non-atomic ones that
940 * can only be called with interrupts disabled.
942 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
943 static inline void __skb_insert(struct sk_buff *newsk,
944 struct sk_buff *prev, struct sk_buff *next,
945 struct sk_buff_head *list)
947 newsk->next = next;
948 newsk->prev = prev;
949 next->prev = prev->next = newsk;
950 list->qlen++;
953 static inline void __skb_queue_splice(const struct sk_buff_head *list,
954 struct sk_buff *prev,
955 struct sk_buff *next)
957 struct sk_buff *first = list->next;
958 struct sk_buff *last = list->prev;
960 first->prev = prev;
961 prev->next = first;
963 last->next = next;
964 next->prev = last;
968 * skb_queue_splice - join two skb lists, this is designed for stacks
969 * @list: the new list to add
970 * @head: the place to add it in the first list
972 static inline void skb_queue_splice(const struct sk_buff_head *list,
973 struct sk_buff_head *head)
975 if (!skb_queue_empty(list)) {
976 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
977 head->qlen += list->qlen;
982 * skb_queue_splice - join two skb lists and reinitialise the emptied list
983 * @list: the new list to add
984 * @head: the place to add it in the first list
986 * The list at @list is reinitialised
988 static inline void skb_queue_splice_init(struct sk_buff_head *list,
989 struct sk_buff_head *head)
991 if (!skb_queue_empty(list)) {
992 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
993 head->qlen += list->qlen;
994 __skb_queue_head_init(list);
999 * skb_queue_splice_tail - join two skb lists, each list being a queue
1000 * @list: the new list to add
1001 * @head: the place to add it in the first list
1003 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1004 struct sk_buff_head *head)
1006 if (!skb_queue_empty(list)) {
1007 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1008 head->qlen += list->qlen;
1013 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
1014 * @list: the new list to add
1015 * @head: the place to add it in the first list
1017 * Each of the lists is a queue.
1018 * The list at @list is reinitialised
1020 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1021 struct sk_buff_head *head)
1023 if (!skb_queue_empty(list)) {
1024 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1025 head->qlen += list->qlen;
1026 __skb_queue_head_init(list);
1031 * __skb_queue_after - queue a buffer at the list head
1032 * @list: list to use
1033 * @prev: place after this buffer
1034 * @newsk: buffer to queue
1036 * Queue a buffer int the middle of a list. This function takes no locks
1037 * and you must therefore hold required locks before calling it.
1039 * A buffer cannot be placed on two lists at the same time.
1041 static inline void __skb_queue_after(struct sk_buff_head *list,
1042 struct sk_buff *prev,
1043 struct sk_buff *newsk)
1045 __skb_insert(newsk, prev, prev->next, list);
1048 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1049 struct sk_buff_head *list);
1051 static inline void __skb_queue_before(struct sk_buff_head *list,
1052 struct sk_buff *next,
1053 struct sk_buff *newsk)
1055 __skb_insert(newsk, next->prev, next, list);
1059 * __skb_queue_head - queue a buffer at the list head
1060 * @list: list to use
1061 * @newsk: buffer to queue
1063 * Queue a buffer at the start of a list. This function takes no locks
1064 * and you must therefore hold required locks before calling it.
1066 * A buffer cannot be placed on two lists at the same time.
1068 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1069 static inline void __skb_queue_head(struct sk_buff_head *list,
1070 struct sk_buff *newsk)
1072 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1076 * __skb_queue_tail - queue a buffer at the list tail
1077 * @list: list to use
1078 * @newsk: buffer to queue
1080 * Queue a buffer at the end of a list. This function takes no locks
1081 * and you must therefore hold required locks before calling it.
1083 * A buffer cannot be placed on two lists at the same time.
1085 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1086 static inline void __skb_queue_tail(struct sk_buff_head *list,
1087 struct sk_buff *newsk)
1089 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1093 * remove sk_buff from list. _Must_ be called atomically, and with
1094 * the list known..
1096 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1097 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1099 struct sk_buff *next, *prev;
1101 list->qlen--;
1102 next = skb->next;
1103 prev = skb->prev;
1104 skb->next = skb->prev = NULL;
1105 next->prev = prev;
1106 prev->next = next;
1110 * __skb_dequeue - remove from the head of the queue
1111 * @list: list to dequeue from
1113 * Remove the head of the list. This function does not take any locks
1114 * so must be used with appropriate locks held only. The head item is
1115 * returned or %NULL if the list is empty.
