2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
26 #include <asm/pgtable.h>
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
33 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
34 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
35 unsigned long hugepages_treat_as_movable
;
37 static int max_hstate
;
38 unsigned int default_hstate_idx
;
39 struct hstate hstates
[HUGE_MAX_HSTATE
];
41 __initdata
LIST_HEAD(huge_boot_pages
);
43 /* for command line parsing */
44 static struct hstate
* __initdata parsed_hstate
;
45 static unsigned long __initdata default_hstate_max_huge_pages
;
46 static unsigned long __initdata default_hstate_size
;
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 static DEFINE_SPINLOCK(hugetlb_lock
);
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
65 * down_write(&mm->mmap_sem);
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
71 struct list_head link
;
76 static long region_add(struct list_head
*head
, long f
, long t
)
78 struct file_region
*rg
, *nrg
, *trg
;
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg
, head
, link
)
85 /* Round our left edge to the current segment if it encloses us. */
89 /* Check for and consume any regions we now overlap with. */
91 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
92 if (&rg
->link
== head
)
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
112 static long region_chg(struct list_head
*head
, long f
, long t
)
114 struct file_region
*rg
, *nrg
;
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg
, head
, link
)
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg
->link
== head
|| t
< rg
->from
) {
126 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
131 INIT_LIST_HEAD(&nrg
->link
);
132 list_add(&nrg
->link
, rg
->link
.prev
);
137 /* Round our left edge to the current segment if it encloses us. */
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
144 if (&rg
->link
== head
)
149 /* We overlap with this area, if it extends futher than
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
156 chg
-= rg
->to
- rg
->from
;
161 static long region_truncate(struct list_head
*head
, long end
)
163 struct file_region
*rg
, *trg
;
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg
, head
, link
)
170 if (&rg
->link
== head
)
173 /* If we are in the middle of a region then adjust it. */
174 if (end
> rg
->from
) {
177 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
182 if (&rg
->link
== head
)
184 chg
+= rg
->to
- rg
->from
;
191 static long region_count(struct list_head
*head
, long f
, long t
)
193 struct file_region
*rg
;
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg
, head
, link
) {
206 seg_from
= max(rg
->from
, f
);
207 seg_to
= min(rg
->to
, t
);
209 chg
+= seg_to
- seg_from
;
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
219 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
220 struct vm_area_struct
*vma
, unsigned long address
)
222 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
223 (vma
->vm_pgoff
>> huge_page_order(h
));
226 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
227 unsigned long address
)
229 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
236 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
238 struct hstate
*hstate
;
240 if (!is_vm_hugetlb_page(vma
))
243 hstate
= hstate_vma(vma
);
245 return 1UL << (hstate
->order
+ PAGE_SHIFT
);
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
258 return vma_kernel_pagesize(vma
);
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
267 #define HPAGE_RESV_OWNER (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
290 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
292 return (unsigned long)vma
->vm_private_data
;
295 static void set_vma_private_data(struct vm_area_struct
*vma
,
298 vma
->vm_private_data
= (void *)value
;
303 struct list_head regions
;
306 static struct resv_map
*resv_map_alloc(void)
308 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
312 kref_init(&resv_map
->refs
);
313 INIT_LIST_HEAD(&resv_map
->regions
);
318 static void resv_map_release(struct kref
*ref
)
320 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map
->regions
, 0);
327 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
329 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
330 if (!(vma
->vm_flags
& VM_MAYSHARE
))
331 return (struct resv_map
*)(get_vma_private_data(vma
) &
336 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
338 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
339 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
341 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
342 HPAGE_RESV_MASK
) | (unsigned long)map
);
345 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
347 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
348 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
350 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
353 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
355 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
357 return (get_vma_private_data(vma
) & flag
) != 0;
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate
*h
,
362 struct vm_area_struct
*vma
)
364 if (vma
->vm_flags
& VM_NORESERVE
)
367 if (vma
->vm_flags
& VM_MAYSHARE
) {
368 /* Shared mappings always use reserves */
369 h
->resv_huge_pages
--;
370 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
372 * Only the process that called mmap() has reserves for
375 h
->resv_huge_pages
--;
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
382 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
383 if (!(vma
->vm_flags
& VM_MAYSHARE
))
384 vma
->vm_private_data
= (void *)0;
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct
*vma
)
390 if (vma
->vm_flags
& VM_MAYSHARE
)
392 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
397 static void copy_gigantic_page(struct page
*dst
, struct page
*src
)
400 struct hstate
*h
= page_hstate(src
);
401 struct page
*dst_base
= dst
;
402 struct page
*src_base
= src
;
404 for (i
= 0; i
< pages_per_huge_page(h
); ) {
406 copy_highpage(dst
, src
);
409 dst
= mem_map_next(dst
, dst_base
, i
);
410 src
= mem_map_next(src
, src_base
, i
);
414 void copy_huge_page(struct page
*dst
, struct page
*src
)
417 struct hstate
*h
= page_hstate(src
);
419 if (unlikely(pages_per_huge_page(h
) > MAX_ORDER_NR_PAGES
)) {
420 copy_gigantic_page(dst
, src
);
425 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
427 copy_highpage(dst
+ i
, src
+ i
);
431 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
433 int nid
= page_to_nid(page
);
434 list_add(&page
->lru
, &h
->hugepage_freelists
[nid
]);
435 h
->free_huge_pages
++;
436 h
->free_huge_pages_node
[nid
]++;
439 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
443 if (list_empty(&h
->hugepage_freelists
[nid
]))
445 page
= list_entry(h
->hugepage_freelists
[nid
].next
, struct page
, lru
);
446 list_del(&page
->lru
);
447 set_page_refcounted(page
);
448 h
->free_huge_pages
--;
449 h
->free_huge_pages_node
[nid
]--;
453 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
454 struct vm_area_struct
*vma
,
455 unsigned long address
, int avoid_reserve
)
457 struct page
*page
= NULL
;
458 struct mempolicy
*mpol
;
459 nodemask_t
*nodemask
;
460 struct zonelist
*zonelist
;
465 zonelist
= huge_zonelist(vma
, address
,
466 htlb_alloc_mask
, &mpol
, &nodemask
);
468 * A child process with MAP_PRIVATE mappings created by their parent
469 * have no page reserves. This check ensures that reservations are
470 * not "stolen". The child may still get SIGKILLed
472 if (!vma_has_reserves(vma
) &&
473 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
476 /* If reserves cannot be used, ensure enough pages are in the pool */
477 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
480 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
481 MAX_NR_ZONES
- 1, nodemask
) {
482 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
)) {
483 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
486 decrement_hugepage_resv_vma(h
, vma
);
497 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
501 VM_BUG_ON(h
->order
>= MAX_ORDER
);
504 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
505 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
506 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
507 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
508 1 << PG_private
| 1<< PG_writeback
);
510 set_compound_page_dtor(page
, NULL
);
511 set_page_refcounted(page
);
512 arch_release_hugepage(page
);
513 __free_pages(page
, huge_page_order(h
));
516 struct hstate
*size_to_hstate(unsigned long size
)
521 if (huge_page_size(h
) == size
)
527 static void free_huge_page(struct page
*page
)
530 * Can't pass hstate in here because it is called from the
531 * compound page destructor.
