remove init of dev->perm_addr in drivers
[linux-2.6/cjktty.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
blob3e824b8fa83dcef94f59695110a72ffd2dfe7533
1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
27 Contact Information:
28 Intel Linux Wireless <ilw@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
36 #include "ipw2200.h"
37 #include "ipw.h"
40 #ifndef KBUILD_EXTMOD
41 #define VK "k"
42 #else
43 #define VK
44 #endif
46 #ifdef CONFIG_IPW2200_DEBUG
47 #define VD "d"
48 #else
49 #define VD
50 #endif
52 #ifdef CONFIG_IPW2200_MONITOR
53 #define VM "m"
54 #else
55 #define VM
56 #endif
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
59 #define VP "p"
60 #else
61 #define VP
62 #endif
64 #ifdef CONFIG_IPW2200_RADIOTAP
65 #define VR "r"
66 #else
67 #define VR
68 #endif
70 #ifdef CONFIG_IPW2200_QOS
71 #define VQ "q"
72 #else
73 #define VQ
74 #endif
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION IPW2200_VERSION
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
83 MODULE_DESCRIPTION(DRV_DESCRIPTION);
84 MODULE_VERSION(DRV_VERSION);
85 MODULE_AUTHOR(DRV_COPYRIGHT);
86 MODULE_LICENSE("GPL");
87 MODULE_FIRMWARE("ipw2200-ibss.fw");
88 #ifdef CONFIG_IPW2200_MONITOR
89 MODULE_FIRMWARE("ipw2200-sniffer.fw");
90 #endif
91 MODULE_FIRMWARE("ipw2200-bss.fw");
93 static int cmdlog = 0;
94 static int debug = 0;
95 static int default_channel = 0;
96 static int network_mode = 0;
98 static u32 ipw_debug_level;
99 static int associate;
100 static int auto_create = 1;
101 static int led_support = 1;
102 static int disable = 0;
103 static int bt_coexist = 0;
104 static int hwcrypto = 0;
105 static int roaming = 1;
106 static const char ipw_modes[] = {
107 'a', 'b', 'g', '?'
109 static int antenna = CFG_SYS_ANTENNA_BOTH;
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
113 #endif
115 static struct ieee80211_rate ipw2200_rates[] = {
116 { .bitrate = 10 },
117 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
119 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
120 { .bitrate = 60 },
121 { .bitrate = 90 },
122 { .bitrate = 120 },
123 { .bitrate = 180 },
124 { .bitrate = 240 },
125 { .bitrate = 360 },
126 { .bitrate = 480 },
127 { .bitrate = 540 }
130 #define ipw2200_a_rates (ipw2200_rates + 4)
131 #define ipw2200_num_a_rates 8
132 #define ipw2200_bg_rates (ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates 12
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136 * There are certianly some conditions that will break this (like feeding it '30')
137 * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
139 (((x) <= 14) ? \
140 (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
141 ((x) + 1000) * 5)
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable = 0;
145 static int qos_burst_enable = 0;
146 static int qos_no_ack_mask = 0;
147 static int burst_duration_CCK = 0;
148 static int burst_duration_OFDM = 0;
150 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
151 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
152 QOS_TX3_CW_MIN_OFDM},
153 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
154 QOS_TX3_CW_MAX_OFDM},
155 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
158 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
161 static struct libipw_qos_parameters def_qos_parameters_CCK = {
162 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
163 QOS_TX3_CW_MIN_CCK},
164 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
165 QOS_TX3_CW_MAX_CCK},
166 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
167 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
168 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
169 QOS_TX3_TXOP_LIMIT_CCK}
172 static struct libipw_qos_parameters def_parameters_OFDM = {
173 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
174 DEF_TX3_CW_MIN_OFDM},
175 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
176 DEF_TX3_CW_MAX_OFDM},
177 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
180 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
183 static struct libipw_qos_parameters def_parameters_CCK = {
184 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
185 DEF_TX3_CW_MIN_CCK},
186 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
187 DEF_TX3_CW_MAX_CCK},
188 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
189 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
190 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
191 DEF_TX3_TXOP_LIMIT_CCK}
194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
196 static int from_priority_to_tx_queue[] = {
197 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
198 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
204 *qos_param);
205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
206 *qos_param);
207 #endif /* CONFIG_IPW2200_QOS */
209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
210 static void ipw_remove_current_network(struct ipw_priv *priv);
211 static void ipw_rx(struct ipw_priv *priv);
212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
213 struct clx2_tx_queue *txq, int qindex);
214 static int ipw_queue_reset(struct ipw_priv *priv);
216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
217 int len, int sync);
219 static void ipw_tx_queue_free(struct ipw_priv *);
221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv *);
225 static void ipw_bg_up(struct work_struct *work);
226 static void ipw_down(struct ipw_priv *);
227 static void ipw_bg_down(struct work_struct *work);
228 static int ipw_config(struct ipw_priv *);
229 static int init_supported_rates(struct ipw_priv *priv,
230 struct ipw_supported_rates *prates);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
232 static void ipw_send_wep_keys(struct ipw_priv *, int);
234 static int snprint_line(char *buf, size_t count,
235 const u8 * data, u32 len, u32 ofs)
237 int out, i, j, l;
238 char c;
240 out = snprintf(buf, count, "%08X", ofs);
242 for (l = 0, i = 0; i < 2; i++) {
243 out += snprintf(buf + out, count - out, " ");
244 for (j = 0; j < 8 && l < len; j++, l++)
245 out += snprintf(buf + out, count - out, "%02X ",
246 data[(i * 8 + j)]);
247 for (; j < 8; j++)
248 out += snprintf(buf + out, count - out, " ");
251 out += snprintf(buf + out, count - out, " ");
252 for (l = 0, i = 0; i < 2; i++) {
253 out += snprintf(buf + out, count - out, " ");
254 for (j = 0; j < 8 && l < len; j++, l++) {
255 c = data[(i * 8 + j)];
256 if (!isascii(c) || !isprint(c))
257 c = '.';
259 out += snprintf(buf + out, count - out, "%c", c);
262 for (; j < 8; j++)
263 out += snprintf(buf + out, count - out, " ");
266 return out;
269 static void printk_buf(int level, const u8 * data, u32 len)
271 char line[81];
272 u32 ofs = 0;
273 if (!(ipw_debug_level & level))
274 return;
276 while (len) {
277 snprint_line(line, sizeof(line), &data[ofs],
278 min(len, 16U), ofs);
279 printk(KERN_DEBUG "%s\n", line);
280 ofs += 16;
281 len -= min(len, 16U);
285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
287 size_t out = size;
288 u32 ofs = 0;
289 int total = 0;
291 while (size && len) {
292 out = snprint_line(output, size, &data[ofs],
293 min_t(size_t, len, 16U), ofs);
295 ofs += 16;
296 output += out;
297 size -= out;
298 len -= min_t(size_t, len, 16U);
299 total += out;
301 return total;
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
316 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
317 __LINE__, (u32) (b), (u32) (c));
318 _ipw_write_reg8(a, b, c);
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
325 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
326 __LINE__, (u32) (b), (u32) (c));
327 _ipw_write_reg16(a, b, c);
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
334 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
335 __LINE__, (u32) (b), (u32) (c));
336 _ipw_write_reg32(a, b, c);
339 /* 8-bit direct write (low 4K) */
340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
341 u8 val)
343 writeb(val, ipw->hw_base + ofs);
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349 __LINE__, (u32)(ofs), (u32)(val)); \
350 _ipw_write8(ipw, ofs, val); \
351 } while (0)
353 /* 16-bit direct write (low 4K) */
354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
355 u16 val)
357 writew(val, ipw->hw_base + ofs);
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363 __LINE__, (u32)(ofs), (u32)(val)); \
364 _ipw_write16(ipw, ofs, val); \
365 } while (0)
367 /* 32-bit direct write (low 4K) */
368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
369 u32 val)
371 writel(val, ipw->hw_base + ofs);
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377 __LINE__, (u32)(ofs), (u32)(val)); \
378 _ipw_write32(ipw, ofs, val); \
379 } while (0)
381 /* 8-bit direct read (low 4K) */
382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
384 return readb(ipw->hw_base + ofs);
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
390 (u32)(ofs)); \
391 _ipw_read8(ipw, ofs); \
394 /* 16-bit direct read (low 4K) */
395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
397 return readw(ipw->hw_base + ofs);
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
403 (u32)(ofs)); \
404 _ipw_read16(ipw, ofs); \
407 /* 32-bit direct read (low 4K) */
408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
410 return readl(ipw->hw_base + ofs);
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
416 (u32)(ofs)); \
417 _ipw_read32(ipw, ofs); \
420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424 __LINE__, (u32)(b), (u32)(d)); \
425 _ipw_read_indirect(a, b, c, d); \
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
430 int num);
431 #define ipw_write_indirect(a, b, c, d) do { \
432 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433 __LINE__, (u32)(b), (u32)(d)); \
434 _ipw_write_indirect(a, b, c, d); \
435 } while (0)
437 /* 32-bit indirect write (above 4K) */
438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
440 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
441 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
442 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
445 /* 8-bit indirect write (above 4K) */
446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
448 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
449 u32 dif_len = reg - aligned_addr;
451 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
456 /* 16-bit indirect write (above 4K) */
457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
459 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
460 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
462 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
463 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
464 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
467 /* 8-bit indirect read (above 4K) */
468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
470 u32 word;
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
472 IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
473 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
474 return (word >> ((reg & 0x3) * 8)) & 0xff;
477 /* 32-bit indirect read (above 4K) */
478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
480 u32 value;
482 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
484 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
485 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
486 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
487 return value;
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /* for area above 1st 4K of SRAM/reg space */
492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
493 int num)
495 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
496 u32 dif_len = addr - aligned_addr;
497 u32 i;
499 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
501 if (num <= 0) {
502 return;
505 /* Read the first dword (or portion) byte by byte */
506 if (unlikely(dif_len)) {
507 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508 /* Start reading at aligned_addr + dif_len */
509 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
510 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
511 aligned_addr += 4;
514 /* Read all of the middle dwords as dwords, with auto-increment */
515 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
516 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
517 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
519 /* Read the last dword (or portion) byte by byte */
520 if (unlikely(num)) {
521 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
522 for (i = 0; num > 0; i++, num--)
523 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /* for area above 1st 4K of SRAM/reg space */
529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
530 int num)
532 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
533 u32 dif_len = addr - aligned_addr;
534 u32 i;
536 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
538 if (num <= 0) {
539 return;
542 /* Write the first dword (or portion) byte by byte */
543 if (unlikely(dif_len)) {
544 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545 /* Start writing at aligned_addr + dif_len */
546 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
547 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
548 aligned_addr += 4;
551 /* Write all of the middle dwords as dwords, with auto-increment */
552 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
553 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
554 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
556 /* Write the last dword (or portion) byte by byte */
557 if (unlikely(num)) {
558 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
559 for (i = 0; num > 0; i++, num--, buf++)
560 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /* for 1st 4K of SRAM/regs space */
566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
567 int num)
569 memcpy_toio((priv->hw_base + addr), buf, num);
572 /* Set bit(s) in low 4K of SRAM/regs */
573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
575 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
578 /* Clear bit(s) in low 4K of SRAM/regs */
579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
581 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
586 if (priv->status & STATUS_INT_ENABLED)
587 return;
588 priv->status |= STATUS_INT_ENABLED;
589 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
594 if (!(priv->status & STATUS_INT_ENABLED))
595 return;
596 priv->status &= ~STATUS_INT_ENABLED;
597 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
600 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
602 unsigned long flags;
604 spin_lock_irqsave(&priv->irq_lock, flags);
605 __ipw_enable_interrupts(priv);
606 spin_unlock_irqrestore(&priv->irq_lock, flags);
609 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
611 unsigned long flags;
613 spin_lock_irqsave(&priv->irq_lock, flags);
614 __ipw_disable_interrupts(priv);
615 spin_unlock_irqrestore(&priv->irq_lock, flags);
618 static char *ipw_error_desc(u32 val)
620 switch (val) {
621 case IPW_FW_ERROR_OK:
622 return "ERROR_OK";
623 case IPW_FW_ERROR_FAIL:
624 return "ERROR_FAIL";
625 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
626 return "MEMORY_UNDERFLOW";
627 case IPW_FW_ERROR_MEMORY_OVERFLOW:
628 return "MEMORY_OVERFLOW";
629 case IPW_FW_ERROR_BAD_PARAM:
630 return "BAD_PARAM";
631 case IPW_FW_ERROR_BAD_CHECKSUM:
632 return "BAD_CHECKSUM";
633 case IPW_FW_ERROR_NMI_INTERRUPT:
634 return "NMI_INTERRUPT";
635 case IPW_FW_ERROR_BAD_DATABASE:
636 return "BAD_DATABASE";
637 case IPW_FW_ERROR_ALLOC_FAIL:
638 return "ALLOC_FAIL";
639 case IPW_FW_ERROR_DMA_UNDERRUN:
640 return "DMA_UNDERRUN";
641 case IPW_FW_ERROR_DMA_STATUS:
642 return "DMA_STATUS";
643 case IPW_FW_ERROR_DINO_ERROR:
644 return "DINO_ERROR";
645 case IPW_FW_ERROR_EEPROM_ERROR:
646 return "EEPROM_ERROR";
647 case IPW_FW_ERROR_SYSASSERT:
648 return "SYSASSERT";
649 case IPW_FW_ERROR_FATAL_ERROR:
650 return "FATAL_ERROR";
651 default:
652 return "UNKNOWN_ERROR";
656 static void ipw_dump_error_log(struct ipw_priv *priv,
657 struct ipw_fw_error *error)
659 u32 i;
661 if (!error) {
662 IPW_ERROR("Error allocating and capturing error log. "
663 "Nothing to dump.\n");
664 return;
667 IPW_ERROR("Start IPW Error Log Dump:\n");
668 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669 error->status, error->config);
671 for (i = 0; i < error->elem_len; i++)
672 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
673 ipw_error_desc(error->elem[i].desc),
674 error->elem[i].time,
675 error->elem[i].blink1,
676 error->elem[i].blink2,
677 error->elem[i].link1,
678 error->elem[i].link2, error->elem[i].data);
679 for (i = 0; i < error->log_len; i++)
680 IPW_ERROR("%i\t0x%08x\t%i\n",
681 error->log[i].time,
682 error->log[i].data, error->log[i].event);
685 static inline int ipw_is_init(struct ipw_priv *priv)
687 return (priv->status & STATUS_INIT) ? 1 : 0;
690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
692 u32 addr, field_info, field_len, field_count, total_len;
694 IPW_DEBUG_ORD("ordinal = %i\n", ord);
696 if (!priv || !val || !len) {
697 IPW_DEBUG_ORD("Invalid argument\n");
698 return -EINVAL;
701 /* verify device ordinal tables have been initialized */
702 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
703 IPW_DEBUG_ORD("Access ordinals before initialization\n");
704 return -EINVAL;
707 switch (IPW_ORD_TABLE_ID_MASK & ord) {
708 case IPW_ORD_TABLE_0_MASK:
710 * TABLE 0: Direct access to a table of 32 bit values
712 * This is a very simple table with the data directly
713 * read from the table
716 /* remove the table id from the ordinal */
717 ord &= IPW_ORD_TABLE_VALUE_MASK;
719 /* boundary check */
720 if (ord > priv->table0_len) {
721 IPW_DEBUG_ORD("ordinal value (%i) longer then "
722 "max (%i)\n", ord, priv->table0_len);
723 return -EINVAL;
726 /* verify we have enough room to store the value */
727 if (*len < sizeof(u32)) {
728 IPW_DEBUG_ORD("ordinal buffer length too small, "
729 "need %zd\n", sizeof(u32));
730 return -EINVAL;
733 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734 ord, priv->table0_addr + (ord << 2));
736 *len = sizeof(u32);
737 ord <<= 2;
738 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
739 break;
741 case IPW_ORD_TABLE_1_MASK:
743 * TABLE 1: Indirect access to a table of 32 bit values
745 * This is a fairly large table of u32 values each
746 * representing starting addr for the data (which is
747 * also a u32)
750 /* remove the table id from the ordinal */
751 ord &= IPW_ORD_TABLE_VALUE_MASK;
753 /* boundary check */
754 if (ord > priv->table1_len) {
755 IPW_DEBUG_ORD("ordinal value too long\n");
756 return -EINVAL;
759 /* verify we have enough room to store the value */
760 if (*len < sizeof(u32)) {
761 IPW_DEBUG_ORD("ordinal buffer length too small, "
762 "need %zd\n", sizeof(u32));
763 return -EINVAL;
766 *((u32 *) val) =
767 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
768 *len = sizeof(u32);
769 break;
771 case IPW_ORD_TABLE_2_MASK:
773 * TABLE 2: Indirect access to a table of variable sized values
775 * This table consist of six values, each containing
776 * - dword containing the starting offset of the data
777 * - dword containing the lengh in the first 16bits
778 * and the count in the second 16bits
781 /* remove the table id from the ordinal */
782 ord &= IPW_ORD_TABLE_VALUE_MASK;
784 /* boundary check */
785 if (ord > priv->table2_len) {
786 IPW_DEBUG_ORD("ordinal value too long\n");
787 return -EINVAL;
790 /* get the address of statistic */
791 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
793 /* get the second DW of statistics ;
794 * two 16-bit words - first is length, second is count */
795 field_info =
796 ipw_read_reg32(priv,
797 priv->table2_addr + (ord << 3) +
798 sizeof(u32));
800 /* get each entry length */
801 field_len = *((u16 *) & field_info);
803 /* get number of entries */
804 field_count = *(((u16 *) & field_info) + 1);
806 /* abort if not enough memory */
807 total_len = field_len * field_count;
808 if (total_len > *len) {
809 *len = total_len;
810 return -EINVAL;
813 *len = total_len;
814 if (!total_len)
815 return 0;
817 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818 "field_info = 0x%08x\n",
819 addr, total_len, field_info);
820 ipw_read_indirect(priv, addr, val, total_len);
821 break;
823 default:
824 IPW_DEBUG_ORD("Invalid ordinal!\n");
825 return -EINVAL;
829 return 0;
832 static void ipw_init_ordinals(struct ipw_priv *priv)
834 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
835 priv->table0_len = ipw_read32(priv, priv->table0_addr);
837 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838 priv->table0_addr, priv->table0_len);
840 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
841 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
843 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844 priv->table1_addr, priv->table1_len);
846 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
847 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
848 priv->table2_len &= 0x0000ffff; /* use first two bytes */
850 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851 priv->table2_addr, priv->table2_len);
855 static u32 ipw_register_toggle(u32 reg)
857 reg &= ~IPW_START_STANDBY;
858 if (reg & IPW_GATE_ODMA)
859 reg &= ~IPW_GATE_ODMA;
860 if (reg & IPW_GATE_IDMA)
861 reg &= ~IPW_GATE_IDMA;
862 if (reg & IPW_GATE_ADMA)
863 reg &= ~IPW_GATE_ADMA;
864 return reg;
868 * LED behavior:
869 * - On radio ON, turn on any LEDs that require to be on during start
870 * - On initialization, start unassociated blink
871 * - On association, disable unassociated blink
872 * - On disassociation, start unassociated blink
873 * - On radio OFF, turn off any LEDs started during radio on
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
880 static void ipw_led_link_on(struct ipw_priv *priv)
882 unsigned long flags;
883 u32 led;
885 /* If configured to not use LEDs, or nic_type is 1,
886 * then we don't toggle a LINK led */
887 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
888 return;
890 spin_lock_irqsave(&priv->lock, flags);
892 if (!(priv->status & STATUS_RF_KILL_MASK) &&
893 !(priv->status & STATUS_LED_LINK_ON)) {
894 IPW_DEBUG_LED("Link LED On\n");
895 led = ipw_read_reg32(priv, IPW_EVENT_REG);
896 led |= priv->led_association_on;
898 led = ipw_register_toggle(led);
900 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
901 ipw_write_reg32(priv, IPW_EVENT_REG, led);
903 priv->status |= STATUS_LED_LINK_ON;
905 /* If we aren't associated, schedule turning the LED off */
906 if (!(priv->status & STATUS_ASSOCIATED))
907 schedule_delayed_work(&priv->led_link_off,
908 LD_TIME_LINK_ON);
911 spin_unlock_irqrestore(&priv->lock, flags);
914 static void ipw_bg_led_link_on(struct work_struct *work)
916 struct ipw_priv *priv =
917 container_of(work, struct ipw_priv, led_link_on.work);
918 mutex_lock(&priv->mutex);
919 ipw_led_link_on(priv);
920 mutex_unlock(&priv->mutex);
923 static void ipw_led_link_off(struct ipw_priv *priv)
925 unsigned long flags;
926 u32 led;
928 /* If configured not to use LEDs, or nic type is 1,
929 * then we don't goggle the LINK led. */
930 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
931 return;
933 spin_lock_irqsave(&priv->lock, flags);
935 if (priv->status & STATUS_LED_LINK_ON) {
936 led = ipw_read_reg32(priv, IPW_EVENT_REG);
937 led &= priv->led_association_off;
938 led = ipw_register_toggle(led);
940 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
941 ipw_write_reg32(priv, IPW_EVENT_REG, led);
943 IPW_DEBUG_LED("Link LED Off\n");
945 priv->status &= ~STATUS_LED_LINK_ON;
947 /* If we aren't associated and the radio is on, schedule
948 * turning the LED on (blink while unassociated) */
949 if (!(priv->status & STATUS_RF_KILL_MASK) &&
950 !(priv->status & STATUS_ASSOCIATED))
951 schedule_delayed_work(&priv->led_link_on,
952 LD_TIME_LINK_OFF);
956 spin_unlock_irqrestore(&priv->lock, flags);
959 static void ipw_bg_led_link_off(struct work_struct *work)
961 struct ipw_priv *priv =
962 container_of(work, struct ipw_priv, led_link_off.work);
963 mutex_lock(&priv->mutex);
964 ipw_led_link_off(priv);
965 mutex_unlock(&priv->mutex);
968 static void __ipw_led_activity_on(struct ipw_priv *priv)
970 u32 led;
972 if (priv->config & CFG_NO_LED)
973 return;
975 if (priv->status & STATUS_RF_KILL_MASK)
976 return;
978 if (!(priv->status & STATUS_LED_ACT_ON)) {
979 led = ipw_read_reg32(priv, IPW_EVENT_REG);
980 led |= priv->led_activity_on;
982 led = ipw_register_toggle(led);
984 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
985 ipw_write_reg32(priv, IPW_EVENT_REG, led);
987 IPW_DEBUG_LED("Activity LED On\n");
989 priv->status |= STATUS_LED_ACT_ON;
991 cancel_delayed_work(&priv->led_act_off);
992 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
993 } else {
994 /* Reschedule LED off for full time period */
995 cancel_delayed_work(&priv->led_act_off);
996 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
1000 #if 0
1001 void ipw_led_activity_on(struct ipw_priv *priv)
1003 unsigned long flags;
1004 spin_lock_irqsave(&priv->lock, flags);
1005 __ipw_led_activity_on(priv);
1006 spin_unlock_irqrestore(&priv->lock, flags);
1008 #endif /* 0 */
1010 static void ipw_led_activity_off(struct ipw_priv *priv)
1012 unsigned long flags;
1013 u32 led;
1015 if (priv->config & CFG_NO_LED)
1016 return;
1018 spin_lock_irqsave(&priv->lock, flags);
1020 if (priv->status & STATUS_LED_ACT_ON) {
1021 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1022 led &= priv->led_activity_off;
1024 led = ipw_register_toggle(led);
1026 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1027 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1029 IPW_DEBUG_LED("Activity LED Off\n");
1031 priv->status &= ~STATUS_LED_ACT_ON;
1034 spin_unlock_irqrestore(&priv->lock, flags);
1037 static void ipw_bg_led_activity_off(struct work_struct *work)
1039 struct ipw_priv *priv =
1040 container_of(work, struct ipw_priv, led_act_off.work);
1041 mutex_lock(&priv->mutex);
1042 ipw_led_activity_off(priv);
1043 mutex_unlock(&priv->mutex);
1046 static void ipw_led_band_on(struct ipw_priv *priv)
1048 unsigned long flags;
1049 u32 led;
1051 /* Only nic type 1 supports mode LEDs */
1052 if (priv->config & CFG_NO_LED ||
1053 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1054 return;
1056 spin_lock_irqsave(&priv->lock, flags);
1058 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1059 if (priv->assoc_network->mode == IEEE_A) {
1060 led |= priv->led_ofdm_on;
1061 led &= priv->led_association_off;
1062 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063 } else if (priv->assoc_network->mode == IEEE_G) {
1064 led |= priv->led_ofdm_on;
1065 led |= priv->led_association_on;
1066 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1067 } else {
1068 led &= priv->led_ofdm_off;
1069 led |= priv->led_association_on;
1070 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1073 led = ipw_register_toggle(led);
1075 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1076 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1078 spin_unlock_irqrestore(&priv->lock, flags);
1081 static void ipw_led_band_off(struct ipw_priv *priv)
1083 unsigned long flags;
1084 u32 led;
1086 /* Only nic type 1 supports mode LEDs */
1087 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1088 return;
1090 spin_lock_irqsave(&priv->lock, flags);
1092 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1093 led &= priv->led_ofdm_off;
1094 led &= priv->led_association_off;
1096 led = ipw_register_toggle(led);
1098 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1099 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1101 spin_unlock_irqrestore(&priv->lock, flags);
1104 static void ipw_led_radio_on(struct ipw_priv *priv)
1106 ipw_led_link_on(priv);
1109 static void ipw_led_radio_off(struct ipw_priv *priv)
1111 ipw_led_activity_off(priv);
1112 ipw_led_link_off(priv);
1115 static void ipw_led_link_up(struct ipw_priv *priv)
1117 /* Set the Link Led on for all nic types */
1118 ipw_led_link_on(priv);
1121 static void ipw_led_link_down(struct ipw_priv *priv)
1123 ipw_led_activity_off(priv);
1124 ipw_led_link_off(priv);
1126 if (priv->status & STATUS_RF_KILL_MASK)
1127 ipw_led_radio_off(priv);
1130 static void ipw_led_init(struct ipw_priv *priv)
1132 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1134 /* Set the default PINs for the link and activity leds */
1135 priv->led_activity_on = IPW_ACTIVITY_LED;
1136 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1138 priv->led_association_on = IPW_ASSOCIATED_LED;
1139 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1141 /* Set the default PINs for the OFDM leds */
1142 priv->led_ofdm_on = IPW_OFDM_LED;
1143 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1145 switch (priv->nic_type) {
1146 case EEPROM_NIC_TYPE_1:
1147 /* In this NIC type, the LEDs are reversed.... */
1148 priv->led_activity_on = IPW_ASSOCIATED_LED;
1149 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1150 priv->led_association_on = IPW_ACTIVITY_LED;
1151 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1153 if (!(priv->config & CFG_NO_LED))
1154 ipw_led_band_on(priv);
1156 /* And we don't blink link LEDs for this nic, so
1157 * just return here */
1158 return;
1160 case EEPROM_NIC_TYPE_3:
1161 case EEPROM_NIC_TYPE_2:
1162 case EEPROM_NIC_TYPE_4:
1163 case EEPROM_NIC_TYPE_0:
1164 break;
1166 default:
1167 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1168 priv->nic_type);
1169 priv->nic_type = EEPROM_NIC_TYPE_0;
1170 break;
1173 if (!(priv->config & CFG_NO_LED)) {
1174 if (priv->status & STATUS_ASSOCIATED)
1175 ipw_led_link_on(priv);
1176 else
1177 ipw_led_link_off(priv);
1181 static void ipw_led_shutdown(struct ipw_priv *priv)
1183 ipw_led_activity_off(priv);
1184 ipw_led_link_off(priv);
1185 ipw_led_band_off(priv);
1186 cancel_delayed_work(&priv->led_link_on);
1187 cancel_delayed_work(&priv->led_link_off);
1188 cancel_delayed_work(&priv->led_act_off);
1192 * The following adds a new attribute to the sysfs representation
1193 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194 * used for controlling the debug level.