1117 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1118 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1120 struct sk_buff *skb = skb_peek(list);
1121 if (skb)
1122 __skb_unlink(skb, list);
1123 return skb;
1127 * __skb_dequeue_tail - remove from the tail of the queue
1128 * @list: list to dequeue from
1130 * Remove the tail of the list. This function does not take any locks
1131 * so must be used with appropriate locks held only. The tail item is
1132 * returned or %NULL if the list is empty.
1134 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1135 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1137 struct sk_buff *skb = skb_peek_tail(list);
1138 if (skb)
1139 __skb_unlink(skb, list);
1140 return skb;
1144 static inline int skb_is_nonlinear(const struct sk_buff *skb)
1146 return skb->data_len;
1149 static inline unsigned int skb_headlen(const struct sk_buff *skb)
1151 return skb->len - skb->data_len;
1154 static inline int skb_pagelen(const struct sk_buff *skb)
1156 int i, len = 0;
1158 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1159 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1160 return len + skb_headlen(skb);
1164 * __skb_fill_page_desc - initialise a paged fragment in an skb
1165 * @skb: buffer containing fragment to be initialised
1166 * @i: paged fragment index to initialise
1167 * @page: the page to use for this fragment
1168 * @off: the offset to the data with @page
1169 * @size: the length of the data
1171 * Initialises the @i'th fragment of @skb to point to &size bytes at
1172 * offset @off within @page.
1174 * Does not take any additional reference on the fragment.
1176 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1177 struct page *page, int off, int size)
1179 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1181 frag->page.p = page;
1182 frag->page_offset = off;
1183 skb_frag_size_set(frag, size);
1187 * skb_fill_page_desc - initialise a paged fragment in an skb
1188 * @skb: buffer containing fragment to be initialised
1189 * @i: paged fragment index to initialise
1190 * @page: the page to use for this fragment
1191 * @off: the offset to the data with @page
1192 * @size: the length of the data
1194 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1195 * @skb to point to &size bytes at offset @off within @page. In
1196 * addition updates @skb such that @i is the last fragment.
1198 * Does not take any additional reference on the fragment.
1200 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1201 struct page *page, int off, int size)
1203 __skb_fill_page_desc(skb, i, page, off, size);
1204 skb_shinfo(skb)->nr_frags = i + 1;
1207 extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1208 int off, int size);
1210 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
1211 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1212 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1214 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1215 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1217 return skb->head + skb->tail;
1220 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1222 skb->tail = skb->data - skb->head;
1225 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1227 skb_reset_tail_pointer(skb);
1228 skb->tail += offset;
1230 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1231 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1233 return skb->tail;
1236 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1238 skb->tail = skb->data;
1241 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1243 skb->tail = skb->data + offset;
1246 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1249 * Add data to an sk_buff
1251 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1252 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1254 unsigned char *tmp = skb_tail_pointer(skb);
1255 SKB_LINEAR_ASSERT(skb);
1256 skb->tail += len;
1257 skb->len += len;
1258 return tmp;
1261 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1262 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1264 skb->data -= len;
1265 skb->len += len;
1266 return skb->data;
1269 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1270 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1272 skb->len -= len;
1273 BUG_ON(skb->len < skb->data_len);
1274 return skb->data += len;
1277 static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1279 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1282 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1284 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1286 if (len > skb_headlen(skb) &&
1287 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1288 return NULL;
1289 skb->len -= len;
1290 return skb->data += len;
1293 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1295 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1298 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1300 if (likely(len <= skb_headlen(skb)))
1301 return 1;
1302 if (unlikely(len > skb->len))
1303 return 0;
1304 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1308 * skb_headroom - bytes at buffer head
1309 * @skb: buffer to check
1311 * Return the number of bytes of free space at the head of an &sk_buff.
1313 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1315 return skb->data - skb->head;
1319 * skb_tailroom - bytes at buffer end
1320 * @skb: buffer to check
1322 * Return the number of bytes of free space at the tail of an sk_buff
1324 static inline int skb_tailroom(const struct sk_buff *skb)
1326 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1330 * skb_reserve - adjust headroom
1331 * @skb: buffer to alter
1332 * @len: bytes to move
1334 * Increase the headroom of an empty &sk_buff by reducing the tail
1335 * room. This is only allowed for an empty buffer.
