3 * Alchemy Au1x00 ethernet driver
5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with
11 * ioctls (SIOCGMIIPHY)
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 * converted to use linux-2.6.x's PHY framework
15 * Author: MontaVista Software, Inc.
16 * ppopov@mvista.com or source@mvista.com
18 * ########################################################################
20 * This program is free software; you can distribute it and/or modify it
21 * under the terms of the GNU General Public License (Version 2) as
22 * published by the Free Software Foundation.
24 * This program is distributed in the hope it will be useful, but WITHOUT
25 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
33 * ########################################################################
37 #include <linux/capability.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/module.h>
40 #include <linux/kernel.h>
41 #include <linux/string.h>
42 #include <linux/timer.h>
43 #include <linux/errno.h>
45 #include <linux/ioport.h>
46 #include <linux/bitops.h>
47 #include <linux/slab.h>
48 #include <linux/interrupt.h>
49 #include <linux/init.h>
50 #include <linux/netdevice.h>
51 #include <linux/etherdevice.h>
52 #include <linux/ethtool.h>
53 #include <linux/mii.h>
54 #include <linux/skbuff.h>
55 #include <linux/delay.h>
56 #include <linux/crc32.h>
57 #include <linux/phy.h>
60 #include <asm/mipsregs.h>
63 #include <asm/processor.h>
68 #include "au1000_eth.h"
70 #ifdef AU1000_ETH_DEBUG
71 static int au1000_debug
= 5;
73 static int au1000_debug
= 3;
76 #define DRV_NAME "au1000_eth"
77 #define DRV_VERSION "1.6"
78 #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
79 #define DRV_DESC "Au1xxx on-chip Ethernet driver"
81 MODULE_AUTHOR(DRV_AUTHOR
);
82 MODULE_DESCRIPTION(DRV_DESC
);
83 MODULE_LICENSE("GPL");
88 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
89 * There are four receive and four transmit descriptors. These
90 * descriptors are not in memory; rather, they are just a set of
93 * Since the Au1000 has a coherent data cache, the receive and
94 * transmit buffers are allocated from the KSEG0 segment. The
95 * hardware registers, however, are still mapped at KSEG1 to
96 * make sure there's no out-of-order writes, and that all writes
97 * complete immediately.
100 /* These addresses are only used if yamon doesn't tell us what
101 * the mac address is, and the mac address is not passed on the
104 static unsigned char au1000_mac_addr
[6] __devinitdata
= {
105 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
108 struct au1000_private
*au_macs
[NUM_ETH_INTERFACES
];
111 * board-specific configurations
113 * PHY detection algorithm
115 * If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is
118 * mii_probe() first searches the current MAC's MII bus for a PHY,
119 * selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is
120 * defined) PHY address not already claimed by another netdev.
122 * If nothing was found that way when searching for the 2nd ethernet
123 * controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then
124 * the first MII bus is searched as well for an unclaimed PHY; this is
125 * needed in case of a dual-PHY accessible only through the MAC0's MII
128 * Finally, if no PHY is found, then the corresponding ethernet
129 * controller is not registered to the network subsystem.
132 /* autodetection defaults */
133 #undef AU1XXX_PHY_SEARCH_HIGHEST_ADDR
134 #define AU1XXX_PHY1_SEARCH_ON_MAC0
138 * most boards PHY setup should be detectable properly with the
139 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
140 * you have a switch attached, or want to use the PHY's interrupt
141 * notification capabilities) you can provide a static PHY
144 * IRQs may only be set, if a PHY address was configured
145 * If a PHY address is given, also a bus id is required to be set
147 * ps: make sure the used irqs are configured properly in the board
151 #if defined(CONFIG_MIPS_BOSPORUS)
153 * Micrel/Kendin 5 port switch attached to MAC0,
154 * MAC0 is associated with PHY address 5 (== WAN port)
155 * MAC1 is not associated with any PHY, since it's connected directly
157 * no interrupts are used
159 # define AU1XXX_PHY_STATIC_CONFIG
161 # define AU1XXX_PHY0_ADDR 5
162 # define AU1XXX_PHY0_BUSID 0
163 # undef AU1XXX_PHY0_IRQ
165 # undef AU1XXX_PHY1_ADDR
166 # undef AU1XXX_PHY1_BUSID