533 struct hstate
*h
= page_hstate(page
);
534 int nid
= page_to_nid(page
);
535 struct address_space
*mapping
;
537 mapping
= (struct address_space
*) page_private(page
);
538 set_page_private(page
, 0);
539 page
->mapping
= NULL
;
540 BUG_ON(page_count(page
));
541 BUG_ON(page_mapcount(page
));
542 INIT_LIST_HEAD(&page
->lru
);
544 spin_lock(&hugetlb_lock
);
545 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
546 update_and_free_page(h
, page
);
547 h
->surplus_huge_pages
--;
548 h
->surplus_huge_pages_node
[nid
]--;
550 enqueue_huge_page(h
, page
);
552 spin_unlock(&hugetlb_lock
);
554 hugetlb_put_quota(mapping
, 1);
557 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
559 set_compound_page_dtor(page
, free_huge_page
);
560 spin_lock(&hugetlb_lock
);
562 h
->nr_huge_pages_node
[nid
]++;
563 spin_unlock(&hugetlb_lock
);
564 put_page(page
); /* free it into the hugepage allocator */
567 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
570 int nr_pages
= 1 << order
;
571 struct page
*p
= page
+ 1;
573 /* we rely on prep_new_huge_page to set the destructor */
574 set_compound_order(page
, order
);
576 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
578 p
->first_page
= page
;
582 int PageHuge(struct page
*page
)
584 compound_page_dtor
*dtor
;
586 if (!PageCompound(page
))
589 page
= compound_head(page
);
590 dtor
= get_compound_page_dtor(page
);
592 return dtor
== free_huge_page
;
595 EXPORT_SYMBOL_GPL(PageHuge
);
597 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
601 if (h
->order
>= MAX_ORDER
)
604 page
= alloc_pages_exact_node(nid
,
605 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
606 __GFP_REPEAT
|__GFP_NOWARN
,
609 if (arch_prepare_hugepage(page
)) {
610 __free_pages(page
, huge_page_order(h
));
613 prep_new_huge_page(h
, page
, nid
);
620 * common helper functions for hstate_next_node_to_{alloc|free}.
621 * We may have allocated or freed a huge page based on a different
622 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
623 * be outside of *nodes_allowed. Ensure that we use an allowed
624 * node for alloc or free.
626 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
628 nid
= next_node(nid
, *nodes_allowed
);
629 if (nid
== MAX_NUMNODES
)
630 nid
= first_node(*nodes_allowed
);
631 VM_BUG_ON(nid
>= MAX_NUMNODES
);
636 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
638 if (!node_isset(nid
, *nodes_allowed
))
639 nid
= next_node_allowed(nid
, nodes_allowed
);
644 * returns the previously saved node ["this node"] from which to
645 * allocate a persistent huge page for the pool and advance the
646 * next node from which to allocate, handling wrap at end of node
649 static int hstate_next_node_to_alloc(struct hstate
*h
,
650 nodemask_t
*nodes_allowed
)
654 VM_BUG_ON(!nodes_allowed
);
656 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
657 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
662 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
669 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
670 next_nid
= start_nid
;
673 page
= alloc_fresh_huge_page_node(h
, next_nid
);
678 next_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
679 } while (next_nid
!= start_nid
);
682 count_vm_event(HTLB_BUDDY_PGALLOC
);
684 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
690 * helper for free_pool_huge_page() - return the previously saved
691 * node ["this node"] from which to free a huge page. Advance the
692 * next node id whether or not we find a free huge page to free so
693 * that the next attempt to free addresses the next node.
695 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
699 VM_BUG_ON(!nodes_allowed
);
701 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
702 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
708 * Free huge page from pool from next node to free.
709 * Attempt to keep persistent huge pages more or less
710 * balanced over allowed nodes.
711 * Called with hugetlb_lock locked.
713 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
720 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
721 next_nid
= start_nid
;
725 * If we're returning unused surplus pages, only examine
726 * nodes with surplus pages.
728 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[next_nid
]) &&
729 !list_empty(&h
->hugepage_freelists
[next_nid
])) {
731 list_entry(h
->hugepage_freelists
[next_nid
].next
,
733 list_del(&page
->lru
);
734 h
->free_huge_pages
--;
735 h
->free_huge_pages_node
[next_nid
]--;
737 h
->surplus_huge_pages
--;
738 h
->surplus_huge_pages_node
[next_nid
]--;
740 update_and_free_page(h
, page
);
744 next_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
745 } while (next_nid
!= start_nid
);
750 static struct page
*alloc_buddy_huge_page(struct hstate
*h
, int nid
)
755 if (h
->order
>= MAX_ORDER
)
759 * Assume we will successfully allocate the surplus page to
760 * prevent racing processes from causing the surplus to exceed
763 * This however introduces a different race, where a process B
764 * tries to grow the static hugepage pool while alloc_pages() is
765 * called by process A. B will only examine the per-node
766 * counters in determining if surplus huge pages can be
767 * converted to normal huge pages in adjust_pool_surplus(). A
768 * won't be able to increment the per-node counter, until the
769 * lock is dropped by B, but B doesn't drop hugetlb_lock until
770 * no more huge pages can be converted from surplus to normal
771 * state (and doesn't try to convert again). Thus, we have a
772 * case where a surplus huge page exists, the pool is grown, and
773 * the surplus huge page still exists after, even though it
774 * should just have been converted to a normal huge page. This
775 * does not leak memory, though, as the hugepage will be freed
776 * once it is out of use. It also does not allow the counters to
777 * go out of whack in adjust_pool_surplus() as we don't modify
778 * the node values until we've gotten the hugepage and only the
779 * per-node value is checked there.
781 spin_lock(&hugetlb_lock
);
782 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
783 spin_unlock(&hugetlb_lock
);
787 h
->surplus_huge_pages
++;
789 spin_unlock(&hugetlb_lock
);
791 if (nid
== NUMA_NO_NODE
)
792 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
793 __GFP_REPEAT
|__GFP_NOWARN
,
796 page
= alloc_pages_exact_node(nid
,
797 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
798 __GFP_REPEAT
|__GFP_NOWARN
, huge_page_order(h
));
800 if (page
&& arch_prepare_hugepage(page
)) {
801 __free_pages(page
, huge_page_order(h
));
805 spin_lock(&hugetlb_lock
);
807 r_nid
= page_to_nid(page
);
808 set_compound_page_dtor(page
, free_huge_page
);
810 * We incremented the global counters already
812 h
->nr_huge_pages_node
[r_nid
]++;
813 h
->surplus_huge_pages_node
[r_nid
]++;
814 __count_vm_event(HTLB_BUDDY_PGALLOC
);
817 h
->surplus_huge_pages
--;
818 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
820 spin_unlock(&hugetlb_lock
);
826 * This allocation function is useful in the context where vma is irrelevant.
827 * E.g. soft-offlining uses this function because it only cares physical
828 * address of error page.
830 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
834 spin_lock(&hugetlb_lock
);
835 page
= dequeue_huge_page_node(h
, nid
);
836 spin_unlock(&hugetlb_lock
);
839 page
= alloc_buddy_huge_page(h
, nid
);
845 * Increase the hugetlb pool such that it can accomodate a reservation
848 static int gather_surplus_pages(struct hstate
*h
, int delta
)
850 struct list_head surplus_list
;
851 struct page
*page
, *tmp
;
853 int needed
, allocated
;
855 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
857 h
->resv_huge_pages
+= delta
;
862 INIT_LIST_HEAD(&surplus_list
);
866 spin_unlock(&hugetlb_lock
);
867 for (i
= 0; i
< needed
; i
++) {
868 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
871 * We were not able to allocate enough pages to
872 * satisfy the entire reservation so we free what
873 * we've allocated so far.
877 list_add(&page
->lru
, &surplus_list
);
882 * After retaking hugetlb_lock, we need to recalculate 'needed'
883 * because either resv_huge_pages or free_huge_pages may have changed.
885 spin_lock(&hugetlb_lock
);
886 needed
= (h
->resv_huge_pages
+ delta
) -
887 (h
->free_huge_pages
+ allocated
);
892 * The surplus_list now contains _at_least_ the number of extra pages
893 * needed to accomodate the reservation. Add the appropriate number
894 * of pages to the hugetlb pool and free the extras back to the buddy
895 * allocator. Commit the entire reservation here to prevent another
896 * process from stealing the pages as they are added to the pool but
897 * before they are reserved.
900 h
->resv_huge_pages
+= delta
;
903 spin_unlock(&hugetlb_lock
);
904 /* Free the needed pages to the hugetlb pool */
905 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
908 list_del(&page
->lru
);
910 * This page is now managed by the hugetlb allocator and has
911 * no users -- drop the buddy allocator's reference.
913 put_page_testzero(page
);
914 VM_BUG_ON(page_count(page
));
915 enqueue_huge_page(h
, page
);
918 /* Free unnecessary surplus pages to the buddy allocator */
920 if (!list_empty(&surplus_list
)) {
921 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
922 list_del(&page
->lru
);
926 spin_lock(&hugetlb_lock
);
932 * When releasing a hugetlb pool reservation, any surplus pages that were
933 * allocated to satisfy the reservation must be explicitly freed if they were
935 * Called with hugetlb_lock held.
