igb: Fix sparse warning in igb_ptp_rx_pktstamp
[linux-2.6/cjktty.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
blobaa10f69f9f1614330042c86e0b6f2b150296fca3
1 /*
2 * PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
4 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/pci.h>
24 #include "igb.h"
26 #define INCVALUE_MASK 0x7fffffff
27 #define ISGN 0x80000000
30 * The 82580 timesync updates the system timer every 8ns by 8ns,
31 * and this update value cannot be reprogrammed.
33 * Neither the 82576 nor the 82580 offer registers wide enough to hold
34 * nanoseconds time values for very long. For the 82580, SYSTIM always
35 * counts nanoseconds, but the upper 24 bits are not availible. The
36 * frequency is adjusted by changing the 32 bit fractional nanoseconds
37 * register, TIMINCA.
39 * For the 82576, the SYSTIM register time unit is affect by the
40 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
41 * field are needed to provide the nominal 16 nanosecond period,
42 * leaving 19 bits for fractional nanoseconds.
44 * We scale the NIC clock cycle by a large factor so that relatively
45 * small clock corrections can be added or subtracted at each clock
46 * tick. The drawbacks of a large factor are a) that the clock
47 * register overflows more quickly (not such a big deal) and b) that
48 * the increment per tick has to fit into 24 bits. As a result we
49 * need to use a shift of 19 so we can fit a value of 16 into the
50 * TIMINCA register.
53 * SYSTIMH SYSTIML
54 * +--------------+ +---+---+------+
55 * 82576 | 32 | | 8 | 5 | 19 |
56 * +--------------+ +---+---+------+
57 * \________ 45 bits _______/ fract
59 * +----------+---+ +--------------+
60 * 82580 | 24 | 8 | | 32 |
61 * +----------+---+ +--------------+
62 * reserved \______ 40 bits _____/
65 * The 45 bit 82576 SYSTIM overflows every
66 * 2^45 * 10^-9 / 3600 = 9.77 hours.
68 * The 40 bit 82580 SYSTIM overflows every
69 * 2^40 * 10^-9 / 60 = 18.3 minutes.
72 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
73 #define INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT)
74 #define INCVALUE_82576_MASK ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
75 #define INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT)
76 #define IGB_NBITS_82580 40
79 * SYSTIM read access for the 82576
82 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
84 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
85 struct e1000_hw *hw = &igb->hw;
86 u64 val;
87 u32 lo, hi;
89 lo = rd32(E1000_SYSTIML);
90 hi = rd32(E1000_SYSTIMH);
92 val = ((u64) hi) << 32;
93 val |= lo;
95 return val;
99 * SYSTIM read access for the 82580
102 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
104 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
105 struct e1000_hw *hw = &igb->hw;
106 u64 val;
107 u32 lo, hi, jk;
110 * The timestamp latches on lowest register read. For the 82580
111 * the lowest register is SYSTIMR instead of SYSTIML. However we only
112 * need to provide nanosecond resolution, so we just ignore it.
114 jk = rd32(E1000_SYSTIMR);
115 lo = rd32(E1000_SYSTIML);
116 hi = rd32(E1000_SYSTIMH);
118 val = ((u64) hi) << 32;
119 val |= lo;
121 return val;
125 * SYSTIM read access for I210/I211
128 static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
130 struct e1000_hw *hw = &adapter->hw;
131 u32 sec, nsec, jk;
134 * The timestamp latches on lowest register read. For I210/I211, the
135 * lowest register is SYSTIMR. Since we only need to provide nanosecond
136 * resolution, we can ignore it.
138 jk = rd32(E1000_SYSTIMR);
139 nsec = rd32(E1000_SYSTIML);
140 sec = rd32(E1000_SYSTIMH);
142 ts->tv_sec = sec;
143 ts->tv_nsec = nsec;
146 static void igb_ptp_write_i210(struct igb_adapter *adapter,
147 const struct timespec *ts)
149 struct e1000_hw *hw = &adapter->hw;
152 * Writing the SYSTIMR register is not necessary as it only provides
153 * sub-nanosecond resolution.
155 wr32(E1000_SYSTIML, ts->tv_nsec);
156 wr32(E1000_SYSTIMH, ts->tv_sec);
160 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
161 * @adapter: board private structure
162 * @hwtstamps: timestamp structure to update
163 * @systim: unsigned 64bit system time value.
165 * We need to convert the system time value stored in the RX/TXSTMP registers
166 * into a hwtstamp which can be used by the upper level timestamping functions.
168 * The 'tmreg_lock' spinlock is used to protect the consistency of the
169 * system time value. This is needed because reading the 64 bit time
170 * value involves reading two (or three) 32 bit registers. The first
171 * read latches the value. Ditto for writing.