167 # undef AU1XXX_PHY1_IRQ
170 #if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0)
171 # error MAC0-associated PHY attached 2nd MACs MII bus not supported yet
174 static void enable_mac(struct net_device
*dev
, int force_reset
)
177 struct au1000_private
*aup
= netdev_priv(dev
);
179 spin_lock_irqsave(&aup
->lock
, flags
);
181 if(force_reset
|| (!aup
->mac_enabled
)) {
182 *aup
->enable
= MAC_EN_CLOCK_ENABLE
;
184 *aup
->enable
= (MAC_EN_RESET0
| MAC_EN_RESET1
| MAC_EN_RESET2
185 | MAC_EN_CLOCK_ENABLE
);
188 aup
->mac_enabled
= 1;
191 spin_unlock_irqrestore(&aup
->lock
, flags
);
197 static int au1000_mdio_read(struct net_device
*dev
, int phy_addr
, int reg
)
199 struct au1000_private
*aup
= netdev_priv(dev
);
200 volatile u32
*const mii_control_reg
= &aup
->mac
->mii_control
;
201 volatile u32
*const mii_data_reg
= &aup
->mac
->mii_data
;
205 while (*mii_control_reg
& MAC_MII_BUSY
) {
207 if (--timedout
== 0) {
208 printk(KERN_ERR
"%s: read_MII busy timeout!!\n",
214 mii_control
= MAC_SET_MII_SELECT_REG(reg
) |
215 MAC_SET_MII_SELECT_PHY(phy_addr
) | MAC_MII_READ
;
217 *mii_control_reg
= mii_control
;
220 while (*mii_control_reg
& MAC_MII_BUSY
) {
222 if (--timedout
== 0) {
223 printk(KERN_ERR
"%s: mdio_read busy timeout!!\n",
228 return (int)*mii_data_reg
;
231 static void au1000_mdio_write(struct net_device
*dev
, int phy_addr
,
234 struct au1000_private
*aup
= netdev_priv(dev
);
235 volatile u32
*const mii_control_reg
= &aup
->mac
->mii_control
;
236 volatile u32
*const mii_data_reg
= &aup
->mac
->mii_data
;
240 while (*mii_control_reg
& MAC_MII_BUSY
) {
242 if (--timedout
== 0) {
243 printk(KERN_ERR
"%s: mdio_write busy timeout!!\n",
249 mii_control
= MAC_SET_MII_SELECT_REG(reg
) |
250 MAC_SET_MII_SELECT_PHY(phy_addr
) | MAC_MII_WRITE
;
252 *mii_data_reg
= value
;
253 *mii_control_reg
= mii_control
;
256 static int au1000_mdiobus_read(struct mii_bus
*bus
, int phy_addr
, int regnum
)
258 /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
259 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
260 struct net_device
*const dev
= bus
->priv
;
262 enable_mac(dev
, 0); /* make sure the MAC associated with this
263 * mii_bus is enabled */
264 return au1000_mdio_read(dev
, phy_addr
, regnum
);
267 static int au1000_mdiobus_write(struct mii_bus
*bus
, int phy_addr
, int regnum
,
270 struct net_device
*const dev
= bus
->priv
;
272 enable_mac(dev
, 0); /* make sure the MAC associated with this
273 * mii_bus is enabled */
274 au1000_mdio_write(dev
, phy_addr
, regnum
, value
);
278 static int au1000_mdiobus_reset(struct mii_bus
*bus
)
280 struct net_device
*const dev
= bus
->priv
;
282 enable_mac(dev
, 0); /* make sure the MAC associated with this
283 * mii_bus is enabled */
287 static void hard_stop(struct net_device
*dev
)
289 struct au1000_private
*aup
= netdev_priv(dev
);
291 if (au1000_debug
> 4)
292 printk(KERN_INFO
"%s: hard stop\n", dev
->name
);
294 aup
->mac
->control
&= ~(MAC_RX_ENABLE
| MAC_TX_ENABLE
);
298 static void enable_rx_tx(struct net_device
*dev
)
300 struct au1000_private
*aup
= netdev_priv(dev
);
302 if (au1000_debug
> 4)
303 printk(KERN_INFO
"%s: enable_rx_tx\n", dev
->name
);
305 aup
->mac
->control
|= (MAC_RX_ENABLE
| MAC_TX_ENABLE
);
310 au1000_adjust_link(struct net_device
*dev
)
312 struct au1000_private
*aup
= netdev_priv(dev
);
313 struct phy_device
*phydev
= aup
->phy_dev
;
316 int status_change
= 0;
318 BUG_ON(!aup
->phy_dev
);
320 spin_lock_irqsave(&aup
->lock
, flags
);
322 if (phydev
->link
&& (aup
->old_speed
!= phydev
->speed
)) {
325 switch(phydev
->speed
) {
331 "%s: Speed (%d) is not 10/100 ???\n",
332 dev
->name
, phydev
->speed
);
336 aup
->old_speed
= phydev
->speed
;
341 if (phydev
->link
&& (aup
->old_duplex
!= phydev
->duplex
)) {
342 // duplex mode changed
344 /* switching duplex mode requires to disable rx and tx! */
347 if (DUPLEX_FULL
== phydev
->duplex
)
348 aup
->mac
->control
= ((aup
->mac
->control
350 & ~MAC_DISABLE_RX_OWN
);
352 aup
->mac
->control
= ((aup
->mac
->control
354 | MAC_DISABLE_RX_OWN
);
358 aup
->old_duplex
= phydev
->duplex
;
363 if(phydev
->link
!= aup
->old_link
) {
364 // link state changed
369 aup
->old_duplex
= -1;
372 aup
->old_link
= phydev
->link
;
376 spin_unlock_irqrestore(&aup
->lock
, flags
);
380 printk(KERN_INFO
"%s: link up (%d/%s)\n",
381 dev
->name
, phydev
->speed
,
382 DUPLEX_FULL
== phydev
->duplex