937 static void return_unused_surplus_pages(struct hstate
*h
,
938 unsigned long unused_resv_pages
)
940 unsigned long nr_pages
;
942 /* Uncommit the reservation */
943 h
->resv_huge_pages
-= unused_resv_pages
;
945 /* Cannot return gigantic pages currently */
946 if (h
->order
>= MAX_ORDER
)
949 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
952 * We want to release as many surplus pages as possible, spread
953 * evenly across all nodes with memory. Iterate across these nodes
954 * until we can no longer free unreserved surplus pages. This occurs
955 * when the nodes with surplus pages have no free pages.
956 * free_pool_huge_page() will balance the the freed pages across the
957 * on-line nodes with memory and will handle the hstate accounting.
960 if (!free_pool_huge_page(h
, &node_states
[N_HIGH_MEMORY
], 1))
966 * Determine if the huge page at addr within the vma has an associated
967 * reservation. Where it does not we will need to logically increase
968 * reservation and actually increase quota before an allocation can occur.
969 * Where any new reservation would be required the reservation change is
970 * prepared, but not committed. Once the page has been quota'd allocated
971 * an instantiated the change should be committed via vma_commit_reservation.
972 * No action is required on failure.
974 static long vma_needs_reservation(struct hstate
*h
,
975 struct vm_area_struct
*vma
, unsigned long addr
)
977 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
978 struct inode
*inode
= mapping
->host
;
980 if (vma
->vm_flags
& VM_MAYSHARE
) {
981 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
982 return region_chg(&inode
->i_mapping
->private_list
,
985 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
990 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
991 struct resv_map
*reservations
= vma_resv_map(vma
);
993 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
999 static void vma_commit_reservation(struct hstate
*h
,
1000 struct vm_area_struct
*vma
, unsigned long addr
)
1002 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1003 struct inode
*inode
= mapping
->host
;
1005 if (vma
->vm_flags
& VM_MAYSHARE
) {
1006 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1007 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
1009 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1010 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1011 struct resv_map
*reservations
= vma_resv_map(vma
);
1013 /* Mark this page used in the map. */
1014 region_add(&reservations
->regions
, idx
, idx
+ 1);
1018 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1019 unsigned long addr
, int avoid_reserve
)
1021 struct hstate
*h
= hstate_vma(vma
);
1023 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1024 struct inode
*inode
= mapping
->host
;
1028 * Processes that did not create the mapping will have no reserves and
1029 * will not have accounted against quota. Check that the quota can be
1030 * made before satisfying the allocation
1031 * MAP_NORESERVE mappings may also need pages and quota allocated
1032 * if no reserve mapping overlaps.
1034 chg
= vma_needs_reservation(h
, vma
, addr
);
1036 return ERR_PTR(chg
);
1038 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
1039 return ERR_PTR(-ENOSPC
);
1041 spin_lock(&hugetlb_lock
);
1042 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
1043 spin_unlock(&hugetlb_lock
);
1046 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1048 hugetlb_put_quota(inode
->i_mapping
, chg
);
1049 return ERR_PTR(-VM_FAULT_SIGBUS
);
1053 set_page_private(page
, (unsigned long) mapping
);
1055 vma_commit_reservation(h
, vma
, addr
);
1060 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1062 struct huge_bootmem_page
*m
;
1063 int nr_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
1068 addr
= __alloc_bootmem_node_nopanic(
1069 NODE_DATA(hstate_next_node_to_alloc(h
,
1070 &node_states
[N_HIGH_MEMORY
])),
1071 huge_page_size(h
), huge_page_size(h
), 0);
1075 * Use the beginning of the huge page to store the
1076 * huge_bootmem_page struct (until gather_bootmem
1077 * puts them into the mem_map).
1087 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1088 /* Put them into a private list first because mem_map is not up yet */
1089 list_add(&m
->list
, &huge_boot_pages
);
1094 static void prep_compound_huge_page(struct page
*page
, int order
)
1096 if (unlikely(order
> (MAX_ORDER
- 1)))
1097 prep_compound_gigantic_page(page
, order
);
1099 prep_compound_page(page
, order
);
1102 /* Put bootmem huge pages into the standard lists after mem_map is up */
1103 static void __init
gather_bootmem_prealloc(void)
1105 struct huge_bootmem_page
*m
;
1107 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1108 struct page
*page
= virt_to_page(m
);
1109 struct hstate
*h
= m
->hstate
;
1110 __ClearPageReserved(page
);
1111 WARN_ON(page_count(page
) != 1);
1112 prep_compound_huge_page(page
, h
->order
);
1113 prep_new_huge_page(h
, page
, page_to_nid(page
));
1117 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1121 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1122 if (h
->order
>= MAX_ORDER
) {
1123 if (!alloc_bootmem_huge_page(h
))
1125 } else if (!alloc_fresh_huge_page(h
,
1126 &node_states
[N_HIGH_MEMORY
]))
1129 h
->max_huge_pages
= i
;
1132 static void __init
hugetlb_init_hstates(void)
1136 for_each_hstate(h
) {
1137 /* oversize hugepages were init'ed in early boot */
1138 if (h
->order
< MAX_ORDER
)
1139 hugetlb_hstate_alloc_pages(h
);
1143 static char * __init
memfmt(char *buf
, unsigned long n
)
1145 if (n
>= (1UL << 30))
1146 sprintf(buf
, "%lu GB", n
>> 30);
1147 else if (n
>= (1UL << 20))
1148 sprintf(buf
, "%lu MB", n
>> 20);
1150 sprintf(buf
, "%lu KB", n
>> 10);
1154 static void __init
report_hugepages(void)
1158 for_each_hstate(h
) {
1160 printk(KERN_INFO
"HugeTLB registered %s page size, "
1161 "pre-allocated %ld pages\n",
1162 memfmt(buf
, huge_page_size(h
)),
1163 h
->free_huge_pages
);
1167 #ifdef CONFIG_HIGHMEM
1168 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1169 nodemask_t
*nodes_allowed
)
1173 if (h
->order
>= MAX_ORDER
)
1176 for_each_node_mask(i
, *nodes_allowed
) {
1177 struct page
*page
, *next
;
1178 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1179 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1180 if (count
>= h
->nr_huge_pages
)
1182 if (PageHighMem(page
))
1184 list_del(&page
->lru
);
1185 update_and_free_page(h
, page
);
1186 h
->free_huge_pages
--;
1187 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1192 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1193 nodemask_t
*nodes_allowed
)
1199 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1200 * balanced by operating on them in a round-robin fashion.
1201 * Returns 1 if an adjustment was made.
1203 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1206 int start_nid
, next_nid
;
1209 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1212 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
1214 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
1215 next_nid
= start_nid
;
1221 * To shrink on this node, there must be a surplus page
1223 if (!h
->surplus_huge_pages_node
[nid
]) {
1224 next_nid
= hstate_next_node_to_alloc(h
,
1231 * Surplus cannot exceed the total number of pages
1233 if (h
->surplus_huge_pages_node
[nid
] >=
1234 h
->nr_huge_pages_node
[nid
]) {
1235 next_nid
= hstate_next_node_to_free(h
,
1241 h
->surplus_huge_pages
+= delta
;
1242 h
->surplus_huge_pages_node
[nid
] += delta
;
1245 } while (next_nid
!= start_nid
);
1250 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1251 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1252 nodemask_t
*nodes_allowed
)
1254 unsigned long min_count
, ret
;
1256 if (h
->order
>= MAX_ORDER
)
1257 return h
->max_huge_pages
;
1260 * Increase the pool size
1261 * First take pages out of surplus state. Then make up the
1262 * remaining difference by allocating fresh huge pages.
1264 * We might race with alloc_buddy_huge_page() here and be unable
1265 * to convert a surplus huge page to a normal huge page. That is
1266 * not critical, though, it just means the overall size of the
1267 * pool might be one hugepage larger than it needs to be, but
1268 * within all the constraints specified by the sysctls.