1196 * See the level definitions in ipw for details.
1198 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1200 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1203 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1204 size_t count)
1206 char *p = (char *)buf;
1207 u32 val;
1209 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1210 p++;
1211 if (p[0] == 'x' || p[0] == 'X')
1212 p++;
1213 val = simple_strtoul(p, &p, 16);
1214 } else
1215 val = simple_strtoul(p, &p, 10);
1216 if (p == buf)
1217 printk(KERN_INFO DRV_NAME
1218 ": %s is not in hex or decimal form.\n", buf);
1219 else
1220 ipw_debug_level = val;
1222 return strnlen(buf, count);
1225 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1226 show_debug_level, store_debug_level);
1228 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1230 /* length = 1st dword in log */
1231 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1234 static void ipw_capture_event_log(struct ipw_priv *priv,
1235 u32 log_len, struct ipw_event *log)
1237 u32 base;
1239 if (log_len) {
1240 base = ipw_read32(priv, IPW_EVENT_LOG);
1241 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1242 (u8 *) log, sizeof(*log) * log_len);
1246 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1248 struct ipw_fw_error *error;
1249 u32 log_len = ipw_get_event_log_len(priv);
1250 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1251 u32 elem_len = ipw_read_reg32(priv, base);
1253 error = kmalloc(sizeof(*error) +
1254 sizeof(*error->elem) * elem_len +
1255 sizeof(*error->log) * log_len, GFP_ATOMIC);
1256 if (!error) {
1257 IPW_ERROR("Memory allocation for firmware error log "
1258 "failed.\n");
1259 return NULL;
1261 error->jiffies = jiffies;
1262 error->status = priv->status;
1263 error->config = priv->config;
1264 error->elem_len = elem_len;
1265 error->log_len = log_len;
1266 error->elem = (struct ipw_error_elem *)error->payload;
1267 error->log = (struct ipw_event *)(error->elem + elem_len);
1269 ipw_capture_event_log(priv, log_len, error->log);
1271 if (elem_len)
1272 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1273 sizeof(*error->elem) * elem_len);
1275 return error;
1278 static ssize_t show_event_log(struct device *d,
1279 struct device_attribute *attr, char *buf)
1281 struct ipw_priv *priv = dev_get_drvdata(d);
1282 u32 log_len = ipw_get_event_log_len(priv);
1283 u32 log_size;
1284 struct ipw_event *log;
1285 u32 len = 0, i;
1287 /* not using min() because of its strict type checking */
1288 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1289 sizeof(*log) * log_len : PAGE_SIZE;
1290 log = kzalloc(log_size, GFP_KERNEL);
1291 if (!log) {
1292 IPW_ERROR("Unable to allocate memory for log\n");
1293 return 0;
1295 log_len = log_size / sizeof(*log);
1296 ipw_capture_event_log(priv, log_len, log);
1298 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1299 for (i = 0; i < log_len; i++)
1300 len += snprintf(buf + len, PAGE_SIZE - len,
1301 "\n%08X%08X%08X",
1302 log[i].time, log[i].event, log[i].data);
1303 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1304 kfree(log);
1305 return len;
1308 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1310 static ssize_t show_error(struct device *d,
1311 struct device_attribute *attr, char *buf)
1313 struct ipw_priv *priv = dev_get_drvdata(d);
1314 u32 len = 0, i;
1315 if (!priv->error)
1316 return 0;
1317 len += snprintf(buf + len, PAGE_SIZE - len,
1318 "%08lX%08X%08X%08X",
1319 priv->error->jiffies,
1320 priv->error->status,
1321 priv->error->config, priv->error->elem_len);
1322 for (i = 0; i < priv->error->elem_len; i++)
1323 len += snprintf(buf + len, PAGE_SIZE - len,
1324 "\n%08X%08X%08X%08X%08X%08X%08X",
1325 priv->error->elem[i].time,
1326 priv->error->elem[i].desc,
1327 priv->error->elem[i].blink1,
1328 priv->error->elem[i].blink2,
1329 priv->error->elem[i].link1,
1330 priv->error->elem[i].link2,
1331 priv->error->elem[i].data);
1333 len += snprintf(buf + len, PAGE_SIZE - len,
1334 "\n%08X", priv->error->log_len);
1335 for (i = 0; i < priv->error->log_len; i++)
1336 len += snprintf(buf + len, PAGE_SIZE - len,
1337 "\n%08X%08X%08X",
1338 priv->error->log[i].time,
1339 priv->error->log[i].event,
1340 priv->error->log[i].data);
1341 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1342 return len;
1345 static ssize_t clear_error(struct device *d,
1346 struct device_attribute *attr,
1347 const char *buf, size_t count)
1349 struct ipw_priv *priv = dev_get_drvdata(d);
1351 kfree(priv->error);
1352 priv->error = NULL;
1353 return count;
1356 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1358 static ssize_t show_cmd_log(struct device *d,
1359 struct device_attribute *attr, char *buf)
1361 struct ipw_priv *priv = dev_get_drvdata(d);
1362 u32 len = 0, i;
1363 if (!priv->cmdlog)
1364 return 0;
1365 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1366 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1367 i = (i + 1) % priv->cmdlog_len) {
1368 len +=
1369 snprintf(buf + len, PAGE_SIZE - len,
1370 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1371 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1372 priv->cmdlog[i].cmd.len);
1373 len +=
1374 snprintk_buf(buf + len, PAGE_SIZE - len,
1375 (u8 *) priv->cmdlog[i].cmd.param,
1376 priv->cmdlog[i].cmd.len);
1377 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1379 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1380 return len;
1383 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1385 #ifdef CONFIG_IPW2200_PROMISCUOUS
1386 static void ipw_prom_free(struct ipw_priv *priv);
1387 static int ipw_prom_alloc(struct ipw_priv *priv);
1388 static ssize_t store_rtap_iface(struct device *d,
1389 struct device_attribute *attr,
1390 const char *buf, size_t count)
1392 struct ipw_priv *priv = dev_get_drvdata(d);
1393 int rc = 0;
1395 if (count < 1)
1396 return -EINVAL;
1398 switch (buf[0]) {
1399 case '0':
1400 if (!rtap_iface)
1401 return count;
1403 if (netif_running(priv->prom_net_dev)) {
1404 IPW_WARNING("Interface is up. Cannot unregister.\n");
1405 return count;
1408 ipw_prom_free(priv);
1409 rtap_iface = 0;
1410 break;
1412 case '1':
1413 if (rtap_iface)
1414 return count;
1416 rc = ipw_prom_alloc(priv);
1417 if (!rc)
1418 rtap_iface = 1;
1419 break;
1421 default:
1422 return -EINVAL;
1425 if (rc) {
1426 IPW_ERROR("Failed to register promiscuous network "
1427 "device (error %d).\n", rc);
1430 return count;
1433 static ssize_t show_rtap_iface(struct device *d,
1434 struct device_attribute *attr,
1435 char *buf)
1437 struct ipw_priv *priv = dev_get_drvdata(d);
1438 if (rtap_iface)
1439 return sprintf(buf, "%s", priv->prom_net_dev->name);
1440 else {
1441 buf[0] = '-';
1442 buf[1] = '1';
1443 buf[2] = '\0';
1444 return 3;
1448 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1449 store_rtap_iface);
1451 static ssize_t store_rtap_filter(struct device *d,
1452 struct device_attribute *attr,
1453 const char *buf, size_t count)
1455 struct ipw_priv *priv = dev_get_drvdata(d);
1457 if (!priv->prom_priv) {
1458 IPW_ERROR("Attempting to set filter without "
1459 "rtap_iface enabled.\n");
1460 return -EPERM;
1463 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1465 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1466 BIT_ARG16(priv->prom_priv->filter));
1468 return count;
1471 static ssize_t show_rtap_filter(struct device *d,
1472 struct device_attribute *attr,
1473 char *buf)
1475 struct ipw_priv *priv = dev_get_drvdata(d);
1476 return sprintf(buf, "0x%04X",
1477 priv->prom_priv ? priv->prom_priv->filter : 0);
1480 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1481 store_rtap_filter);
1482 #endif
1484 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1485 char *buf)
1487 struct ipw_priv *priv = dev_get_drvdata(d);
1488 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1491 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1492 const char *buf, size_t count)
1494 struct ipw_priv *priv = dev_get_drvdata(d);
1495 struct net_device *dev = priv->net_dev;
1496 char buffer[] = "00000000";
1497 unsigned long len =
1498 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1499 unsigned long val;
1500 char *p = buffer;
1502 IPW_DEBUG_INFO("enter\n");
1504 strncpy(buffer, buf, len);
1505 buffer[len] = 0;
1507 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1508 p++;
1509 if (p[0] == 'x' || p[0] == 'X')
1510 p++;
1511 val = simple_strtoul(p, &p, 16);
1512 } else
1513 val = simple_strtoul(p, &p, 10);
1514 if (p == buffer) {
1515 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1516 } else {
1517 priv->ieee->scan_age = val;
1518 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1521 IPW_DEBUG_INFO("exit\n");
1522 return len;
1525 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1527 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1528 char *buf)
1530 struct ipw_priv *priv = dev_get_drvdata(d);
1531 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1534 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1535 const char *buf, size_t count)
1537 struct ipw_priv *priv = dev_get_drvdata(d);
1539 IPW_DEBUG_INFO("enter\n");
1541 if (count == 0)
1542 return 0;
1544 if (*buf == 0) {
1545 IPW_DEBUG_LED("Disabling LED control.\n");
1546 priv->config |= CFG_NO_LED;
1547 ipw_led_shutdown(priv);
1548 } else {
1549 IPW_DEBUG_LED("Enabling LED control.\n");
1550 priv->config &= ~CFG_NO_LED;
1551 ipw_led_init(priv);
1554 IPW_DEBUG_INFO("exit\n");
1555 return count;
1558 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1560 static ssize_t show_status(struct device *d,
1561 struct device_attribute *attr, char *buf)
1563 struct ipw_priv *p = dev_get_drvdata(d);
1564 return sprintf(buf, "0x%08x\n", (int)p->status);
1567 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1569 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1570 char *buf)
1572 struct ipw_priv *p = dev_get_drvdata(d);
1573 return sprintf(buf, "0x%08x\n", (int)p->config);
1576 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1578 static ssize_t show_nic_type(struct device *d,
1579 struct device_attribute *attr, char *buf)
1581 struct ipw_priv *priv = dev_get_drvdata(d);
1582 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1585 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1587 static ssize_t show_ucode_version(struct device *d,
1588 struct device_attribute *attr, char *buf)
1590 u32 len = sizeof(u32), tmp = 0;
1591 struct ipw_priv *p = dev_get_drvdata(d);
1593 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1594 return 0;
1596 return sprintf(buf, "0x%08x\n", tmp);
1599 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1601 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1602 char *buf)
1604 u32 len = sizeof(u32), tmp = 0;
1605 struct ipw_priv *p = dev_get_drvdata(d);
1607 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1608 return 0;
1610 return sprintf(buf, "0x%08x\n", tmp);
1613 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1616 * Add a device attribute to view/control the delay between eeprom
1617 * operations.