? "Full" : "Half");
384 printk(KERN_INFO
"%s: link down\n", dev
->name
);
388 static int mii_probe (struct net_device
*dev
)
390 struct au1000_private
*const aup
= netdev_priv(dev
);
391 struct phy_device
*phydev
= NULL
;
393 #if defined(AU1XXX_PHY_STATIC_CONFIG)
394 BUG_ON(aup
->mac_id
< 0 || aup
->mac_id
> 1);
396 if(aup
->mac_id
== 0) { /* get PHY0 */
397 # if defined(AU1XXX_PHY0_ADDR)
398 phydev
= au_macs
[AU1XXX_PHY0_BUSID
]->mii_bus
->phy_map
[AU1XXX_PHY0_ADDR
];
400 printk (KERN_INFO DRV_NAME
":%s: using PHY-less setup\n",
403 # endif /* defined(AU1XXX_PHY0_ADDR) */
404 } else if (aup
->mac_id
== 1) { /* get PHY1 */
405 # if defined(AU1XXX_PHY1_ADDR)
406 phydev
= au_macs
[AU1XXX_PHY1_BUSID
]->mii_bus
->phy_map
[AU1XXX_PHY1_ADDR
];
408 printk (KERN_INFO DRV_NAME
":%s: using PHY-less setup\n",
411 # endif /* defined(AU1XXX_PHY1_ADDR) */
414 #else /* defined(AU1XXX_PHY_STATIC_CONFIG) */
417 /* find the first (lowest address) PHY on the current MAC's MII bus */
418 for (phy_addr
= 0; phy_addr
< PHY_MAX_ADDR
; phy_addr
++)
419 if (aup
->mii_bus
->phy_map
[phy_addr
]) {
420 phydev
= aup
->mii_bus
->phy_map
[phy_addr
];
421 # if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR)
422 break; /* break out with first one found */
426 # if defined(AU1XXX_PHY1_SEARCH_ON_MAC0)
427 /* try harder to find a PHY */
428 if (!phydev
&& (aup
->mac_id
== 1)) {
429 /* no PHY found, maybe we have a dual PHY? */
430 printk (KERN_INFO DRV_NAME
": no PHY found on MAC1, "
431 "let's see if it's attached to MAC0...\n");
435 /* find the first (lowest address) non-attached PHY on
436 * the MAC0 MII bus */
437 for (phy_addr
= 0; phy_addr
< PHY_MAX_ADDR
; phy_addr
++) {
438 struct phy_device
*const tmp_phydev
=
439 au_macs
[0]->mii_bus
->phy_map
[phy_addr
];
442 continue; /* no PHY here... */
444 if (tmp_phydev
->attached_dev
)
445 continue; /* already claimed by MAC0 */
448 break; /* found it */
451 # endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */
453 #endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */
455 printk (KERN_ERR DRV_NAME
":%s: no PHY found\n", dev
->name
);
459 /* now we are supposed to have a proper phydev, to attach to... */
460 BUG_ON(phydev
->attached_dev
);
462 phydev
= phy_connect(dev
, dev_name(&phydev
->dev
), &au1000_adjust_link
,
463 0, PHY_INTERFACE_MODE_MII
);
465 if (IS_ERR(phydev
)) {
466 printk(KERN_ERR
"%s: Could not attach to PHY\n", dev
->name
);
467 return PTR_ERR(phydev
);
470 /* mask with MAC supported features */
471 phydev
->supported
&= (SUPPORTED_10baseT_Half
472 | SUPPORTED_10baseT_Full
473 | SUPPORTED_100baseT_Half
474 | SUPPORTED_100baseT_Full
476 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
480 phydev
->advertising
= phydev
->supported
;
484 aup
->old_duplex
= -1;
485 aup
->phy_dev
= phydev
;
487 printk(KERN_INFO
"%s: attached PHY driver [%s] "
488 "(mii_bus:phy_addr=%s, irq=%d)\n", dev
->name
,
489 phydev
->drv
->name
, dev_name(&phydev
->dev
), phydev
->irq
);
496 * Buffer allocation/deallocation routines. The buffer descriptor returned
497 * has the virtual and dma address of a buffer suitable for
498 * both, receive and transmit operations.
500 static db_dest_t
*GetFreeDB(struct au1000_private
*aup
)
506 aup
->pDBfree
= pDB
->pnext
;
511 void ReleaseDB(struct au1000_private
*aup
, db_dest_t
*pDB
)
513 db_dest_t
*pDBfree
= aup
->pDBfree
;
515 pDBfree
->pnext
= pDB
;
519 static void reset_mac_unlocked(struct net_device
*dev
)
521 struct au1000_private
*const aup
= netdev_priv(dev
);
526 *aup
->enable
= MAC_EN_CLOCK_ENABLE
;
532 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
533 /* reset control bits */
534 aup
->rx_dma_ring
[i
]->buff_stat
&= ~0xf;
536 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
537 /* reset control bits */
538 aup
->tx_dma_ring
[i
]->buff_stat
&= ~0xf;
541 aup
->mac_enabled
= 0;
545 static void reset_mac(struct net_device
*dev
)
547 struct au1000_private
*const aup
= netdev_priv(dev
);
550 if (au1000_debug
> 4)
551 printk(KERN_INFO
"%s: reset mac, aup %x\n",
552 dev
->name
, (unsigned)aup
);
554 spin_lock_irqsave(&aup
->lock
, flags
);
556 reset_mac_unlocked (dev
);
558 spin_unlock_irqrestore(&aup
->lock
, flags
);
562 * Setup the receive and transmit "rings". These pointers are the addresses
563 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
564 * these are not descriptors sitting in memory.