173 * In addition, here have extended the system time with an overflow
174 * counter in software.
176 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
177 struct skb_shared_hwtstamps *hwtstamps,
178 u64 systim)
180 unsigned long flags;
181 u64 ns;
183 switch (adapter->hw.mac.type) {
184 case e1000_82576:
185 case e1000_82580:
186 case e1000_i350:
187 spin_lock_irqsave(&adapter->tmreg_lock, flags);
189 ns = timecounter_cyc2time(&adapter->tc, systim);
191 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
193 memset(hwtstamps, 0, sizeof(*hwtstamps));
194 hwtstamps->hwtstamp = ns_to_ktime(ns);
195 break;
196 case e1000_i210:
197 case e1000_i211:
198 memset(hwtstamps, 0, sizeof(*hwtstamps));
199 /* Upper 32 bits contain s, lower 32 bits contain ns. */
200 hwtstamps->hwtstamp = ktime_set(systim >> 32,
201 systim & 0xFFFFFFFF);
202 break;
203 default:
204 break;
209 * PTP clock operations
212 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
214 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
215 ptp_caps);
216 struct e1000_hw *hw = &igb->hw;
217 int neg_adj = 0;
218 u64 rate;
219 u32 incvalue;
221 if (ppb < 0) {
222 neg_adj = 1;
223 ppb = -ppb;
225 rate = ppb;
226 rate <<= 14;
227 rate = div_u64(rate, 1953125);
229 incvalue = 16 << IGB_82576_TSYNC_SHIFT;
231 if (neg_adj)
232 incvalue -= rate;
233 else
234 incvalue += rate;
236 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
238 return 0;
241 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
243 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
244 ptp_caps);
245 struct e1000_hw *hw = &igb->hw;
246 int neg_adj = 0;
247 u64 rate;
248 u32 inca;
250 if (ppb < 0) {
251 neg_adj = 1;
252 ppb = -ppb;
254 rate = ppb;
255 rate <<= 26;
256 rate = div_u64(rate, 1953125);
258 inca = rate & INCVALUE_MASK;
259 if (neg_adj)
260 inca |= ISGN;
262 wr32(E1000_TIMINCA, inca);
264 return 0;
267 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
269 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
270 ptp_caps);
271 unsigned long flags;
272 s64 now;
274 spin_lock_irqsave(&igb->tmreg_lock, flags);
276 now = timecounter_read(&igb->tc);
277 now += delta;
278 timecounter_init(&igb->tc, &igb->cc, now);
280 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
282 return 0;
285 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
287 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
288 ptp_caps);
289 unsigned long flags;
290 struct timespec now, then = ns_to_timespec(delta);
292 spin_lock_irqsave(&igb->tmreg_lock, flags);
294 igb_ptp_read_i210(igb, &now);
295 now = timespec_add(now, then);
296 igb_ptp_write_i210(igb, (const struct timespec *)&now);
298 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
300 return 0;
303 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
304 struct timespec *ts)
306 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
307 ptp_caps);
308 unsigned long flags;
309 u64 ns;
310 u32 remainder;
312 spin_lock_irqsave(&igb->tmreg_lock, flags);
314 ns = timecounter_read(&igb->tc);
316 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
318 ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
319 ts->tv_nsec = remainder;
321 return 0;
324 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
325 struct timespec *ts)
327 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
328 ptp_caps);
329 unsigned long flags;
331 spin_lock_irqsave(&igb->tmreg_lock, flags);
333 igb_ptp_read_i210(igb, ts);
335 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
337 return 0;
340 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
341 const struct timespec *ts)
343 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
344 ptp_caps);
345 unsigned long flags;
346 u64 ns;
348 ns = ts->tv_sec * 1000000000ULL;
349 ns += ts->tv_nsec;
351 spin_lock_irqsave(&igb->tmreg_lock, flags);
353 timecounter_init(&igb->tc, &igb->cc, ns);
355 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
357 return 0;
360 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
361 const struct timespec *ts)
363 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
364 ptp_caps);
365 unsigned long flags;
367 spin_lock_irqsave(&igb->tmreg_lock, flags);
369 igb_ptp_write_i210(igb, ts);
371 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
373 return 0;
376 static int igb_ptp_enable(struct ptp_clock_info *ptp,
377 struct ptp_clock_request *rq, int on)
379 return -EOPNOTSUPP;
383 * igb_ptp_tx_work
384 * @work: pointer to work struct
386 * This work function polls the TSYNCTXCTL valid bit to determine when a
387 * timestamp has been taken for the current stored skb.