1619 static ssize_t show_eeprom_delay(struct device *d,
1620 struct device_attribute *attr, char *buf)
1622 struct ipw_priv *p = dev_get_drvdata(d);
1623 int n = p->eeprom_delay;
1624 return sprintf(buf, "%i\n", n);
1626 static ssize_t store_eeprom_delay(struct device *d,
1627 struct device_attribute *attr,
1628 const char *buf, size_t count)
1630 struct ipw_priv *p = dev_get_drvdata(d);
1631 sscanf(buf, "%i", &p->eeprom_delay);
1632 return strnlen(buf, count);
1635 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1636 show_eeprom_delay, store_eeprom_delay);
1638 static ssize_t show_command_event_reg(struct device *d,
1639 struct device_attribute *attr, char *buf)
1641 u32 reg = 0;
1642 struct ipw_priv *p = dev_get_drvdata(d);
1644 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1645 return sprintf(buf, "0x%08x\n", reg);
1647 static ssize_t store_command_event_reg(struct device *d,
1648 struct device_attribute *attr,
1649 const char *buf, size_t count)
1651 u32 reg;
1652 struct ipw_priv *p = dev_get_drvdata(d);
1654 sscanf(buf, "%x", &reg);
1655 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1656 return strnlen(buf, count);
1659 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1660 show_command_event_reg, store_command_event_reg);
1662 static ssize_t show_mem_gpio_reg(struct device *d,
1663 struct device_attribute *attr, char *buf)
1665 u32 reg = 0;
1666 struct ipw_priv *p = dev_get_drvdata(d);
1668 reg = ipw_read_reg32(p, 0x301100);
1669 return sprintf(buf, "0x%08x\n", reg);
1671 static ssize_t store_mem_gpio_reg(struct device *d,
1672 struct device_attribute *attr,
1673 const char *buf, size_t count)
1675 u32 reg;
1676 struct ipw_priv *p = dev_get_drvdata(d);
1678 sscanf(buf, "%x", &reg);
1679 ipw_write_reg32(p, 0x301100, reg);
1680 return strnlen(buf, count);
1683 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1684 show_mem_gpio_reg, store_mem_gpio_reg);
1686 static ssize_t show_indirect_dword(struct device *d,
1687 struct device_attribute *attr, char *buf)
1689 u32 reg = 0;
1690 struct ipw_priv *priv = dev_get_drvdata(d);
1692 if (priv->status & STATUS_INDIRECT_DWORD)
1693 reg = ipw_read_reg32(priv, priv->indirect_dword);
1694 else
1695 reg = 0;
1697 return sprintf(buf, "0x%08x\n", reg);
1699 static ssize_t store_indirect_dword(struct device *d,
1700 struct device_attribute *attr,
1701 const char *buf, size_t count)
1703 struct ipw_priv *priv = dev_get_drvdata(d);
1705 sscanf(buf, "%x", &priv->indirect_dword);
1706 priv->status |= STATUS_INDIRECT_DWORD;
1707 return strnlen(buf, count);
1710 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1711 show_indirect_dword, store_indirect_dword);
1713 static ssize_t show_indirect_byte(struct device *d,
1714 struct device_attribute *attr, char *buf)
1716 u8 reg = 0;
1717 struct ipw_priv *priv = dev_get_drvdata(d);
1719 if (priv->status & STATUS_INDIRECT_BYTE)
1720 reg = ipw_read_reg8(priv, priv->indirect_byte);
1721 else
1722 reg = 0;
1724 return sprintf(buf, "0x%02x\n", reg);
1726 static ssize_t store_indirect_byte(struct device *d,
1727 struct device_attribute *attr,
1728 const char *buf, size_t count)
1730 struct ipw_priv *priv = dev_get_drvdata(d);
1732 sscanf(buf, "%x", &priv->indirect_byte);
1733 priv->status |= STATUS_INDIRECT_BYTE;
1734 return strnlen(buf, count);
1737 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1738 show_indirect_byte, store_indirect_byte);
1740 static ssize_t show_direct_dword(struct device *d,
1741 struct device_attribute *attr, char *buf)
1743 u32 reg = 0;
1744 struct ipw_priv *priv = dev_get_drvdata(d);
1746 if (priv->status & STATUS_DIRECT_DWORD)
1747 reg = ipw_read32(priv, priv->direct_dword);
1748 else
1749 reg = 0;
1751 return sprintf(buf, "0x%08x\n", reg);
1753 static ssize_t store_direct_dword(struct device *d,
1754 struct device_attribute *attr,
1755 const char *buf, size_t count)
1757 struct ipw_priv *priv = dev_get_drvdata(d);
1759 sscanf(buf, "%x", &priv->direct_dword);
1760 priv->status |= STATUS_DIRECT_DWORD;
1761 return strnlen(buf, count);
1764 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1765 show_direct_dword, store_direct_dword);
1767 static int rf_kill_active(struct ipw_priv *priv)
1769 if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1770 priv->status |= STATUS_RF_KILL_HW;
1771 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1772 } else {
1773 priv->status &= ~STATUS_RF_KILL_HW;
1774 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1777 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1780 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1781 char *buf)
1783 /* 0 - RF kill not enabled
1784 1 - SW based RF kill active (sysfs)
1785 2 - HW based RF kill active
1786 3 - Both HW and SW baed RF kill active */
1787 struct ipw_priv *priv = dev_get_drvdata(d);
1788 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1789 (rf_kill_active(priv) ? 0x2 : 0x0);
1790 return sprintf(buf, "%i\n", val);
1793 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1795 if ((disable_radio ? 1 : 0) ==
1796 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1797 return 0;
1799 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1800 disable_radio ? "OFF" : "ON");
1802 if (disable_radio) {
1803 priv->status |= STATUS_RF_KILL_SW;
1805 cancel_delayed_work(&priv->request_scan);
1806 cancel_delayed_work(&priv->request_direct_scan);
1807 cancel_delayed_work(&priv->request_passive_scan);
1808 cancel_delayed_work(&priv->scan_event);
1809 schedule_work(&priv->down);
1810 } else {
1811 priv->status &= ~STATUS_RF_KILL_SW;
1812 if (rf_kill_active(priv)) {
1813 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1814 "disabled by HW switch\n");
1815 /* Make sure the RF_KILL check timer is running */
1816 cancel_delayed_work(&priv->rf_kill);
1817 schedule_delayed_work(&priv->rf_kill,
1818 round_jiffies_relative(2 * HZ));
1819 } else
1820 schedule_work(&priv->up);
1823 return 1;
1826 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1827 const char *buf, size_t count)
1829 struct ipw_priv *priv = dev_get_drvdata(d);
1831 ipw_radio_kill_sw(priv, buf[0] == '1');
1833 return count;
1836 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1838 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1839 char *buf)
1841 struct ipw_priv *priv = dev_get_drvdata(d);
1842 int pos = 0, len = 0;
1843 if (priv->config & CFG_SPEED_SCAN) {
1844 while (priv->speed_scan[pos] != 0)
1845 len += sprintf(&buf[len], "%d ",
1846 priv->speed_scan[pos++]);
1847 return len + sprintf(&buf[len], "\n");
1850 return sprintf(buf, "0\n");
1853 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1854 const char *buf, size_t count)
1856 struct ipw_priv *priv = dev_get_drvdata(d);
1857 int channel, pos = 0;
1858 const char *p = buf;
1860 /* list of space separated channels to scan, optionally ending with 0 */
1861 while ((channel = simple_strtol(p, NULL, 0))) {
1862 if (pos == MAX_SPEED_SCAN - 1) {
1863 priv->speed_scan[pos] = 0;
1864 break;
1867 if (libipw_is_valid_channel(priv->ieee, channel))
1868 priv->speed_scan[pos++] = channel;
1869 else
1870 IPW_WARNING("Skipping invalid channel request: %d\n",
1871 channel);
1872 p = strchr(p, ' ');
1873 if (!p)
1874 break;
1875 while (*p == ' ' || *p == '\t')
1876 p++;
1879 if (pos == 0)
1880 priv->config &= ~CFG_SPEED_SCAN;
1881 else {
1882 priv->speed_scan_pos = 0;
1883 priv->config |= CFG_SPEED_SCAN;
1886 return count;
1889 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1890 store_speed_scan);
1892 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1893 char *buf)
1895 struct ipw_priv *priv = dev_get_drvdata(d);
1896 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1899 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1900 const char *buf, size_t count)
1902 struct ipw_priv *priv = dev_get_drvdata(d);
1903 if (buf[0] == '1')
1904 priv->config |= CFG_NET_STATS;
1905 else
1906 priv->config &= ~CFG_NET_STATS;
1908 return count;
1911 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1912 show_net_stats, store_net_stats);
1914 static ssize_t show_channels(struct device *d,
1915 struct device_attribute *attr,
1916 char *buf)
1918 struct ipw_priv *priv = dev_get_drvdata(d);
1919 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1920 int len = 0, i;
1922 len = sprintf(&buf[len],
1923 "Displaying %d channels in 2.4Ghz band "
1924 "(802.11bg):\n", geo->bg_channels);
1926 for (i = 0; i < geo->bg_channels; i++) {
1927 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1928 geo->bg[i].channel,
1929 geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1930 " (radar spectrum)" : "",
1931 ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1932 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1933 ? "" : ", IBSS",
1934 geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1935 "passive only" : "active/passive",
1936 geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1937 "B" : "B/G");
1940 len += sprintf(&buf[len],
1941 "Displaying %d channels in 5.2Ghz band "
1942 "(802.11a):\n", geo->a_channels);
1943 for (i = 0; i < geo->a_channels; i++) {
1944 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1945 geo->a[i].channel,
1946 geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1947 " (radar spectrum)" : "",
1948 ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1949 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1950 ? "" : ", IBSS",
1951 geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1952 "passive only" : "active/passive");
1955 return len;
1958 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1960 static void notify_wx_assoc_event(struct ipw_priv *priv)
1962 union iwreq_data wrqu;
1963 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1964 if (priv->status & STATUS_ASSOCIATED)
1965 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1966 else
1967 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1968 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1971 static void ipw_irq_tasklet(struct ipw_priv *priv)
1973 u32 inta, inta_mask, handled = 0;
1974 unsigned long flags;
1975 int rc = 0;
1977 spin_lock_irqsave(&priv->irq_lock, flags);
1979 inta = ipw_read32(priv, IPW_INTA_RW);
1980 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1982 if (inta == 0xFFFFFFFF) {
1983 /* Hardware disappeared */
1984 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1985 /* Only handle the cached INTA values */
1986 inta = 0;
1988 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1990 /* Add any cached INTA values that need to be handled */
1991 inta |= priv->isr_inta;
1993 spin_unlock_irqrestore(&priv->irq_lock, flags);
1995 spin_lock_irqsave(&priv->lock, flags);
1997 /* handle all the justifications for the interrupt */
1998 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1999 ipw_rx(priv);
2000 handled |= IPW_INTA_BIT_RX_TRANSFER;
2003 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
2004 IPW_DEBUG_HC("Command completed.\n");
2005 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
2006 priv->status &= ~STATUS_HCMD_ACTIVE;
2007 wake_up_interruptible(&priv->wait_command_queue);
2008 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
2011 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2012 IPW_DEBUG_TX("TX_QUEUE_1\n");
2013 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2014 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2017 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2018 IPW_DEBUG_TX("TX_QUEUE_2\n");
2019 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2020 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2023 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2024 IPW_DEBUG_TX("TX_QUEUE_3\n");
2025 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2026 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2029 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2030 IPW_DEBUG_TX("TX_QUEUE_4\n");
2031 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2032 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2035 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2036 IPW_WARNING("STATUS_CHANGE\n");