1270 spin_lock(&hugetlb_lock
);
1271 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1272 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1276 while (count
> persistent_huge_pages(h
)) {
1278 * If this allocation races such that we no longer need the
1279 * page, free_huge_page will handle it by freeing the page
1280 * and reducing the surplus.
1282 spin_unlock(&hugetlb_lock
);
1283 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1284 spin_lock(&hugetlb_lock
);
1288 /* Bail for signals. Probably ctrl-c from user */
1289 if (signal_pending(current
))
1294 * Decrease the pool size
1295 * First return free pages to the buddy allocator (being careful
1296 * to keep enough around to satisfy reservations). Then place
1297 * pages into surplus state as needed so the pool will shrink
1298 * to the desired size as pages become free.
1300 * By placing pages into the surplus state independent of the
1301 * overcommit value, we are allowing the surplus pool size to
1302 * exceed overcommit. There are few sane options here. Since
1303 * alloc_buddy_huge_page() is checking the global counter,
1304 * though, we'll note that we're not allowed to exceed surplus
1305 * and won't grow the pool anywhere else. Not until one of the
1306 * sysctls are changed, or the surplus pages go out of use.
1308 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1309 min_count
= max(count
, min_count
);
1310 try_to_free_low(h
, min_count
, nodes_allowed
);
1311 while (min_count
< persistent_huge_pages(h
)) {
1312 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1315 while (count
< persistent_huge_pages(h
)) {
1316 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1320 ret
= persistent_huge_pages(h
);
1321 spin_unlock(&hugetlb_lock
);
1325 #define HSTATE_ATTR_RO(_name) \
1326 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1328 #define HSTATE_ATTR(_name) \
1329 static struct kobj_attribute _name##_attr = \
1330 __ATTR(_name, 0644, _name##_show, _name##_store)
1332 static struct kobject
*hugepages_kobj
;
1333 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1335 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1337 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1341 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1342 if (hstate_kobjs
[i
] == kobj
) {
1344 *nidp
= NUMA_NO_NODE
;
1348 return kobj_to_node_hstate(kobj
, nidp
);
1351 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1352 struct kobj_attribute
*attr
, char *buf
)
1355 unsigned long nr_huge_pages
;
1358 h
= kobj_to_hstate(kobj
, &nid
);
1359 if (nid
== NUMA_NO_NODE
)
1360 nr_huge_pages
= h
->nr_huge_pages
;
1362 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1364 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1367 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1368 struct kobject
*kobj
, struct kobj_attribute
*attr
,
1369 const char *buf
, size_t len
)
1373 unsigned long count
;
1375 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1377 err
= strict_strtoul(buf
, 10, &count
);
1381 h
= kobj_to_hstate(kobj
, &nid
);
1382 if (h
->order
>= MAX_ORDER
) {
1387 if (nid
== NUMA_NO_NODE
) {
1389 * global hstate attribute
1391 if (!(obey_mempolicy
&&
1392 init_nodemask_of_mempolicy(nodes_allowed
))) {
1393 NODEMASK_FREE(nodes_allowed
);
1394 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1396 } else if (nodes_allowed
) {
1398 * per node hstate attribute: adjust count to global,
1399 * but restrict alloc/free to the specified node.
1401 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1402 init_nodemask_of_node(nodes_allowed
, nid
);
1404 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1406 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1408 if (nodes_allowed
!= &node_states
[N_HIGH_MEMORY
])
1409 NODEMASK_FREE(nodes_allowed
);
1413 NODEMASK_FREE(nodes_allowed
);
1417 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1418 struct kobj_attribute
*attr
, char *buf
)
1420 return nr_hugepages_show_common(kobj
, attr
, buf
);
1423 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1424 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1426 return nr_hugepages_store_common(false, kobj
, attr
, buf
, len
);
1428 HSTATE_ATTR(nr_hugepages
);
1433 * hstate attribute for optionally mempolicy-based constraint on persistent
1434 * huge page alloc/free.
1436 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1437 struct kobj_attribute
*attr
, char *buf
)
1439 return nr_hugepages_show_common(kobj
, attr
, buf
);
1442 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1443 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1445 return nr_hugepages_store_common(true, kobj
, attr
, buf
, len
);
1447 HSTATE_ATTR(nr_hugepages_mempolicy
);
1451 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1452 struct kobj_attribute
*attr
, char *buf
)
1454 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1455 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1458 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1459 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1462 unsigned long input
;
1463 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1465 if (h
->order
>= MAX_ORDER
)
1468 err
= strict_strtoul(buf
, 10, &input
);
1472 spin_lock(&hugetlb_lock
);
1473 h
->nr_overcommit_huge_pages
= input
;
1474 spin_unlock(&hugetlb_lock
);
1478 HSTATE_ATTR(nr_overcommit_hugepages
);
1480 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1481 struct kobj_attribute
*attr
, char *buf
)
1484 unsigned long free_huge_pages
;
1487 h
= kobj_to_hstate(kobj
, &nid
);
1488 if (nid
== NUMA_NO_NODE
)
1489 free_huge_pages
= h
->free_huge_pages
;
1491 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1493 return sprintf(buf
, "%lu\n", free_huge_pages
);
1495 HSTATE_ATTR_RO(free_hugepages
);
1497 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1498 struct kobj_attribute
*attr
, char *buf
)
1500 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1501 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1503 HSTATE_ATTR_RO(resv_hugepages
);
1505 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1506 struct kobj_attribute
*attr
, char *buf
)
1509 unsigned long surplus_huge_pages
;
1512 h
= kobj_to_hstate(kobj
, &nid
);
1513 if (nid
== NUMA_NO_NODE
)
1514 surplus_huge_pages
= h
->surplus_huge_pages
;
1516 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
1518 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
1520 HSTATE_ATTR_RO(surplus_hugepages
);
1522 static struct attribute
*hstate_attrs
[] = {
1523 &nr_hugepages_attr
.attr
,
1524 &nr_overcommit_hugepages_attr
.attr
,
1525 &free_hugepages_attr
.attr
,
1526 &resv_hugepages_attr
.attr
,
1527 &surplus_hugepages_attr
.attr
,
1529 &nr_hugepages_mempolicy_attr
.attr
,
1534 static struct attribute_group hstate_attr_group
= {
1535 .attrs
= hstate_attrs
,
1538 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
1539 struct kobject
**hstate_kobjs
,
1540 struct attribute_group
*hstate_attr_group
)
1543 int hi
= h
- hstates
;
1545 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
1546 if (!hstate_kobjs
[hi
])
1549 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
1551 kobject_put(hstate_kobjs
[hi
]);
1556 static void __init
hugetlb_sysfs_init(void)
1561 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1562 if (!hugepages_kobj
)
1565 for_each_hstate(h
) {
1566 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
1567 hstate_kobjs
, &hstate_attr_group
);
1569 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s",
1577 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1578 * with node sysdevs in node_devices[] using a parallel array. The array
1579 * index of a node sysdev or _hstate == node id.
1580 * This is here to avoid any static dependency of the node sysdev driver, in
1581 * the base kernel, on the hugetlb module.
1583 struct node_hstate
{
1584 struct kobject
*hugepages_kobj
;
1585 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1587 struct node_hstate node_hstates
[MAX_NUMNODES
];
1590 * A subset of global hstate attributes for node sysdevs
1592 static struct attribute
*per_node_hstate_attrs
[] = {
1593 &nr_hugepages_attr
.attr
,
1594 &free_hugepages_attr
.attr
,
1595 &surplus_hugepages_attr
.attr
,
1599 static struct attribute_group per_node_hstate_attr_group
= {
1600 .attrs
= per_node_hstate_attrs
,
1604 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1605 * Returns node id via non-NULL nidp.
1607 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1611 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
1612 struct node_hstate
*nhs
= &node_hstates
[nid
];
1614 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1615 if (nhs
->hstate_kobjs
[i
] == kobj
) {
1627 * Unregister hstate attributes from a single node sysdev.
1628 * No-op if no hstate attributes attached.