389 void igb_ptp_tx_work(struct work_struct *work)
391 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
392 ptp_tx_work);
393 struct e1000_hw *hw = &adapter->hw;
394 u32 tsynctxctl;
396 if (!adapter->ptp_tx_skb)
397 return;
399 tsynctxctl = rd32(E1000_TSYNCTXCTL);
400 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
401 igb_ptp_tx_hwtstamp(adapter);
402 else
403 /* reschedule to check later */
404 schedule_work(&adapter->ptp_tx_work);
407 static void igb_ptp_overflow_check(struct work_struct *work)
409 struct igb_adapter *igb =
410 container_of(work, struct igb_adapter, ptp_overflow_work.work);
411 struct timespec ts;
413 igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
415 pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
417 schedule_delayed_work(&igb->ptp_overflow_work,
418 IGB_SYSTIM_OVERFLOW_PERIOD);
422 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
423 * @adapter: Board private structure.
425 * If we were asked to do hardware stamping and such a time stamp is
426 * available, then it must have been for this skb here because we only
427 * allow only one such packet into the queue.
429 void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
431 struct e1000_hw *hw = &adapter->hw;
432 struct skb_shared_hwtstamps shhwtstamps;
433 u64 regval;
435 regval = rd32(E1000_TXSTMPL);
436 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
438 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
439 skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
440 dev_kfree_skb_any(adapter->ptp_tx_skb);
441 adapter->ptp_tx_skb = NULL;
445 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
446 * @q_vector: Pointer to interrupt specific structure
447 * @va: Pointer to address containing Rx buffer
448 * @skb: Buffer containing timestamp and packet
450 * This function is meant to retrieve a timestamp from the first buffer of an
451 * incoming frame. The value is stored in little endian format starting on
452 * byte 8.
454 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
455 unsigned char *va,
456 struct sk_buff *skb)
458 __le64 *regval = (__le64 *)va;
461 * The timestamp is recorded in little endian format.
462 * DWORD: 0 1 2 3
463 * Field: Reserved Reserved SYSTIML SYSTIMH
465 igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
466 le64_to_cpu(regval[1]));
470 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
471 * @q_vector: Pointer to interrupt specific structure
472 * @skb: Buffer containing timestamp and packet
474 * This function is meant to retrieve a timestamp from the internal registers
475 * of the adapter and store it in the skb.
477 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
478 struct sk_buff *skb)
480 struct igb_adapter *adapter = q_vector->adapter;
481 struct e1000_hw *hw = &adapter->hw;
482 u64 regval;
485 * If this bit is set, then the RX registers contain the time stamp. No
486 * other packet will be time stamped until we read these registers, so
487 * read the registers to make them available again. Because only one
488 * packet can be time stamped at a time, we know that the register
489 * values must belong to this one here and therefore we don't need to
490 * compare any of the additional attributes stored for it.
492 * If nothing went wrong, then it should have a shared tx_flags that we
493 * can turn into a skb_shared_hwtstamps.
495 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
496 return;
498 regval = rd32(E1000_RXSTMPL);
499 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
501 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
505 * igb_ptp_hwtstamp_ioctl - control hardware time stamping
506 * @netdev:
507 * @ifreq:
508 * @cmd:
510 * Outgoing time stamping can be enabled and disabled. Play nice and
511 * disable it when requested, although it shouldn't case any overhead
512 * when no packet needs it. At most one packet in the queue may be
513 * marked for time stamping, otherwise it would be impossible to tell
514 * for sure to which packet the hardware time stamp belongs.
516 * Incoming time stamping has to be configured via the hardware
517 * filters. Not all combinations are supported, in particular event
518 * type has to be specified. Matching the kind of event packet is
519 * not supported, with the exception of "all V2 events regardless of
520 * level 2 or 4".
