2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
23 #include "transaction.h"
24 #include "print-tree.h"
27 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
28 *root
, struct btrfs_path
*path
, int level
);
29 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
30 *root
, struct btrfs_key
*ins_key
,
31 struct btrfs_path
*path
, int data_size
, int extend
);
32 static int push_node_left(struct btrfs_trans_handle
*trans
,
33 struct btrfs_root
*root
, struct extent_buffer
*dst
,
34 struct extent_buffer
*src
, int empty
);
35 static int balance_node_right(struct btrfs_trans_handle
*trans
,
36 struct btrfs_root
*root
,
37 struct extent_buffer
*dst_buf
,
38 struct extent_buffer
*src_buf
);
39 static int del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
40 struct btrfs_path
*path
, int level
, int slot
);
41 static int setup_items_for_insert(struct btrfs_trans_handle
*trans
,
42 struct btrfs_root
*root
, struct btrfs_path
*path
,
43 struct btrfs_key
*cpu_key
, u32
*data_size
,
44 u32 total_data
, u32 total_size
, int nr
);
47 struct btrfs_path
*btrfs_alloc_path(void)
49 struct btrfs_path
*path
;
50 path
= kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
57 * set all locked nodes in the path to blocking locks. This should
58 * be done before scheduling
60 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
63 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
64 if (p
->nodes
[i
] && p
->locks
[i
])
65 btrfs_set_lock_blocking(p
->nodes
[i
]);
70 * reset all the locked nodes in the patch to spinning locks.
72 * held is used to keep lockdep happy, when lockdep is enabled
73 * we set held to a blocking lock before we go around and
74 * retake all the spinlocks in the path. You can safely use NULL
77 noinline
void btrfs_clear_path_blocking(struct btrfs_path
*p
,
78 struct extent_buffer
*held
)
82 #ifdef CONFIG_DEBUG_LOCK_ALLOC
83 /* lockdep really cares that we take all of these spinlocks
84 * in the right order. If any of the locks in the path are not
85 * currently blocking, it is going to complain. So, make really
86 * really sure by forcing the path to blocking before we clear
90 btrfs_set_lock_blocking(held
);
91 btrfs_set_path_blocking(p
);
94 for (i
= BTRFS_MAX_LEVEL
- 1; i
>= 0; i
--) {
95 if (p
->nodes
[i
] && p
->locks
[i
])
96 btrfs_clear_lock_blocking(p
->nodes
[i
]);
99 #ifdef CONFIG_DEBUG_LOCK_ALLOC
101 btrfs_clear_lock_blocking(held
);
105 /* this also releases the path */
106 void btrfs_free_path(struct btrfs_path
*p
)
110 btrfs_release_path(NULL
, p
);
111 kmem_cache_free(btrfs_path_cachep
, p
);
115 * path release drops references on the extent buffers in the path
116 * and it drops any locks held by this path
118 * It is safe to call this on paths that no locks or extent buffers held.
120 noinline
void btrfs_release_path(struct btrfs_root
*root
, struct btrfs_path
*p
)
124 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
129 btrfs_tree_unlock(p
->nodes
[i
]);
132 free_extent_buffer(p
->nodes
[i
]);
138 * safely gets a reference on the root node of a tree. A lock
139 * is not taken, so a concurrent writer may put a different node
140 * at the root of the tree. See btrfs_lock_root_node for the
143 * The extent buffer returned by this has a reference taken, so
144 * it won't disappear. It may stop being the root of the tree
145 * at any time because there are no locks held.
147 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
149 struct extent_buffer
*eb
;
150 spin_lock(&root
->node_lock
);
152 extent_buffer_get(eb
);
153 spin_unlock(&root
->node_lock
);
157 /* loop around taking references on and locking the root node of the
158 * tree until you end up with a lock on the root. A locked buffer
159 * is returned, with a reference held.
161 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
163 struct extent_buffer
*eb
;
166 eb
= btrfs_root_node(root
);
169 spin_lock(&root
->node_lock
);
170 if (eb
== root
->node
) {
171 spin_unlock(&root
->node_lock
);
174 spin_unlock(&root
->node_lock
);
176 btrfs_tree_unlock(eb
);
177 free_extent_buffer(eb
);
182 /* cowonly root (everything not a reference counted cow subvolume), just get
183 * put onto a simple dirty list. transaction.c walks this to make sure they
184 * get properly updated on disk.
186 static void add_root_to_dirty_list(struct btrfs_root
*root
)
188 if (root
->track_dirty
&& list_empty(&root
->dirty_list
)) {
189 list_add(&root
->dirty_list
,
190 &root
->fs_info
->dirty_cowonly_roots
);
195 * used by snapshot creation to make a copy of a root for a tree with
196 * a given objectid. The buffer with the new root node is returned in
197 * cow_ret, and this func returns zero on success or a negative error code.
199 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
200 struct btrfs_root
*root
,
201 struct extent_buffer
*buf
,
202 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
204 struct extent_buffer
*cow
;
207 struct btrfs_disk_key disk_key
;
209 WARN_ON(root
->ref_cows
&& trans
->transid
!=
210 root
->fs_info
->running_transaction
->transid
);
211 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
213 level
= btrfs_header_level(buf
);
215 btrfs_item_key(buf
, &disk_key
, 0);
217 btrfs_node_key(buf
, &disk_key
, 0);
219 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
, 0,
220 new_root_objectid
, &disk_key
, level
,
225 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
226 btrfs_set_header_bytenr(cow
, cow
->start
);
227 btrfs_set_header_generation(cow
, trans
->transid
);
228 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
229 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
230 BTRFS_HEADER_FLAG_RELOC
);
231 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
232 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
234 btrfs_set_header_owner(cow
, new_root_objectid
);
236 write_extent_buffer(cow
, root
->fs_info
->fsid
,
237 (unsigned long)btrfs_header_fsid(cow
),
240 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
241 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
242 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
244 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
249 btrfs_mark_buffer_dirty(cow
);
255 * check if the tree block can be shared by multiple trees
257 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
258 struct extent_buffer
*buf
)
261 * Tree blocks not in refernece counted trees and tree roots
262 * are never shared. If a block was allocated after the last
263 * snapshot and the block was not allocated by tree relocation,
264 * we know the block is not shared.
266 if (root
->ref_cows
&&
267 buf
!= root
->node
&& buf
!= root
->commit_root
&&
268 (btrfs_header_generation(buf
) <=
269 btrfs_root_last_snapshot(&root
->root_item
) ||
270 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
272 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
273 if (root
->ref_cows
&&
274 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
280 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
281 struct btrfs_root
*root
,
282 struct extent_buffer
*buf
,
283 struct extent_buffer
*cow
,
293 * Backrefs update rules:
295 * Always use full backrefs for extent pointers in tree block
296 * allocated by tree relocation.
298 * If a shared tree block is no longer referenced by its owner
299 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
300 * use full backrefs for extent pointers in tree block.
302 * If a tree block is been relocating
303 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
304 * use full backrefs for extent pointers in tree block.
305 * The reason for this is some operations (such as drop tree)
306 * are only allowed for blocks use full backrefs.
309 if (btrfs_block_can_be_shared(root
, buf
)) {
310 ret
= btrfs_lookup_extent_info(trans
, root
, buf
->start
,
311 buf
->len
, &refs
, &flags
);
316 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
317 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
318 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
323 owner
= btrfs_header_owner(buf
);
324 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
325 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
328 if ((owner
== root
->root_key
.objectid
||
329 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
330 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
331 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
334 if (root
->root_key
.objectid
==
335 BTRFS_TREE_RELOC_OBJECTID
) {
336 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
338 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
341 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
344 if (root
->root_key
.objectid
==
345 BTRFS_TREE_RELOC_OBJECTID
)
346 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
348 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
351 if (new_flags
!= 0) {
352 ret
= btrfs_set_disk_extent_flags(trans
, root
,
359 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
360 if (root
->root_key
.objectid
==
361 BTRFS_TREE_RELOC_OBJECTID
)
362 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
364 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
366 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
369 clean_tree_block(trans
, root
, buf
);
376 * does the dirty work in cow of a single block. The parent block (if
377 * supplied) is updated to point to the new cow copy. The new buffer is marked
378 * dirty and returned locked. If you modify the block it needs to be marked
381 * search_start -- an allocation hint for the new block
383 * empty_size -- a hint that you plan on doing more cow. This is the size in
384 * bytes the allocator should try to find free next to the block it returns.
385 * This is just a hint and may be ignored by the allocator.
387 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
388 struct btrfs_root
*root
,
389 struct extent_buffer
*buf
,
390 struct extent_buffer
*parent
, int parent_slot
,
391 struct extent_buffer
**cow_ret
,
392 u64 search_start
, u64 empty_size
)
394 struct btrfs_disk_key disk_key
;
395 struct extent_buffer
*cow
;
404 btrfs_assert_tree_locked(buf
);
406 WARN_ON(root
->ref_cows
&& trans
->transid
!=
407 root
->fs_info
->running_transaction
->transid
);
408 WARN_ON(root
->ref_cows
&& trans
->transid
!= root
->last_trans
);
410 level
= btrfs_header_level(buf
);
413 btrfs_item_key(buf
, &disk_key
, 0);
415 btrfs_node_key(buf
, &disk_key
, 0);
417 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
419 parent_start
= parent
->start
;
425 cow
= btrfs_alloc_free_block(trans
, root
, buf
->len
, parent_start
,
426 root
->root_key
.objectid
, &disk_key
,
427 level
, search_start
, empty_size
);
431 /* cow is set to blocking by btrfs_init_new_buffer */
433 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
434 btrfs_set_header_bytenr(cow
, cow
->start
);
435 btrfs_set_header_generation(cow
, trans
->transid
);
436 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
437 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
438 BTRFS_HEADER_FLAG_RELOC
);
439 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
440 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
442 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
444 write_extent_buffer(cow
, root
->fs_info
->fsid
,
445 (unsigned long)btrfs_header_fsid(cow
),
448 update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
451 btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
453 if (buf
== root
->node
) {
454 WARN_ON(parent
&& parent
!= buf
);
455 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
456 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
457 parent_start
= buf
->start
;
461 spin_lock(&root
->node_lock
);
463 extent_buffer_get(cow
);
464 spin_unlock(&root
->node_lock
);
466 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
468 free_extent_buffer(buf
);
469 add_root_to_dirty_list(root
);
471 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
472 parent_start
= parent
->start
;
476 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
477 btrfs_set_node_blockptr(parent
, parent_slot
,
479 btrfs_set_node_ptr_generation(parent
, parent_slot
,
481 btrfs_mark_buffer_dirty(parent
);
482 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
486 btrfs_tree_unlock(buf
);
487 free_extent_buffer(buf
);
488 btrfs_mark_buffer_dirty(cow
);
493 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
494 struct btrfs_root
*root
,
495 struct extent_buffer
*buf
)
497 if (btrfs_header_generation(buf
) == trans
->transid
&&
498 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
499 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
500 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
506 * cows a single block, see __btrfs_cow_block for the real work.
507 * This version of it has extra checks so that a block isn't cow'd more than
508 * once per transaction, as long as it hasn't been written yet
510 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
511 struct btrfs_root
*root
, struct extent_buffer
*buf
,
512 struct extent_buffer
*parent
, int parent_slot
,
513 struct extent_buffer
**cow_ret
)
518 if (trans
->transaction
!= root
->fs_info
->running_transaction
) {
519 printk(KERN_CRIT
"trans %llu running %llu\n",
520 (unsigned long long)trans
->transid
,
522 root
->fs_info
->running_transaction
->transid
);
525 if (trans
->transid
!= root
->fs_info
->generation
) {
526 printk(KERN_CRIT
"trans %llu running %llu\n",
527 (unsigned long long)trans
->transid
,
528 (unsigned long long)root
->fs_info
->generation
);
532 if (!should_cow_block(trans
, root
, buf
)) {
537 search_start
= buf
->start
& ~((u64
)(1024 * 1024 * 1024) - 1);
540 btrfs_set_lock_blocking(parent
);
541 btrfs_set_lock_blocking(buf
);
543 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
544 parent_slot
, cow_ret
, search_start
, 0);
549 * helper function for defrag to decide if two blocks pointed to by a
550 * node are actually close by
552 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
554 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
556 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
562 * compare two keys in a memcmp fashion
564 static int comp_keys(struct btrfs_disk_key
*disk
, struct btrfs_key
*k2
)
568 btrfs_disk_key_to_cpu(&k1
, disk
);
570 return btrfs_comp_cpu_keys(&k1
, k2
);
574 * same as comp_keys only with two btrfs_key's
576 int btrfs_comp_cpu_keys(struct btrfs_key
*k1
, struct btrfs_key
*k2
)
578 if (k1
->objectid
> k2
->objectid
)
580 if (k1
->objectid
< k2
->objectid
)
582 if (k1
->type
> k2
->type
)
584 if (k1
->type
< k2
->type
)
586 if (k1
->offset
> k2
->offset
)
588 if (k1
->offset
< k2
->offset
)
594 * this is used by the defrag code to go through all the
595 * leaves pointed to by a node and reallocate them so that
596 * disk order is close to key order
598 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
599 struct btrfs_root
*root
, struct extent_buffer
*parent
,
600 int start_slot
, int cache_only
, u64
*last_ret
,
601 struct btrfs_key
*progress
)
603 struct extent_buffer
*cur
;
606 u64 search_start
= *last_ret
;
616 int progress_passed
= 0;
617 struct btrfs_disk_key disk_key
;
619 parent_level
= btrfs_header_level(parent
);
620 if (cache_only
&& parent_level
!= 1)
623 if (trans
->transaction
!= root
->fs_info
->running_transaction
)
625 if (trans
->transid
!= root
->fs_info
->generation
)
628 parent_nritems
= btrfs_header_nritems(parent
);
629 blocksize
= btrfs_level_size(root
, parent_level
- 1);
630 end_slot
= parent_nritems
;
632 if (parent_nritems
== 1)
635 btrfs_set_lock_blocking(parent
);
637 for (i
= start_slot
; i
< end_slot
; i
++) {
640 if (!parent
->map_token
) {
641 map_extent_buffer(parent
,
642 btrfs_node_key_ptr_offset(i
),
643 sizeof(struct btrfs_key_ptr
),
644 &parent
->map_token
, &parent
->kaddr
,
645 &parent
->map_start
, &parent
->map_len
,
648 btrfs_node_key(parent
, &disk_key
, i
);
649 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
653 blocknr
= btrfs_node_blockptr(parent
, i
);
654 gen
= btrfs_node_ptr_generation(parent
, i
);
656 last_block
= blocknr
;
659 other
= btrfs_node_blockptr(parent
, i
- 1);
660 close
= close_blocks(blocknr
, other
, blocksize
);
662 if (!close
&& i
< end_slot
- 2) {
663 other
= btrfs_node_blockptr(parent
, i
+ 1);
664 close
= close_blocks(blocknr
, other
, blocksize
);
667 last_block
= blocknr
;
670 if (parent
->map_token
) {
671 unmap_extent_buffer(parent
, parent
->map_token
,
673 parent
->map_token
= NULL
;
676 cur
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
678 uptodate
= btrfs_buffer_uptodate(cur
, gen
);
681 if (!cur
|| !uptodate
) {
683 free_extent_buffer(cur
);
687 cur
= read_tree_block(root
, blocknr
,
689 } else if (!uptodate
) {
690 btrfs_read_buffer(cur
, gen
);
693 if (search_start
== 0)
694 search_start
= last_block
;
696 btrfs_tree_lock(cur
);
697 btrfs_set_lock_blocking(cur
);
698 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
701 (end_slot
- i
) * blocksize
));
703 btrfs_tree_unlock(cur
);
704 free_extent_buffer(cur
);
707 search_start
= cur
->start
;
708 last_block
= cur
->start
;
709 *last_ret
= search_start
;
710 btrfs_tree_unlock(cur
);
711 free_extent_buffer(cur
);
713 if (parent
->map_token
) {
714 unmap_extent_buffer(parent
, parent
->map_token
,
716 parent
->map_token
= NULL
;
722 * The leaf data grows from end-to-front in the node.