1630 void hugetlb_unregister_node(struct node
*node
)
1633 struct node_hstate
*nhs
= &node_hstates
[node
->sysdev
.id
];
1635 if (!nhs
->hugepages_kobj
)
1636 return; /* no hstate attributes */
1639 if (nhs
->hstate_kobjs
[h
- hstates
]) {
1640 kobject_put(nhs
->hstate_kobjs
[h
- hstates
]);
1641 nhs
->hstate_kobjs
[h
- hstates
] = NULL
;
1644 kobject_put(nhs
->hugepages_kobj
);
1645 nhs
->hugepages_kobj
= NULL
;
1649 * hugetlb module exit: unregister hstate attributes from node sysdevs
1652 static void hugetlb_unregister_all_nodes(void)
1657 * disable node sysdev registrations.
1659 register_hugetlbfs_with_node(NULL
, NULL
);
1662 * remove hstate attributes from any nodes that have them.
1664 for (nid
= 0; nid
< nr_node_ids
; nid
++)
1665 hugetlb_unregister_node(&node_devices
[nid
]);
1669 * Register hstate attributes for a single node sysdev.
1670 * No-op if attributes already registered.
1672 void hugetlb_register_node(struct node
*node
)
1675 struct node_hstate
*nhs
= &node_hstates
[node
->sysdev
.id
];
1678 if (nhs
->hugepages_kobj
)
1679 return; /* already allocated */
1681 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
1682 &node
->sysdev
.kobj
);
1683 if (!nhs
->hugepages_kobj
)
1686 for_each_hstate(h
) {
1687 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
1689 &per_node_hstate_attr_group
);
1691 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s"
1693 h
->name
, node
->sysdev
.id
);
1694 hugetlb_unregister_node(node
);
1701 * hugetlb init time: register hstate attributes for all registered node
1702 * sysdevs of nodes that have memory. All on-line nodes should have
1703 * registered their associated sysdev by this time.
1705 static void hugetlb_register_all_nodes(void)
1709 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1710 struct node
*node
= &node_devices
[nid
];
1711 if (node
->sysdev
.id
== nid
)
1712 hugetlb_register_node(node
);
1716 * Let the node sysdev driver know we're here so it can
1717 * [un]register hstate attributes on node hotplug.
1719 register_hugetlbfs_with_node(hugetlb_register_node
,
1720 hugetlb_unregister_node
);
1722 #else /* !CONFIG_NUMA */
1724 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1732 static void hugetlb_unregister_all_nodes(void) { }
1734 static void hugetlb_register_all_nodes(void) { }
1738 static void __exit
hugetlb_exit(void)
1742 hugetlb_unregister_all_nodes();
1744 for_each_hstate(h
) {
1745 kobject_put(hstate_kobjs
[h
- hstates
]);
1748 kobject_put(hugepages_kobj
);
1750 module_exit(hugetlb_exit
);
1752 static int __init
hugetlb_init(void)
1754 /* Some platform decide whether they support huge pages at boot
1755 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1756 * there is no such support
1758 if (HPAGE_SHIFT
== 0)
1761 if (!size_to_hstate(default_hstate_size
)) {
1762 default_hstate_size
= HPAGE_SIZE
;
1763 if (!size_to_hstate(default_hstate_size
))
1764 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1766 default_hstate_idx
= size_to_hstate(default_hstate_size
) - hstates
;
1767 if (default_hstate_max_huge_pages
)
1768 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1770 hugetlb_init_hstates();
1772 gather_bootmem_prealloc();
1776 hugetlb_sysfs_init();
1778 hugetlb_register_all_nodes();
1782 module_init(hugetlb_init
);
1784 /* Should be called on processing a hugepagesz=... option */
1785 void __init
hugetlb_add_hstate(unsigned order
)
1790 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1791 printk(KERN_WARNING
"hugepagesz= specified twice, ignoring\n");
1794 BUG_ON(max_hstate
>= HUGE_MAX_HSTATE
);
1796 h
= &hstates
[max_hstate
++];
1798 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1799 h
->nr_huge_pages
= 0;
1800 h
->free_huge_pages
= 0;
1801 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1802 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1803 h
->next_nid_to_alloc
= first_node(node_states
[N_HIGH_MEMORY
]);
1804 h
->next_nid_to_free
= first_node(node_states
[N_HIGH_MEMORY
]);
1805 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
1806 huge_page_size(h
)/1024);
1811 static int __init
hugetlb_nrpages_setup(char *s
)
1814 static unsigned long *last_mhp
;
1817 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1818 * so this hugepages= parameter goes to the "default hstate".
1821 mhp
= &default_hstate_max_huge_pages
;
1823 mhp
= &parsed_hstate
->max_huge_pages
;
1825 if (mhp
== last_mhp
) {
1826 printk(KERN_WARNING
"hugepages= specified twice without "
1827 "interleaving hugepagesz=, ignoring\n");
1831 if (sscanf(s
, "%lu", mhp
) <= 0)
1835 * Global state is always initialized later in hugetlb_init.
1836 * But we need to allocate >= MAX_ORDER hstates here early to still
1837 * use the bootmem allocator.
1839 if (max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
1840 hugetlb_hstate_alloc_pages(parsed_hstate
);
1846 __setup("hugepages=", hugetlb_nrpages_setup
);
1848 static int __init
hugetlb_default_setup(char *s
)
1850 default_hstate_size
= memparse(s
, &s
);
1853 __setup("default_hugepagesz=", hugetlb_default_setup
);
1855 static unsigned int cpuset_mems_nr(unsigned int *array
)
1858 unsigned int nr
= 0;
1860 for_each_node_mask(node
, cpuset_current_mems_allowed
)
1866 #ifdef CONFIG_SYSCTL
1867 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
1868 struct ctl_table
*table
, int write
,
1869 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1871 struct hstate
*h
= &default_hstate
;
1876 tmp
= h
->max_huge_pages
;
1878 if (write
&& h
->order
>= MAX_ORDER
)
1882 table
->maxlen
= sizeof(unsigned long);
1883 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
1888 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
,
1889 GFP_KERNEL
| __GFP_NORETRY
);
1890 if (!(obey_mempolicy
&&
1891 init_nodemask_of_mempolicy(nodes_allowed
))) {
1892 NODEMASK_FREE(nodes_allowed
);
1893 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1895 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
, nodes_allowed
);
1897 if (nodes_allowed
!= &node_states
[N_HIGH_MEMORY
])
1898 NODEMASK_FREE(nodes_allowed
);
1904 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
1905 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1908 return hugetlb_sysctl_handler_common(false, table
, write
,
1909 buffer
, length
, ppos
);
1913 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
1914 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1916 return hugetlb_sysctl_handler_common(true, table
, write
,
1917 buffer
, length
, ppos
);
1919 #endif /* CONFIG_NUMA */
1921 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
1922 void __user
*buffer
,
1923 size_t *length
, loff_t
*ppos
)
1925 proc_dointvec(table
, write
, buffer
, length
, ppos
);
1926 if (hugepages_treat_as_movable
)
1927 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
1929 htlb_alloc_mask
= GFP_HIGHUSER
;
1933 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
1934 void __user
*buffer
,
1935 size_t *length
, loff_t
*ppos
)
1937 struct hstate
*h
= &default_hstate
;
1942 tmp
= h
->nr_overcommit_huge_pages
;
1944 if (write
&& h
->order
>= MAX_ORDER
)
1948 table
->maxlen
= sizeof(unsigned long);
1949 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
1954 spin_lock(&hugetlb_lock
);
1955 h
->nr_overcommit_huge_pages
= tmp
;
1956 spin_unlock(&hugetlb_lock
);
1962 #endif /* CONFIG_SYSCTL */
1964 void hugetlb_report_meminfo(struct seq_file
*m
)
1966 struct hstate
*h
= &default_hstate
;
1968 "HugePages_Total: %5lu\n"
1969 "HugePages_Free: %5lu\n"
1970 "HugePages_Rsvd: %5lu\n"
1971 "HugePages_Surp: %5lu\n"
1972 "Hugepagesize: %8lu kB\n",
1976 h
->surplus_huge_pages
,
1977 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
1980 int hugetlb_report_node_meminfo(int nid
, char *buf
)
1982 struct hstate
*h
= &default_hstate
;
1984 "Node %d HugePages_Total: %5u\n"
1985 "Node %d HugePages_Free: %5u\n"
1986 "Node %d HugePages_Surp: %5u\n",
1987 nid
, h
->nr_huge_pages_node
[nid
],
1988 nid
, h
->free_huge_pages_node
[nid
],
1989 nid
, h
->surplus_huge_pages_node
[nid
]);
1992 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1993 unsigned long hugetlb_total_pages(void)
1995 struct hstate
*h
= &default_hstate
;
1996 return h
->nr_huge_pages
* pages_per_huge_page(h
);
1999 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2003 spin_lock(&hugetlb_lock
);
2005 * When cpuset is configured, it breaks the strict hugetlb page
2006 * reservation as the accounting is done on a global variable. Such
2007 * reservation is completely rubbish in the presence of cpuset because
2008 * the reservation is not checked against page availability for the
2009 * current cpuset. Application can still potentially OOM'ed by kernel
2010 * with lack of free htlb page in cpuset that the task is in.