2037 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2040 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2041 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2042 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2045 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2046 IPW_WARNING("HOST_CMD_DONE\n");
2047 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2050 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2051 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2052 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2055 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2056 IPW_WARNING("PHY_OFF_DONE\n");
2057 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2060 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2061 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2062 priv->status |= STATUS_RF_KILL_HW;
2063 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2064 wake_up_interruptible(&priv->wait_command_queue);
2065 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2066 cancel_delayed_work(&priv->request_scan);
2067 cancel_delayed_work(&priv->request_direct_scan);
2068 cancel_delayed_work(&priv->request_passive_scan);
2069 cancel_delayed_work(&priv->scan_event);
2070 schedule_work(&priv->link_down);
2071 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2072 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2075 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2076 IPW_WARNING("Firmware error detected. Restarting.\n");
2077 if (priv->error) {
2078 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2079 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2080 struct ipw_fw_error *error =
2081 ipw_alloc_error_log(priv);
2082 ipw_dump_error_log(priv, error);
2083 kfree(error);
2085 } else {
2086 priv->error = ipw_alloc_error_log(priv);
2087 if (priv->error)
2088 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2089 else
2090 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2091 "log.\n");
2092 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2093 ipw_dump_error_log(priv, priv->error);
2096 /* XXX: If hardware encryption is for WPA/WPA2,
2097 * we have to notify the supplicant. */
2098 if (priv->ieee->sec.encrypt) {
2099 priv->status &= ~STATUS_ASSOCIATED;
2100 notify_wx_assoc_event(priv);
2103 /* Keep the restart process from trying to send host
2104 * commands by clearing the INIT status bit */
2105 priv->status &= ~STATUS_INIT;
2107 /* Cancel currently queued command. */
2108 priv->status &= ~STATUS_HCMD_ACTIVE;
2109 wake_up_interruptible(&priv->wait_command_queue);
2111 schedule_work(&priv->adapter_restart);
2112 handled |= IPW_INTA_BIT_FATAL_ERROR;
2115 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2116 IPW_ERROR("Parity error\n");
2117 handled |= IPW_INTA_BIT_PARITY_ERROR;
2120 if (handled != inta) {
2121 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2124 spin_unlock_irqrestore(&priv->lock, flags);
2126 /* enable all interrupts */
2127 ipw_enable_interrupts(priv);
2130 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2131 static char *get_cmd_string(u8 cmd)
2133 switch (cmd) {
2134 IPW_CMD(HOST_COMPLETE);
2135 IPW_CMD(POWER_DOWN);
2136 IPW_CMD(SYSTEM_CONFIG);
2137 IPW_CMD(MULTICAST_ADDRESS);
2138 IPW_CMD(SSID);
2139 IPW_CMD(ADAPTER_ADDRESS);
2140 IPW_CMD(PORT_TYPE);
2141 IPW_CMD(RTS_THRESHOLD);
2142 IPW_CMD(FRAG_THRESHOLD);
2143 IPW_CMD(POWER_MODE);
2144 IPW_CMD(WEP_KEY);
2145 IPW_CMD(TGI_TX_KEY);
2146 IPW_CMD(SCAN_REQUEST);
2147 IPW_CMD(SCAN_REQUEST_EXT);
2148 IPW_CMD(ASSOCIATE);
2149 IPW_CMD(SUPPORTED_RATES);
2150 IPW_CMD(SCAN_ABORT);
2151 IPW_CMD(TX_FLUSH);
2152 IPW_CMD(QOS_PARAMETERS);
2153 IPW_CMD(DINO_CONFIG);
2154 IPW_CMD(RSN_CAPABILITIES);
2155 IPW_CMD(RX_KEY);
2156 IPW_CMD(CARD_DISABLE);
2157 IPW_CMD(SEED_NUMBER);
2158 IPW_CMD(TX_POWER);
2159 IPW_CMD(COUNTRY_INFO);
2160 IPW_CMD(AIRONET_INFO);
2161 IPW_CMD(AP_TX_POWER);
2162 IPW_CMD(CCKM_INFO);
2163 IPW_CMD(CCX_VER_INFO);
2164 IPW_CMD(SET_CALIBRATION);
2165 IPW_CMD(SENSITIVITY_CALIB);
2166 IPW_CMD(RETRY_LIMIT);
2167 IPW_CMD(IPW_PRE_POWER_DOWN);
2168 IPW_CMD(VAP_BEACON_TEMPLATE);
2169 IPW_CMD(VAP_DTIM_PERIOD);
2170 IPW_CMD(EXT_SUPPORTED_RATES);
2171 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2172 IPW_CMD(VAP_QUIET_INTERVALS);
2173 IPW_CMD(VAP_CHANNEL_SWITCH);
2174 IPW_CMD(VAP_MANDATORY_CHANNELS);
2175 IPW_CMD(VAP_CELL_PWR_LIMIT);
2176 IPW_CMD(VAP_CF_PARAM_SET);
2177 IPW_CMD(VAP_SET_BEACONING_STATE);
2178 IPW_CMD(MEASUREMENT);
2179 IPW_CMD(POWER_CAPABILITY);
2180 IPW_CMD(SUPPORTED_CHANNELS);
2181 IPW_CMD(TPC_REPORT);
2182 IPW_CMD(WME_INFO);
2183 IPW_CMD(PRODUCTION_COMMAND);
2184 default:
2185 return "UNKNOWN";
2189 #define HOST_COMPLETE_TIMEOUT HZ
2191 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2193 int rc = 0;
2194 unsigned long flags;
2195 unsigned long now, end;
2197 spin_lock_irqsave(&priv->lock, flags);
2198 if (priv->status & STATUS_HCMD_ACTIVE) {
2199 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2200 get_cmd_string(cmd->cmd));
2201 spin_unlock_irqrestore(&priv->lock, flags);
2202 return -EAGAIN;
2205 priv->status |= STATUS_HCMD_ACTIVE;
2207 if (priv->cmdlog) {
2208 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2209 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2210 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2211 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2212 cmd->len);
2213 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2216 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2217 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2218 priv->status);
2220 #ifndef DEBUG_CMD_WEP_KEY
2221 if (cmd->cmd == IPW_CMD_WEP_KEY)
2222 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2223 else
2224 #endif
2225 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2227 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2228 if (rc) {
2229 priv->status &= ~STATUS_HCMD_ACTIVE;
2230 IPW_ERROR("Failed to send %s: Reason %d\n",
2231 get_cmd_string(cmd->cmd), rc);
2232 spin_unlock_irqrestore(&priv->lock, flags);
2233 goto exit;
2235 spin_unlock_irqrestore(&priv->lock, flags);
2237 now = jiffies;
2238 end = now + HOST_COMPLETE_TIMEOUT;
2239 again:
2240 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2241 !(priv->
2242 status & STATUS_HCMD_ACTIVE),
2243 end - now);
2244 if (rc < 0) {
2245 now = jiffies;
2246 if (time_before(now, end))
2247 goto again;
2248 rc = 0;
2251 if (rc == 0) {
2252 spin_lock_irqsave(&priv->lock, flags);
2253 if (priv->status & STATUS_HCMD_ACTIVE) {
2254 IPW_ERROR("Failed to send %s: Command timed out.\n",
2255 get_cmd_string(cmd->cmd));
2256 priv->status &= ~STATUS_HCMD_ACTIVE;
2257 spin_unlock_irqrestore(&priv->lock, flags);
2258 rc = -EIO;
2259 goto exit;
2261 spin_unlock_irqrestore(&priv->lock, flags);
2262 } else
2263 rc = 0;
2265 if (priv->status & STATUS_RF_KILL_HW) {
2266 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2267 get_cmd_string(cmd->cmd));
2268 rc = -EIO;
2269 goto exit;
2272 exit:
2273 if (priv->cmdlog) {
2274 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2275 priv->cmdlog_pos %= priv->cmdlog_len;
2277 return rc;
2280 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2282 struct host_cmd cmd = {
2283 .cmd = command,
2286 return __ipw_send_cmd(priv, &cmd);
2289 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2290 void *data)
2292 struct host_cmd cmd = {
2293 .cmd = command,
2294 .len = len,
2295 .param = data,
2298 return __ipw_send_cmd(priv, &cmd);
2301 static int ipw_send_host_complete(struct ipw_priv *priv)
2303 if (!priv) {
2304 IPW_ERROR("Invalid args\n");
2305 return -1;
2308 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2311 static int ipw_send_system_config(struct ipw_priv *priv)
2313 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2314 sizeof(priv->sys_config),
2315 &priv->sys_config);
2318 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2320 if (!priv || !ssid) {
2321 IPW_ERROR("Invalid args\n");
2322 return -1;
2325 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2326 ssid);
2329 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2331 if (!priv || !mac) {
2332 IPW_ERROR("Invalid args\n");
2333 return -1;
2336 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2337 priv->net_dev->name, mac);
2339 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2342 static void ipw_adapter_restart(void *adapter)
2344 struct ipw_priv *priv = adapter;
2346 if (priv->status & STATUS_RF_KILL_MASK)
2347 return;
2349 ipw_down(priv);
2351 if (priv->assoc_network &&
2352 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2353 ipw_remove_current_network(priv);
2355 if (ipw_up(priv)) {
2356 IPW_ERROR("Failed to up device\n");
2357 return;
2361 static void ipw_bg_adapter_restart(struct work_struct *work)
2363 struct ipw_priv *priv =
2364 container_of(work, struct ipw_priv, adapter_restart);
2365 mutex_lock(&priv->mutex);
2366 ipw_adapter_restart(priv);
2367 mutex_unlock(&priv->mutex);
2370 static void ipw_abort_scan(struct ipw_priv *priv);
2372 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2374 static void ipw_scan_check(void *data)
2376 struct ipw_priv *priv = data;
2378 if (priv->status & STATUS_SCAN_ABORTING) {
2379 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2380 "adapter after (%dms).\n",
2381 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2382 schedule_work(&priv->adapter_restart);
2383 } else if (priv->status & STATUS_SCANNING) {
2384 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2385 "after (%dms).\n",
2386 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2387 ipw_abort_scan(priv);
2388 schedule_delayed_work(&priv->scan_check, HZ);
2392 static void ipw_bg_scan_check(struct work_struct *work)
2394 struct ipw_priv *priv =
2395 container_of(work, struct ipw_priv, scan_check.work);
2396 mutex_lock(&priv->mutex);
2397 ipw_scan_check(priv);
2398 mutex_unlock(&priv->mutex);
2401 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2402 struct ipw_scan_request_ext *request)
2404 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2405 sizeof(*request), request);
2408 static int ipw_send_scan_abort(struct ipw_priv *priv)
2410 if (!priv) {
2411 IPW_ERROR("Invalid args\n");
2412 return -1;
2415 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2418 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2420 struct ipw_sensitivity_calib calib = {
2421 .beacon_rssi_raw = cpu_to_le16(sens),
2424 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2425 &calib);
2428 static int ipw_send_associate(struct ipw_priv *priv,
2429 struct ipw_associate *associate)
2431 if (!priv || !associate) {
2432 IPW_ERROR("Invalid args\n");
2433 return -1;
2436 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2437 associate);
2440 static int ipw_send_supported_rates(struct ipw_priv *priv,
2441 struct ipw_supported_rates *rates)
2443 if (!priv || !rates) {
2444 IPW_ERROR("Invalid args\n");
2445 return -1;
2448 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2449 rates);
2452 static int ipw_set_random_seed(struct ipw_priv *priv)
2454 u32 val;
2456 if (!priv) {
2457 IPW_ERROR("Invalid args\n");
2458 return -1;
2461 get_random_bytes(&val, sizeof(val));
2463 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2466 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2468 __le32 v = cpu_to_le32(phy_off);
2469 if (!priv) {
2470 IPW_ERROR("Invalid args\n");
2471 return -1;
2474 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2477 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2479 if (!priv || !power) {
2480 IPW_ERROR("Invalid args\n");
2481 return -1;
2484 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2487 static int ipw_set_tx_power(struct ipw_priv *priv)
2489 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2490 struct ipw_tx_power tx_power;
2491 s8 max_power;
2492 int i;
2494 memset(&tx_power, 0, sizeof(tx_power));
2496 /* configure device for 'G' band */
2497 tx_power.ieee_mode = IPW_G_MODE;
2498 tx_power.num_channels = geo->bg_channels;
2499 for (i = 0; i < geo->bg_channels; i++) {
2500 max_power = geo->bg[i].max_power;
2501 tx_power.channels_tx_power[i].channel_number =
2502 geo->bg[i].channel;
2503 tx_power.channels_tx_power[i].tx_power = max_power ?