723 * this returns the address of the start of the last item,
724 * which is the stop of the leaf data stack
726 static inline unsigned int leaf_data_end(struct btrfs_root
*root
,
727 struct extent_buffer
*leaf
)
729 u32 nr
= btrfs_header_nritems(leaf
);
731 return BTRFS_LEAF_DATA_SIZE(root
);
732 return btrfs_item_offset_nr(leaf
, nr
- 1);
736 * extra debugging checks to make sure all the items in a key are
737 * well formed and in the proper order
739 static int check_node(struct btrfs_root
*root
, struct btrfs_path
*path
,
742 struct extent_buffer
*parent
= NULL
;
743 struct extent_buffer
*node
= path
->nodes
[level
];
744 struct btrfs_disk_key parent_key
;
745 struct btrfs_disk_key node_key
;
748 struct btrfs_key cpukey
;
749 u32 nritems
= btrfs_header_nritems(node
);
751 if (path
->nodes
[level
+ 1])
752 parent
= path
->nodes
[level
+ 1];
754 slot
= path
->slots
[level
];
755 BUG_ON(nritems
== 0);
757 parent_slot
= path
->slots
[level
+ 1];
758 btrfs_node_key(parent
, &parent_key
, parent_slot
);
759 btrfs_node_key(node
, &node_key
, 0);
760 BUG_ON(memcmp(&parent_key
, &node_key
,
761 sizeof(struct btrfs_disk_key
)));
762 BUG_ON(btrfs_node_blockptr(parent
, parent_slot
) !=
763 btrfs_header_bytenr(node
));
765 BUG_ON(nritems
> BTRFS_NODEPTRS_PER_BLOCK(root
));
767 btrfs_node_key_to_cpu(node
, &cpukey
, slot
- 1);
768 btrfs_node_key(node
, &node_key
, slot
);
769 BUG_ON(comp_keys(&node_key
, &cpukey
) <= 0);
771 if (slot
< nritems
- 1) {
772 btrfs_node_key_to_cpu(node
, &cpukey
, slot
+ 1);
773 btrfs_node_key(node
, &node_key
, slot
);
774 BUG_ON(comp_keys(&node_key
, &cpukey
) >= 0);
780 * extra checking to make sure all the items in a leaf are
781 * well formed and in the proper order
783 static int check_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
786 struct extent_buffer
*leaf
= path
->nodes
[level
];
787 struct extent_buffer
*parent
= NULL
;
789 struct btrfs_key cpukey
;
790 struct btrfs_disk_key parent_key
;
791 struct btrfs_disk_key leaf_key
;
792 int slot
= path
->slots
[0];
794 u32 nritems
= btrfs_header_nritems(leaf
);
796 if (path
->nodes
[level
+ 1])
797 parent
= path
->nodes
[level
+ 1];
803 parent_slot
= path
->slots
[level
+ 1];
804 btrfs_node_key(parent
, &parent_key
, parent_slot
);
805 btrfs_item_key(leaf
, &leaf_key
, 0);
807 BUG_ON(memcmp(&parent_key
, &leaf_key
,
808 sizeof(struct btrfs_disk_key
)));
809 BUG_ON(btrfs_node_blockptr(parent
, parent_slot
) !=
810 btrfs_header_bytenr(leaf
));
812 if (slot
!= 0 && slot
< nritems
- 1) {
813 btrfs_item_key(leaf
, &leaf_key
, slot
);
814 btrfs_item_key_to_cpu(leaf
, &cpukey
, slot
- 1);
815 if (comp_keys(&leaf_key
, &cpukey
) <= 0) {
816 btrfs_print_leaf(root
, leaf
);
817 printk(KERN_CRIT
"slot %d offset bad key\n", slot
);
820 if (btrfs_item_offset_nr(leaf
, slot
- 1) !=
821 btrfs_item_end_nr(leaf
, slot
)) {
822 btrfs_print_leaf(root
, leaf
);
823 printk(KERN_CRIT
"slot %d offset bad\n", slot
);
827 if (slot
< nritems
- 1) {
828 btrfs_item_key(leaf
, &leaf_key
, slot
);
829 btrfs_item_key_to_cpu(leaf
, &cpukey
, slot
+ 1);
830 BUG_ON(comp_keys(&leaf_key
, &cpukey
) >= 0);
831 if (btrfs_item_offset_nr(leaf
, slot
) !=
832 btrfs_item_end_nr(leaf
, slot
+ 1)) {
833 btrfs_print_leaf(root
, leaf
);
834 printk(KERN_CRIT
"slot %d offset bad\n", slot
);
838 BUG_ON(btrfs_item_offset_nr(leaf
, 0) +
839 btrfs_item_size_nr(leaf
, 0) != BTRFS_LEAF_DATA_SIZE(root
));
843 static noinline
int check_block(struct btrfs_root
*root
,
844 struct btrfs_path
*path
, int level
)
848 return check_leaf(root
, path
, level
);
849 return check_node(root
, path
, level
);
853 * search for key in the extent_buffer. The items start at offset p,
854 * and they are item_size apart. There are 'max' items in p.
856 * the slot in the array is returned via slot, and it points to
857 * the place where you would insert key if it is not found in
860 * slot may point to max if the key is bigger than all of the keys
862 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
864 int item_size
, struct btrfs_key
*key
,
871 struct btrfs_disk_key
*tmp
= NULL
;
872 struct btrfs_disk_key unaligned
;
873 unsigned long offset
;
874 char *map_token
= NULL
;
876 unsigned long map_start
= 0;
877 unsigned long map_len
= 0;
881 mid
= (low
+ high
) / 2;
882 offset
= p
+ mid
* item_size
;
884 if (!map_token
|| offset
< map_start
||
885 (offset
+ sizeof(struct btrfs_disk_key
)) >
886 map_start
+ map_len
) {
888 unmap_extent_buffer(eb
, map_token
, KM_USER0
);
892 err
= map_private_extent_buffer(eb
, offset
,
893 sizeof(struct btrfs_disk_key
),
895 &map_start
, &map_len
, KM_USER0
);
898 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
901 read_extent_buffer(eb
, &unaligned
,
902 offset
, sizeof(unaligned
));
907 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
910 ret
= comp_keys(tmp
, key
);
919 unmap_extent_buffer(eb
, map_token
, KM_USER0
);
925 unmap_extent_buffer(eb
, map_token
, KM_USER0
);
930 * simple bin_search frontend that does the right thing for
933 static int bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
934 int level
, int *slot
)
937 return generic_bin_search(eb
,
938 offsetof(struct btrfs_leaf
, items
),
939 sizeof(struct btrfs_item
),
940 key
, btrfs_header_nritems(eb
),
943 return generic_bin_search(eb
,
944 offsetof(struct btrfs_node
, ptrs
),
945 sizeof(struct btrfs_key_ptr
),
946 key
, btrfs_header_nritems(eb
),
952 int btrfs_bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
953 int level
, int *slot
)
955 return bin_search(eb
, key
, level
, slot
);
958 static void root_add_used(struct btrfs_root
*root
, u32 size
)
960 spin_lock(&root
->accounting_lock
);
961 btrfs_set_root_used(&root
->root_item
,
962 btrfs_root_used(&root
->root_item
) + size
);
963 spin_unlock(&root
->accounting_lock
);
966 static void root_sub_used(struct btrfs_root
*root
, u32 size
)
968 spin_lock(&root
->accounting_lock
);
969 btrfs_set_root_used(&root
->root_item
,
970 btrfs_root_used(&root
->root_item
) - size
);
971 spin_unlock(&root
->accounting_lock
);
974 /* given a node and slot number, this reads the blocks it points to. The
975 * extent buffer is returned with a reference taken (but unlocked).
976 * NULL is returned on error.
978 static noinline
struct extent_buffer
*read_node_slot(struct btrfs_root
*root
,
979 struct extent_buffer
*parent
, int slot
)
981 int level
= btrfs_header_level(parent
);
984 if (slot
>= btrfs_header_nritems(parent
))
989 return read_tree_block(root
, btrfs_node_blockptr(parent
, slot
),
990 btrfs_level_size(root
, level
- 1),
991 btrfs_node_ptr_generation(parent
, slot
));
995 * node level balancing, used to make sure nodes are in proper order for
996 * item deletion. We balance from the top down, so we have to make sure
997 * that a deletion won't leave an node completely empty later on.
999 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
1000 struct btrfs_root
*root
,
1001 struct btrfs_path
*path
, int level
)
1003 struct extent_buffer
*right
= NULL
;
1004 struct extent_buffer
*mid
;
1005 struct extent_buffer
*left
= NULL
;
1006 struct extent_buffer
*parent
= NULL
;
1010 int orig_slot
= path
->slots
[level
];
1016 mid
= path
->nodes
[level
];
1018 WARN_ON(!path
->locks
[level
]);
1019 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1021 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1023 if (level
< BTRFS_MAX_LEVEL
- 1)
1024 parent
= path
->nodes
[level
+ 1];
1025 pslot
= path
->slots
[level
+ 1];
1028 * deal with the case where there is only one pointer in the root
1029 * by promoting the node below to a root
1032 struct extent_buffer
*child
;
1034 if (btrfs_header_nritems(mid
) != 1)
1037 /* promote the child to a root */
1038 child
= read_node_slot(root
, mid
, 0);
1040 btrfs_tree_lock(child
);
1041 btrfs_set_lock_blocking(child
);
1042 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1044 btrfs_tree_unlock(child
);
1045 free_extent_buffer(child
);
1049 spin_lock(&root
->node_lock
);
1051 spin_unlock(&root
->node_lock
);
1053 add_root_to_dirty_list(root
);
1054 btrfs_tree_unlock(child
);
1056 path
->locks
[level
] = 0;
1057 path
->nodes
[level
] = NULL
;
1058 clean_tree_block(trans
, root
, mid
);
1059 btrfs_tree_unlock(mid
);
1060 /* once for the path */
1061 free_extent_buffer(mid
);
1063 root_sub_used(root
, mid
->len
);
1064 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1065 /* once for the root ptr */
1066 free_extent_buffer(mid
);
1069 if (btrfs_header_nritems(mid
) >
1070 BTRFS_NODEPTRS_PER_BLOCK(root
) / 4)
1073 btrfs_header_nritems(mid
);
1075 left
= read_node_slot(root
, parent
, pslot
- 1);
1077 btrfs_tree_lock(left
);
1078 btrfs_set_lock_blocking(left
);
1079 wret
= btrfs_cow_block(trans
, root
, left
,
1080 parent
, pslot
- 1, &left
);
1086 right
= read_node_slot(root
, parent
, pslot
+ 1);
1088 btrfs_tree_lock(right
);
1089 btrfs_set_lock_blocking(right
);
1090 wret
= btrfs_cow_block(trans
, root
, right
,
1091 parent
, pslot
+ 1, &right
);
1098 /* first, try to make some room in the middle buffer */
1100 orig_slot
+= btrfs_header_nritems(left
);
1101 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1104 btrfs_header_nritems(mid
);
1108 * then try to empty the right most buffer into the middle
1111 wret
= push_node_left(trans
, root
, mid
, right
, 1);
1112 if (wret
< 0 && wret
!= -ENOSPC
)
1114 if (btrfs_header_nritems(right
) == 0) {
1115 clean_tree_block(trans
, root
, right
);
1116 btrfs_tree_unlock(right
);
1117 wret
= del_ptr(trans
, root
, path
, level
+ 1, pslot
+
1121 root_sub_used(root
, right
->len
);
1122 btrfs_free_tree_block(trans
, root
, right
, 0, 1);
1123 free_extent_buffer(right
);
1126 struct btrfs_disk_key right_key
;
1127 btrfs_node_key(right
, &right_key
, 0);
1128 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
1129 btrfs_mark_buffer_dirty(parent
);
1132 if (btrfs_header_nritems(mid
) == 1) {
1134 * we're not allowed to leave a node with one item in the
1135 * tree during a delete. A deletion from lower in the tree
1136 * could try to delete the only pointer in this node.
1137 * So, pull some keys from the left.