567 setup_hw_rings(struct au1000_private
*aup
, u32 rx_base
, u32 tx_base
)
571 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
572 aup
->rx_dma_ring
[i
] =
573 (volatile rx_dma_t
*) (rx_base
+ sizeof(rx_dma_t
)*i
);
575 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
576 aup
->tx_dma_ring
[i
] =
577 (volatile tx_dma_t
*) (tx_base
+ sizeof(tx_dma_t
)*i
);
585 struct net_device
*dev
;
587 #ifdef CONFIG_SOC_AU1000
588 {AU1000_ETH0_BASE
, AU1000_MAC0_ENABLE
, AU1000_MAC0_DMA_INT
},
589 {AU1000_ETH1_BASE
, AU1000_MAC1_ENABLE
, AU1000_MAC1_DMA_INT
}
591 #ifdef CONFIG_SOC_AU1100
592 {AU1100_ETH0_BASE
, AU1100_MAC0_ENABLE
, AU1100_MAC0_DMA_INT
}
594 #ifdef CONFIG_SOC_AU1500
595 {AU1500_ETH0_BASE
, AU1500_MAC0_ENABLE
, AU1500_MAC0_DMA_INT
},
596 {AU1500_ETH1_BASE
, AU1500_MAC1_ENABLE
, AU1500_MAC1_DMA_INT
}
598 #ifdef CONFIG_SOC_AU1550
599 {AU1550_ETH0_BASE
, AU1550_MAC0_ENABLE
, AU1550_MAC0_DMA_INT
},
600 {AU1550_ETH1_BASE
, AU1550_MAC1_ENABLE
, AU1550_MAC1_DMA_INT
}
610 static int au1000_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
612 struct au1000_private
*aup
= netdev_priv(dev
);
615 return phy_ethtool_gset(aup
->phy_dev
, cmd
);
620 static int au1000_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
622 struct au1000_private
*aup
= netdev_priv(dev
);
624 if (!capable(CAP_NET_ADMIN
))
628 return phy_ethtool_sset(aup
->phy_dev
, cmd
);
634 au1000_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
636 struct au1000_private
*aup
= netdev_priv(dev
);
638 strcpy(info
->driver
, DRV_NAME
);
639 strcpy(info
->version
, DRV_VERSION
);
640 info
->fw_version
[0] = '\0';
641 sprintf(info
->bus_info
, "%s %d", DRV_NAME
, aup
->mac_id
);
642 info
->regdump_len
= 0;
645 static const struct ethtool_ops au1000_ethtool_ops
= {
646 .get_settings
= au1000_get_settings
,
647 .set_settings
= au1000_set_settings
,
648 .get_drvinfo
= au1000_get_drvinfo
,
649 .get_link
= ethtool_op_get_link
,
654 * Initialize the interface.
656 * When the device powers up, the clocks are disabled and the
657 * mac is in reset state. When the interface is closed, we
658 * do the same -- reset the device and disable the clocks to
659 * conserve power. Thus, whenever au1000_init() is called,
660 * the device should already be in reset state.
662 static int au1000_init(struct net_device
*dev
)
664 struct au1000_private
*aup
= netdev_priv(dev
);
669 if (au1000_debug
> 4)
670 printk("%s: au1000_init\n", dev
->name
);
672 /* bring the device out of reset */
675 spin_lock_irqsave(&aup
->lock
, flags
);
677 aup
->mac
->control
= 0;
678 aup
->tx_head
= (aup
->tx_dma_ring
[0]->buff_stat
& 0xC) >> 2;
679 aup
->tx_tail
= aup
->tx_head
;
680 aup
->rx_head
= (aup
->rx_dma_ring
[0]->buff_stat
& 0xC) >> 2;
682 aup
->mac
->mac_addr_high
= dev
->dev_addr
[5]<<8 | dev
->dev_addr
[4];
683 aup
->mac
->mac_addr_low
= dev
->dev_addr
[3]<<24 | dev
->dev_addr
[2]<<16 |
684 dev
->dev_addr
[1]<<8 | dev
->dev_addr
[0];
686 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
687 aup
->rx_dma_ring
[i
]->buff_stat
|= RX_DMA_ENABLE
;
691 control
= MAC_RX_ENABLE
| MAC_TX_ENABLE
;
692 #ifndef CONFIG_CPU_LITTLE_ENDIAN
693 control
|= MAC_BIG_ENDIAN
;
696 if (aup
->phy_dev
->link
&& (DUPLEX_FULL
== aup
->phy_dev
->duplex
))
697 control
|= MAC_FULL_DUPLEX
;
699 control
|= MAC_DISABLE_RX_OWN
;
700 } else { /* PHY-less op, assume full-duplex */
701 control
|= MAC_FULL_DUPLEX
;
704 aup
->mac
->control
= control
;
705 aup
->mac
->vlan1_tag
= 0x8100; /* activate vlan support */
708 spin_unlock_irqrestore(&aup
->lock
, flags
);
712 static inline void update_rx_stats(struct net_device
*dev
, u32 status
)
714 struct au1000_private
*aup
= netdev_priv(dev
);
715 struct net_device_stats
*ps
= &dev
->stats
;
718 if (status
& RX_MCAST_FRAME
)
721 if (status
& RX_ERROR
) {
723 if (status
& RX_MISSED_FRAME
)
724 ps
->rx_missed_errors
++;
725 if (status
& (RX_OVERLEN
| RX_RUNT
| RX_LEN_ERROR
))
726 ps
->rx_length_errors
++;
727 if (status
& RX_CRC_ERROR
)
729 if (status
& RX_COLL
)
733 ps
->rx_bytes
+= status
& RX_FRAME_LEN_MASK
;
738 * Au1000 receive routine.