2504 min(max_power, priv->tx_power) : priv->tx_power;
2506 if (ipw_send_tx_power(priv, &tx_power))
2507 return -EIO;
2509 /* configure device to also handle 'B' band */
2510 tx_power.ieee_mode = IPW_B_MODE;
2511 if (ipw_send_tx_power(priv, &tx_power))
2512 return -EIO;
2514 /* configure device to also handle 'A' band */
2515 if (priv->ieee->abg_true) {
2516 tx_power.ieee_mode = IPW_A_MODE;
2517 tx_power.num_channels = geo->a_channels;
2518 for (i = 0; i < tx_power.num_channels; i++) {
2519 max_power = geo->a[i].max_power;
2520 tx_power.channels_tx_power[i].channel_number =
2521 geo->a[i].channel;
2522 tx_power.channels_tx_power[i].tx_power = max_power ?
2523 min(max_power, priv->tx_power) : priv->tx_power;
2525 if (ipw_send_tx_power(priv, &tx_power))
2526 return -EIO;
2528 return 0;
2531 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2533 struct ipw_rts_threshold rts_threshold = {
2534 .rts_threshold = cpu_to_le16(rts),
2537 if (!priv) {
2538 IPW_ERROR("Invalid args\n");
2539 return -1;
2542 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2543 sizeof(rts_threshold), &rts_threshold);
2546 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2548 struct ipw_frag_threshold frag_threshold = {
2549 .frag_threshold = cpu_to_le16(frag),
2552 if (!priv) {
2553 IPW_ERROR("Invalid args\n");
2554 return -1;
2557 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2558 sizeof(frag_threshold), &frag_threshold);
2561 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2563 __le32 param;
2565 if (!priv) {
2566 IPW_ERROR("Invalid args\n");
2567 return -1;
2570 /* If on battery, set to 3, if AC set to CAM, else user
2571 * level */
2572 switch (mode) {
2573 case IPW_POWER_BATTERY:
2574 param = cpu_to_le32(IPW_POWER_INDEX_3);
2575 break;
2576 case IPW_POWER_AC:
2577 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2578 break;
2579 default:
2580 param = cpu_to_le32(mode);
2581 break;
2584 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2585 &param);
2588 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2590 struct ipw_retry_limit retry_limit = {
2591 .short_retry_limit = slimit,
2592 .long_retry_limit = llimit
2595 if (!priv) {
2596 IPW_ERROR("Invalid args\n");
2597 return -1;
2600 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2601 &retry_limit);
2605 * The IPW device contains a Microwire compatible EEPROM that stores
2606 * various data like the MAC address. Usually the firmware has exclusive
2607 * access to the eeprom, but during device initialization (before the
2608 * device driver has sent the HostComplete command to the firmware) the
2609 * device driver has read access to the EEPROM by way of indirect addressing
2610 * through a couple of memory mapped registers.
2612 * The following is a simplified implementation for pulling data out of the
2613 * the eeprom, along with some helper functions to find information in
2614 * the per device private data's copy of the eeprom.
2616 * NOTE: To better understand how these functions work (i.e what is a chip
2617 * select and why do have to keep driving the eeprom clock?), read
2618 * just about any data sheet for a Microwire compatible EEPROM.
2621 /* write a 32 bit value into the indirect accessor register */
2622 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2624 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2626 /* the eeprom requires some time to complete the operation */
2627 udelay(p->eeprom_delay);
2630 /* perform a chip select operation */
2631 static void eeprom_cs(struct ipw_priv *priv)
2633 eeprom_write_reg(priv, 0);
2634 eeprom_write_reg(priv, EEPROM_BIT_CS);
2635 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2636 eeprom_write_reg(priv, EEPROM_BIT_CS);
2639 /* perform a chip select operation */
2640 static void eeprom_disable_cs(struct ipw_priv *priv)
2642 eeprom_write_reg(priv, EEPROM_BIT_CS);
2643 eeprom_write_reg(priv, 0);
2644 eeprom_write_reg(priv, EEPROM_BIT_SK);
2647 /* push a single bit down to the eeprom */
2648 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2650 int d = (bit ? EEPROM_BIT_DI : 0);
2651 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2652 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2655 /* push an opcode followed by an address down to the eeprom */
2656 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2658 int i;
2660 eeprom_cs(priv);
2661 eeprom_write_bit(priv, 1);
2662 eeprom_write_bit(priv, op & 2);
2663 eeprom_write_bit(priv, op & 1);
2664 for (i = 7; i >= 0; i--) {
2665 eeprom_write_bit(priv, addr & (1 << i));
2669 /* pull 16 bits off the eeprom, one bit at a time */
2670 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2672 int i;
2673 u16 r = 0;
2675 /* Send READ Opcode */
2676 eeprom_op(priv, EEPROM_CMD_READ, addr);
2678 /* Send dummy bit */
2679 eeprom_write_reg(priv, EEPROM_BIT_CS);
2681 /* Read the byte off the eeprom one bit at a time */
2682 for (i = 0; i < 16; i++) {
2683 u32 data = 0;
2684 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2685 eeprom_write_reg(priv, EEPROM_BIT_CS);
2686 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2687 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2690 /* Send another dummy bit */
2691 eeprom_write_reg(priv, 0);
2692 eeprom_disable_cs(priv);
2694 return r;
2697 /* helper function for pulling the mac address out of the private */
2698 /* data's copy of the eeprom data */
2699 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2701 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2704 static void ipw_read_eeprom(struct ipw_priv *priv)
2706 int i;
2707 __le16 *eeprom = (__le16 *) priv->eeprom;
2709 IPW_DEBUG_TRACE(">>\n");
2711 /* read entire contents of eeprom into private buffer */
2712 for (i = 0; i < 128; i++)
2713 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2715 IPW_DEBUG_TRACE("<<\n");
2719 * Either the device driver (i.e. the host) or the firmware can
2720 * load eeprom data into the designated region in SRAM. If neither
2721 * happens then the FW will shutdown with a fatal error.
2723 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2724 * bit needs region of shared SRAM needs to be non-zero.
2726 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2728 int i;
2730 IPW_DEBUG_TRACE(">>\n");
2733 If the data looks correct, then copy it to our private
2734 copy. Otherwise let the firmware know to perform the operation
2735 on its own.
2737 if (priv->eeprom[EEPROM_VERSION] != 0) {
2738 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2740 /* write the eeprom data to sram */
2741 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2742 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2744 /* Do not load eeprom data on fatal error or suspend */
2745 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2746 } else {
2747 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2749 /* Load eeprom data on fatal error or suspend */
2750 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2753 IPW_DEBUG_TRACE("<<\n");
2756 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2758 count >>= 2;
2759 if (!count)
2760 return;
2761 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2762 while (count--)
2763 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2766 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2768 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2769 CB_NUMBER_OF_ELEMENTS_SMALL *
2770 sizeof(struct command_block));
2773 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2774 { /* start dma engine but no transfers yet */
2776 IPW_DEBUG_FW(">> :\n");
2778 /* Start the dma */
2779 ipw_fw_dma_reset_command_blocks(priv);
2781 /* Write CB base address */
2782 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2784 IPW_DEBUG_FW("<< :\n");
2785 return 0;
2788 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2790 u32 control = 0;
2792 IPW_DEBUG_FW(">> :\n");
2794 /* set the Stop and Abort bit */
2795 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2796 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2797 priv->sram_desc.last_cb_index = 0;
2799 IPW_DEBUG_FW("<<\n");
2802 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2803 struct command_block *cb)
2805 u32 address =
2806 IPW_SHARED_SRAM_DMA_CONTROL +
2807 (sizeof(struct command_block) * index);
2808 IPW_DEBUG_FW(">> :\n");
2810 ipw_write_indirect(priv, address, (u8 *) cb,
2811 (int)sizeof(struct command_block));
2813 IPW_DEBUG_FW("<< :\n");
2814 return 0;
2818 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2820 u32 control = 0;
2821 u32 index = 0;
2823 IPW_DEBUG_FW(">> :\n");
2825 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2826 ipw_fw_dma_write_command_block(priv, index,
2827 &priv->sram_desc.cb_list[index]);
2829 /* Enable the DMA in the CSR register */
2830 ipw_clear_bit(priv, IPW_RESET_REG,
2831 IPW_RESET_REG_MASTER_DISABLED |
2832 IPW_RESET_REG_STOP_MASTER);
2834 /* Set the Start bit. */
2835 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2836 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2838 IPW_DEBUG_FW("<< :\n");
2839 return 0;
2842 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2844 u32 address;
2845 u32 register_value = 0;
2846 u32 cb_fields_address = 0;
2848 IPW_DEBUG_FW(">> :\n");
2849 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2850 IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2852 /* Read the DMA Controlor register */
2853 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2854 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2856 /* Print the CB values */
2857 cb_fields_address = address;
2858 register_value = ipw_read_reg32(priv, cb_fields_address);
2859 IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2861 cb_fields_address += sizeof(u32);
2862 register_value = ipw_read_reg32(priv, cb_fields_address);
2863 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2865 cb_fields_address += sizeof(u32);
2866 register_value = ipw_read_reg32(priv, cb_fields_address);
2867 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2868 register_value);
2870 cb_fields_address += sizeof(u32);
2871 register_value = ipw_read_reg32(priv, cb_fields_address);
2872 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2874 IPW_DEBUG_FW(">> :\n");
2877 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2879 u32 current_cb_address = 0;
2880 u32 current_cb_index = 0;
2882 IPW_DEBUG_FW("<< :\n");
2883 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2885 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2886 sizeof(struct command_block);
2888 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2889 current_cb_index, current_cb_address);
2891 IPW_DEBUG_FW(">> :\n");
2892 return current_cb_index;
2896 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2897 u32 src_address,
2898 u32 dest_address,
2899 u32 length,
2900 int interrupt_enabled, int is_last)
2903 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2904 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2905 CB_DEST_SIZE_LONG;
2906 struct command_block *cb;
2907 u32 last_cb_element = 0;
2909 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2910 src_address, dest_address, length);
2912 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2913 return -1;
2915 last_cb_element = priv->sram_desc.last_cb_index;
2916 cb = &priv->sram_desc.cb_list[last_cb_element];
2917 priv->sram_desc.last_cb_index++;
2919 /* Calculate the new CB control word */
2920 if (interrupt_enabled)
2921 control |= CB_INT_ENABLED;
2923 if (is_last)
2924 control |= CB_LAST_VALID;
2926 control |= length;
2928 /* Calculate the CB Element's checksum value */
2929 cb->status = control ^ src_address ^ dest_address;
2931 /* Copy the Source and Destination addresses */
2932 cb->dest_addr = dest_address;
2933 cb->source_addr = src_address;
2935 /* Copy the Control Word last */
2936 cb->control = control;
2938 return 0;
2941 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2942 int nr, u32 dest_address, u32 len)
2944 int ret, i;
2945 u32 size;
2947 IPW_DEBUG_FW(">>\n");
2948 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2949 nr, dest_address, len);
2951 for (i = 0; i < nr; i++) {
2952 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2953 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2954 dest_address +
2955 i * CB_MAX_LENGTH, size,
2956 0, 0);
2957 if (ret) {
2958 IPW_DEBUG_FW_INFO(": Failed\n");
2959 return -1;
2960 } else
2961 IPW_DEBUG_FW_INFO(": Added new cb\n");
2964 IPW_DEBUG_FW("<<\n");
2965 return 0;
2968 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2970 u32 current_index = 0, previous_index;
2971 u32 watchdog = 0;
2973 IPW_DEBUG_FW(">> :\n");
2975 current_index = ipw_fw_dma_command_block_index(priv);
2976 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2977 (int)priv->sram_desc.last_cb_index);
2979 while (current_index < priv->sram_desc.last_cb_index) {
2980 udelay(50);
2981 previous_index = current_index;
2982 current_index = ipw_fw_dma_command_block_index(priv);
2984 if (previous_index < current_index) {
2985 watchdog = 0;
2986 continue;
2988 if (++watchdog > 400) {
2989 IPW_DEBUG_FW_INFO("Timeout\n");
2990 ipw_fw_dma_dump_command_block(priv);
2991 ipw_fw_dma_abort(priv);
2992 return -1;
2996 ipw_fw_dma_abort(priv);
2998 /*Disable the DMA in the CSR register */
2999 ipw_set_bit(priv, IPW_RESET_REG,
3000 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
3002 IPW_DEBUG_FW("<< dmaWaitSync\n");
3003 return 0;
3006 static void ipw_remove_current_network(struct ipw_priv *priv)
3008 struct list_head *element, *safe;
3009 struct libipw_network *network = NULL;
3010 unsigned long flags;
3012 spin_lock_irqsave(&priv->ieee->lock, flags);
3013 list_for_each_safe(element, safe, &priv->ieee->network_list) {
3014 network = list_entry(element, struct libipw_network, list);
3015 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
3016 list_del(element);
3017 list_add_tail(&network->list,
3018 &priv->ieee->network_free_list);
3021 spin_unlock_irqrestore(&priv->ieee->lock, flags);
3025 * Check that card is still alive.