1337 static inline void skb_reserve(struct sk_buff *skb, int len)
1339 skb->data += len;
1340 skb->tail += len;
1343 static inline void skb_reset_mac_len(struct sk_buff *skb)
1345 skb->mac_len = skb->network_header - skb->mac_header;
1348 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1349 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1351 return skb->head + skb->transport_header;
1354 static inline void skb_reset_transport_header(struct sk_buff *skb)
1356 skb->transport_header = skb->data - skb->head;
1359 static inline void skb_set_transport_header(struct sk_buff *skb,
1360 const int offset)
1362 skb_reset_transport_header(skb);
1363 skb->transport_header += offset;
1366 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1368 return skb->head + skb->network_header;
1371 static inline void skb_reset_network_header(struct sk_buff *skb)
1373 skb->network_header = skb->data - skb->head;
1376 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1378 skb_reset_network_header(skb);
1379 skb->network_header += offset;
1382 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1384 return skb->head + skb->mac_header;
1387 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1389 return skb->mac_header != ~0U;
1392 static inline void skb_reset_mac_header(struct sk_buff *skb)
1394 skb->mac_header = skb->data - skb->head;
1397 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1399 skb_reset_mac_header(skb);
1400 skb->mac_header += offset;
1403 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1405 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1407 return skb->transport_header;
1410 static inline void skb_reset_transport_header(struct sk_buff *skb)
1412 skb->transport_header = skb->data;
1415 static inline void skb_set_transport_header(struct sk_buff *skb,
1416 const int offset)
1418 skb->transport_header = skb->data + offset;
1421 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1423 return skb->network_header;
1426 static inline void skb_reset_network_header(struct sk_buff *skb)
1428 skb->network_header = skb->data;
1431 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1433 skb->network_header = skb->data + offset;
1436 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1438 return skb->mac_header;
1441 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1443 return skb->mac_header != NULL;
1446 static inline void skb_reset_mac_header(struct sk_buff *skb)
1448 skb->mac_header = skb->data;
1451 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1453 skb->mac_header = skb->data + offset;
1455 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1457 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1459 return skb->csum_start - skb_headroom(skb);
1462 static inline int skb_transport_offset(const struct sk_buff *skb)
1464 return skb_transport_header(skb) - skb->data;
1467 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1469 return skb->transport_header - skb->network_header;
1472 static inline int skb_network_offset(const struct sk_buff *skb)
1474 return skb_network_header(skb) - skb->data;
1477 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1479 return pskb_may_pull(skb, skb_network_offset(skb) + len);
1483 * CPUs often take a performance hit when accessing unaligned memory
1484 * locations. The actual performance hit varies, it can be small if the
1485 * hardware handles it or large if we have to take an exception and fix it
1486 * in software.
1488 * Since an ethernet header is 14 bytes network drivers often end up with
1489 * the IP header at an unaligned offset. The IP header can be aligned by
1490 * shifting the start of the packet by 2 bytes. Drivers should do this
1491 * with:
1493 * skb_reserve(skb, NET_IP_ALIGN);
1495 * The downside to this alignment of the IP header is that the DMA is now
1496 * unaligned. On some architectures the cost of an unaligned DMA is high
1497 * and this cost outweighs the gains made by aligning the IP header.
1499 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1500 * to be overridden.
1502 #ifndef NET_IP_ALIGN
1503 #define NET_IP_ALIGN 2
1504 #endif
1507 * The networking layer reserves some headroom in skb data (via
1508 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1509 * the header has to grow. In the default case, if the header has to grow
1510 * 32 bytes or less we avoid the reallocation.
1512 * Unfortunately this headroom changes the DMA alignment of the resulting
1513 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1514 * on some architectures. An architecture can override this value,
1515 * perhaps setting it to a cacheline in size (since that will maintain
1516 * cacheline alignment of the DMA). It must be a power of 2.
1518 * Various parts of the networking layer expect at least 32 bytes of
1519 * headroom, you should not reduce this.
1521 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1522 * to reduce average number of cache lines per packet.
1523 * get_rps_cpus() for example only access one 64 bytes aligned block :
1524 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1526 #ifndef NET_SKB_PAD
1527 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
1528 #endif
1530 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1532 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1534 if (unlikely(skb_is_nonlinear(skb))) {
1535 WARN_ON(1);
1536 return;
1538 skb->len = len;
1539 skb_set_tail_pointer(skb, len);
1542 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1544 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1546 if (skb->data_len)
1547 return ___pskb_trim(skb, len);
1548 __skb_trim(skb, len);
1549 return 0;
1552 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1554 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1558 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1559 * @skb: buffer to alter
1560 * @len: new length
1562 * This is identical to pskb_trim except that the caller knows that
1563 * the skb is not cloned so we should never get an error due to out-
1564 * of-memory.
1566 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1568 int err = pskb_trim(skb, len);
1569 BUG_ON(err);
1573 * skb_orphan - orphan a buffer
1574 * @skb: buffer to orphan
1576 * If a buffer currently has an owner then we call the owner's
1577 * destructor function and make the @skb unowned. The buffer continues
1578 * to exist but is no longer charged to its former owner.