740 static int au1000_rx(struct net_device
*dev
)
742 struct au1000_private
*aup
= netdev_priv(dev
);
744 volatile rx_dma_t
*prxd
;
745 u32 buff_stat
, status
;
749 if (au1000_debug
> 5)
750 printk("%s: au1000_rx head %d\n", dev
->name
, aup
->rx_head
);
752 prxd
= aup
->rx_dma_ring
[aup
->rx_head
];
753 buff_stat
= prxd
->buff_stat
;
754 while (buff_stat
& RX_T_DONE
) {
755 status
= prxd
->status
;
756 pDB
= aup
->rx_db_inuse
[aup
->rx_head
];
757 update_rx_stats(dev
, status
);
758 if (!(status
& RX_ERROR
)) {
761 frmlen
= (status
& RX_FRAME_LEN_MASK
);
762 frmlen
-= 4; /* Remove FCS */
763 skb
= dev_alloc_skb(frmlen
+ 2);
766 "%s: Memory squeeze, dropping packet.\n",
768 dev
->stats
.rx_dropped
++;
771 skb_reserve(skb
, 2); /* 16 byte IP header align */
772 skb_copy_to_linear_data(skb
,
773 (unsigned char *)pDB
->vaddr
, frmlen
);
774 skb_put(skb
, frmlen
);
775 skb
->protocol
= eth_type_trans(skb
, dev
);
776 netif_rx(skb
); /* pass the packet to upper layers */
779 if (au1000_debug
> 4) {
780 if (status
& RX_MISSED_FRAME
)
782 if (status
& RX_WDOG_TIMER
)
784 if (status
& RX_RUNT
)
786 if (status
& RX_OVERLEN
)
787 printk("rx overlen\n");
788 if (status
& RX_COLL
)
790 if (status
& RX_MII_ERROR
)
791 printk("rx mii error\n");
792 if (status
& RX_CRC_ERROR
)
793 printk("rx crc error\n");
794 if (status
& RX_LEN_ERROR
)
795 printk("rx len error\n");
796 if (status
& RX_U_CNTRL_FRAME
)
797 printk("rx u control frame\n");
800 prxd
->buff_stat
= (u32
)(pDB
->dma_addr
| RX_DMA_ENABLE
);
801 aup
->rx_head
= (aup
->rx_head
+ 1) & (NUM_RX_DMA
- 1);
804 /* next descriptor */
805 prxd
= aup
->rx_dma_ring
[aup
->rx_head
];
806 buff_stat
= prxd
->buff_stat
;
811 static void update_tx_stats(struct net_device
*dev
, u32 status
)
813 struct au1000_private
*aup
= netdev_priv(dev
);
814 struct net_device_stats
*ps
= &dev
->stats
;
816 if (status
& TX_FRAME_ABORTED
) {
817 if (!aup
->phy_dev
|| (DUPLEX_FULL
== aup
->phy_dev
->duplex
)) {
818 if (status
& (TX_JAB_TIMEOUT
| TX_UNDERRUN
)) {
819 /* any other tx errors are only valid
820 * in half duplex mode */
822 ps
->tx_aborted_errors
++;
827 ps
->tx_aborted_errors
++;
828 if (status
& (TX_NO_CARRIER
| TX_LOSS_CARRIER
))
829 ps
->tx_carrier_errors
++;
835 * Called from the interrupt service routine to acknowledge
836 * the TX DONE bits. This is a must if the irq is setup as
839 static void au1000_tx_ack(struct net_device
*dev
)
841 struct au1000_private
*aup
= netdev_priv(dev
);
842 volatile tx_dma_t
*ptxd
;
844 ptxd
= aup
->tx_dma_ring
[aup
->tx_tail
];
846 while (ptxd
->buff_stat
& TX_T_DONE
) {
847 update_tx_stats(dev
, ptxd
->status
);
848 ptxd
->buff_stat
&= ~TX_T_DONE
;
852 aup
->tx_tail
= (aup
->tx_tail
+ 1) & (NUM_TX_DMA
- 1);
853 ptxd
= aup
->tx_dma_ring
[aup
->tx_tail
];
857 netif_wake_queue(dev
);
863 * Au1000 interrupt service routine.