2011 * Attempt to enforce strict accounting with cpuset is almost
2012 * impossible (or too ugly) because cpuset is too fluid that
2013 * task or memory node can be dynamically moved between cpusets.
2015 * The change of semantics for shared hugetlb mapping with cpuset is
2016 * undesirable. However, in order to preserve some of the semantics,
2017 * we fall back to check against current free page availability as
2018 * a best attempt and hopefully to minimize the impact of changing
2019 * semantics that cpuset has.
2022 if (gather_surplus_pages(h
, delta
) < 0)
2025 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2026 return_unused_surplus_pages(h
, delta
);
2033 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2036 spin_unlock(&hugetlb_lock
);
2040 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2042 struct resv_map
*reservations
= vma_resv_map(vma
);
2045 * This new VMA should share its siblings reservation map if present.
2046 * The VMA will only ever have a valid reservation map pointer where
2047 * it is being copied for another still existing VMA. As that VMA
2048 * has a reference to the reservation map it cannot dissappear until
2049 * after this open call completes. It is therefore safe to take a
2050 * new reference here without additional locking.
2053 kref_get(&reservations
->refs
);
2056 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2058 struct hstate
*h
= hstate_vma(vma
);
2059 struct resv_map
*reservations
= vma_resv_map(vma
);
2060 unsigned long reserve
;
2061 unsigned long start
;
2065 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2066 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2068 reserve
= (end
- start
) -
2069 region_count(&reservations
->regions
, start
, end
);
2071 kref_put(&reservations
->refs
, resv_map_release
);
2074 hugetlb_acct_memory(h
, -reserve
);
2075 hugetlb_put_quota(vma
->vm_file
->f_mapping
, reserve
);
2081 * We cannot handle pagefaults against hugetlb pages at all. They cause
2082 * handle_mm_fault() to try to instantiate regular-sized pages in the
2083 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2086 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2092 const struct vm_operations_struct hugetlb_vm_ops
= {
2093 .fault
= hugetlb_vm_op_fault
,
2094 .open
= hugetlb_vm_op_open
,
2095 .close
= hugetlb_vm_op_close
,
2098 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2105 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
2107 entry
= huge_pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
2109 entry
= pte_mkyoung(entry
);
2110 entry
= pte_mkhuge(entry
);
2115 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2116 unsigned long address
, pte_t
*ptep
)
2120 entry
= pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep
)));
2121 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
2122 update_mmu_cache(vma
, address
, ptep
);
2127 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2128 struct vm_area_struct
*vma
)
2130 pte_t
*src_pte
, *dst_pte
, entry
;
2131 struct page
*ptepage
;
2134 struct hstate
*h
= hstate_vma(vma
);
2135 unsigned long sz
= huge_page_size(h
);
2137 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2139 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2140 src_pte
= huge_pte_offset(src
, addr
);
2143 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2147 /* If the pagetables are shared don't copy or take references */
2148 if (dst_pte
== src_pte
)
2151 spin_lock(&dst
->page_table_lock
);
2152 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
2153 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
2155 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2156 entry
= huge_ptep_get(src_pte
);
2157 ptepage
= pte_page(entry
);
2159 page_dup_rmap(ptepage
);
2160 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2162 spin_unlock(&src
->page_table_lock
);
2163 spin_unlock(&dst
->page_table_lock
);
2171 static int is_hugetlb_entry_migration(pte_t pte
)
2175 if (huge_pte_none(pte
) || pte_present(pte
))
2177 swp
= pte_to_swp_entry(pte
);
2178 if (non_swap_entry(swp
) && is_migration_entry(swp
)) {
2184 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
2188 if (huge_pte_none(pte
) || pte_present(pte
))
2190 swp
= pte_to_swp_entry(pte
);
2191 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
)) {
2197 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2198 unsigned long end
, struct page
*ref_page
)
2200 struct mm_struct
*mm
= vma
->vm_mm
;
2201 unsigned long address
;
2206 struct hstate
*h
= hstate_vma(vma
);
2207 unsigned long sz
= huge_page_size(h
);
2210 * A page gathering list, protected by per file i_mmap_lock. The
2211 * lock is used to avoid list corruption from multiple unmapping
2212 * of the same page since we are using page->lru.
2214 LIST_HEAD(page_list
);
2216 WARN_ON(!is_vm_hugetlb_page(vma
));
2217 BUG_ON(start
& ~huge_page_mask(h
));
2218 BUG_ON(end
& ~huge_page_mask(h
));
2220 mmu_notifier_invalidate_range_start(mm
, start
, end
);
2221 spin_lock(&mm
->page_table_lock
);
2222 for (address
= start
; address
< end
; address
+= sz
) {
2223 ptep
= huge_pte_offset(mm
, address
);
2227 if (huge_pmd_unshare(mm
, &address
, ptep
))
2231 * If a reference page is supplied, it is because a specific
2232 * page is being unmapped, not a range. Ensure the page we
2233 * are about to unmap is the actual page of interest.
2236 pte
= huge_ptep_get(ptep
);
2237 if (huge_pte_none(pte
))
2239 page
= pte_page(pte
);
2240 if (page
!= ref_page
)
2244 * Mark the VMA as having unmapped its page so that
2245 * future faults in this VMA will fail rather than
2246 * looking like data was lost
2248 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2251 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2252 if (huge_pte_none(pte
))
2256 * HWPoisoned hugepage is already unmapped and dropped reference
2258 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
)))
2261 page
= pte_page(pte
);
2263 set_page_dirty(page
);
2264 list_add(&page
->lru
, &page_list
);
2266 spin_unlock(&mm
->page_table_lock
);
2267 flush_tlb_range(vma
, start
, end
);
2268 mmu_notifier_invalidate_range_end(mm
, start
, end
);
2269 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
2270 page_remove_rmap(page
);
2271 list_del(&page
->lru
);
2276 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2277 unsigned long end
, struct page
*ref_page
)
2279 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2280 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
2281 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2285 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2286 * mappping it owns the reserve page for. The intention is to unmap the page
2287 * from other VMAs and let the children be SIGKILLed if they are faulting the
2290 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2291 struct page
*page
, unsigned long address
)
2293 struct hstate
*h
= hstate_vma(vma
);
2294 struct vm_area_struct
*iter_vma
;
2295 struct address_space
*mapping
;
2296 struct prio_tree_iter iter
;
2300 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2301 * from page cache lookup which is in HPAGE_SIZE units.
2303 address
= address
& huge_page_mask(h
);
2304 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
)
2305 + (vma
->vm_pgoff
>> PAGE_SHIFT
);
2306 mapping
= (struct address_space
*)page_private(page
);
2309 * Take the mapping lock for the duration of the table walk. As
2310 * this mapping should be shared between all the VMAs,
2311 * __unmap_hugepage_range() is called as the lock is already held
2313 spin_lock(&mapping
->i_mmap_lock
);
2314 vma_prio_tree_foreach(iter_vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2315 /* Do not unmap the current VMA */
2316 if (iter_vma
== vma
)
2320 * Unmap the page from other VMAs without their own reserves.