1138 * There has to be a left pointer at this point because
1139 * otherwise we would have pulled some pointers from the
1143 wret
= balance_node_right(trans
, root
, mid
, left
);
1149 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1155 if (btrfs_header_nritems(mid
) == 0) {
1156 clean_tree_block(trans
, root
, mid
);
1157 btrfs_tree_unlock(mid
);
1158 wret
= del_ptr(trans
, root
, path
, level
+ 1, pslot
);
1161 root_sub_used(root
, mid
->len
);
1162 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1163 free_extent_buffer(mid
);
1166 /* update the parent key to reflect our changes */
1167 struct btrfs_disk_key mid_key
;
1168 btrfs_node_key(mid
, &mid_key
, 0);
1169 btrfs_set_node_key(parent
, &mid_key
, pslot
);
1170 btrfs_mark_buffer_dirty(parent
);
1173 /* update the path */
1175 if (btrfs_header_nritems(left
) > orig_slot
) {
1176 extent_buffer_get(left
);
1177 /* left was locked after cow */
1178 path
->nodes
[level
] = left
;
1179 path
->slots
[level
+ 1] -= 1;
1180 path
->slots
[level
] = orig_slot
;
1182 btrfs_tree_unlock(mid
);
1183 free_extent_buffer(mid
);
1186 orig_slot
-= btrfs_header_nritems(left
);
1187 path
->slots
[level
] = orig_slot
;
1190 /* double check we haven't messed things up */
1191 check_block(root
, path
, level
);
1193 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
1197 btrfs_tree_unlock(right
);
1198 free_extent_buffer(right
);
1201 if (path
->nodes
[level
] != left
)
1202 btrfs_tree_unlock(left
);
1203 free_extent_buffer(left
);
1208 /* Node balancing for insertion. Here we only split or push nodes around
1209 * when they are completely full. This is also done top down, so we
1210 * have to be pessimistic.
1212 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
1213 struct btrfs_root
*root
,
1214 struct btrfs_path
*path
, int level
)
1216 struct extent_buffer
*right
= NULL
;
1217 struct extent_buffer
*mid
;
1218 struct extent_buffer
*left
= NULL
;
1219 struct extent_buffer
*parent
= NULL
;
1223 int orig_slot
= path
->slots
[level
];
1228 mid
= path
->nodes
[level
];
1229 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1231 if (level
< BTRFS_MAX_LEVEL
- 1)
1232 parent
= path
->nodes
[level
+ 1];
1233 pslot
= path
->slots
[level
+ 1];
1238 left
= read_node_slot(root
, parent
, pslot
- 1);
1240 /* first, try to make some room in the middle buffer */
1244 btrfs_tree_lock(left
);
1245 btrfs_set_lock_blocking(left
);
1247 left_nr
= btrfs_header_nritems(left
);
1248 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
1251 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
1256 wret
= push_node_left(trans
, root
,
1263 struct btrfs_disk_key disk_key
;
1264 orig_slot
+= left_nr
;
1265 btrfs_node_key(mid
, &disk_key
, 0);
1266 btrfs_set_node_key(parent
, &disk_key
, pslot
);
1267 btrfs_mark_buffer_dirty(parent
);
1268 if (btrfs_header_nritems(left
) > orig_slot
) {
1269 path
->nodes
[level
] = left
;
1270 path
->slots
[level
+ 1] -= 1;
1271 path
->slots
[level
] = orig_slot
;
1272 btrfs_tree_unlock(mid
);
1273 free_extent_buffer(mid
);
1276 btrfs_header_nritems(left
);
1277 path
->slots
[level
] = orig_slot
;
1278 btrfs_tree_unlock(left
);
1279 free_extent_buffer(left
);
1283 btrfs_tree_unlock(left
);
1284 free_extent_buffer(left
);
1286 right
= read_node_slot(root
, parent
, pslot
+ 1);
1289 * then try to empty the right most buffer into the middle
1294 btrfs_tree_lock(right
);
1295 btrfs_set_lock_blocking(right
);
1297 right_nr
= btrfs_header_nritems(right
);
1298 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
1301 ret
= btrfs_cow_block(trans
, root
, right
,
1307 wret
= balance_node_right(trans
, root
,
1314 struct btrfs_disk_key disk_key
;
1316 btrfs_node_key(right
, &disk_key
, 0);
1317 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
1318 btrfs_mark_buffer_dirty(parent
);
1320 if (btrfs_header_nritems(mid
) <= orig_slot
) {
1321 path
->nodes
[level
] = right
;
1322 path
->slots
[level
+ 1] += 1;
1323 path
->slots
[level
] = orig_slot
-
1324 btrfs_header_nritems(mid
);
1325 btrfs_tree_unlock(mid
);
1326 free_extent_buffer(mid
);
1328 btrfs_tree_unlock(right
);
1329 free_extent_buffer(right
);
1333 btrfs_tree_unlock(right
);
1334 free_extent_buffer(right
);
1340 * readahead one full node of leaves, finding things that are close
1341 * to the block in 'slot', and triggering ra on them.
1343 static void reada_for_search(struct btrfs_root
*root
,
1344 struct btrfs_path
*path
,
1345 int level
, int slot
, u64 objectid
)
1347 struct extent_buffer
*node
;
1348 struct btrfs_disk_key disk_key
;
1353 int direction
= path
->reada
;
1354 struct extent_buffer
*eb
;
1362 if (!path
->nodes
[level
])
1365 node
= path
->nodes
[level
];
1367 search
= btrfs_node_blockptr(node
, slot
);
1368 blocksize
= btrfs_level_size(root
, level
- 1);
1369 eb
= btrfs_find_tree_block(root
, search
, blocksize
);
1371 free_extent_buffer(eb
);
1377 nritems
= btrfs_header_nritems(node
);
1380 if (direction
< 0) {
1384 } else if (direction
> 0) {
1389 if (path
->reada
< 0 && objectid
) {
1390 btrfs_node_key(node
, &disk_key
, nr
);
1391 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
1394 search
= btrfs_node_blockptr(node
, nr
);
1395 if ((search
<= target
&& target
- search
<= 65536) ||
1396 (search
> target
&& search
- target
<= 65536)) {
1397 readahead_tree_block(root
, search
, blocksize
,
1398 btrfs_node_ptr_generation(node
, nr
));
1402 if ((nread
> 65536 || nscan
> 32))
1408 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1411 static noinline
int reada_for_balance(struct btrfs_root
*root
,
1412 struct btrfs_path
*path
, int level
)
1416 struct extent_buffer
*parent
;
1417 struct extent_buffer
*eb
;
1424 parent
= path
->nodes
[level
+ 1];
1428 nritems
= btrfs_header_nritems(parent
);
1429 slot
= path
->slots
[level
+ 1];
1430 blocksize
= btrfs_level_size(root
, level
);
1433 block1
= btrfs_node_blockptr(parent
, slot
- 1);
1434 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
1435 eb
= btrfs_find_tree_block(root
, block1
, blocksize
);
1436 if (eb
&& btrfs_buffer_uptodate(eb
, gen
))
1438 free_extent_buffer(eb
);
1440 if (slot
+ 1 < nritems
) {
1441 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
1442 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
1443 eb
= btrfs_find_tree_block(root
, block2
, blocksize
);
1444 if (eb
&& btrfs_buffer_uptodate(eb
, gen
))
1446 free_extent_buffer(eb
);
1448 if (block1
|| block2
) {
1451 /* release the whole path */
1452 btrfs_release_path(root
, path
);
1454 /* read the blocks */
1456 readahead_tree_block(root
, block1
, blocksize
, 0);
1458 readahead_tree_block(root
, block2
, blocksize
, 0);
1461 eb
= read_tree_block(root
, block1
, blocksize
, 0);
1462 free_extent_buffer(eb
);
1465 eb
= read_tree_block(root
, block2
, blocksize
, 0);
1466 free_extent_buffer(eb
);
1474 * when we walk down the tree, it is usually safe to unlock the higher layers
1475 * in the tree. The exceptions are when our path goes through slot 0, because
1476 * operations on the tree might require changing key pointers higher up in the
1479 * callers might also have set path->keep_locks, which tells this code to keep
1480 * the lock if the path points to the last slot in the block. This is part of
1481 * walking through the tree, and selecting the next slot in the higher block.
1483 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1484 * if lowest_unlock is 1, level 0 won't be unlocked
1486 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
1490 int skip_level
= level
;
1492 struct extent_buffer
*t
;
1494 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1495 if (!path
->nodes
[i
])
1497 if (!path
->locks
[i
])
1499 if (!no_skips
&& path
->slots
[i
] == 0) {
1503 if (!no_skips
&& path
->keep_locks
) {
1506 nritems
= btrfs_header_nritems(t
);
1507 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
1512 if (skip_level
< i
&& i
>= lowest_unlock
)
1516 if (i
>= lowest_unlock
&& i
> skip_level
&& path
->locks
[i
]) {
1517 btrfs_tree_unlock(t
);
1524 * This releases any locks held in the path starting at level and
1525 * going all the way up to the root.
1527 * btrfs_search_slot will keep the lock held on higher nodes in a few
1528 * corner cases, such as COW of the block at slot zero in the node. This
1529 * ignores those rules, and it should only be called when there are no
1530 * more updates to be done higher up in the tree.
1532 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
1536 if (path
->keep_locks
)
1539 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1540 if (!path
->nodes
[i
])
1542 if (!path
->locks
[i
])
1544 btrfs_tree_unlock(path
->nodes
[i
]);
1550 * helper function for btrfs_search_slot. The goal is to find a block
1551 * in cache without setting the path to blocking. If we find the block
1552 * we return zero and the path is unchanged.
1554 * If we can't find the block, we set the path blocking and do some
1555 * reada. -EAGAIN is returned and the search must be repeated.
1558 read_block_for_search(struct btrfs_trans_handle
*trans
,
1559 struct btrfs_root
*root
, struct btrfs_path
*p
,
1560 struct extent_buffer
**eb_ret
, int level
, int slot
,
1561 struct btrfs_key
*key
)
1566 struct extent_buffer
*b
= *eb_ret
;
1567 struct extent_buffer
*tmp
;
1570 blocknr
= btrfs_node_blockptr(b
, slot
);
1571 gen
= btrfs_node_ptr_generation(b
, slot
);
1572 blocksize
= btrfs_level_size(root
, level
- 1);
1574 tmp
= btrfs_find_tree_block(root
, blocknr
, blocksize
);
1576 if (btrfs_buffer_uptodate(tmp
, 0)) {
1577 if (btrfs_buffer_uptodate(tmp
, gen
)) {
1579 * we found an up to date block without
1586 /* the pages were up to date, but we failed
1587 * the generation number check. Do a full
1588 * read for the generation number that is correct.
1589 * We must do this without dropping locks so
1590 * we can trust our generation number
1592 free_extent_buffer(tmp
);
1593 tmp
= read_tree_block(root
, blocknr
, blocksize
, gen
);
1594 if (tmp
&& btrfs_buffer_uptodate(tmp
, gen
)) {
1598 free_extent_buffer(tmp
);
1599 btrfs_release_path(NULL
, p
);
1605 * reduce lock contention at high levels
1606 * of the btree by dropping locks before
1607 * we read. Don't release the lock on the current
1608 * level because we need to walk this node to figure
1609 * out which blocks to read.
1611 btrfs_unlock_up_safe(p
, level
+ 1);
1612 btrfs_set_path_blocking(p
);
1614 free_extent_buffer(tmp
);
1616 reada_for_search(root
, p
, level
, slot
, key
->objectid
);
1618 btrfs_release_path(NULL
, p
);
1621 tmp
= read_tree_block(root
, blocknr
, blocksize
, 0);
1624 * If the read above didn't mark this buffer up to date,
1625 * it will never end up being up to date. Set ret to EIO now
1626 * and give up so that our caller doesn't loop forever
1629 if (!btrfs_buffer_uptodate(tmp
, 0))
1631 free_extent_buffer(tmp
);
1637 * helper function for btrfs_search_slot. This does all of the checks
1638 * for node-level blocks and does any balancing required based on
1641 * If no extra work was required, zero is returned. If we had to
1642 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1646 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
1647 struct btrfs_root
*root
, struct btrfs_path
*p
,
1648 struct extent_buffer
*b
, int level
, int ins_len
)
1651 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
1652 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3) {
1655 sret
= reada_for_balance(root
, p
, level
);
1659 btrfs_set_path_blocking(p
);
1660 sret
= split_node(trans
, root
, p
, level
);
1661 btrfs_clear_path_blocking(p
, NULL
);
1668 b
= p
->nodes
[level
];
1669 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
1670 BTRFS_NODEPTRS_PER_BLOCK(root
) / 2) {
1673 sret
= reada_for_balance(root
, p
, level
);
1677 btrfs_set_path_blocking(p
);
1678 sret
= balance_level(trans
, root
, p
, level
);
1679 btrfs_clear_path_blocking(p
, NULL
);
1685 b
= p
->nodes
[level
];
1687 btrfs_release_path(NULL
, p
);
1690 BUG_ON(btrfs_header_nritems(b
) == 1);
1701 * look for key in the tree. path is filled in with nodes along the way
1702 * if key is found, we return zero and you can find the item in the leaf
1703 * level of the path (level 0)
1705 * If the key isn't found, the path points to the slot where it should
1706 * be inserted, and 1 is returned. If there are other errors during the
1707 * search a negative error number is returned.
1709 * if ins_len > 0, nodes and leaves will be split as we walk down the
1710 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1713 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
1714 *root
, struct btrfs_key
*key
, struct btrfs_path
*p
, int
1717 struct extent_buffer
*b
;
1722 int lowest_unlock
= 1;
1723 u8 lowest_level
= 0;
1725 lowest_level
= p
->lowest_level
;
1726 WARN_ON(lowest_level
&& ins_len
> 0);
1727 WARN_ON(p
->nodes
[0] != NULL
);
1733 if (p
->search_commit_root
) {
1734 b
= root
->commit_root
;
1735 extent_buffer_get(b
);
1736 if (!p
->skip_locking
)
1739 if (p
->skip_locking
)
1740 b
= btrfs_root_node(root
);
1742 b
= btrfs_lock_root_node(root
);
1746 level
= btrfs_header_level(b
);
1749 * setup the path here so we can release it under lock
1750 * contention with the cow code
1752 p
->nodes
[level
] = b
;
1753 if (!p
->skip_locking
)
1754 p
->locks
[level
] = 1;
1758 * if we don't really need to cow this block
1759 * then we don't want to set the path blocking,
1760 * so we test it here
1762 if (!should_cow_block(trans
, root
, b
))
1765 btrfs_set_path_blocking(p
);
1767 err
= btrfs_cow_block(trans
, root
, b
,
1768 p
->nodes
[level
+ 1],
1769 p
->slots
[level
+ 1], &b
);
1776 BUG_ON(!cow
&& ins_len
);
1777 if (level
!= btrfs_header_level(b
))
1779 level
= btrfs_header_level(b
);
1781 p
->nodes
[level
] = b
;
1782 if (!p
->skip_locking
)
1783 p
->locks
[level
] = 1;
1785 btrfs_clear_path_blocking(p
, NULL
);
1788 * we have a lock on b and as long as we aren't changing
1789 * the tree, there is no way to for the items in b to change.