865 static irqreturn_t
au1000_interrupt(int irq
, void *dev_id
)
867 struct net_device
*dev
= dev_id
;
869 /* Handle RX interrupts first to minimize chance of overrun */
873 return IRQ_RETVAL(1);
876 static int au1000_open(struct net_device
*dev
)
879 struct au1000_private
*aup
= netdev_priv(dev
);
881 if (au1000_debug
> 4)
882 printk("%s: open: dev=%p\n", dev
->name
, dev
);
884 if ((retval
= request_irq(dev
->irq
, &au1000_interrupt
, 0,
886 printk(KERN_ERR
"%s: unable to get IRQ %d\n",
887 dev
->name
, dev
->irq
);
891 if ((retval
= au1000_init(dev
))) {
892 printk(KERN_ERR
"%s: error in au1000_init\n", dev
->name
);
893 free_irq(dev
->irq
, dev
);
898 /* cause the PHY state machine to schedule a link state check */
899 aup
->phy_dev
->state
= PHY_CHANGELINK
;
900 phy_start(aup
->phy_dev
);
903 netif_start_queue(dev
);
905 if (au1000_debug
> 4)
906 printk("%s: open: Initialization done.\n", dev
->name
);
911 static int au1000_close(struct net_device
*dev
)
914 struct au1000_private
*const aup
= netdev_priv(dev
);
916 if (au1000_debug
> 4)
917 printk("%s: close: dev=%p\n", dev
->name
, dev
);
920 phy_stop(aup
->phy_dev
);
922 spin_lock_irqsave(&aup
->lock
, flags
);
924 reset_mac_unlocked (dev
);
926 /* stop the device */
927 netif_stop_queue(dev
);
929 /* disable the interrupt */
930 free_irq(dev
->irq
, dev
);
931 spin_unlock_irqrestore(&aup
->lock
, flags
);
937 * Au1000 transmit routine.
939 static netdev_tx_t
au1000_tx(struct sk_buff
*skb
, struct net_device
*dev
)
941 struct au1000_private
*aup
= netdev_priv(dev
);
942 struct net_device_stats
*ps
= &dev
->stats
;
943 volatile tx_dma_t
*ptxd
;
948 if (au1000_debug
> 5)
949 printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
950 dev
->name
, (unsigned)aup
, skb
->len
,
951 skb
->data
, aup
->tx_head
);
953 ptxd
= aup
->tx_dma_ring
[aup
->tx_head
];
954 buff_stat
= ptxd
->buff_stat
;
955 if (buff_stat
& TX_DMA_ENABLE
) {
956 /* We've wrapped around and the transmitter is still busy */
957 netif_stop_queue(dev
);
959 return NETDEV_TX_BUSY
;
961 else if (buff_stat
& TX_T_DONE
) {
962 update_tx_stats(dev
, ptxd
->status
);
968 netif_wake_queue(dev
);
971 pDB
= aup
->tx_db_inuse
[aup
->tx_head
];
972 skb_copy_from_linear_data(skb
, pDB
->vaddr
, skb
->len
);
973 if (skb
->len
< ETH_ZLEN
) {
974 for (i
=skb
->len
; i
<ETH_ZLEN
; i
++) {
975 ((char *)pDB
->vaddr
)[i
] = 0;
977 ptxd
->len
= ETH_ZLEN
;
980 ptxd
->len
= skb
->len
;
983 ps
->tx_bytes
+= ptxd
->len
;
985 ptxd
->buff_stat
= pDB
->dma_addr
| TX_DMA_ENABLE
;
988 aup
->tx_head
= (aup
->tx_head
+ 1) & (NUM_TX_DMA
- 1);
989 dev
->trans_start
= jiffies
;
994 * The Tx ring has been full longer than the watchdog timeout
995 * value. The transmitter must be hung?
997 static void au1000_tx_timeout(struct net_device
*dev
)
999 printk(KERN_ERR
"%s: au1000_tx_timeout: dev=%p\n", dev
->name
, dev
);
1002 dev
->trans_start
= jiffies
;
1003 netif_wake_queue(dev
);
1006 static void au1000_multicast_list(struct net_device
*dev
)
1008 struct au1000_private
*aup
= netdev_priv(dev
);
1010 if (au1000_debug
> 4)
1011 printk("%s: au1000_multicast_list: flags=%x\n", dev
->name
, dev
->flags
);
1013 if (dev
->flags
& IFF_PROMISC
) { /* Set promiscuous. */
1014 aup
->mac
->control
|= MAC_PROMISCUOUS
;
1015 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1016 dev
->mc_count
> MULTICAST_FILTER_LIMIT
) {
1017 aup
->mac
->control
|= MAC_PASS_ALL_MULTI
;
1018 aup
->mac
->control
&= ~MAC_PROMISCUOUS
;
1019 printk(KERN_INFO
"%s: Pass all multicast\n", dev
->name
);
1022 struct dev_mc_list
*mclist
;
1023 u32 mc_filter
[2]; /* Multicast hash filter */
1025 mc_filter
[1] = mc_filter
[0] = 0;
1026 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
1027 i
++, mclist
= mclist
->next
) {
1028 set_bit(ether_crc(ETH_ALEN