1580 static inline void skb_orphan(struct sk_buff *skb)
1582 if (skb->destructor)
1583 skb->destructor(skb);
1584 skb->destructor = NULL;
1585 skb->sk = NULL;
1589 * __skb_queue_purge - empty a list
1590 * @list: list to empty
1592 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1593 * the list and one reference dropped. This function does not take the
1594 * list lock and the caller must hold the relevant locks to use it.
1596 extern void skb_queue_purge(struct sk_buff_head *list);
1597 static inline void __skb_queue_purge(struct sk_buff_head *list)
1599 struct sk_buff *skb;
1600 while ((skb = __skb_dequeue(list)) != NULL)
1601 kfree_skb(skb);
1605 * __dev_alloc_skb - allocate an skbuff for receiving
1606 * @length: length to allocate
1607 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1609 * Allocate a new &sk_buff and assign it a usage count of one. The
1610 * buffer has unspecified headroom built in. Users should allocate
1611 * the headroom they think they need without accounting for the
1612 * built in space. The built in space is used for optimisations.
1614 * %NULL is returned if there is no free memory.
1616 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1617 gfp_t gfp_mask)
1619 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1620 if (likely(skb))
1621 skb_reserve(skb, NET_SKB_PAD);
1622 return skb;
1625 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1627 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1628 unsigned int length, gfp_t gfp_mask);
1631 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1632 * @dev: network device to receive on
1633 * @length: length to allocate
1635 * Allocate a new &sk_buff and assign it a usage count of one. The
1636 * buffer has unspecified headroom built in. Users should allocate
1637 * the headroom they think they need without accounting for the
1638 * built in space. The built in space is used for optimisations.
1640 * %NULL is returned if there is no free memory. Although this function
1641 * allocates memory it can be called from an interrupt.
1643 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1644 unsigned int length)
1646 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1649 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1650 unsigned int length, gfp_t gfp)
1652 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1654 if (NET_IP_ALIGN && skb)
1655 skb_reserve(skb, NET_IP_ALIGN);
1656 return skb;
1659 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1660 unsigned int length)
1662 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1666 * __netdev_alloc_page - allocate a page for ps-rx on a specific device
1667 * @dev: network device to receive on
1668 * @gfp_mask: alloc_pages_node mask
1670 * Allocate a new page. dev currently unused.
1672 * %NULL is returned if there is no free memory.
1674 static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1676 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1680 * netdev_alloc_page - allocate a page for ps-rx on a specific device
1681 * @dev: network device to receive on
1683 * Allocate a new page. dev currently unused.
1685 * %NULL is returned if there is no free memory.
1687 static inline struct page *netdev_alloc_page(struct net_device *dev)
1689 return __netdev_alloc_page(dev, GFP_ATOMIC);
1692 static inline void netdev_free_page(struct net_device *dev, struct page *page)
1694 __free_page(page);
1698 * skb_frag_page - retrieve the page refered to by a paged fragment
1699 * @frag: the paged fragment
1701 * Returns the &struct page associated with @frag.
1703 static inline struct page *skb_frag_page(const skb_frag_t *frag)
1705 return frag->page.p;
1709 * __skb_frag_ref - take an addition reference on a paged fragment.
1710 * @frag: the paged fragment
1712 * Takes an additional reference on the paged fragment @frag.
1714 static inline void __skb_frag_ref(skb_frag_t *frag)
1716 get_page(skb_frag_page(frag));
1720 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
1721 * @skb: the buffer
1722 * @f: the fragment offset.
1724 * Takes an additional reference on the @f'th paged fragment of @skb.
1726 static inline void skb_frag_ref(struct sk_buff *skb, int f)
1728 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
1732 * __skb_frag_unref - release a reference on a paged fragment.
1733 * @frag: the paged fragment
1735 * Releases a reference on the paged fragment @frag.
1737 static inline void __skb_frag_unref(skb_frag_t *frag)
1739 put_page(skb_frag_page(frag));
1743 * skb_frag_unref - release a reference on a paged fragment of an skb.
1744 * @skb: the buffer
1745 * @f: the fragment offset
1747 * Releases a reference on the @f'th paged fragment of @skb.
1749 static inline void skb_frag_unref(struct sk_buff *skb, int f)
1751 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
1755 * skb_frag_address - gets the address of the data contained in a paged fragment
1756 * @frag: the paged fragment buffer
1758 * Returns the address of the data within @frag. The page must already
1759 * be mapped.