2321 * They get marked to be SIGKILLed if they fault in these
2322 * areas. This is because a future no-page fault on this VMA
2323 * could insert a zeroed page instead of the data existing
2324 * from the time of fork. This would look like data corruption
2326 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2327 __unmap_hugepage_range(iter_vma
,
2328 address
, address
+ huge_page_size(h
),
2331 spin_unlock(&mapping
->i_mmap_lock
);
2337 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2339 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2340 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2341 struct page
*pagecache_page
)
2343 struct hstate
*h
= hstate_vma(vma
);
2344 struct page
*old_page
, *new_page
;
2346 int outside_reserve
= 0;
2348 old_page
= pte_page(pte
);
2351 /* If no-one else is actually using this page, avoid the copy
2352 * and just make the page writable */
2353 avoidcopy
= (page_mapcount(old_page
) == 1);
2355 if (PageAnon(old_page
))
2356 page_move_anon_rmap(old_page
, vma
, address
);
2357 set_huge_ptep_writable(vma
, address
, ptep
);
2362 * If the process that created a MAP_PRIVATE mapping is about to
2363 * perform a COW due to a shared page count, attempt to satisfy
2364 * the allocation without using the existing reserves. The pagecache
2365 * page is used to determine if the reserve at this address was
2366 * consumed or not. If reserves were used, a partial faulted mapping
2367 * at the time of fork() could consume its reserves on COW instead
2368 * of the full address range.
2370 if (!(vma
->vm_flags
& VM_MAYSHARE
) &&
2371 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2372 old_page
!= pagecache_page
)
2373 outside_reserve
= 1;
2375 page_cache_get(old_page
);
2377 /* Drop page_table_lock as buddy allocator may be called */
2378 spin_unlock(&mm
->page_table_lock
);
2379 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2381 if (IS_ERR(new_page
)) {
2382 page_cache_release(old_page
);
2385 * If a process owning a MAP_PRIVATE mapping fails to COW,
2386 * it is due to references held by a child and an insufficient
2387 * huge page pool. To guarantee the original mappers
2388 * reliability, unmap the page from child processes. The child
2389 * may get SIGKILLed if it later faults.
2391 if (outside_reserve
) {
2392 BUG_ON(huge_pte_none(pte
));
2393 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
2394 BUG_ON(page_count(old_page
) != 1);
2395 BUG_ON(huge_pte_none(pte
));
2396 spin_lock(&mm
->page_table_lock
);
2397 goto retry_avoidcopy
;
2402 /* Caller expects lock to be held */
2403 spin_lock(&mm
->page_table_lock
);
2404 return -PTR_ERR(new_page
);
2408 * When the original hugepage is shared one, it does not have
2409 * anon_vma prepared.
2411 if (unlikely(anon_vma_prepare(vma
))) {
2412 /* Caller expects lock to be held */
2413 spin_lock(&mm
->page_table_lock
);
2414 return VM_FAULT_OOM
;
2417 copy_user_huge_page(new_page
, old_page
, address
, vma
,
2418 pages_per_huge_page(h
));
2419 __SetPageUptodate(new_page
);
2422 * Retake the page_table_lock to check for racing updates
2423 * before the page tables are altered
2425 spin_lock(&mm
->page_table_lock
);
2426 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2427 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
2429 mmu_notifier_invalidate_range_start(mm
,
2430 address
& huge_page_mask(h
),
2431 (address
& huge_page_mask(h
)) + huge_page_size(h
));
2432 huge_ptep_clear_flush(vma
, address
, ptep
);
2433 set_huge_pte_at(mm
, address
, ptep
,
2434 make_huge_pte(vma
, new_page
, 1));
2435 page_remove_rmap(old_page
);
2436 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
2437 /* Make the old page be freed below */
2438 new_page
= old_page
;
2439 mmu_notifier_invalidate_range_end(mm
,
2440 address
& huge_page_mask(h
),
2441 (address
& huge_page_mask(h
)) + huge_page_size(h
));
2443 page_cache_release(new_page
);
2444 page_cache_release(old_page
);
2448 /* Return the pagecache page at a given address within a VMA */
2449 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
2450 struct vm_area_struct
*vma
, unsigned long address
)
2452 struct address_space
*mapping
;
2455 mapping
= vma
->vm_file
->f_mapping
;
2456 idx
= vma_hugecache_offset(h
, vma
, address
);
2458 return find_lock_page(mapping
, idx
);
2462 * Return whether there is a pagecache page to back given address within VMA.
2463 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2465 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
2466 struct vm_area_struct
*vma
, unsigned long address
)
2468 struct address_space
*mapping
;
2472 mapping
= vma
->vm_file
->f_mapping
;
2473 idx
= vma_hugecache_offset(h
, vma
, address
);
2475 page
= find_get_page(mapping
, idx
);
2478 return page
!= NULL
;
2481 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2482 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
2484 struct hstate
*h
= hstate_vma(vma
);
2485 int ret
= VM_FAULT_SIGBUS
;
2489 struct address_space
*mapping
;
2493 * Currently, we are forced to kill the process in the event the
2494 * original mapper has unmapped pages from the child due to a failed
2495 * COW. Warn that such a situation has occured as it may not be obvious
2497 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2499 "PID %d killed due to inadequate hugepage pool\n",
2504 mapping
= vma
->vm_file
->f_mapping
;
2505 idx
= vma_hugecache_offset(h
, vma
, address
);
2508 * Use page lock to guard against racing truncation
2509 * before we get page_table_lock.
2512 page
= find_lock_page(mapping
, idx
);
2514 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2517 page
= alloc_huge_page(vma
, address
, 0);
2519 ret
= -PTR_ERR(page
);
2522 clear_huge_page(page
, address
, pages_per_huge_page(h
));
2523 __SetPageUptodate(page
);
2525 if (vma
->vm_flags
& VM_MAYSHARE
) {
2527 struct inode
*inode
= mapping
->host
;
2529 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
2537 spin_lock(&inode
->i_lock
);
2538 inode
->i_blocks
+= blocks_per_huge_page(h
);
2539 spin_unlock(&inode
->i_lock
);
2540 page_dup_rmap(page
);
2543 if (unlikely(anon_vma_prepare(vma
))) {
2545 goto backout_unlocked
;
2547 hugepage_add_new_anon_rmap(page
, vma
, address
);
2551 * If memory error occurs between mmap() and fault, some process
2552 * don't have hwpoisoned swap entry for errored virtual address.
2553 * So we need to block hugepage fault by PG_hwpoison bit check.
2555 if (unlikely(PageHWPoison(page
))) {
2556 ret
= VM_FAULT_HWPOISON
|
2557 VM_FAULT_SET_HINDEX(h
- hstates
);
2558 goto backout_unlocked
;
2560 page_dup_rmap(page
);
2564 * If we are going to COW a private mapping later, we examine the
2565 * pending reservations for this page now. This will ensure that
2566 * any allocations necessary to record that reservation occur outside
2569 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
2570 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2572 goto backout_unlocked
;
2575 spin_lock(&mm
->page_table_lock
);
2576 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2581 if (!huge_pte_none(huge_ptep_get(ptep
)))
2584 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2585 && (vma
->vm_flags
& VM_SHARED
)));
2586 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2588 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
2589 /* Optimization, do the COW without a second fault */
2590 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
2593 spin_unlock(&mm
->page_table_lock
);
2599 spin_unlock(&mm
->page_table_lock
);
2606 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2607 unsigned long address
, unsigned int flags
)
2612 struct page
*page
= NULL
;
2613 struct page
*pagecache_page
= NULL
;
2614 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2615 struct hstate
*h
= hstate_vma(vma
);
2617 ptep
= huge_pte_offset(mm
, address
);
2619 entry
= huge_ptep_get(ptep
);
2620 if (unlikely(is_hugetlb_entry_migration(entry
))) {
2621 migration_entry_wait(mm
, (pmd_t
*)ptep
, address
);
2623 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
2624 return VM_FAULT_HWPOISON_LARGE
|
2625 VM_FAULT_SET_HINDEX(h
- hstates
);
2628 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2630 return VM_FAULT_OOM
;
2633 * Serialize hugepage allocation and instantiation, so that we don't
2634 * get spurious allocation failures if two CPUs race to instantiate
2635 * the same page in the page cache.