1790 * It is safe to drop the lock on our parent before we
1791 * go through the expensive btree search on b.
1793 * If cow is true, then we might be changing slot zero,
1794 * which may require changing the parent. So, we can't
1795 * drop the lock until after we know which slot we're
1799 btrfs_unlock_up_safe(p
, level
+ 1);
1801 ret
= check_block(root
, p
, level
);
1807 ret
= bin_search(b
, key
, level
, &slot
);
1811 if (ret
&& slot
> 0) {
1815 p
->slots
[level
] = slot
;
1816 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
1824 b
= p
->nodes
[level
];
1825 slot
= p
->slots
[level
];
1827 unlock_up(p
, level
, lowest_unlock
);
1829 if (level
== lowest_level
) {
1835 err
= read_block_for_search(trans
, root
, p
,
1836 &b
, level
, slot
, key
);
1844 if (!p
->skip_locking
) {
1845 btrfs_clear_path_blocking(p
, NULL
);
1846 err
= btrfs_try_spin_lock(b
);
1849 btrfs_set_path_blocking(p
);
1851 btrfs_clear_path_blocking(p
, b
);
1855 p
->slots
[level
] = slot
;
1857 btrfs_leaf_free_space(root
, b
) < ins_len
) {
1858 btrfs_set_path_blocking(p
);
1859 err
= split_leaf(trans
, root
, key
,
1860 p
, ins_len
, ret
== 0);
1861 btrfs_clear_path_blocking(p
, NULL
);
1869 if (!p
->search_for_split
)
1870 unlock_up(p
, level
, lowest_unlock
);
1877 * we don't really know what they plan on doing with the path
1878 * from here on, so for now just mark it as blocking
1880 if (!p
->leave_spinning
)
1881 btrfs_set_path_blocking(p
);
1883 btrfs_release_path(root
, p
);
1888 * adjust the pointers going up the tree, starting at level
1889 * making sure the right key of each node is points to 'key'.
1890 * This is used after shifting pointers to the left, so it stops
1891 * fixing up pointers when a given leaf/node is not in slot 0 of the
1894 * If this fails to write a tree block, it returns -1, but continues
1895 * fixing up the blocks in ram so the tree is consistent.
1897 static int fixup_low_keys(struct btrfs_trans_handle
*trans
,
1898 struct btrfs_root
*root
, struct btrfs_path
*path
,
1899 struct btrfs_disk_key
*key
, int level
)
1903 struct extent_buffer
*t
;
1905 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1906 int tslot
= path
->slots
[i
];
1907 if (!path
->nodes
[i
])
1910 btrfs_set_node_key(t
, key
, tslot
);
1911 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
1921 * This function isn't completely safe. It's the caller's responsibility
1922 * that the new key won't break the order
1924 int btrfs_set_item_key_safe(struct btrfs_trans_handle
*trans
,
1925 struct btrfs_root
*root
, struct btrfs_path
*path
,
1926 struct btrfs_key
*new_key
)
1928 struct btrfs_disk_key disk_key
;
1929 struct extent_buffer
*eb
;
1932 eb
= path
->nodes
[0];
1933 slot
= path
->slots
[0];
1935 btrfs_item_key(eb
, &disk_key
, slot
- 1);
1936 if (comp_keys(&disk_key
, new_key
) >= 0)
1939 if (slot
< btrfs_header_nritems(eb
) - 1) {
1940 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
1941 if (comp_keys(&disk_key
, new_key
) <= 0)
1945 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
1946 btrfs_set_item_key(eb
, &disk_key
, slot
);
1947 btrfs_mark_buffer_dirty(eb
);
1949 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
1954 * try to push data from one node into the next node left in the
1957 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1958 * error, and > 0 if there was no room in the left hand block.
1960 static int push_node_left(struct btrfs_trans_handle
*trans
,
1961 struct btrfs_root
*root
, struct extent_buffer
*dst
,
1962 struct extent_buffer
*src
, int empty
)
1969 src_nritems
= btrfs_header_nritems(src
);
1970 dst_nritems
= btrfs_header_nritems(dst
);
1971 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
1972 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
1973 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
1975 if (!empty
&& src_nritems
<= 8)
1978 if (push_items
<= 0)
1982 push_items
= min(src_nritems
, push_items
);
1983 if (push_items
< src_nritems
) {
1984 /* leave at least 8 pointers in the node if
1985 * we aren't going to empty it
1987 if (src_nritems
- push_items
< 8) {
1988 if (push_items
<= 8)
1994 push_items
= min(src_nritems
- 8, push_items
);
1996 copy_extent_buffer(dst
, src
,
1997 btrfs_node_key_ptr_offset(dst_nritems
),
1998 btrfs_node_key_ptr_offset(0),
1999 push_items
* sizeof(struct btrfs_key_ptr
));
2001 if (push_items
< src_nritems
) {
2002 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
2003 btrfs_node_key_ptr_offset(push_items
),
2004 (src_nritems
- push_items
) *
2005 sizeof(struct btrfs_key_ptr
));
2007 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
2008 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
2009 btrfs_mark_buffer_dirty(src
);
2010 btrfs_mark_buffer_dirty(dst
);
2016 * try to push data from one node into the next node right in the
2019 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2020 * error, and > 0 if there was no room in the right hand block.
2022 * this will only push up to 1/2 the contents of the left node over
2024 static int balance_node_right(struct btrfs_trans_handle
*trans
,
2025 struct btrfs_root
*root
,
2026 struct extent_buffer
*dst
,
2027 struct extent_buffer
*src
)
2035 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
2036 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
2038 src_nritems
= btrfs_header_nritems(src
);
2039 dst_nritems
= btrfs_header_nritems(dst
);
2040 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
2041 if (push_items
<= 0)
2044 if (src_nritems
< 4)
2047 max_push
= src_nritems
/ 2 + 1;
2048 /* don't try to empty the node */
2049 if (max_push
>= src_nritems
)
2052 if (max_push
< push_items
)
2053 push_items
= max_push
;
2055 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
2056 btrfs_node_key_ptr_offset(0),
2058 sizeof(struct btrfs_key_ptr
));
2060 copy_extent_buffer(dst
, src
,
2061 btrfs_node_key_ptr_offset(0),
2062 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
2063 push_items
* sizeof(struct btrfs_key_ptr
));
2065 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
2066 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
2068 btrfs_mark_buffer_dirty(src
);
2069 btrfs_mark_buffer_dirty(dst
);
2075 * helper function to insert a new root level in the tree.
2076 * A new node is allocated, and a single item is inserted to
2077 * point to the existing root
2079 * returns zero on success or < 0 on failure.
2081 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
2082 struct btrfs_root
*root
,
2083 struct btrfs_path
*path
, int level
)
2086 struct extent_buffer
*lower
;
2087 struct extent_buffer
*c
;
2088 struct extent_buffer
*old
;
2089 struct btrfs_disk_key lower_key
;
2091 BUG_ON(path
->nodes
[level
]);
2092 BUG_ON(path
->nodes
[level
-1] != root
->node
);
2094 lower
= path
->nodes
[level
-1];
2096 btrfs_item_key(lower
, &lower_key
, 0);
2098 btrfs_node_key(lower
, &lower_key
, 0);
2100 c
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
, 0,
2101 root
->root_key
.objectid
, &lower_key
,
2102 level
, root
->node
->start
, 0);
2106 root_add_used(root
, root
->nodesize
);
2108 memset_extent_buffer(c
, 0, 0, sizeof(struct btrfs_header
));
2109 btrfs_set_header_nritems(c
, 1);
2110 btrfs_set_header_level(c
, level
);
2111 btrfs_set_header_bytenr(c
, c
->start
);
2112 btrfs_set_header_generation(c
, trans
->transid
);
2113 btrfs_set_header_backref_rev(c
, BTRFS_MIXED_BACKREF_REV
);
2114 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
2116 write_extent_buffer(c
, root
->fs_info
->fsid
,
2117 (unsigned long)btrfs_header_fsid(c
),
2120 write_extent_buffer(c
, root
->fs_info
->chunk_tree_uuid
,
2121 (unsigned long)btrfs_header_chunk_tree_uuid(c
),
2124 btrfs_set_node_key(c
, &lower_key
, 0);
2125 btrfs_set_node_blockptr(c
, 0, lower
->start
);
2126 lower_gen
= btrfs_header_generation(lower
);
2127 WARN_ON(lower_gen
!= trans
->transid
);
2129 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
2131 btrfs_mark_buffer_dirty(c
);
2133 spin_lock(&root
->node_lock
);
2136 spin_unlock(&root
->node_lock
);
2138 /* the super has an extra ref to root->node */
2139 free_extent_buffer(old
);
2141 add_root_to_dirty_list(root
);
2142 extent_buffer_get(c
);
2143 path
->nodes
[level
] = c
;
2144 path
->locks
[level
] = 1;
2145 path
->slots
[level
] = 0;
2150 * worker function to insert a single pointer in a node.
2151 * the node should have enough room for the pointer already
2153 * slot and level indicate where you want the key to go, and
2154 * blocknr is the block the key points to.
2156 * returns zero on success and < 0 on any error
2158 static int insert_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
2159 *root
, struct btrfs_path
*path
, struct btrfs_disk_key
2160 *key
, u64 bytenr
, int slot
, int level
)
2162 struct extent_buffer
*lower
;
2165 BUG_ON(!path
->nodes
[level
]);
2166 btrfs_assert_tree_locked(path
->nodes
[level
]);
2167 lower
= path
->nodes
[level
];
2168 nritems
= btrfs_header_nritems(lower
);
2169 BUG_ON(slot
> nritems
);
2170 if (nritems
== BTRFS_NODEPTRS_PER_BLOCK(root
))
2172 if (slot
!= nritems
) {
2173 memmove_extent_buffer(lower
,
2174 btrfs_node_key_ptr_offset(slot
+ 1),
2175 btrfs_node_key_ptr_offset(slot
),
2176 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
2178 btrfs_set_node_key(lower
, key
, slot
);
2179 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
2180 WARN_ON(trans
->transid
== 0);
2181 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
2182 btrfs_set_header_nritems(lower
, nritems
+ 1);
2183 btrfs_mark_buffer_dirty(lower
);
2188 * split the node at the specified level in path in two.
2189 * The path is corrected to point to the appropriate node after the split
2191 * Before splitting this tries to make some room in the node by pushing
2192 * left and right, if either one works, it returns right away.