523 int igb_ptp_hwtstamp_ioctl(struct net_device *netdev,
524 struct ifreq *ifr, int cmd)
526 struct igb_adapter *adapter = netdev_priv(netdev);
527 struct e1000_hw *hw = &adapter->hw;
528 struct hwtstamp_config config;
529 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
530 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
531 u32 tsync_rx_cfg = 0;
532 bool is_l4 = false;
533 bool is_l2 = false;
534 u32 regval;
536 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
537 return -EFAULT;
539 /* reserved for future extensions */
540 if (config.flags)
541 return -EINVAL;
543 switch (config.tx_type) {
544 case HWTSTAMP_TX_OFF:
545 tsync_tx_ctl = 0;
546 case HWTSTAMP_TX_ON:
547 break;
548 default:
549 return -ERANGE;
552 switch (config.rx_filter) {
553 case HWTSTAMP_FILTER_NONE:
554 tsync_rx_ctl = 0;
555 break;
556 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
557 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
558 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
559 case HWTSTAMP_FILTER_ALL:
561 * register TSYNCRXCFG must be set, therefore it is not
562 * possible to time stamp both Sync and Delay_Req messages
563 * => fall back to time stamping all packets
565 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
566 config.rx_filter = HWTSTAMP_FILTER_ALL;
567 break;
568 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
569 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
570 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
571 is_l4 = true;
572 break;
573 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
574 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
575 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
576 is_l4 = true;
577 break;
578 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
579 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
580 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
581 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
582 is_l2 = true;
583 is_l4 = true;
584 config.rx_filter = HWTSTAMP_FILTER_SOME;
585 break;
586 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
587 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
588 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
589 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
590 is_l2 = true;
591 is_l4 = true;
592 config.rx_filter = HWTSTAMP_FILTER_SOME;
593 break;
594 case HWTSTAMP_FILTER_PTP_V2_EVENT:
595 case HWTSTAMP_FILTER_PTP_V2_SYNC:
596 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
597 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
598 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
599 is_l2 = true;
600 is_l4 = true;
601 break;
602 default:
603 return -ERANGE;
606 if (hw->mac.type == e1000_82575) {
607 if (tsync_rx_ctl | tsync_tx_ctl)
608 return -EINVAL;
609 return 0;
613 * Per-packet timestamping only works if all packets are
614 * timestamped, so enable timestamping in all packets as
615 * long as one rx filter was configured.
617 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
618 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
619 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
621 if ((hw->mac.type == e1000_i210) ||
622 (hw->mac.type == e1000_i211)) {
623 regval = rd32(E1000_RXPBS);
624 regval |= E1000_RXPBS_CFG_TS_EN;
625 wr32(E1000_RXPBS, regval);
629 /* enable/disable TX */
630 regval = rd32(E1000_TSYNCTXCTL);
631 regval &= ~E1000_TSYNCTXCTL_ENABLED;
632 regval |= tsync_tx_ctl;
633 wr32(E1000_TSYNCTXCTL, regval);
635 /* enable/disable RX */
636 regval = rd32(E1000_TSYNCRXCTL);
637 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
638 regval |= tsync_rx_ctl;
639 wr32(E1000_TSYNCRXCTL, regval);
641 /* define which PTP packets are time stamped */
642 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
644 /* define ethertype filter for timestamped packets */
645 if (is_l2)
646 wr32(E1000_ETQF(3),
647 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
648 E1000_ETQF_1588 | /* enable timestamping */
649 ETH_P_1588)); /* 1588 eth protocol type */
650 else
651 wr32(E1000_ETQF(3), 0);
653 #define PTP_PORT 319
654 /* L4 Queue Filter[3]: filter by destination port and protocol */
655 if (is_l4) {
656 u32 ftqf = (IPPROTO_UDP /* UDP */
657 | E1000_FTQF_VF_BP /* VF not compared */
658 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
659 | E1000_FTQF_MASK); /* mask all inputs */
660 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
662 wr32(E1000_IMIR(3), htons(PTP_PORT));
663 wr32(E1000_IMIREXT(3),
664 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
665 if (hw->mac.type == e1000_82576) {
666 /* enable source port check */
667 wr32(E1000_SPQF(3), htons(PTP_PORT));
668 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
670 wr32(E1000_FTQF(3), ftqf);
671 } else {
672 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
674 wrfl();
676 /* clear TX/RX time stamp registers, just to be sure */
677 regval = rd32(E1000_TXSTMPL);
678 regval = rd32(E1000_TXSTMPH);
679 regval = rd32(E1000_RXSTMPL);
680 regval = rd32(E1000_RXSTMPH);
682 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
683 -EFAULT : 0;
686 void igb_ptp_init(struct igb_adapter *adapter)
688 struct e1000_hw *hw = &adapter->hw;
689 struct net_device *netdev = adapter->netdev;
691 switch (hw->mac.type) {