1761 static inline void *skb_frag_address(const skb_frag_t *frag)
1763 return page_address(skb_frag_page(frag)) + frag->page_offset;
1767 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
1768 * @frag: the paged fragment buffer
1770 * Returns the address of the data within @frag. Checks that the page
1771 * is mapped and returns %NULL otherwise.
1773 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
1775 void *ptr = page_address(skb_frag_page(frag));
1776 if (unlikely(!ptr))
1777 return NULL;
1779 return ptr + frag->page_offset;
1783 * __skb_frag_set_page - sets the page contained in a paged fragment
1784 * @frag: the paged fragment
1785 * @page: the page to set
1787 * Sets the fragment @frag to contain @page.
1789 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
1791 frag->page.p = page;
1795 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
1796 * @skb: the buffer
1797 * @f: the fragment offset
1798 * @page: the page to set
1800 * Sets the @f'th fragment of @skb to contain @page.
1802 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
1803 struct page *page)
1805 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
1809 * skb_frag_dma_map - maps a paged fragment via the DMA API
1810 * @dev: the device to map the fragment to
1811 * @frag: the paged fragment to map
1812 * @offset: the offset within the fragment (starting at the
1813 * fragment's own offset)
1814 * @size: the number of bytes to map
1815 * @dir: the direction of the mapping (%PCI_DMA_*)
1817 * Maps the page associated with @frag to @device.
1819 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
1820 const skb_frag_t *frag,
1821 size_t offset, size_t size,
1822 enum dma_data_direction dir)
1824 return dma_map_page(dev, skb_frag_page(frag),
1825 frag->page_offset + offset, size, dir);
1829 * skb_clone_writable - is the header of a clone writable
1830 * @skb: buffer to check
1831 * @len: length up to which to write
1833 * Returns true if modifying the header part of the cloned buffer
1834 * does not requires the data to be copied.
1836 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
1838 return !skb_header_cloned(skb) &&
1839 skb_headroom(skb) + len <= skb->hdr_len;
1842 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1843 int cloned)
1845 int delta = 0;
1847 if (headroom < NET_SKB_PAD)
1848 headroom = NET_SKB_PAD;
1849 if (headroom > skb_headroom(skb))
1850 delta = headroom - skb_headroom(skb);
1852 if (delta || cloned)
1853 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1854 GFP_ATOMIC);
1855 return 0;
1859 * skb_cow - copy header of skb when it is required
1860 * @skb: buffer to cow
1861 * @headroom: needed headroom
1863 * If the skb passed lacks sufficient headroom or its data part
1864 * is shared, data is reallocated. If reallocation fails, an error
1865 * is returned and original skb is not changed.
1867 * The result is skb with writable area skb->head...skb->tail
1868 * and at least @headroom of space at head.
1870 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1872 return __skb_cow(skb, headroom, skb_cloned(skb));
1876 * skb_cow_head - skb_cow but only making the head writable
1877 * @skb: buffer to cow
1878 * @headroom: needed headroom
1880 * This function is identical to skb_cow except that we replace the
1881 * skb_cloned check by skb_header_cloned. It should be used when
1882 * you only need to push on some header and do not need to modify
1883 * the data.
1885 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1887 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1891 * skb_padto - pad an skbuff up to a minimal size
1892 * @skb: buffer to pad
1893 * @len: minimal length
1895 * Pads up a buffer to ensure the trailing bytes exist and are
1896 * blanked. If the buffer already contains sufficient data it
1897 * is untouched. Otherwise it is extended. Returns zero on
1898 * success. The skb is freed on error.
1901 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1903 unsigned int size = skb->len;
1904 if (likely(size >= len))
1905 return 0;
1906 return skb_pad(skb, len - size);
1909 static inline int skb_add_data(struct sk_buff *skb,
1910 char __user *from, int copy)
1912 const int off = skb->len;
1914 if (skb->ip_summed == CHECKSUM_NONE) {
1915 int err = 0;
1916 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1917 copy, 0, &err);
1918 if (!err) {
1919 skb->csum = csum_block_add(skb->csum, csum, off);
1920 return 0;
1922 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1923 return 0;
1925 __skb_trim(skb, off);
1926 return -EFAULT;
1929 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1930 const struct page *page, int off)
1932 if (i) {
1933 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1935 return page == skb_frag_page(frag) &&
1936 off == frag->page_offset + skb_frag_size(frag);
1938 return 0;
1941 static inline int __skb_linearize(struct sk_buff *skb)
1943 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1947 * skb_linearize - convert paged skb to linear one
1948 * @skb: buffer to linarize
1950 * If there is no free memory -ENOMEM is returned, otherwise zero
1951 * is returned and the old skb data released.