, mclist
->dmi_addr
)>>26,
1031 aup
->mac
->multi_hash_high
= mc_filter
[1];
1032 aup
->mac
->multi_hash_low
= mc_filter
[0];
1033 aup
->mac
->control
&= ~MAC_PROMISCUOUS
;
1034 aup
->mac
->control
|= MAC_HASH_MODE
;
1038 static int au1000_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1040 struct au1000_private
*aup
= netdev_priv(dev
);
1042 if (!netif_running(dev
)) return -EINVAL
;
1044 if (!aup
->phy_dev
) return -EINVAL
; // PHY not controllable
1046 return phy_mii_ioctl(aup
->phy_dev
, if_mii(rq
), cmd
);
1049 static const struct net_device_ops au1000_netdev_ops
= {
1050 .ndo_open
= au1000_open
,
1051 .ndo_stop
= au1000_close
,
1052 .ndo_start_xmit
= au1000_tx
,
1053 .ndo_set_multicast_list
= au1000_multicast_list
,
1054 .ndo_do_ioctl
= au1000_ioctl
,
1055 .ndo_tx_timeout
= au1000_tx_timeout
,
1056 .ndo_set_mac_address
= eth_mac_addr
,
1057 .ndo_validate_addr
= eth_validate_addr
,
1058 .ndo_change_mtu
= eth_change_mtu
,
1061 static struct net_device
* au1000_probe(int port_num
)
1063 static unsigned version_printed
= 0;
1064 struct au1000_private
*aup
= NULL
;
1065 struct net_device
*dev
= NULL
;
1066 db_dest_t
*pDB
, *pDBfree
;
1071 if (port_num
>= NUM_ETH_INTERFACES
)
1074 base
= CPHYSADDR(iflist
[port_num
].base_addr
);
1075 macen
= CPHYSADDR(iflist
[port_num
].macen_addr
);
1076 irq
= iflist
[port_num
].irq
;
1078 if (!request_mem_region( base
, MAC_IOSIZE
, "Au1x00 ENET") ||
1079 !request_mem_region(macen
, 4, "Au1x00 ENET"))
1082 if (version_printed
++ == 0)
1083 printk("%s version %s %s\n", DRV_NAME
, DRV_VERSION
, DRV_AUTHOR
);
1085 dev
= alloc_etherdev(sizeof(struct au1000_private
));
1087 printk(KERN_ERR
"%s: alloc_etherdev failed\n", DRV_NAME
);
1091 if ((err
= register_netdev(dev
)) != 0) {
1092 printk(KERN_ERR
"%s: Cannot register net device, error %d\n",
1098 printk("%s: Au1xx0 Ethernet found at 0x%x, irq %d\n",
1099 dev
->name
, base
, irq
);
1101 aup
= netdev_priv(dev
);
1103 spin_lock_init(&aup
->lock
);
1105 /* Allocate the data buffers */
1106 /* Snooping works fine with eth on all au1xxx */
1107 aup
->vaddr
= (u32
)dma_alloc_noncoherent(NULL
, MAX_BUF_SIZE
*
1108 (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
1112 release_mem_region( base
, MAC_IOSIZE
);
1113 release_mem_region(macen
, 4);
1117 /* aup->mac is the base address of the MAC's registers */
1118 aup
->mac
= (volatile mac_reg_t
*)iflist
[port_num
].base_addr
;
1120 /* Setup some variables for quick register address access */
1121 aup
->enable
= (volatile u32
*)iflist
[port_num
].macen_addr
;
1122 aup
->mac_id
= port_num
;
1123 au_macs
[port_num
] = aup
;
1125 if (port_num
== 0) {
1126 if (prom_get_ethernet_addr(ethaddr
) == 0)
1127 memcpy(au1000_mac_addr
, ethaddr
, sizeof(au1000_mac_addr
));
1129 printk(KERN_INFO
"%s: No MAC address found\n",
1131 /* Use the hard coded MAC addresses */
1134 setup_hw_rings(aup
, MAC0_RX_DMA_ADDR
, MAC0_TX_DMA_ADDR
);
1135 } else if (port_num
== 1)
1136 setup_hw_rings(aup
, MAC1_RX_DMA_ADDR
, MAC1_TX_DMA_ADDR
);
1139 * Assign to the Ethernet ports two consecutive MAC addresses
1140 * to match those that are printed on their stickers
1142 memcpy(dev
->dev_addr
, au1000_mac_addr
, sizeof(au1000_mac_addr
));
1143 dev
->dev_addr
[5] += port_num
;
1146 aup
->mac_enabled
= 0;
1148 aup
->mii_bus
= mdiobus_alloc();
1149 if (aup
->mii_bus
== NULL
)
1152 aup
->mii_bus
->priv
= dev
;
1153 aup
->mii_bus
->read
= au1000_mdiobus_read
;
1154 aup
->mii_bus
->write
= au1000_mdiobus_write
;
1155 aup
->mii_bus
->reset
= au1000_mdiobus_reset
;
1156 aup
->mii_bus
->name
= "au1000_eth_mii";
1157 snprintf(aup
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%x", aup
->mac_id
);
1158 aup
->mii_bus
->irq
= kmalloc(sizeof(int)*PHY_MAX_ADDR
, GFP_KERNEL
);
1159 if (aup