692 case e1000_82576:
693 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
694 adapter->ptp_caps.owner = THIS_MODULE;
695 adapter->ptp_caps.max_adj = 1000000000;
696 adapter->ptp_caps.n_ext_ts = 0;
697 adapter->ptp_caps.pps = 0;
698 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
699 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
700 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
701 adapter->ptp_caps.settime = igb_ptp_settime_82576;
702 adapter->ptp_caps.enable = igb_ptp_enable;
703 adapter->cc.read = igb_ptp_read_82576;
704 adapter->cc.mask = CLOCKSOURCE_MASK(64);
705 adapter->cc.mult = 1;
706 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
707 /* Dial the nominal frequency. */
708 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
709 break;
710 case e1000_82580:
711 case e1000_i350:
712 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
713 adapter->ptp_caps.owner = THIS_MODULE;
714 adapter->ptp_caps.max_adj = 62499999;
715 adapter->ptp_caps.n_ext_ts = 0;
716 adapter->ptp_caps.pps = 0;
717 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
718 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
719 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
720 adapter->ptp_caps.settime = igb_ptp_settime_82576;
721 adapter->ptp_caps.enable = igb_ptp_enable;
722 adapter->cc.read = igb_ptp_read_82580;
723 adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
724 adapter->cc.mult = 1;
725 adapter->cc.shift = 0;
726 /* Enable the timer functions by clearing bit 31. */
727 wr32(E1000_TSAUXC, 0x0);
728 break;
729 case e1000_i210:
730 case e1000_i211:
731 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
732 adapter->ptp_caps.owner = THIS_MODULE;
733 adapter->ptp_caps.max_adj = 62499999;
734 adapter->ptp_caps.n_ext_ts = 0;
735 adapter->ptp_caps.pps = 0;
736 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
737 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
738 adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
739 adapter->ptp_caps.settime = igb_ptp_settime_i210;
740 adapter->ptp_caps.enable = igb_ptp_enable;
741 /* Enable the timer functions by clearing bit 31. */
742 wr32(E1000_TSAUXC, 0x0);
743 break;
744 default:
745 adapter->ptp_clock = NULL;
746 return;
749 wrfl();
751 spin_lock_init(&adapter->tmreg_lock);
752 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
754 /* Initialize the clock and overflow work for devices that need it. */
755 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
756 struct timespec ts = ktime_to_timespec(ktime_get_real());
758 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
759 } else {
760 timecounter_init(&adapter->tc, &adapter->cc,
761 ktime_to_ns(ktime_get_real()));
763 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
764 igb_ptp_overflow_check);
766 schedule_delayed_work(&adapter->ptp_overflow_work,
767 IGB_SYSTIM_OVERFLOW_PERIOD);
770 /* Initialize the time sync interrupts for devices that support it. */
771 if (hw->mac.type >= e1000_82580) {
772 wr32(E1000_TSIM, E1000_TSIM_TXTS);
773 wr32(E1000_IMS, E1000_IMS_TS);
776 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
777 &adapter->pdev->dev);
778 if (IS_ERR(adapter->ptp_clock)) {
779 adapter->ptp_clock = NULL;
780 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
781 } else {
782 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
783 adapter->netdev->name);
784 adapter->flags |= IGB_FLAG_PTP;
789 * igb_ptp_stop - Disable PTP device and stop the overflow check.
790 * @adapter: Board private structure.
792 * This function stops the PTP support and cancels the delayed work.
794 void igb_ptp_stop(struct igb_adapter *adapter)
796 switch (adapter->hw.mac.type) {
797 case e1000_82576:
798 case e1000_82580:
799 case e1000_i350:
800 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
801 break;
802 case e1000_i210:
803 case e1000_i211:
804 /* No delayed work to cancel. */
805 break;
806 default:
807 return;
810 cancel_work_sync(&adapter->ptp_tx_work);
812 if (adapter->ptp_clock) {
813 ptp_clock_unregister(adapter->ptp_clock);
814 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
815 adapter->netdev->name);
816 adapter->flags &= ~IGB_FLAG_PTP;
821 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
822 * @adapter: Board private structure.
824 * This function handles the reset work required to re-enable the PTP device.
826 void igb_ptp_reset(struct igb_adapter *adapter)
828 struct e1000_hw *hw = &adapter->hw;
830 if (!(adapter->flags & IGB_FLAG_PTP))
831 return;
833 switch (adapter->hw.mac.type) {
834 case e1000_82576:
835 /* Dial the nominal frequency. */
836 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
837 break;
838 case e1000_82580:
839 case e1000_i350:
840 case e1000_i210:
841 case e1000_i211:
842 /* Enable the timer functions and interrupts. */
843 wr32(E1000_TSAUXC, 0x0);
844 wr32(E1000_TSIM, E1000_TSIM_TXTS);
845 wr32(E1000_IMS, E1000_IMS_TS);
846 break;
847 default:
848 /* No work to do. */
849 return;
852 /* Re-initialize the timer. */
853 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
854 struct timespec ts = ktime_to_timespec(ktime_get_real());
856 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
857 } else {
858 timecounter_init(&adapter->tc, &adapter->cc,
859 ktime_to_ns(ktime_get_real()));