1953 static inline int skb_linearize(struct sk_buff *skb)
1955 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1959 * skb_linearize_cow - make sure skb is linear and writable
1960 * @skb: buffer to process
1962 * If there is no free memory -ENOMEM is returned, otherwise zero
1963 * is returned and the old skb data released.
1965 static inline int skb_linearize_cow(struct sk_buff *skb)
1967 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1968 __skb_linearize(skb) : 0;
1972 * skb_postpull_rcsum - update checksum for received skb after pull
1973 * @skb: buffer to update
1974 * @start: start of data before pull
1975 * @len: length of data pulled
1977 * After doing a pull on a received packet, you need to call this to
1978 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1979 * CHECKSUM_NONE so that it can be recomputed from scratch.
1982 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1983 const void *start, unsigned int len)
1985 if (skb->ip_summed == CHECKSUM_COMPLETE)
1986 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1989 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1992 * pskb_trim_rcsum - trim received skb and update checksum
1993 * @skb: buffer to trim
1994 * @len: new length
1996 * This is exactly the same as pskb_trim except that it ensures the
1997 * checksum of received packets are still valid after the operation.
2000 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2002 if (likely(len >= skb->len))
2003 return 0;
2004 if (skb->ip_summed == CHECKSUM_COMPLETE)
2005 skb->ip_summed = CHECKSUM_NONE;
2006 return __pskb_trim(skb, len);
2009 #define skb_queue_walk(queue, skb) \
2010 for (skb = (queue)->next; \
2011 skb != (struct sk_buff *)(queue); \
2012 skb = skb->next)
2014 #define skb_queue_walk_safe(queue, skb, tmp) \
2015 for (skb = (queue)->next, tmp = skb->next; \
2016 skb != (struct sk_buff *)(queue); \
2017 skb = tmp, tmp = skb->next)
2019 #define skb_queue_walk_from(queue, skb) \
2020 for (; skb != (struct sk_buff *)(queue); \
2021 skb = skb->next)
2023 #define skb_queue_walk_from_safe(queue, skb, tmp) \
2024 for (tmp = skb->next; \
2025 skb != (struct sk_buff *)(queue); \
2026 skb = tmp, tmp = skb->next)
2028 #define skb_queue_reverse_walk(queue, skb) \
2029 for (skb = (queue)->prev; \
2030 skb != (struct sk_buff *)(queue); \
2031 skb = skb->prev)
2033 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2034 for (skb = (queue)->prev, tmp = skb->prev; \
2035 skb != (struct sk_buff *)(queue); \
2036 skb = tmp, tmp = skb->prev)
2038 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2039 for (tmp = skb->prev; \
2040 skb != (struct sk_buff *)(queue); \
2041 skb = tmp, tmp = skb->prev)
2043 static inline bool skb_has_frag_list(const struct sk_buff *skb)
2045 return skb_shinfo(skb)->frag_list != NULL;
2048 static inline void skb_frag_list_init(struct sk_buff *skb)
2050 skb_shinfo(skb)->frag_list = NULL;
2053 static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
2055 frag->next = skb_shinfo(skb)->frag_list;
2056 skb_shinfo(skb)->frag_list = frag;
2059 #define skb_walk_frags(skb, iter) \
2060 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2062 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2063 int *peeked, int *err);
2064 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
2065 int noblock, int *err);
2066 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
2067 struct poll_table_struct *wait);
2068 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
2069 int offset, struct iovec *to,
2070 int size);
2071 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
2072 int hlen,
2073 struct iovec *iov);
2074 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
2075 int offset,
2076 const struct iovec *from,
2077 int from_offset,
2078 int len);
2079 extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
2080 int offset,
2081 const struct iovec *to,
2082 int to_offset,
2083 int size);
2084 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2085 extern void skb_free_datagram_locked(struct sock *sk,
2086 struct sk_buff *skb);
2087 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
2088 unsigned int flags);
2089 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
2090 int len, __wsum csum);
2091 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
2092 void *to, int len);
2093 extern int skb_store_bits(struct sk_buff *skb, int offset,
2094 const void *from, int len);
2095 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
2096 int offset, u8 *to, int len,
2097 __wsum csum);
2098 extern int skb_splice_bits(struct sk_buff *skb,
2099 unsigned int offset,
2100 struct pipe_inode_info *pipe,
2101 unsigned int len,
2102 unsigned int flags);
2103 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2104 extern void skb_split(struct sk_buff *skb,
2105 struct sk_buff *skb1, const u32 len);
2106 extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
2107 int shiftlen);
2109 extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
2111 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
2112 int len, void *buffer)
2114 int hlen = skb_headlen(skb);
2116 if (hlen - offset >= len)
2117 return skb->data + offset;
2119 if (skb_copy_bits(skb, offset, buffer, len) < 0)
2120 return NULL;
2122 return buffer;
2125 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
2126 void *to,
2127 const unsigned int len)
2129 memcpy(to, skb->data, len);
2132 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
2133 const int offset, void *to,
2134 const unsigned int len)
2136 memcpy(to, skb->data + offset, len);
2139 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
2140 const void *from,
2141 const unsigned int len)
2143 memcpy(skb->data, from, len);
2146 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
2147 const int offset,
2148 const void *from,
2149 const unsigned int len)
2151 memcpy(skb->data + offset, from, len);
2154 extern void skb_init(void);
2156 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
2158 return skb->tstamp;
2162 * skb_get_timestamp - get timestamp from a skb
2163 * @skb: skb to get stamp from
2164 * @stamp: pointer to struct timeval to store stamp in
2166 * Timestamps are stored in the skb as offsets to a base timestamp.