->mii_bus
->irq
== NULL
)
1162 for(i
= 0; i
< PHY_MAX_ADDR
; ++i
)
1163 aup
->mii_bus
->irq
[i
] = PHY_POLL
;
1165 /* if known, set corresponding PHY IRQs */
1166 #if defined(AU1XXX_PHY_STATIC_CONFIG)
1167 # if defined(AU1XXX_PHY0_IRQ)
1168 if (AU1XXX_PHY0_BUSID
== aup
->mac_id
)
1169 aup
->mii_bus
->irq
[AU1XXX_PHY0_ADDR
] = AU1XXX_PHY0_IRQ
;
1171 # if defined(AU1XXX_PHY1_IRQ)
1172 if (AU1XXX_PHY1_BUSID
== aup
->mac_id
)
1173 aup
->mii_bus
->irq
[AU1XXX_PHY1_ADDR
] = AU1XXX_PHY1_IRQ
;
1176 mdiobus_register(aup
->mii_bus
);
1178 if (mii_probe(dev
) != 0) {
1183 /* setup the data buffer descriptors and attach a buffer to each one */
1185 for (i
= 0; i
< (NUM_TX_BUFFS
+NUM_RX_BUFFS
); i
++) {
1186 pDB
->pnext
= pDBfree
;
1188 pDB
->vaddr
= (u32
*)((unsigned)aup
->vaddr
+ MAX_BUF_SIZE
*i
);
1189 pDB
->dma_addr
= (dma_addr_t
)virt_to_bus(pDB
->vaddr
);
1192 aup
->pDBfree
= pDBfree
;
1194 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
1195 pDB
= GetFreeDB(aup
);
1199 aup
->rx_dma_ring
[i
]->buff_stat
= (unsigned)pDB
->dma_addr
;
1200 aup
->rx_db_inuse
[i
] = pDB
;
1202 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
1203 pDB
= GetFreeDB(aup
);
1207 aup
->tx_dma_ring
[i
]->buff_stat
= (unsigned)pDB
->dma_addr
;
1208 aup
->tx_dma_ring
[i
]->len
= 0;
1209 aup
->tx_db_inuse
[i
] = pDB
;
1212 dev
->base_addr
= base
;
1214 dev
->netdev_ops
= &au1000_netdev_ops
;
1215 SET_ETHTOOL_OPS(dev
, &au1000_ethtool_ops
);
1216 dev
->watchdog_timeo
= ETH_TX_TIMEOUT
;
1219 * The boot code uses the ethernet controller, so reset it to start
1220 * fresh. au1000_init() expects that the device is in reset state.
1227 if (aup
->mii_bus
!= NULL
) {
1228 mdiobus_unregister(aup
->mii_bus
);
1229 mdiobus_free(aup
->mii_bus
);
1232 /* here we should have a valid dev plus aup-> register addresses
1233 * so we can reset the mac properly.*/
1236 for (i
= 0; i
< NUM_RX_DMA
; i
++) {
1237 if (aup
->rx_db_inuse
[i
])
1238 ReleaseDB(aup
, aup
->rx_db_inuse
[i
]);
1240 for (i
= 0; i
< NUM_TX_DMA
; i
++) {
1241 if (aup
->tx_db_inuse
[i
])
1242 ReleaseDB(aup
, aup
->tx_db_inuse
[i
]);
1244 dma_free_noncoherent(NULL
, MAX_BUF_SIZE
* (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
1245 (void *)aup
->vaddr
, aup
->dma_addr
);
1246 unregister_netdev(dev
);
1248 release_mem_region( base
, MAC_IOSIZE
);
1249 release_mem_region(macen
, 4);
1254 * Setup the base address and interrupt of the Au1xxx ethernet macs
1255 * based on cpu type and whether the interface is enabled in sys_pinfunc
1256 * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0.
1258 static int __init
au1000_init_module(void)
1260 int ni
= (int)((au_readl(SYS_PINFUNC
) & (u32
)(SYS_PF_NI2
)) >> 4);
1261 struct net_device
*dev
;
1262 int i
, found_one
= 0;
1264 num_ifs
= NUM_ETH_INTERFACES
- ni
;
1266 for(i
= 0; i
< num_ifs
; i
++) {
1267 dev
= au1000_probe(i
);
1268 iflist
[i
].dev
= dev
;
1277 static void __exit
au1000_cleanup_module(void)
1280 struct net_device
*dev
;
1281 struct au1000_private
*aup
;
1283 for (i
= 0; i
< num_ifs
; i
++) {
1284 dev
= iflist
[i
].dev
;
1286 aup
= netdev_priv(dev
);
1287 unregister_netdev(dev
);
1288 mdiobus_unregister(aup
->mii_bus
);
1289 mdiobus_free(aup
->mii_bus
);
1290 for (j
= 0; j
< NUM_RX_DMA
; j
++)
1291 if (aup
->rx_db_inuse
[j
])
1292 ReleaseDB(aup
, aup
->rx_db_inuse
[j
]);
1293 for (j
= 0; j
< NUM_TX_DMA
; j
++)
1294 if (aup
->tx_db_inuse
[j
])
1295 ReleaseDB(aup
, aup
->tx_db_inuse
[j
]);
1296 dma_free_noncoherent(NULL
, MAX_BUF_SIZE
*
1297 (NUM_TX_BUFFS
+ NUM_RX_BUFFS
),
1298 (void *)aup
->vaddr
, aup
->dma_addr
);
1299 release_mem_region(dev
->base_addr
, MAC_IOSIZE
);
1300 release_mem_region(CPHYSADDR(iflist
[i
].macen_addr
), 4);
1306 module_init(au1000_init_module
);
1307 module_exit(au1000_cleanup_module
);