2194 * returns 0 on success and < 0 on failure
2196 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
2197 struct btrfs_root
*root
,
2198 struct btrfs_path
*path
, int level
)
2200 struct extent_buffer
*c
;
2201 struct extent_buffer
*split
;
2202 struct btrfs_disk_key disk_key
;
2208 c
= path
->nodes
[level
];
2209 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
2210 if (c
== root
->node
) {
2211 /* trying to split the root, lets make a new one */
2212 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
2216 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
2217 c
= path
->nodes
[level
];
2218 if (!ret
&& btrfs_header_nritems(c
) <
2219 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3)
2225 c_nritems
= btrfs_header_nritems(c
);
2226 mid
= (c_nritems
+ 1) / 2;
2227 btrfs_node_key(c
, &disk_key
, mid
);
2229 split
= btrfs_alloc_free_block(trans
, root
, root
->nodesize
, 0,
2230 root
->root_key
.objectid
,
2231 &disk_key
, level
, c
->start
, 0);
2233 return PTR_ERR(split
);
2235 root_add_used(root
, root
->nodesize
);
2237 memset_extent_buffer(split
, 0, 0, sizeof(struct btrfs_header
));
2238 btrfs_set_header_level(split
, btrfs_header_level(c
));
2239 btrfs_set_header_bytenr(split
, split
->start
);
2240 btrfs_set_header_generation(split
, trans
->transid
);
2241 btrfs_set_header_backref_rev(split
, BTRFS_MIXED_BACKREF_REV
);
2242 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
2243 write_extent_buffer(split
, root
->fs_info
->fsid
,
2244 (unsigned long)btrfs_header_fsid(split
),
2246 write_extent_buffer(split
, root
->fs_info
->chunk_tree_uuid
,
2247 (unsigned long)btrfs_header_chunk_tree_uuid(split
),
2251 copy_extent_buffer(split
, c
,
2252 btrfs_node_key_ptr_offset(0),
2253 btrfs_node_key_ptr_offset(mid
),
2254 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
2255 btrfs_set_header_nritems(split
, c_nritems
- mid
);
2256 btrfs_set_header_nritems(c
, mid
);
2259 btrfs_mark_buffer_dirty(c
);
2260 btrfs_mark_buffer_dirty(split
);
2262 wret
= insert_ptr(trans
, root
, path
, &disk_key
, split
->start
,
2263 path
->slots
[level
+ 1] + 1,
2268 if (path
->slots
[level
] >= mid
) {
2269 path
->slots
[level
] -= mid
;
2270 btrfs_tree_unlock(c
);
2271 free_extent_buffer(c
);
2272 path
->nodes
[level
] = split
;
2273 path
->slots
[level
+ 1] += 1;
2275 btrfs_tree_unlock(split
);
2276 free_extent_buffer(split
);
2282 * how many bytes are required to store the items in a leaf. start
2283 * and nr indicate which items in the leaf to check. This totals up the
2284 * space used both by the item structs and the item data
2286 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
2289 int nritems
= btrfs_header_nritems(l
);
2290 int end
= min(nritems
, start
+ nr
) - 1;
2294 data_len
= btrfs_item_end_nr(l
, start
);
2295 data_len
= data_len
- btrfs_item_offset_nr(l
, end
);
2296 data_len
+= sizeof(struct btrfs_item
) * nr
;
2297 WARN_ON(data_len
< 0);
2302 * The space between the end of the leaf items and
2303 * the start of the leaf data. IOW, how much room
2304 * the leaf has left for both items and data
2306 noinline
int btrfs_leaf_free_space(struct btrfs_root
*root
,
2307 struct extent_buffer
*leaf
)
2309 int nritems
= btrfs_header_nritems(leaf
);
2311 ret
= BTRFS_LEAF_DATA_SIZE(root
) - leaf_space_used(leaf
, 0, nritems
);
2313 printk(KERN_CRIT
"leaf free space ret %d, leaf data size %lu, "
2314 "used %d nritems %d\n",
2315 ret
, (unsigned long) BTRFS_LEAF_DATA_SIZE(root
),
2316 leaf_space_used(leaf
, 0, nritems
), nritems
);
2322 * min slot controls the lowest index we're willing to push to the
2323 * right. We'll push up to and including min_slot, but no lower
2325 static noinline
int __push_leaf_right(struct btrfs_trans_handle
*trans
,
2326 struct btrfs_root
*root
,
2327 struct btrfs_path
*path
,
2328 int data_size
, int empty
,
2329 struct extent_buffer
*right
,
2330 int free_space
, u32 left_nritems
,
2333 struct extent_buffer
*left
= path
->nodes
[0];
2334 struct extent_buffer
*upper
= path
->nodes
[1];
2335 struct btrfs_disk_key disk_key
;
2340 struct btrfs_item
*item
;
2349 nr
= max_t(u32
, 1, min_slot
);
2351 if (path
->slots
[0] >= left_nritems
)
2352 push_space
+= data_size
;
2354 slot
= path
->slots
[1];
2355 i
= left_nritems
- 1;
2357 item
= btrfs_item_nr(left
, i
);
2359 if (!empty
&& push_items
> 0) {
2360 if (path
->slots
[0] > i
)
2362 if (path
->slots
[0] == i
) {
2363 int space
= btrfs_leaf_free_space(root
, left
);
2364 if (space
+ push_space
* 2 > free_space
)
2369 if (path
->slots
[0] == i
)
2370 push_space
+= data_size
;
2372 if (!left
->map_token
) {
2373 map_extent_buffer(left
, (unsigned long)item
,
2374 sizeof(struct btrfs_item
),
2375 &left
->map_token
, &left
->kaddr
,
2376 &left
->map_start
, &left
->map_len
,
2380 this_item_size
= btrfs_item_size(left
, item
);
2381 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
2385 push_space
+= this_item_size
+ sizeof(*item
);
2390 if (left
->map_token
) {
2391 unmap_extent_buffer(left
, left
->map_token
, KM_USER1
);
2392 left
->map_token
= NULL
;
2395 if (push_items
== 0)
2398 if (!empty
&& push_items
== left_nritems
)
2401 /* push left to right */
2402 right_nritems
= btrfs_header_nritems(right
);
2404 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
2405 push_space
-= leaf_data_end(root
, left
);
2407 /* make room in the right data area */
2408 data_end
= leaf_data_end(root
, right
);
2409 memmove_extent_buffer(right
,
2410 btrfs_leaf_data(right
) + data_end
- push_space
,
2411 btrfs_leaf_data(right
) + data_end
,
2412 BTRFS_LEAF_DATA_SIZE(root
) - data_end
);
2414 /* copy from the left data area */
2415 copy_extent_buffer(right
, left
, btrfs_leaf_data(right
) +
2416 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
2417 btrfs_leaf_data(left
) + leaf_data_end(root
, left
),
2420 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
2421 btrfs_item_nr_offset(0),
2422 right_nritems
* sizeof(struct btrfs_item
));
2424 /* copy the items from left to right */
2425 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
2426 btrfs_item_nr_offset(left_nritems
- push_items
),
2427 push_items
* sizeof(struct btrfs_item
));
2429 /* update the item pointers */
2430 right_nritems
+= push_items
;
2431 btrfs_set_header_nritems(right
, right_nritems
);
2432 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
2433 for (i
= 0; i
< right_nritems
; i
++) {
2434 item
= btrfs_item_nr(right
, i
);
2435 if (!right
->map_token
) {
2436 map_extent_buffer(right
, (unsigned long)item
,
2437 sizeof(struct btrfs_item
),
2438 &right
->map_token
, &right
->kaddr
,
2439 &right
->map_start
, &right
->map_len
,
2442 push_space
-= btrfs_item_size(right
, item
);
2443 btrfs_set_item_offset(right
, item
, push_space
);
2446 if (right
->map_token
) {
2447 unmap_extent_buffer(right
, right
->map_token
, KM_USER1
);
2448 right
->map_token
= NULL
;
2450 left_nritems
-= push_items
;
2451 btrfs_set_header_nritems(left
, left_nritems
);
2454 btrfs_mark_buffer_dirty(left
);
2456 clean_tree_block(trans
, root
, left
);
2458 btrfs_mark_buffer_dirty(right
);
2460 btrfs_item_key(right
, &disk_key
, 0);
2461 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
2462 btrfs_mark_buffer_dirty(upper
);
2464 /* then fixup the leaf pointer in the path */
2465 if (path
->slots
[0] >= left_nritems
) {
2466 path
->slots
[0] -= left_nritems
;
2467 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
2468 clean_tree_block(trans
, root
, path
->nodes
[0]);
2469 btrfs_tree_unlock(path
->nodes
[0]);
2470 free_extent_buffer(path
->nodes
[0]);
2471 path
->nodes
[0] = right
;
2472 path
->slots
[1] += 1;
2474 btrfs_tree_unlock(right
);
2475 free_extent_buffer(right
);
2480 btrfs_tree_unlock(right
);
2481 free_extent_buffer(right
);
2486 * push some data in the path leaf to the right, trying to free up at
2487 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2489 * returns 1 if the push failed because the other node didn't have enough
2490 * room, 0 if everything worked out and < 0 if there were major errors.
2492 * this will push starting from min_slot to the end of the leaf. It won't
2493 * push any slot lower than min_slot
2495 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
2496 *root
, struct btrfs_path
*path
,
2497 int min_data_size
, int data_size
,
2498 int empty
, u32 min_slot
)
2500 struct extent_buffer
*left
= path
->nodes
[0];
2501 struct extent_buffer
*right
;
2502 struct extent_buffer
*upper
;
2508 if (!path
->nodes
[1])
2511 slot
= path
->slots
[1];
2512 upper
= path
->nodes
[1];
2513 if (slot
>= btrfs_header_nritems(upper
) - 1)
2516 btrfs_assert_tree_locked(path
->nodes
[1]);
2518 right
= read_node_slot(root
, upper
, slot
+ 1);
2522 btrfs_tree_lock(right
);
2523 btrfs_set_lock_blocking(right
);
2525 free_space
= btrfs_leaf_free_space(root
, right
);
2526 if (free_space
< data_size
)
2529 /* cow and double check */
2530 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
2535 free_space
= btrfs_leaf_free_space(root
, right
);
2536 if (free_space
< data_size
)
2539 left_nritems
= btrfs_header_nritems(left
);
2540 if (left_nritems
== 0)
2543 return __push_leaf_right(trans
, root
, path
, min_data_size
, empty
,
2544 right
, free_space
, left_nritems
, min_slot
);
2546 btrfs_tree_unlock(right
);
2547 free_extent_buffer(right
);
2552 * push some data in the path leaf to the left, trying to free up at
2553 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2555 * max_slot can put a limit on how far into the leaf we'll push items. The
2556 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
2559 static noinline
int __push_leaf_left(struct btrfs_trans_handle
*trans
,
2560 struct btrfs_root
*root
,
2561 struct btrfs_path
*path
, int data_size
,
2562 int empty
, struct extent_buffer
*left
,
2563 int free_space
, u32 right_nritems
,
2566 struct btrfs_disk_key disk_key
;
2567 struct extent_buffer
*right
= path
->nodes
[0];
2571 struct btrfs_item
*item
;
2572 u32 old_left_nritems
;
2577 u32 old_left_item_size
;
2580 nr
= min(right_nritems
, max_slot
);
2582 nr
= min(right_nritems
- 1, max_slot
);
2584 for (i
= 0; i
< nr
; i
++) {
2585 item
= btrfs_item_nr(right
, i
);
2586 if (!right
->map_token
) {
2587 map_extent_buffer(right
, (unsigned long)item
,
2588 sizeof(struct btrfs_item
),
2589 &right
->map_token
, &right
->kaddr
,
2590 &right
->map_start
, &right
->map_len
,
2594 if (!empty
&& push_items
> 0) {
2595 if (path
->slots
[0] < i
)
2597 if (path
->slots
[0] == i
) {
2598 int space
= btrfs_leaf_free_space(root
, right
);
2599 if (space
+ push_space
* 2 > free_space
)
2604 if (path
->slots
[0] == i
)
2605 push_space
+= data_size
;
2607 this_item_size
= btrfs_item_size(right
, item
);
2608 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
2612 push_space
+= this_item_size
+ sizeof(*item
);
2615 if (right
->map_token
) {
2616 unmap_extent_buffer(right
, right
->map_token
, KM_USER1
);
2617 right
->map_token
= NULL
;
2620 if (push_items
== 0) {
2624 if (!empty
&& push_items
== btrfs_header_nritems(right
))
2627 /* push data from right to left */
2628 copy_extent_buffer(left
, right
,
2629 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
2630 btrfs_item_nr_offset(0),
2631 push_items
* sizeof(struct btrfs_item
));
2633 push_space
= BTRFS_LEAF_DATA_SIZE(root
) -
2634 btrfs_item_offset_nr(right
, push_items
- 1);
2636 copy_extent_buffer(left
, right
, btrfs_leaf_data(left
) +
2637 leaf_data_end(root
, left
) - push_space
,
2638 btrfs_leaf_data(right
) +
2639 btrfs_item_offset_nr(right
, push_items
- 1),
2641 old_left_nritems
= btrfs_header_nritems(left
);
2642 BUG_ON(old_left_nritems
<= 0);
2644 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
2645 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
2648 item
= btrfs_item_nr(left
, i
);
2649 if (!left
->map_token
) {
2650 map_extent_buffer(left
, (unsigned long)item
,
2651 sizeof(struct btrfs_item
),
2652 &left
->map_token
, &left
->kaddr
,
2653 &left
->map_start
, &left
->map_len
,
2657 ioff
= btrfs_item_offset(left
, item
);
2658 btrfs_set_item_offset(left
, item
,
2659 ioff
- (BTRFS_LEAF_DATA_SIZE(root
) - old_left_item_size
));
2661 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
2662 if (left
->map_token
) {
2663 unmap_extent_buffer(left
, left
->map_token
, KM_USER1
);
2664 left
->map_token
= NULL
;
2667 /* fixup right node */
2668 if (push_items
> right_nritems
) {
2669 printk(KERN_CRIT
"push items %d nr %u\n", push_items
,
2674 if (push_items
< right_nritems
) {
2675 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
2676 leaf_data_end(root
, right
);
2677 memmove_extent_buffer(right
, btrfs_leaf_data(right
) +
2678 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
2679 btrfs_leaf_data(right
) +
2680 leaf_data_end(root
, right
), push_space
);
2682 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
2683 btrfs_item_nr_offset(push_items
),
2684 (btrfs_header_nritems(right
) - push_items
) *
2685 sizeof(struct btrfs_item
));
2687 right_nritems
-= push_items
;
2688 btrfs_set_header_nritems(right
, right_nritems
);
2689 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
2690 for (i
= 0; i
< right_nritems
; i
++) {
2691 item
= btrfs_item_nr(right
, i
);
2693 if (!right
->map_token
) {
2694 map_extent_buffer(right
, (unsigned long)item
,
2695 sizeof(struct btrfs_item
),
2696 &right
->map_token
, &right
->kaddr
,
2697 &right
->map_start
, &right
->map_len
,
2701 push_space
= push_space
- btrfs_item_size(right
, item
);
2702 btrfs_set_item_offset(right
, item
, push_space
);
2704 if (right
->map_token
) {
2705 unmap_extent_buffer(right
, right
->map_token
, KM_USER1
);
2706 right
->map_token
= NULL
;
2709 btrfs_mark_buffer_dirty(left
);
2711 btrfs_mark_buffer_dirty(right
);
2713 clean_tree_block(trans
, root
, right
);
2715 btrfs_item_key(right
, &disk_key
, 0);
2716 wret
= fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
2720 /* then fixup the leaf pointer in the path */
2721 if (path
->slots
[0] < push_items
) {
2722 path
->slots
[0] += old_left_nritems
;
2723 btrfs_tree_unlock(path
->nodes
[0]);
2724 free_extent_buffer(path
->nodes
[0]);
2725 path
->nodes
[0] = left
;
2726 path
->slots
[1] -= 1;
2728 btrfs_tree_unlock(left
);
2729 free_extent_buffer(left
);
2730 path
->slots
[0] -= push_items
;
2732 BUG_ON(path
->slots
[0] < 0);
2735 btrfs_tree_unlock(left
);
2736 free_extent_buffer(left
);
2741 * push some data in the path leaf to the left, trying to free up at
2742 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2744 * max_slot can put a limit on how far into the leaf we'll push items. The
2745 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
2748 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
2749 *root
, struct btrfs_path
*path
, int min_data_size
,
2750 int data_size
, int empty
, u32 max_slot
)
2752 struct extent_buffer
*right
= path
->nodes
[0];
2753 struct extent_buffer
*left
;
2759 slot
= path
->slots
[1];
2762 if (!path
->nodes
[1])
2765 right_nritems
= btrfs_header_nritems(right
);
2766 if (right_nritems
== 0)
2769 btrfs_assert_tree_locked(path
->nodes
[1]);
2771 left
= read_node_slot(root
, path
->nodes
[1], slot
- 1);
2775 btrfs_tree_lock(left
);
2776 btrfs_set_lock_blocking(left
);
2778 free_space
= btrfs_leaf_free_space(root
, left
);
2779 if (free_space
< data_size
) {
2784 /* cow and double check */
2785 ret
= btrfs_cow_block(trans
, root
, left
,
2786 path
->nodes
[1], slot
- 1, &left
);
2788 /* we hit -ENOSPC, but it isn't fatal here */
2793 free_space
= btrfs_leaf_free_space(root
, left
);
2794 if (free_space
< data_size
) {
2799 return __push_leaf_left(trans
, root
, path
, min_data_size
,
2800 empty
, left
, free_space
, right_nritems
,
2803 btrfs_tree_unlock(left
);
2804 free_extent_buffer(left
);
2809 * split the path's leaf in two, making sure there is at least data_size
2810 * available for the resulting leaf level of the path.