2167 * This function converts the offset back to a struct timeval and stores
2168 * it in stamp.
2170 static inline void skb_get_timestamp(const struct sk_buff *skb,
2171 struct timeval *stamp)
2173 *stamp = ktime_to_timeval(skb->tstamp);
2176 static inline void skb_get_timestampns(const struct sk_buff *skb,
2177 struct timespec *stamp)
2179 *stamp = ktime_to_timespec(skb->tstamp);
2182 static inline void __net_timestamp(struct sk_buff *skb)
2184 skb->tstamp = ktime_get_real();
2187 static inline ktime_t net_timedelta(ktime_t t)
2189 return ktime_sub(ktime_get_real(), t);
2192 static inline ktime_t net_invalid_timestamp(void)
2194 return ktime_set(0, 0);
2197 extern void skb_timestamping_init(void);
2199 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2201 extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2202 extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2204 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2206 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2210 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2212 return false;
2215 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2218 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2220 * PHY drivers may accept clones of transmitted packets for
2221 * timestamping via their phy_driver.txtstamp method. These drivers
2222 * must call this function to return the skb back to the stack, with
2223 * or without a timestamp.
2225 * @skb: clone of the the original outgoing packet
2226 * @hwtstamps: hardware time stamps, may be NULL if not available
2229 void skb_complete_tx_timestamp(struct sk_buff *skb,
2230 struct skb_shared_hwtstamps *hwtstamps);
2233 * skb_tstamp_tx - queue clone of skb with send time stamps
2234 * @orig_skb: the original outgoing packet
2235 * @hwtstamps: hardware time stamps, may be NULL if not available
2237 * If the skb has a socket associated, then this function clones the
2238 * skb (thus sharing the actual data and optional structures), stores
2239 * the optional hardware time stamping information (if non NULL) or
2240 * generates a software time stamp (otherwise), then queues the clone
2241 * to the error queue of the socket. Errors are silently ignored.
2243 extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2244 struct skb_shared_hwtstamps *hwtstamps);
2246 static inline void sw_tx_timestamp(struct sk_buff *skb)
2248 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2249 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2250 skb_tstamp_tx(skb, NULL);
2254 * skb_tx_timestamp() - Driver hook for transmit timestamping
2256 * Ethernet MAC Drivers should call this function in their hard_xmit()
2257 * function immediately before giving the sk_buff to the MAC hardware.
2259 * @skb: A socket buffer.
2261 static inline void skb_tx_timestamp(struct sk_buff *skb)
2263 skb_clone_tx_timestamp(skb);
2264 sw_tx_timestamp(skb);
2267 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2268 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2270 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2272 return skb->ip_summed & CHECKSUM_UNNECESSARY;
2276 * skb_checksum_complete - Calculate checksum of an entire packet
2277 * @skb: packet to process
2279 * This function calculates the checksum over the entire packet plus
2280 * the value of skb->csum. The latter can be used to supply the
2281 * checksum of a pseudo header as used by TCP/UDP. It returns the
2282 * checksum.
2284 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
2285 * this function can be used to verify that checksum on received
2286 * packets. In that case the function should return zero if the
2287 * checksum is correct. In particular, this function will return zero
2288 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2289 * hardware has already verified the correctness of the checksum.
2291 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2293 return skb_csum_unnecessary(skb) ?