3026 * Reads debug register from domain0.
3027 * If card is present, pre-defined value should
3028 * be found there.
3030 * @param priv
3031 * @return 1 if card is present, 0 otherwise
3033 static inline int ipw_alive(struct ipw_priv *priv)
3035 return ipw_read32(priv, 0x90) == 0xd55555d5;
3038 /* timeout in msec, attempted in 10-msec quanta */
3039 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3040 int timeout)
3042 int i = 0;
3044 do {
3045 if ((ipw_read32(priv, addr) & mask) == mask)
3046 return i;
3047 mdelay(10);
3048 i += 10;
3049 } while (i < timeout);
3051 return -ETIME;
3054 /* These functions load the firmware and micro code for the operation of
3055 * the ipw hardware. It assumes the buffer has all the bits for the
3056 * image and the caller is handling the memory allocation and clean up.
3059 static int ipw_stop_master(struct ipw_priv *priv)
3061 int rc;
3063 IPW_DEBUG_TRACE(">>\n");
3064 /* stop master. typical delay - 0 */
3065 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3067 /* timeout is in msec, polled in 10-msec quanta */
3068 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3069 IPW_RESET_REG_MASTER_DISABLED, 100);
3070 if (rc < 0) {
3071 IPW_ERROR("wait for stop master failed after 100ms\n");
3072 return -1;
3075 IPW_DEBUG_INFO("stop master %dms\n", rc);
3077 return rc;
3080 static void ipw_arc_release(struct ipw_priv *priv)
3082 IPW_DEBUG_TRACE(">>\n");
3083 mdelay(5);
3085 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3087 /* no one knows timing, for safety add some delay */
3088 mdelay(5);
3091 struct fw_chunk {
3092 __le32 address;
3093 __le32 length;
3096 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3098 int rc = 0, i, addr;
3099 u8 cr = 0;
3100 __le16 *image;
3102 image = (__le16 *) data;
3104 IPW_DEBUG_TRACE(">>\n");
3106 rc = ipw_stop_master(priv);
3108 if (rc < 0)
3109 return rc;
3111 for (addr = IPW_SHARED_LOWER_BOUND;
3112 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3113 ipw_write32(priv, addr, 0);
3116 /* no ucode (yet) */
3117 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3118 /* destroy DMA queues */
3119 /* reset sequence */
3121 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3122 ipw_arc_release(priv);
3123 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3124 mdelay(1);
3126 /* reset PHY */
3127 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3128 mdelay(1);
3130 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3131 mdelay(1);
3133 /* enable ucode store */
3134 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3135 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3136 mdelay(1);
3138 /* write ucode */
3140 * @bug
3141 * Do NOT set indirect address register once and then
3142 * store data to indirect data register in the loop.
3143 * It seems very reasonable, but in this case DINO do not
3144 * accept ucode. It is essential to set address each time.
3146 /* load new ipw uCode */
3147 for (i = 0; i < len / 2; i++)
3148 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3149 le16_to_cpu(image[i]));
3151 /* enable DINO */
3152 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3153 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3155 /* this is where the igx / win driver deveates from the VAP driver. */
3157 /* wait for alive response */
3158 for (i = 0; i < 100; i++) {
3159 /* poll for incoming data */
3160 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3161 if (cr & DINO_RXFIFO_DATA)
3162 break;
3163 mdelay(1);
3166 if (cr & DINO_RXFIFO_DATA) {
3167 /* alive_command_responce size is NOT multiple of 4 */
3168 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3170 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3171 response_buffer[i] =
3172 cpu_to_le32(ipw_read_reg32(priv,
3173 IPW_BASEBAND_RX_FIFO_READ));
3174 memcpy(&priv->dino_alive, response_buffer,
3175 sizeof(priv->dino_alive));
3176 if (priv->dino_alive.alive_command == 1
3177 && priv->dino_alive.ucode_valid == 1) {
3178 rc = 0;
3179 IPW_DEBUG_INFO
3180 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3181 "of %02d/%02d/%02d %02d:%02d\n",
3182 priv->dino_alive.software_revision,
3183 priv->dino_alive.software_revision,
3184 priv->dino_alive.device_identifier,
3185 priv->dino_alive.device_identifier,
3186 priv->dino_alive.time_stamp[0],
3187 priv->dino_alive.time_stamp[1],
3188 priv->dino_alive.time_stamp[2],
3189 priv->dino_alive.time_stamp[3],
3190 priv->dino_alive.time_stamp[4]);
3191 } else {
3192 IPW_DEBUG_INFO("Microcode is not alive\n");
3193 rc = -EINVAL;
3195 } else {
3196 IPW_DEBUG_INFO("No alive response from DINO\n");
3197 rc = -ETIME;
3200 /* disable DINO, otherwise for some reason
3201 firmware have problem getting alive resp. */
3202 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3204 return rc;
3207 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3209 int ret = -1;
3210 int offset = 0;
3211 struct fw_chunk *chunk;
3212 int total_nr = 0;
3213 int i;
3214 struct pci_pool *pool;
3215 void **virts;
3216 dma_addr_t *phys;
3218 IPW_DEBUG_TRACE("<< :\n");
3220 virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3221 GFP_KERNEL);
3222 if (!virts)
3223 return -ENOMEM;
3225 phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3226 GFP_KERNEL);
3227 if (!phys) {
3228 kfree(virts);
3229 return -ENOMEM;
3231 pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3232 if (!pool) {
3233 IPW_ERROR("pci_pool_create failed\n");
3234 kfree(phys);
3235 kfree(virts);
3236 return -ENOMEM;
3239 /* Start the Dma */
3240 ret = ipw_fw_dma_enable(priv);
3242 /* the DMA is already ready this would be a bug. */
3243 BUG_ON(priv->sram_desc.last_cb_index > 0);
3245 do {
3246 u32 chunk_len;
3247 u8 *start;
3248 int size;
3249 int nr = 0;
3251 chunk = (struct fw_chunk *)(data + offset);
3252 offset += sizeof(struct fw_chunk);
3253 chunk_len = le32_to_cpu(chunk->length);
3254 start = data + offset;
3256 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3257 for (i = 0; i < nr; i++) {
3258 virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3259 &phys[total_nr]);
3260 if (!virts[total_nr]) {
3261 ret = -ENOMEM;
3262 goto out;
3264 size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3265 CB_MAX_LENGTH);
3266 memcpy(virts[total_nr], start, size);
3267 start += size;
3268 total_nr++;
3269 /* We don't support fw chunk larger than 64*8K */
3270 BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3273 /* build DMA packet and queue up for sending */
3274 /* dma to chunk->address, the chunk->length bytes from data +
3275 * offeset*/
3276 /* Dma loading */
3277 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3278 nr, le32_to_cpu(chunk->address),
3279 chunk_len);
3280 if (ret) {
3281 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3282 goto out;
3285 offset += chunk_len;
3286 } while (offset < len);
3288 /* Run the DMA and wait for the answer */
3289 ret = ipw_fw_dma_kick(priv);
3290 if (ret) {
3291 IPW_ERROR("dmaKick Failed\n");
3292 goto out;
3295 ret = ipw_fw_dma_wait(priv);
3296 if (ret) {
3297 IPW_ERROR("dmaWaitSync Failed\n");
3298 goto out;
3300 out:
3301 for (i = 0; i < total_nr; i++)
3302 pci_pool_free(pool, virts[i], phys[i]);
3304 pci_pool_destroy(pool);
3305 kfree(phys);
3306 kfree(virts);
3308 return ret;
3311 /* stop nic */
3312 static int ipw_stop_nic(struct ipw_priv *priv)
3314 int rc = 0;
3316 /* stop */
3317 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3319 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3320 IPW_RESET_REG_MASTER_DISABLED, 500);
3321 if (rc < 0) {
3322 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3323 return rc;
3326 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3328 return rc;
3331 static void ipw_start_nic(struct ipw_priv *priv)
3333 IPW_DEBUG_TRACE(">>\n");
3335 /* prvHwStartNic release ARC */
3336 ipw_clear_bit(priv, IPW_RESET_REG,
3337 IPW_RESET_REG_MASTER_DISABLED |
3338 IPW_RESET_REG_STOP_MASTER |
3339 CBD_RESET_REG_PRINCETON_RESET);
3341 /* enable power management */
3342 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3343 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3345 IPW_DEBUG_TRACE("<<\n");
3348 static int ipw_init_nic(struct ipw_priv *priv)
3350 int rc;
3352 IPW_DEBUG_TRACE(">>\n");
3353 /* reset */
3354 /*prvHwInitNic */
3355 /* set "initialization complete" bit to move adapter to D0 state */
3356 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3358 /* low-level PLL activation */
3359 ipw_write32(priv, IPW_READ_INT_REGISTER,
3360 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3362 /* wait for clock stabilization */
3363 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3364 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3365 if (rc < 0)
3366 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3368 /* assert SW reset */
3369 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3371 udelay(10);
3373 /* set "initialization complete" bit to move adapter to D0 state */
3374 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3376 IPW_DEBUG_TRACE(">>\n");
3377 return 0;
3380 /* Call this function from process context, it will sleep in request_firmware.
3381 * Probe is an ok place to call this from.