2812 * returns 0 if all went well and < 0 on failure.
2814 static noinline
int copy_for_split(struct btrfs_trans_handle
*trans
,
2815 struct btrfs_root
*root
,
2816 struct btrfs_path
*path
,
2817 struct extent_buffer
*l
,
2818 struct extent_buffer
*right
,
2819 int slot
, int mid
, int nritems
)
2826 struct btrfs_disk_key disk_key
;
2828 nritems
= nritems
- mid
;
2829 btrfs_set_header_nritems(right
, nritems
);
2830 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(root
, l
);
2832 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
2833 btrfs_item_nr_offset(mid
),
2834 nritems
* sizeof(struct btrfs_item
));
2836 copy_extent_buffer(right
, l
,
2837 btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) -
2838 data_copy_size
, btrfs_leaf_data(l
) +
2839 leaf_data_end(root
, l
), data_copy_size
);
2841 rt_data_off
= BTRFS_LEAF_DATA_SIZE(root
) -
2842 btrfs_item_end_nr(l
, mid
);
2844 for (i
= 0; i
< nritems
; i
++) {
2845 struct btrfs_item
*item
= btrfs_item_nr(right
, i
);
2848 if (!right
->map_token
) {
2849 map_extent_buffer(right
, (unsigned long)item
,
2850 sizeof(struct btrfs_item
),
2851 &right
->map_token
, &right
->kaddr
,
2852 &right
->map_start
, &right
->map_len
,
2856 ioff
= btrfs_item_offset(right
, item
);
2857 btrfs_set_item_offset(right
, item
, ioff
+ rt_data_off
);
2860 if (right
->map_token
) {
2861 unmap_extent_buffer(right
, right
->map_token
, KM_USER1
);
2862 right
->map_token
= NULL
;
2865 btrfs_set_header_nritems(l
, mid
);
2867 btrfs_item_key(right
, &disk_key
, 0);
2868 wret
= insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
2869 path
->slots
[1] + 1, 1);
2873 btrfs_mark_buffer_dirty(right
);
2874 btrfs_mark_buffer_dirty(l
);
2875 BUG_ON(path
->slots
[0] != slot
);
2878 btrfs_tree_unlock(path
->nodes
[0]);
2879 free_extent_buffer(path
->nodes
[0]);
2880 path
->nodes
[0] = right
;
2881 path
->slots
[0] -= mid
;
2882 path
->slots
[1] += 1;
2884 btrfs_tree_unlock(right
);
2885 free_extent_buffer(right
);
2888 BUG_ON(path
->slots
[0] < 0);
2894 * double splits happen when we need to insert a big item in the middle
2895 * of a leaf. A double split can leave us with 3 mostly empty leaves:
2896 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2899 * We avoid this by trying to push the items on either side of our target
2900 * into the adjacent leaves. If all goes well we can avoid the double split
2903 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
2904 struct btrfs_root
*root
,
2905 struct btrfs_path
*path
,
2913 slot
= path
->slots
[0];
2916 * try to push all the items after our slot into the
2919 ret
= push_leaf_right(trans
, root
, path
, 1, data_size
, 0, slot
);
2926 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2928 * our goal is to get our slot at the start or end of a leaf. If
2929 * we've done so we're done
2931 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
2934 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
2937 /* try to push all the items before our slot into the next leaf */
2938 slot
= path
->slots
[0];
2939 ret
= push_leaf_left(trans
, root
, path
, 1, data_size
, 0, slot
);
2952 * split the path's leaf in two, making sure there is at least data_size
2953 * available for the resulting leaf level of the path.
2955 * returns 0 if all went well and < 0 on failure.
2957 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
2958 struct btrfs_root
*root
,
2959 struct btrfs_key
*ins_key
,
2960 struct btrfs_path
*path
, int data_size
,
2963 struct btrfs_disk_key disk_key
;
2964 struct extent_buffer
*l
;
2968 struct extent_buffer
*right
;
2972 int num_doubles
= 0;
2973 int tried_avoid_double
= 0;
2976 slot
= path
->slots
[0];
2977 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
2978 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(root
))
2981 /* first try to make some room by pushing left and right */
2983 wret
= push_leaf_right(trans
, root
, path
, data_size
,
2988 wret
= push_leaf_left(trans
, root
, path
, data_size
,
2989 data_size
, 0, (u32
)-1);
2995 /* did the pushes work? */
2996 if (btrfs_leaf_free_space(root
, l
) >= data_size
)
3000 if (!path
->nodes
[1]) {
3001 ret
= insert_new_root(trans
, root
, path
, 1);
3008 slot
= path
->slots
[0];
3009 nritems
= btrfs_header_nritems(l
);
3010 mid
= (nritems
+ 1) / 2;
3014 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
3015 BTRFS_LEAF_DATA_SIZE(root
)) {
3016 if (slot
>= nritems
) {
3020 if (mid
!= nritems
&&
3021 leaf_space_used(l
, mid
, nritems
- mid
) +
3022 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
3023 if (data_size
&& !tried_avoid_double
)
3024 goto push_for_double
;
3030 if (leaf_space_used(l
, 0, mid
) + data_size
>
3031 BTRFS_LEAF_DATA_SIZE(root
)) {
3032 if (!extend
&& data_size
&& slot
== 0) {
3034 } else if ((extend
|| !data_size
) && slot
== 0) {
3038 if (mid
!= nritems
&&
3039 leaf_space_used(l
, mid
, nritems
- mid
) +
3040 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
3041 if (data_size
&& !tried_avoid_double
)
3042 goto push_for_double
;
3050 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
3052 btrfs_item_key(l
, &disk_key
, mid
);
3054 right
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
3055 root
->root_key
.objectid
,
3056 &disk_key
, 0, l
->start
, 0);
3058 return PTR_ERR(right
);
3060 root_add_used(root
, root
->leafsize
);
3062 memset_extent_buffer(right
, 0, 0, sizeof(struct btrfs_header
));
3063 btrfs_set_header_bytenr(right
, right
->start
);
3064 btrfs_set_header_generation(right
, trans
->transid
);
3065 btrfs_set_header_backref_rev(right
, BTRFS_MIXED_BACKREF_REV
);
3066 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
3067 btrfs_set_header_level(right
, 0);
3068 write_extent_buffer(right
, root
->fs_info
->fsid
,
3069 (unsigned long)btrfs_header_fsid(right
),
3072 write_extent_buffer(right
, root
->fs_info
->chunk_tree_uuid
,
3073 (unsigned long)btrfs_header_chunk_tree_uuid(right
),
3078 btrfs_set_header_nritems(right
, 0);
3079 wret
= insert_ptr(trans
, root
, path
,
3080 &disk_key
, right
->start
,
3081 path
->slots
[1] + 1, 1);
3085 btrfs_tree_unlock(path
->nodes
[0]);
3086 free_extent_buffer(path
->nodes
[0]);
3087 path
->nodes
[0] = right
;
3089 path
->slots
[1] += 1;
3091 btrfs_set_header_nritems(right
, 0);
3092 wret
= insert_ptr(trans
, root
, path
,
3098 btrfs_tree_unlock(path
->nodes
[0]);
3099 free_extent_buffer(path
->nodes
[0]);
3100 path
->nodes
[0] = right
;
3102 if (path
->slots
[1] == 0) {
3103 wret
= fixup_low_keys(trans
, root
,
3104 path
, &disk_key
, 1);
3109 btrfs_mark_buffer_dirty(right
);
3113 ret
= copy_for_split(trans
, root
, path
, l
, right
, slot
, mid
, nritems
);
3117 BUG_ON(num_doubles
!= 0);
3125 push_for_double_split(trans
, root
, path
, data_size
);
3126 tried_avoid_double
= 1;
3127 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
3132 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
3133 struct btrfs_root
*root
,
3134 struct btrfs_path
*path
, int ins_len
)
3136 struct btrfs_key key
;
3137 struct extent_buffer
*leaf
;
3138 struct btrfs_file_extent_item
*fi
;
3143 leaf
= path
->nodes
[0];
3144 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3146 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
3147 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
3149 if (btrfs_leaf_free_space(root
, leaf
) >= ins_len
)
3152 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3153 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3154 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3155 struct btrfs_file_extent_item
);
3156 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
3158 btrfs_release_path(root
, path
);
3160 path
->keep_locks
= 1;
3161 path
->search_for_split
= 1;
3162 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
3163 path
->search_for_split
= 0;
3168 leaf
= path
->nodes
[0];
3169 /* if our item isn't there or got smaller, return now */
3170 if (ret
> 0 || item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
3173 /* the leaf has changed, it now has room. return now */
3174 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= ins_len
)
3177 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3178 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3179 struct btrfs_file_extent_item
);
3180 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
3184 btrfs_set_path_blocking(path
);
3185 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
3189 path
->keep_locks
= 0;
3190 btrfs_unlock_up_safe(path
, 1);
3193 path
->keep_locks
= 0;
3197 static noinline
int split_item(struct btrfs_trans_handle
*trans
,
3198 struct btrfs_root
*root
,
3199 struct btrfs_path
*path
,
3200 struct btrfs_key
*new_key
,
3201 unsigned long split_offset
)
3203 struct extent_buffer
*leaf
;
3204 struct btrfs_item
*item
;
3205 struct btrfs_item
*new_item
;
3211 struct btrfs_disk_key disk_key
;
3213 leaf
= path
->nodes
[0];
3214 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < sizeof(struct btrfs_item
));
3216 btrfs_set_path_blocking(path
);
3218 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
3219 orig_offset
= btrfs_item_offset(leaf
, item
);
3220 item_size
= btrfs_item_size(leaf
, item
);
3222 buf
= kmalloc(item_size
, GFP_NOFS
);
3226 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
3227 path
->slots
[0]), item_size
);
3229 slot
= path
->slots
[0] + 1;
3230 nritems
= btrfs_header_nritems(leaf
);
3231 if (slot
!= nritems
) {
3232 /* shift the items */
3233 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
3234 btrfs_item_nr_offset(slot
),
3235 (nritems
- slot
) * sizeof(struct btrfs_item
));
3238 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
3239 btrfs_set_item_key(leaf
, &disk_key
, slot
);
3241 new_item
= btrfs_item_nr(leaf
, slot
);
3243 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
3244 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
3246 btrfs_set_item_offset(leaf
, item
,
3247 orig_offset
+ item_size
- split_offset
);
3248 btrfs_set_item_size(leaf
, item
, split_offset
);
3250 btrfs_set_header_nritems(leaf
, nritems
+ 1);
3252 /* write the data for the start of the original item */
3253 write_extent_buffer(leaf
, buf
,
3254 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
3257 /* write the data for the new item */
3258 write_extent_buffer(leaf
, buf
+ split_offset
,
3259 btrfs_item_ptr_offset(leaf
, slot
),
3260 item_size
- split_offset
);
3261 btrfs_mark_buffer_dirty(leaf
);
3263 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < 0);
3269 * This function splits a single item into two items,
3270 * giving 'new_key' to the new item and splitting the
3271 * old one at split_offset (from the start of the item).
3273 * The path may be released by this operation. After
3274 * the split, the path is pointing to the old item. The
3275 * new item is going to be in the same node as the old one.
3277 * Note, the item being split must be smaller enough to live alone on
3278 * a tree block with room for one extra struct btrfs_item
3280 * This allows us to split the item in place, keeping a lock on the
3281 * leaf the entire time.
3283 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
3284 struct btrfs_root
*root
,
3285 struct btrfs_path
*path
,
3286 struct btrfs_key
*new_key
,
3287 unsigned long split_offset
)
3290 ret
= setup_leaf_for_split(trans
, root
, path
,
3291 sizeof(struct btrfs_item
));
3295 ret
= split_item(trans
, root
, path
, new_key
, split_offset
);
3300 * This function duplicate a item, giving 'new_key' to the new item.
3301 * It guarantees both items live in the same tree leaf and the new item
3302 * is contiguous with the original item.
3304 * This allows us to split file extent in place, keeping a lock on the
3305 * leaf the entire time.