2294 0 : __skb_checksum_complete(skb);
2297 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2298 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2299 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2301 if (nfct && atomic_dec_and_test(&nfct->use))
2302 nf_conntrack_destroy(nfct);
2304 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2306 if (nfct)
2307 atomic_inc(&nfct->use);
2309 #endif
2310 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2311 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2313 if (skb)
2314 atomic_inc(&skb->users);
2316 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2318 if (skb)
2319 kfree_skb(skb);
2321 #endif
2322 #ifdef CONFIG_BRIDGE_NETFILTER
2323 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2325 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2326 kfree(nf_bridge);
2328 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2330 if (nf_bridge)
2331 atomic_inc(&nf_bridge->use);
2333 #endif /* CONFIG_BRIDGE_NETFILTER */
2334 static inline void nf_reset(struct sk_buff *skb)
2336 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2337 nf_conntrack_put(skb->nfct);
2338 skb->nfct = NULL;
2339 #endif
2340 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2341 nf_conntrack_put_reasm(skb->nfct_reasm);
2342 skb->nfct_reasm = NULL;
2343 #endif
2344 #ifdef CONFIG_BRIDGE_NETFILTER
2345 nf_bridge_put(skb->nf_bridge);
2346 skb->nf_bridge = NULL;
2347 #endif
2350 /* Note: This doesn't put any conntrack and bridge info in dst. */
2351 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2353 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2354 dst->nfct = src->nfct;
2355 nf_conntrack_get(src->nfct);
2356 dst->nfctinfo = src->nfctinfo;
2357 #endif
2358 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2359 dst->nfct_reasm = src->nfct_reasm;
2360 nf_conntrack_get_reasm(src->nfct_reasm);
2361 #endif
2362 #ifdef CONFIG_BRIDGE_NETFILTER
2363 dst->nf_bridge = src->nf_bridge;
2364 nf_bridge_get(src->nf_bridge);
2365 #endif
2368 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2370 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2371 nf_conntrack_put(dst->nfct);
2372 #endif
2373 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2374 nf_conntrack_put_reasm(dst->nfct_reasm);
2375 #endif
2376 #ifdef CONFIG_BRIDGE_NETFILTER
2377 nf_bridge_put(dst->nf_bridge);
2378 #endif
2379 __nf_copy(dst, src);
2382 #ifdef CONFIG_NETWORK_SECMARK
2383 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2385 to->secmark = from->secmark;
2388 static inline void skb_init_secmark(struct sk_buff *skb)
2390 skb->secmark = 0;
2392 #else
2393 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2396 static inline void skb_init_secmark(struct sk_buff *skb)
2398 #endif
2400 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2402 skb->queue_mapping = queue_mapping;
2405 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2407 return skb->queue_mapping;
2410 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2412 to->queue_mapping = from->queue_mapping;
2415 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2417 skb->queue_mapping = rx_queue + 1;
2420 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2422 return skb->queue_mapping - 1;
2425 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2427 return skb->queue_mapping != 0;
2430 extern u16 __skb_tx_hash(const struct net_device *dev,
2431 const struct sk_buff *skb,
2432 unsigned int num_tx_queues);
2434 #ifdef CONFIG_XFRM
2435 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2437 return skb->sp;
2439 #else
2440 static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2442 return NULL;
2444 #endif
2446 static inline int skb_is_gso(const struct sk_buff *skb)
2448 return skb_shinfo(skb)->gso_size;
2451 static inline int skb_is_gso_v6(const struct sk_buff *skb)
2453 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2456 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2458 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2460 /* LRO sets gso_size but not gso_type, whereas if GSO is really
2461 * wanted then gso_type will be set. */
2462 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2464 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2465 unlikely(shinfo->gso_type == 0)) {
2466 __skb_warn_lro_forwarding(skb);
2467 return true;
2469 return false;
2472 static inline void skb_forward_csum(struct sk_buff *skb)
2474 /* Unfortunately we don't support this one. Any brave souls? */
2475 if (skb->ip_summed == CHECKSUM_COMPLETE)
2476 skb->ip_summed = CHECKSUM_NONE;
2480 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2481 * @skb: skb to check
2483 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2484 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2485 * use this helper, to document places where we make this assertion.
2487 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
2489 #ifdef DEBUG
2490 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2491 #endif
2494 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2496 static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size)
2498 if (irqs_disabled())
2499 return false;
2501 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)
2502 return false;
2504 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
2505 return false;
2507 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
2508 if (skb_end_pointer(skb) - skb->head < skb_size)
2509 return false;
2511 if (skb_shared(skb) || skb_cloned(skb))
2512 return false;
2514 return true;
2516 #endif /* __KERNEL__ */
2517 #endif /* _LINUX_SKBUFF_H */