2637 mutex_lock(&hugetlb_instantiation_mutex
);
2638 entry
= huge_ptep_get(ptep
);
2639 if (huge_pte_none(entry
)) {
2640 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, flags
);
2647 * If we are going to COW the mapping later, we examine the pending
2648 * reservations for this page now. This will ensure that any
2649 * allocations necessary to record that reservation occur outside the
2650 * spinlock. For private mappings, we also lookup the pagecache
2651 * page now as it is used to determine if a reservation has been
2654 if ((flags
& FAULT_FLAG_WRITE
) && !pte_write(entry
)) {
2655 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2660 if (!(vma
->vm_flags
& VM_MAYSHARE
))
2661 pagecache_page
= hugetlbfs_pagecache_page(h
,
2666 * hugetlb_cow() requires page locks of pte_page(entry) and
2667 * pagecache_page, so here we need take the former one
2668 * when page != pagecache_page or !pagecache_page.
2669 * Note that locking order is always pagecache_page -> page,
2670 * so no worry about deadlock.
2672 page
= pte_page(entry
);
2673 if (page
!= pagecache_page
)
2676 spin_lock(&mm
->page_table_lock
);
2677 /* Check for a racing update before calling hugetlb_cow */
2678 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
2679 goto out_page_table_lock
;
2682 if (flags
& FAULT_FLAG_WRITE
) {
2683 if (!pte_write(entry
)) {
2684 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
2686 goto out_page_table_lock
;
2688 entry
= pte_mkdirty(entry
);
2690 entry
= pte_mkyoung(entry
);
2691 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
2692 flags
& FAULT_FLAG_WRITE
))
2693 update_mmu_cache(vma
, address
, ptep
);
2695 out_page_table_lock
:
2696 spin_unlock(&mm
->page_table_lock
);
2698 if (pagecache_page
) {
2699 unlock_page(pagecache_page
);
2700 put_page(pagecache_page
);
2702 if (page
!= pagecache_page
)
2706 mutex_unlock(&hugetlb_instantiation_mutex
);
2711 /* Can be overriden by architectures */
2712 __attribute__((weak
)) struct page
*
2713 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
2714 pud_t
*pud
, int write
)
2720 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2721 struct page
**pages
, struct vm_area_struct
**vmas
,
2722 unsigned long *position
, int *length
, int i
,
2725 unsigned long pfn_offset
;
2726 unsigned long vaddr
= *position
;
2727 int remainder
= *length
;
2728 struct hstate
*h
= hstate_vma(vma
);
2730 spin_lock(&mm
->page_table_lock
);
2731 while (vaddr
< vma
->vm_end
&& remainder
) {
2737 * Some archs (sparc64, sh*) have multiple pte_ts to
2738 * each hugepage. We have to make sure we get the
2739 * first, for the page indexing below to work.
2741 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
2742 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
2745 * When coredumping, it suits get_dump_page if we just return
2746 * an error where there's an empty slot with no huge pagecache
2747 * to back it. This way, we avoid allocating a hugepage, and
2748 * the sparse dumpfile avoids allocating disk blocks, but its
2749 * huge holes still show up with zeroes where they need to be.
2751 if (absent
&& (flags
& FOLL_DUMP
) &&
2752 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
2758 ((flags
& FOLL_WRITE
) && !pte_write(huge_ptep_get(pte
)))) {
2761 spin_unlock(&mm
->page_table_lock
);
2762 ret
= hugetlb_fault(mm
, vma
, vaddr
,
2763 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
2764 spin_lock(&mm
->page_table_lock
);
2765 if (!(ret
& VM_FAULT_ERROR
))
2772 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
2773 page
= pte_page(huge_ptep_get(pte
));
2776 pages
[i
] = mem_map_offset(page
, pfn_offset
);
2787 if (vaddr
< vma
->vm_end
&& remainder
&&
2788 pfn_offset
< pages_per_huge_page(h
)) {
2790 * We use pfn_offset to avoid touching the pageframes
2791 * of this compound page.
2796 spin_unlock(&mm
->page_table_lock
);
2797 *length
= remainder
;
2800 return i
? i
: -EFAULT
;
2803 void hugetlb_change_protection(struct vm_area_struct
*vma
,
2804 unsigned long address
, unsigned long end
, pgprot_t newprot
)
2806 struct mm_struct
*mm
= vma
->vm_mm
;
2807 unsigned long start
= address
;
2810 struct hstate
*h
= hstate_vma(vma
);
2812 BUG_ON(address
>= end
);
2813 flush_cache_range(vma
, address
, end
);
2815 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2816 spin_lock(&mm
->page_table_lock
);
2817 for (; address
< end
; address
+= huge_page_size(h
)) {
2818 ptep
= huge_pte_offset(mm
, address
);
2821 if (huge_pmd_unshare(mm
, &address
, ptep
))
2823 if (!huge_pte_none(huge_ptep_get(ptep
))) {
2824 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2825 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
2826 set_huge_pte_at(mm
, address
, ptep
, pte
);
2829 spin_unlock(&mm
->page_table_lock
);
2830 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
2832 flush_tlb_range(vma
, start
, end
);
2835 int hugetlb_reserve_pages(struct inode
*inode
,
2837 struct vm_area_struct
*vma
,
2841 struct hstate
*h
= hstate_inode(inode
);
2844 * Only apply hugepage reservation if asked. At fault time, an
2845 * attempt will be made for VM_NORESERVE to allocate a page
2846 * and filesystem quota without using reserves
2848 if (acctflag
& VM_NORESERVE
)
2852 * Shared mappings base their reservation on the number of pages that
2853 * are already allocated on behalf of the file. Private mappings need
2854 * to reserve the full area even if read-only as mprotect() may be
2855 * called to make the mapping read-write. Assume !vma is a shm mapping
2857 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2858 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
2860 struct resv_map
*resv_map
= resv_map_alloc();
2866 set_vma_resv_map(vma
, resv_map
);
2867 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
2873 /* There must be enough filesystem quota for the mapping */
2874 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
2878 * Check enough hugepages are available for the reservation.
2879 * Hand back the quota if there are not
2881 ret
= hugetlb_acct_memory(h
, chg
);
2883 hugetlb_put_quota(inode
->i_mapping
, chg
);
2888 * Account for the reservations made. Shared mappings record regions
2889 * that have reservations as they are shared by multiple VMAs.
2890 * When the last VMA disappears, the region map says how much
2891 * the reservation was and the page cache tells how much of
2892 * the reservation was consumed. Private mappings are per-VMA and
2893 * only the consumed reservations are tracked. When the VMA
2894 * disappears, the original reservation is the VMA size and the
2895 * consumed reservations are stored in the map. Hence, nothing
2896 * else has to be done for private mappings here
2898 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2899 region_add(&inode
->i_mapping
->private_list
, from
, to
);
2903 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
2905 struct hstate
*h
= hstate_inode(inode
);
2906 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
2908 spin_lock(&inode
->i_lock
);
2909 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
2910 spin_unlock(&inode
->i_lock
);
2912 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
2913 hugetlb_acct_memory(h
, -(chg
- freed
));
2916 #ifdef CONFIG_MEMORY_FAILURE
2918 /* Should be called in hugetlb_lock */
2919 static int is_hugepage_on_freelist(struct page
*hpage
)
2923 struct hstate
*h
= page_hstate(hpage
);
2924 int nid
= page_to_nid(hpage
);
2926 list_for_each_entry_safe(page
, tmp
, &h
->hugepage_freelists
[nid
], lru
)
2933 * This function is called from memory failure code.
2934 * Assume the caller holds page lock of the head page.
2936 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
2938 struct hstate
*h
= page_hstate(hpage
);
2939 int nid
= page_to_nid(hpage
);
2942 spin_lock(&hugetlb_lock
);
2943 if (is_hugepage_on_freelist(hpage
)) {
2944 list_del(&hpage
->lru
);
2945 set_page_refcounted(hpage
);
2946 h
->free_huge_pages
--;
2947 h
->free_huge_pages_node
[nid
]--;
2950 spin_unlock(&hugetlb_lock
);