3307 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
3308 struct btrfs_root
*root
,
3309 struct btrfs_path
*path
,
3310 struct btrfs_key
*new_key
)
3312 struct extent_buffer
*leaf
;
3316 leaf
= path
->nodes
[0];
3317 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3318 ret
= setup_leaf_for_split(trans
, root
, path
,
3319 item_size
+ sizeof(struct btrfs_item
));
3324 ret
= setup_items_for_insert(trans
, root
, path
, new_key
, &item_size
,
3325 item_size
, item_size
+
3326 sizeof(struct btrfs_item
), 1);
3329 leaf
= path
->nodes
[0];
3330 memcpy_extent_buffer(leaf
,
3331 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
3332 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
3338 * make the item pointed to by the path smaller. new_size indicates
3339 * how small to make it, and from_end tells us if we just chop bytes
3340 * off the end of the item or if we shift the item to chop bytes off
3343 int btrfs_truncate_item(struct btrfs_trans_handle
*trans
,
3344 struct btrfs_root
*root
,
3345 struct btrfs_path
*path
,
3346 u32 new_size
, int from_end
)
3350 struct extent_buffer
*leaf
;
3351 struct btrfs_item
*item
;
3353 unsigned int data_end
;
3354 unsigned int old_data_start
;
3355 unsigned int old_size
;
3356 unsigned int size_diff
;
3359 leaf
= path
->nodes
[0];
3360 slot
= path
->slots
[0];
3362 old_size
= btrfs_item_size_nr(leaf
, slot
);
3363 if (old_size
== new_size
)
3366 nritems
= btrfs_header_nritems(leaf
);
3367 data_end
= leaf_data_end(root
, leaf
);
3369 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
3371 size_diff
= old_size
- new_size
;
3374 BUG_ON(slot
>= nritems
);
3377 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3379 /* first correct the data pointers */
3380 for (i
= slot
; i
< nritems
; i
++) {
3382 item
= btrfs_item_nr(leaf
, i
);
3384 if (!leaf
->map_token
) {
3385 map_extent_buffer(leaf
, (unsigned long)item
,
3386 sizeof(struct btrfs_item
),
3387 &leaf
->map_token
, &leaf
->kaddr
,
3388 &leaf
->map_start
, &leaf
->map_len
,
3392 ioff
= btrfs_item_offset(leaf
, item
);
3393 btrfs_set_item_offset(leaf
, item
, ioff
+ size_diff
);
3396 if (leaf
->map_token
) {
3397 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3398 leaf
->map_token
= NULL
;
3401 /* shift the data */
3403 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3404 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
3405 data_end
, old_data_start
+ new_size
- data_end
);
3407 struct btrfs_disk_key disk_key
;
3410 btrfs_item_key(leaf
, &disk_key
, slot
);
3412 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
3414 struct btrfs_file_extent_item
*fi
;
3416 fi
= btrfs_item_ptr(leaf
, slot
,
3417 struct btrfs_file_extent_item
);
3418 fi
= (struct btrfs_file_extent_item
*)(
3419 (unsigned long)fi
- size_diff
);
3421 if (btrfs_file_extent_type(leaf
, fi
) ==
3422 BTRFS_FILE_EXTENT_INLINE
) {
3423 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
3424 memmove_extent_buffer(leaf
, ptr
,
3426 offsetof(struct btrfs_file_extent_item
,
3431 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3432 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
3433 data_end
, old_data_start
- data_end
);
3435 offset
= btrfs_disk_key_offset(&disk_key
);
3436 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
3437 btrfs_set_item_key(leaf
, &disk_key
, slot
);
3439 fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3442 item
= btrfs_item_nr(leaf
, slot
);
3443 btrfs_set_item_size(leaf
, item
, new_size
);
3444 btrfs_mark_buffer_dirty(leaf
);
3447 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3448 btrfs_print_leaf(root
, leaf
);
3455 * make the item pointed to by the path bigger, data_size is the new size.
3457 int btrfs_extend_item(struct btrfs_trans_handle
*trans
,
3458 struct btrfs_root
*root
, struct btrfs_path
*path
,
3463 struct extent_buffer
*leaf
;
3464 struct btrfs_item
*item
;
3466 unsigned int data_end
;
3467 unsigned int old_data
;
3468 unsigned int old_size
;
3471 leaf
= path
->nodes
[0];
3473 nritems
= btrfs_header_nritems(leaf
);
3474 data_end
= leaf_data_end(root
, leaf
);
3476 if (btrfs_leaf_free_space(root
, leaf
) < data_size
) {
3477 btrfs_print_leaf(root
, leaf
);
3480 slot
= path
->slots
[0];
3481 old_data
= btrfs_item_end_nr(leaf
, slot
);
3484 if (slot
>= nritems
) {
3485 btrfs_print_leaf(root
, leaf
);
3486 printk(KERN_CRIT
"slot %d too large, nritems %d\n",
3492 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3494 /* first correct the data pointers */
3495 for (i
= slot
; i
< nritems
; i
++) {
3497 item
= btrfs_item_nr(leaf
, i
);
3499 if (!leaf
->map_token
) {
3500 map_extent_buffer(leaf
, (unsigned long)item
,
3501 sizeof(struct btrfs_item
),
3502 &leaf
->map_token
, &leaf
->kaddr
,
3503 &leaf
->map_start
, &leaf
->map_len
,
3506 ioff
= btrfs_item_offset(leaf
, item
);
3507 btrfs_set_item_offset(leaf
, item
, ioff
- data_size
);
3510 if (leaf
->map_token
) {
3511 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3512 leaf
->map_token
= NULL
;
3515 /* shift the data */
3516 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3517 data_end
- data_size
, btrfs_leaf_data(leaf
) +
3518 data_end
, old_data
- data_end
);
3520 data_end
= old_data
;
3521 old_size
= btrfs_item_size_nr(leaf
, slot
);
3522 item
= btrfs_item_nr(leaf
, slot
);
3523 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
3524 btrfs_mark_buffer_dirty(leaf
);
3527 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3528 btrfs_print_leaf(root
, leaf
);
3535 * Given a key and some data, insert items into the tree.
3536 * This does all the path init required, making room in the tree if needed.
3537 * Returns the number of keys that were inserted.
3539 int btrfs_insert_some_items(struct btrfs_trans_handle
*trans
,
3540 struct btrfs_root
*root
,
3541 struct btrfs_path
*path
,
3542 struct btrfs_key
*cpu_key
, u32
*data_size
,
3545 struct extent_buffer
*leaf
;
3546 struct btrfs_item
*item
;
3553 unsigned int data_end
;
3554 struct btrfs_disk_key disk_key
;
3555 struct btrfs_key found_key
;
3557 for (i
= 0; i
< nr
; i
++) {
3558 if (total_size
+ data_size
[i
] + sizeof(struct btrfs_item
) >
3559 BTRFS_LEAF_DATA_SIZE(root
)) {
3563 total_data
+= data_size
[i
];
3564 total_size
+= data_size
[i
] + sizeof(struct btrfs_item
);
3568 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
3574 leaf
= path
->nodes
[0];
3576 nritems
= btrfs_header_nritems(leaf
);
3577 data_end
= leaf_data_end(root
, leaf
);
3579 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
3580 for (i
= nr
; i
>= 0; i
--) {
3581 total_data
-= data_size
[i
];
3582 total_size
-= data_size
[i
] + sizeof(struct btrfs_item
);
3583 if (total_size
< btrfs_leaf_free_space(root
, leaf
))
3589 slot
= path
->slots
[0];
3592 if (slot
!= nritems
) {
3593 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
3595 item
= btrfs_item_nr(leaf
, slot
);
3596 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3598 /* figure out how many keys we can insert in here */
3599 total_data
= data_size
[0];
3600 for (i
= 1; i
< nr
; i
++) {
3601 if (btrfs_comp_cpu_keys(&found_key
, cpu_key
+ i
) <= 0)
3603 total_data
+= data_size
[i
];
3607 if (old_data
< data_end
) {
3608 btrfs_print_leaf(root
, leaf
);
3609 printk(KERN_CRIT
"slot %d old_data %d data_end %d\n",
3610 slot
, old_data
, data_end
);
3614 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3616 /* first correct the data pointers */
3617 WARN_ON(leaf
->map_token
);
3618 for (i
= slot
; i
< nritems
; i
++) {
3621 item
= btrfs_item_nr(leaf
, i
);
3622 if (!leaf
->map_token
) {
3623 map_extent_buffer(leaf
, (unsigned long)item
,
3624 sizeof(struct btrfs_item
),
3625 &leaf
->map_token
, &leaf
->kaddr
,
3626 &leaf
->map_start
, &leaf
->map_len
,
3630 ioff
= btrfs_item_offset(leaf
, item
);
3631 btrfs_set_item_offset(leaf
, item
, ioff
- total_data
);
3633 if (leaf
->map_token
) {
3634 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3635 leaf
->map_token
= NULL
;
3638 /* shift the items */
3639 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
3640 btrfs_item_nr_offset(slot
),
3641 (nritems
- slot
) * sizeof(struct btrfs_item
));
3643 /* shift the data */
3644 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3645 data_end
- total_data
, btrfs_leaf_data(leaf
) +
3646 data_end
, old_data
- data_end
);
3647 data_end
= old_data
;
3650 * this sucks but it has to be done, if we are inserting at
3651 * the end of the leaf only insert 1 of the items, since we
3652 * have no way of knowing whats on the next leaf and we'd have
3653 * to drop our current locks to figure it out
3658 /* setup the item for the new data */
3659 for (i
= 0; i
< nr
; i
++) {
3660 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
3661 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
3662 item
= btrfs_item_nr(leaf
, slot
+ i
);
3663 btrfs_set_item_offset(leaf
, item
, data_end
- data_size
[i
]);
3664 data_end
-= data_size
[i
];
3665 btrfs_set_item_size(leaf
, item
, data_size
[i
]);
3667 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
3668 btrfs_mark_buffer_dirty(leaf
);
3672 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
3673 ret
= fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3676 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3677 btrfs_print_leaf(root
, leaf
);
3687 * this is a helper for btrfs_insert_empty_items, the main goal here is
3688 * to save stack depth by doing the bulk of the work in a function
3689 * that doesn't call btrfs_search_slot
3691 static noinline_for_stack
int
3692 setup_items_for_insert(struct btrfs_trans_handle
*trans
,
3693 struct btrfs_root
*root
, struct btrfs_path
*path
,
3694 struct btrfs_key
*cpu_key
, u32
*data_size
,
3695 u32 total_data
, u32 total_size
, int nr
)
3697 struct btrfs_item
*item
;
3700 unsigned int data_end
;
3701 struct btrfs_disk_key disk_key
;
3703 struct extent_buffer
*leaf
;
3706 leaf
= path
->nodes
[0];
3707 slot
= path
->slots
[0];
3709 nritems
= btrfs_header_nritems(leaf
);
3710 data_end
= leaf_data_end(root
, leaf
);
3712 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
3713 btrfs_print_leaf(root
, leaf
);
3714 printk(KERN_CRIT
"not enough freespace need %u have %d\n",
3715 total_size
, btrfs_leaf_free_space(root
, leaf
));
3719 if (slot
!= nritems
) {
3720 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
3722 if (old_data
< data_end
) {
3723 btrfs_print_leaf(root
, leaf
);
3724 printk(KERN_CRIT
"slot %d old_data %d data_end %d\n",
3725 slot
, old_data
, data_end
);
3729 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3731 /* first correct the data pointers */
3732 WARN_ON(leaf
->map_token
);
3733 for (i
= slot
; i
< nritems
; i
++) {
3736 item
= btrfs_item_nr(leaf
, i
);
3737 if (!leaf
->map_token
) {
3738 map_extent_buffer(leaf
, (unsigned long)item
,
3739 sizeof(struct btrfs_item
),
3740 &leaf
->map_token
, &leaf
->kaddr
,
3741 &leaf
->map_start
, &leaf
->map_len
,
3745 ioff
= btrfs_item_offset(leaf
, item
);
3746 btrfs_set_item_offset(leaf
, item
, ioff
- total_data
);
3748 if (leaf
->map_token
) {
3749 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3750 leaf
->map_token
= NULL
;
3753 /* shift the items */
3754 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
3755 btrfs_item_nr_offset(slot
),
3756 (nritems
- slot
) * sizeof(struct btrfs_item
));
3758 /* shift the data */
3759 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3760 data_end
- total_data
, btrfs_leaf_data(leaf
) +
3761 data_end
, old_data
- data_end
);
3762 data_end
= old_data
;
3765 /* setup the item for the new data */
3766 for (i
= 0; i
< nr
; i
++) {
3767 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
3768 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
3769 item
= btrfs_item_nr(leaf
, slot
+ i
);
3770 btrfs_set_item_offset(leaf
, item
, data_end
- data_size
[i
]);
3771 data_end
-= data_size
[i
];
3772 btrfs_set_item_size(leaf
, item
, data_size
[i
]);
3775 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
3779 struct btrfs_disk_key disk_key
;
3780 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
3781 ret
= fixup_low_keys(trans
, root
, path
, &disk_key
, 1);
3783 btrfs_unlock_up_safe(path
, 1);
3784 btrfs_mark_buffer_dirty(leaf
);
3786 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
3787 btrfs_print_leaf(root
, leaf
);
3794 * Given a key and some data, insert items into the tree.
3795 * This does all the path init required, making room in the tree if needed.
3797 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
3798 struct btrfs_root
*root
,
3799 struct btrfs_path
*path
,
3800 struct btrfs_key
*cpu_key
, u32
*data_size
,
3809 for (i
= 0; i
< nr
; i
++)
3810 total_data
+= data_size
[i
];
3812 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
3813 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
3819 slot
= path
->slots
[0];
3822 ret
= setup_items_for_insert(trans
, root
, path
, cpu_key
, data_size
,
3823 total_data
, total_size
, nr
);
3830 * Given a key and some data, insert an item into the tree.
3831 * This does all the path init required, making room in the tree if needed.
3833 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
3834 *root
, struct btrfs_key
*cpu_key
, void *data
, u32
3838 struct btrfs_path
*path
;
3839 struct extent_buffer
*leaf
;
3842 path
= btrfs_alloc_path();
3844 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
3846 leaf
= path
->nodes
[0];
3847 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3848 write_extent_buffer(leaf
, data
, ptr
, data_size
);
3849 btrfs_mark_buffer_dirty(leaf
);
3851 btrfs_free_path(path
);
3856 * delete the pointer from a given node.
3858 * the tree should have been previously balanced so the deletion does not
3861 static int del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3862 struct btrfs_path
*path
, int level
, int slot
)
3864 struct extent_buffer
*parent
= path
->nodes
[level
];
3869 nritems
= btrfs_header_nritems(parent
);
3870 if (slot
!= nritems
- 1) {
3871 memmove_extent_buffer(parent
,
3872 btrfs_node_key_ptr_offset(slot
),
3873 btrfs_node_key_ptr_offset(slot
+ 1),
3874 sizeof(struct btrfs_key_ptr
) *
3875 (nritems
- slot
- 1));
3878 btrfs_set_header_nritems(parent
, nritems
);
3879 if (nritems
== 0 && parent
== root
->node
) {
3880 BUG_ON(btrfs_header_level(root
->node
) != 1);
3881 /* just turn the root into a leaf and break */
3882 btrfs_set_header_level(root
->node
, 0);
3883 } else if (slot
== 0) {
3884 struct btrfs_disk_key disk_key
;
3886 btrfs_node_key(parent
, &disk_key
, 0);
3887 wret
= fixup_low_keys(trans
, root
, path
, &disk_key
, level
+ 1);
3891 btrfs_mark_buffer_dirty(parent
);
3896 * a helper function to delete the leaf pointed to by path->slots[1] and
3899 * This deletes the pointer in path->nodes[1] and frees the leaf
3900 * block extent. zero is returned if it all worked out, < 0 otherwise.
3902 * The path must have already been setup for deleting the leaf, including
3903 * all the proper balancing. path->nodes[1] must be locked.
3905 static noinline
int btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
3906 struct btrfs_root
*root
,
3907 struct btrfs_path
*path
,
3908 struct extent_buffer
*leaf
)
3912 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
3913 ret
= del_ptr(trans
, root
, path
, 1, path
->slots
[1]);
3918 * btrfs_free_extent is expensive, we want to make sure we
3919 * aren't holding any locks when we call it
3921 btrfs_unlock_up_safe(path
, 0);
3923 root_sub_used(root
, leaf
->len
);
3925 btrfs_free_tree_block(trans
, root
, leaf
, 0, 1);
3929 * delete the item at the leaf level in path. If that empties
3930 * the leaf, remove it from the tree
3932 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3933 struct btrfs_path
*path
, int slot
, int nr
)
3935 struct extent_buffer
*leaf
;
3936 struct btrfs_item
*item
;
3944 leaf
= path
->nodes
[0];
3945 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
3947 for (i
= 0; i
< nr
; i
++)
3948 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
3950 nritems
= btrfs_header_nritems(leaf
);
3952 if (slot
+ nr
!= nritems
) {
3953 int data_end
= leaf_data_end(root
, leaf
);
3955 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
3957 btrfs_leaf_data(leaf
) + data_end
,
3958 last_off
- data_end
);
3960 for (i
= slot
+ nr
; i
< nritems
; i
++) {
3963 item
= btrfs_item_nr(leaf
, i
);
3964 if (!leaf
->map_token
) {
3965 map_extent_buffer(leaf
, (unsigned long)item
,
3966 sizeof(struct btrfs_item
),
3967 &leaf
->map_token
, &leaf
->kaddr
,
3968 &leaf
->map_start
, &leaf
->map_len
,
3971 ioff
= btrfs_item_offset(leaf
, item
);
3972 btrfs_set_item_offset(leaf
, item
, ioff
+ dsize
);
3975 if (leaf
->map_token
) {
3976 unmap_extent_buffer(leaf
, leaf
->map_token
, KM_USER1
);
3977 leaf
->map_token
= NULL
;
3980 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
3981 btrfs_item_nr_offset(slot
+ nr
),
3982 sizeof(struct btrfs_item
) *
3983 (nritems
- slot
- nr
));
3985 btrfs_set_header_nritems(leaf
, nritems
- nr
);
3988 /* delete the leaf if we've emptied it */
3990 if (leaf
== root
->node
) {
3991 btrfs_set_header_level(leaf
, 0);
3993 btrfs_set_path_blocking(path
);
3994 clean_tree_block(trans
, root
, leaf
);
3995 ret
= btrfs_del_leaf(trans
, root
, path
, leaf
);
3999 int used
= leaf_space_used(leaf
, 0, nritems
);
4001 struct btrfs_disk_key disk_key
;
4003 btrfs_item_key(leaf
, &disk_key
, 0);
4004 wret
= fixup_low_keys(trans
, root
, path
,
4010 /* delete the leaf if it is mostly empty */
4011 if (used
< BTRFS_LEAF_DATA_SIZE(root
) / 3) {
4012 /* push_leaf_left fixes the path.
4013 * make sure the path still points to our leaf
4014 * for possible call to del_ptr below
4016 slot
= path
->slots
[1];
4017 extent_buffer_get(leaf
);
4019 btrfs_set_path_blocking(path
);
4020 wret
= push_leaf_left(trans
, root
, path
, 1, 1,
4022 if (wret
< 0 && wret
!= -ENOSPC
)
4025 if (path
->nodes
[0] == leaf
&&
4026 btrfs_header_nritems(leaf
)) {
4027 wret
= push_leaf_right(trans
, root
, path
, 1,
4029 if (wret
< 0 && wret
!= -ENOSPC
)
4033 if (btrfs_header_nritems(leaf
) == 0) {
4034 path
->slots
[1] = slot
;
4035 ret
= btrfs_del_leaf(trans
, root
, path
, leaf
);
4037 free_extent_buffer(leaf
);
4039 /* if we're still in the path, make sure
4040 * we're dirty. Otherwise, one of the
4041 * push_leaf functions must have already
4042 * dirtied this buffer
4044 if (path
->nodes
[0] == leaf
)
4045 btrfs_mark_buffer_dirty(leaf
);
4046 free_extent_buffer(leaf
);
4049 btrfs_mark_buffer_dirty(leaf
);
4056 * search the tree again to find a leaf with lesser keys
4057 * returns 0 if it found something or 1 if there are no lesser leaves.
4058 * returns < 0 on io errors.
4060 * This may release the path, and so you may lose any locks held at the
4063 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
4065 struct btrfs_key key
;
4066 struct btrfs_disk_key found_key
;
4069 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
4073 else if (key
.type
> 0)
4075 else if (key
.objectid
> 0)
4080 btrfs_release_path(root
, path
);
4081 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4084 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
4085 ret
= comp_keys(&found_key
, &key
);
4092 * A helper function to walk down the tree starting at min_key, and looking
4093 * for nodes or leaves that are either in cache or have a minimum
4094 * transaction id. This is used by the btree defrag code, and tree logging
4096 * This does not cow, but it does stuff the starting key it finds back
4097 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4098 * key and get a writable path.
4100 * This does lock as it descends, and path->keep_locks should be set
4101 * to 1 by the caller.
4103 * This honors path->lowest_level to prevent descent past a given level
4106 * min_trans indicates the oldest transaction that you are interested
4107 * in walking through. Any nodes or leaves older than min_trans are
4108 * skipped over (without reading them).
4110 * returns zero if something useful was found, < 0 on error and 1 if there
4111 * was nothing in the tree that matched the search criteria.
4113 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
4114 struct btrfs_key
*max_key
,
4115 struct btrfs_path
*path
, int cache_only
,
4118 struct extent_buffer
*cur
;
4119 struct btrfs_key found_key
;
4126 WARN_ON(!path
->keep_locks
);
4128 cur
= btrfs_lock_root_node(root
);
4129 level
= btrfs_header_level(cur
);
4130 WARN_ON(path
->nodes
[level
]);
4131 path
->nodes
[level
] = cur
;
4132 path
->locks
[level
] = 1;
4134 if (btrfs_header_generation(cur
) < min_trans
) {
4139 nritems
= btrfs_header_nritems(cur
);
4140 level
= btrfs_header_level(cur
);
4141 sret
= bin_search(cur
, min_key
, level
, &slot
);
4143 /* at the lowest level, we're done, setup the path and exit */
4144 if (level
== path
->lowest_level
) {
4145 if (slot
>= nritems
)
4148 path
->slots
[level
] = slot
;
4149 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
4152 if (sret
&& slot
> 0)
4155 * check this node pointer against the cache_only and
4156 * min_trans parameters. If it isn't in cache or is too
4157 * old, skip to the next one.
4159 while (slot
< nritems
) {
4162 struct extent_buffer
*tmp
;
4163 struct btrfs_disk_key disk_key
;
4165 blockptr
= btrfs_node_blockptr(cur
, slot
);
4166 gen
= btrfs_node_ptr_generation(cur
, slot
);
4167 if (gen
< min_trans
) {
4175 btrfs_node_key(cur
, &disk_key
, slot
);
4176 if (comp_keys(&disk_key
, max_key
) >= 0) {
4182 tmp
= btrfs_find_tree_block(root
, blockptr
,
4183 btrfs_level_size(root
, level
- 1));
4185 if (tmp
&& btrfs_buffer_uptodate(tmp
, gen
)) {
4186 free_extent_buffer(tmp
);
4190 free_extent_buffer(tmp
);
4195 * we didn't find a candidate key in this node, walk forward
4196 * and find another one
4198 if (slot
>= nritems
) {
4199 path
->slots
[level
] = slot
;
4200 btrfs_set_path_blocking(path
);
4201 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
4202 cache_only
, min_trans
);
4204 btrfs_release_path(root
, path
);
4210 /* save our key for returning back */
4211 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
4212 path
->slots
[level
] = slot
;
4213 if (level
== path
->lowest_level
) {
4215 unlock_up(path
, level
, 1);
4218 btrfs_set_path_blocking(path
);
4219 cur
= read_node_slot(root
, cur
, slot
);
4221 btrfs_tree_lock(cur
);
4223 path
->locks
[level
- 1] = 1;
4224 path
->nodes
[level
- 1] = cur
;
4225 unlock_up(path
, level
, 1);
4226 btrfs_clear_path_blocking(path
, NULL
);
4230 memcpy(min_key
, &found_key
, sizeof(found_key
));
4231 btrfs_set_path_blocking(path
);
4236 * this is similar to btrfs_next_leaf, but does not try to preserve
4237 * and fixup the path. It looks for and returns the next key in the
4238 * tree based on the current path and the cache_only and min_trans
4241 * 0 is returned if another key is found, < 0 if there are any errors
4242 * and 1 is returned if there are no higher keys in the tree
4244 * path->keep_locks should be set to 1 on the search made before
4245 * calling this function.
4247 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
4248 struct btrfs_key
*key
, int level
,
4249 int cache_only
, u64 min_trans
)
4252 struct extent_buffer
*c
;
4254 WARN_ON(!path
->keep_locks
);
4255 while (level
< BTRFS_MAX_LEVEL
) {
4256 if (!path
->nodes
[level
])
4259 slot
= path
->slots
[level
] + 1;
4260 c
= path
->nodes
[level
];
4262 if (slot
>= btrfs_header_nritems(c
)) {
4265 struct btrfs_key cur_key
;
4266 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
4267 !path
->nodes
[level
+ 1])
4270 if (path
->locks
[level
+ 1]) {
4275 slot
= btrfs_header_nritems(c
) - 1;
4277 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
4279 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
4281 orig_lowest
= path
->lowest_level
;
4282 btrfs_release_path(root
, path
);
4283 path
->lowest_level
= level
;
4284 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
4286 path
->lowest_level
= orig_lowest
;
4290 c
= path
->nodes
[level
];
4291 slot
= path
->slots
[level
];
4298 btrfs_item_key_to_cpu(c
, key
, slot
);
4300 u64 blockptr
= btrfs_node_blockptr(c
, slot
);
4301 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
4304 struct extent_buffer
*cur
;
4305 cur
= btrfs_find_tree_block(root
, blockptr
,
4306 btrfs_level_size(root
, level
- 1));
4307 if (!cur
|| !btrfs_buffer_uptodate(cur
, gen
)) {
4310 free_extent_buffer(cur
);
4313 free_extent_buffer(cur
);
4315 if (gen
< min_trans
) {
4319 btrfs_node_key_to_cpu(c
, key
, slot
);
4327 * search the tree again to find a leaf with greater keys
4328 * returns 0 if it found something or 1 if there are no greater leaves.
4329 * returns < 0 on io errors.
4331 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
4335 struct extent_buffer
*c
;
4336 struct extent_buffer
*next
;
4337 struct btrfs_key key
;
4340 int old_spinning
= path
->leave_spinning
;
4341 int force_blocking
= 0;
4343 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4348 * we take the blocks in an order that upsets lockdep. Using
4349 * blocking mode is the only way around it.
4351 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4355 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
4359 btrfs_release_path(root
, path
);
4361 path
->keep_locks
= 1;
4363 if (!force_blocking
)
4364 path
->leave_spinning
= 1;
4366 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4367 path
->keep_locks
= 0;
4372 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4374 * by releasing the path above we dropped all our locks. A balance
4375 * could have added more items next to the key that used to be
4376 * at the very end of the block. So, check again here and
4377 * advance the path if there are now more items available.
4379 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
4386 while (level
< BTRFS_MAX_LEVEL
) {
4387 if (!path
->nodes
[level
]) {
4392 slot
= path
->slots
[level
] + 1;
4393 c
= path
->nodes
[level
];
4394 if (slot
>= btrfs_header_nritems(c
)) {
4396 if (level
== BTRFS_MAX_LEVEL
) {
4404 btrfs_tree_unlock(next
);
4405 free_extent_buffer(next
);
4409 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
4415 btrfs_release_path(root
, path
);
4419 if (!path
->skip_locking
) {
4420 ret
= btrfs_try_spin_lock(next
);
4422 btrfs_set_path_blocking(path
);
4423 btrfs_tree_lock(next
);
4424 if (!force_blocking
)
4425 btrfs_clear_path_blocking(path
, next
);
4428 btrfs_set_lock_blocking(next
);
4432 path
->slots
[level
] = slot
;
4435 c
= path
->nodes
[level
];
4436 if (path
->locks
[level
])
4437 btrfs_tree_unlock(c
);
4439 free_extent_buffer(c
);
4440 path
->nodes
[level
] = next
;
4441 path
->slots
[level
] = 0;
4442 if (!path
->skip_locking
)
4443 path
->locks
[level
] = 1;
4448 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
4454 btrfs_release_path(root
, path
);
4458 if (!path
->skip_locking
) {
4459 btrfs_assert_tree_locked(path
->nodes
[level
]);
4460 ret
= btrfs_try_spin_lock(next
);
4462 btrfs_set_path_blocking(path
);
4463 btrfs_tree_lock(next
);
4464 if (!force_blocking
)
4465 btrfs_clear_path_blocking(path
, next
);
4468 btrfs_set_lock_blocking(next
);
4473 unlock_up(path
, 0, 1);
4474 path
->leave_spinning
= old_spinning
;
4476 btrfs_set_path_blocking(path
);
4482 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4483 * searching until it gets past min_objectid or finds an item of 'type'
4485 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4487 int btrfs_previous_item(struct btrfs_root
*root
,
4488 struct btrfs_path
*path
, u64 min_objectid
,
4491 struct btrfs_key found_key
;
4492 struct extent_buffer
*leaf
;
4497 if (path
->slots
[0] == 0) {
4498 btrfs_set_path_blocking(path
);
4499 ret
= btrfs_prev_leaf(root
, path
);
4505 leaf
= path
->nodes
[0];
4506 nritems
= btrfs_header_nritems(leaf
);
4509 if (path
->slots
[0] == nritems
)
4512 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4513 if (found_key
.objectid
< min_objectid
)
4515 if (found_key
.type
== type
)
4517 if (found_key
.objectid
== min_objectid
&&
4518 found_key
.type
< type
)