3383 static int ipw_reset_nic(struct ipw_priv *priv)
3385 int rc = 0;
3386 unsigned long flags;
3388 IPW_DEBUG_TRACE(">>\n");
3390 rc = ipw_init_nic(priv);
3392 spin_lock_irqsave(&priv->lock, flags);
3393 /* Clear the 'host command active' bit... */
3394 priv->status &= ~STATUS_HCMD_ACTIVE;
3395 wake_up_interruptible(&priv->wait_command_queue);
3396 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3397 wake_up_interruptible(&priv->wait_state);
3398 spin_unlock_irqrestore(&priv->lock, flags);
3400 IPW_DEBUG_TRACE("<<\n");
3401 return rc;
3405 struct ipw_fw {
3406 __le32 ver;
3407 __le32 boot_size;
3408 __le32 ucode_size;
3409 __le32 fw_size;
3410 u8 data[0];
3413 static int ipw_get_fw(struct ipw_priv *priv,
3414 const struct firmware **raw, const char *name)
3416 struct ipw_fw *fw;
3417 int rc;
3419 /* ask firmware_class module to get the boot firmware off disk */
3420 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3421 if (rc < 0) {
3422 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3423 return rc;
3426 if ((*raw)->size < sizeof(*fw)) {
3427 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3428 return -EINVAL;
3431 fw = (void *)(*raw)->data;
3433 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3434 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3435 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3436 name, (*raw)->size);
3437 return -EINVAL;
3440 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3441 name,
3442 le32_to_cpu(fw->ver) >> 16,
3443 le32_to_cpu(fw->ver) & 0xff,
3444 (*raw)->size - sizeof(*fw));
3445 return 0;
3448 #define IPW_RX_BUF_SIZE (3000)
3450 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3451 struct ipw_rx_queue *rxq)
3453 unsigned long flags;
3454 int i;
3456 spin_lock_irqsave(&rxq->lock, flags);
3458 INIT_LIST_HEAD(&rxq->rx_free);
3459 INIT_LIST_HEAD(&rxq->rx_used);
3461 /* Fill the rx_used queue with _all_ of the Rx buffers */
3462 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3463 /* In the reset function, these buffers may have been allocated
3464 * to an SKB, so we need to unmap and free potential storage */
3465 if (rxq->pool[i].skb != NULL) {
3466 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3467 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3468 dev_kfree_skb(rxq->pool[i].skb);
3469 rxq->pool[i].skb = NULL;
3471 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3474 /* Set us so that we have processed and used all buffers, but have
3475 * not restocked the Rx queue with fresh buffers */
3476 rxq->read = rxq->write = 0;
3477 rxq->free_count = 0;
3478 spin_unlock_irqrestore(&rxq->lock, flags);
3481 #ifdef CONFIG_PM
3482 static int fw_loaded = 0;
3483 static const struct firmware *raw = NULL;
3485 static void free_firmware(void)
3487 if (fw_loaded) {
3488 release_firmware(raw);
3489 raw = NULL;
3490 fw_loaded = 0;
3493 #else
3494 #define free_firmware() do {} while (0)
3495 #endif
3497 static int ipw_load(struct ipw_priv *priv)
3499 #ifndef CONFIG_PM
3500 const struct firmware *raw = NULL;
3501 #endif
3502 struct ipw_fw *fw;
3503 u8 *boot_img, *ucode_img, *fw_img;
3504 u8 *name = NULL;
3505 int rc = 0, retries = 3;
3507 switch (priv->ieee->iw_mode) {
3508 case IW_MODE_ADHOC:
3509 name = "ipw2200-ibss.fw";
3510 break;
3511 #ifdef CONFIG_IPW2200_MONITOR
3512 case IW_MODE_MONITOR:
3513 name = "ipw2200-sniffer.fw";
3514 break;
3515 #endif
3516 case IW_MODE_INFRA:
3517 name = "ipw2200-bss.fw";
3518 break;
3521 if (!name) {
3522 rc = -EINVAL;
3523 goto error;
3526 #ifdef CONFIG_PM
3527 if (!fw_loaded) {
3528 #endif
3529 rc = ipw_get_fw(priv, &raw, name);
3530 if (rc < 0)
3531 goto error;
3532 #ifdef CONFIG_PM
3534 #endif
3536 fw = (void *)raw->data;
3537 boot_img = &fw->data[0];
3538 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3539 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3540 le32_to_cpu(fw->ucode_size)];
3542 if (rc < 0)
3543 goto error;
3545 if (!priv->rxq)
3546 priv->rxq = ipw_rx_queue_alloc(priv);
3547 else
3548 ipw_rx_queue_reset(priv, priv->rxq);
3549 if (!priv->rxq) {
3550 IPW_ERROR("Unable to initialize Rx queue\n");
3551 goto error;
3554 retry:
3555 /* Ensure interrupts are disabled */
3556 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3557 priv->status &= ~STATUS_INT_ENABLED;
3559 /* ack pending interrupts */
3560 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3562 ipw_stop_nic(priv);
3564 rc = ipw_reset_nic(priv);
3565 if (rc < 0) {
3566 IPW_ERROR("Unable to reset NIC\n");
3567 goto error;
3570 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3571 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3573 /* DMA the initial boot firmware into the device */
3574 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3575 if (rc < 0) {
3576 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3577 goto error;
3580 /* kick start the device */
3581 ipw_start_nic(priv);
3583 /* wait for the device to finish its initial startup sequence */
3584 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3585 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3586 if (rc < 0) {
3587 IPW_ERROR("device failed to boot initial fw image\n");
3588 goto error;
3590 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3592 /* ack fw init done interrupt */
3593 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3595 /* DMA the ucode into the device */
3596 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3597 if (rc < 0) {
3598 IPW_ERROR("Unable to load ucode: %d\n", rc);
3599 goto error;
3602 /* stop nic */
3603 ipw_stop_nic(priv);
3605 /* DMA bss firmware into the device */
3606 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3607 if (rc < 0) {
3608 IPW_ERROR("Unable to load firmware: %d\n", rc);
3609 goto error;
3611 #ifdef CONFIG_PM
3612 fw_loaded = 1;
3613 #endif
3615 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3617 rc = ipw_queue_reset(priv);
3618 if (rc < 0) {
3619 IPW_ERROR("Unable to initialize queues\n");
3620 goto error;
3623 /* Ensure interrupts are disabled */
3624 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3625 /* ack pending interrupts */
3626 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3628 /* kick start the device */
3629 ipw_start_nic(priv);
3631 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3632 if (retries > 0) {
3633 IPW_WARNING("Parity error. Retrying init.\n");
3634 retries--;
3635 goto retry;
3638 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3639 rc = -EIO;
3640 goto error;
3643 /* wait for the device */
3644 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3645 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3646 if (rc < 0) {
3647 IPW_ERROR("device failed to start within 500ms\n");
3648 goto error;
3650 IPW_DEBUG_INFO("device response after %dms\n", rc);
3652 /* ack fw init done interrupt */
3653 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3655 /* read eeprom data */
3656 priv->eeprom_delay = 1;
3657 ipw_read_eeprom(priv);
3658 /* initialize the eeprom region of sram */
3659 ipw_eeprom_init_sram(priv);
3661 /* enable interrupts */
3662 ipw_enable_interrupts(priv);
3664 /* Ensure our queue has valid packets */
3665 ipw_rx_queue_replenish(priv);
3667 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3669 /* ack pending interrupts */
3670 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3672 #ifndef CONFIG_PM
3673 release_firmware(raw);
3674 #endif
3675 return 0;
3677 error:
3678 if (priv->rxq) {
3679 ipw_rx_queue_free(priv, priv->rxq);
3680 priv->rxq = NULL;
3682 ipw_tx_queue_free(priv);
3683 release_firmware(raw);
3684 #ifdef CONFIG_PM
3685 fw_loaded = 0;
3686 raw = NULL;
3687 #endif
3689 return rc;
3693 * DMA services
3695 * Theory of operation
3697 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3698 * 2 empty entries always kept in the buffer to protect from overflow.
3700 * For Tx queue, there are low mark and high mark limits. If, after queuing
3701 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3702 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3703 * Tx queue resumed.
3705 * The IPW operates with six queues, one receive queue in the device's
3706 * sram, one transmit queue for sending commands to the device firmware,
3707 * and four transmit queues for data.
3709 * The four transmit queues allow for performing quality of service (qos)
3710 * transmissions as per the 802.11 protocol. Currently Linux does not
3711 * provide a mechanism to the user for utilizing prioritized queues, so
3712 * we only utilize the first data transmit queue (queue1).
3716 * Driver allocates buffers of this size for Rx
3720 * ipw_rx_queue_space - Return number of free slots available in queue.
3722 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3724 int s = q->read - q->write;
3725 if (s <= 0)
3726 s += RX_QUEUE_SIZE;
3727 /* keep some buffer to not confuse full and empty queue */
3728 s -= 2;
3729 if (s < 0)
3730 s = 0;
3731 return s;
3734 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3736 int s = q->last_used - q->first_empty;
3737 if (s <= 0)
3738 s += q->n_bd;
3739 s -= 2; /* keep some reserve to not confuse empty and full situations */
3740 if (s < 0)
3741 s = 0;
3742 return s;
3745 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3747 return (++index == n_bd) ? 0 : index;
3751 * Initialize common DMA queue structure
3753 * @param q queue to init
3754 * @param count Number of BD's to allocate. Should be power of 2
3755 * @param read_register Address for 'read' register
3756 * (not offset within BAR, full address)
3757 * @param write_register Address for 'write' register
3758 * (not offset within BAR, full address)
3759 * @param base_register Address for 'base' register
3760 * (not offset within BAR, full address)
3761 * @param size Address for 'size' register
3762 * (not offset within BAR, full address)
3764 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3765 int count, u32 read, u32 write, u32 base, u32 size)
3767 q->n_bd = count;
3769 q->low_mark = q->n_bd / 4;
3770 if (q->low_mark < 4)
3771 q->low_mark = 4;
3773 q->high_mark = q->n_bd / 8;
3774 if (q->high_mark < 2)
3775 q->high_mark = 2;
3777 q->first_empty = q->last_used = 0;
3778 q->reg_r = read;
3779 q->reg_w = write;
3781 ipw_write32(priv, base, q->dma_addr);
3782 ipw_write32(priv, size, count);
3783 ipw_write32(priv, read, 0);
3784 ipw_write32(priv, write, 0);
3786 _ipw_read32(priv, 0x90);
3789 static int ipw_queue_tx_init(struct ipw_priv *priv,
3790 struct clx2_tx_queue *q,
3791 int count, u32 read, u32 write, u32 base, u32 size)
3793 struct pci_dev *dev = priv->pci_dev;
3795 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3796 if (!q->txb) {
3797 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3798 return -ENOMEM;
3801 q->bd =
3802 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3803 if (!q->bd) {
3804 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3805 sizeof(q->bd[0]) * count);
3806 kfree(q->txb);
3807 q->txb = NULL;
3808 return -ENOMEM;
3811 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3812 return 0;
3816 * Free one TFD, those at index [txq->q.last_used].
3817 * Do NOT advance any indexes
3819 * @param dev
3820 * @param txq
3822 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3823 struct clx2_tx_queue *txq)
3825 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3826 struct pci_dev *dev = priv->pci_dev;
3827 int i;
3829 /* classify bd */
3830 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3831 /* nothing to cleanup after for host commands */
3832 return;
3834 /* sanity check */
3835 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3836 IPW_ERROR("Too many chunks: %i\n",
3837 le32_to_cpu(bd->u.data.num_chunks));
3838 /** @todo issue fatal error, it is quite serious situation */
3839 return;
3842 /* unmap chunks if any */
3843 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3844 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3845 le16_to_cpu(bd->u.data.chunk_len[i]),
3846 PCI_DMA_TODEVICE);
3847 if (txq->txb[txq->q.last_used]) {
3848 libipw_txb_free(txq->txb[txq->q.last_used]);
3849 txq->txb[txq->q.last_used] = NULL;
3855 * Deallocate DMA queue.
3857 * Empty queue by removing and destroying all BD's.
3858 * Free all buffers.
3860 * @param dev
3861 * @param q
3863 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3865 struct clx2_queue *q = &txq->q;
3866 struct pci_dev *dev = priv->pci_dev;
3868 if (q->n_bd == 0)
3869 return;
3871 /* first, empty all BD's */
3872 for (; q->first_empty != q->last_used;
3873 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3874 ipw_queue_tx_free_tfd(priv, txq);
3877 /* free buffers belonging to queue itself */
3878 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3879 q->dma_addr);
3880 kfree(txq->txb);
3882 /* 0 fill whole structure */
3883 memset(txq, 0, sizeof(*txq));
3887 * Destroy all DMA queues and structures
3889 * @param priv
3891 static void ipw_tx_queue_free(struct ipw_priv *priv)
3893 /* Tx CMD queue */
3894 ipw_queue_tx_free(priv, &priv->txq_cmd);
3896 /* Tx queues */
3897 ipw_queue_tx_free(priv, &priv->txq[0]);
3898 ipw_queue_tx_free(priv, &priv->txq[1]);
3899 ipw_queue_tx_free(priv, &priv->txq[2]);
3900 ipw_queue_tx_free(priv, &priv->txq[3]);
3903 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3905 /* First 3 bytes are manufacturer */
3906 bssid[0] = priv->mac_addr[0];
3907 bssid[1] = priv->mac_addr[1];
3908 bssid[2] = priv->mac_addr[2];
3910 /* Last bytes are random */
3911 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3913 bssid[0] &= 0xfe; /* clear multicast bit */
3914 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3917 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3919 struct ipw_station_entry entry;
3920 int i;
3922 for (i = 0; i < priv->num_stations; i++) {
3923 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3924 /* Another node is active in network */
3925 priv->missed_adhoc_beacons = 0;
3926 if (!(priv->config & CFG_STATIC_CHANNEL))
3927 /* when other nodes drop out, we drop out */
3928 priv->config &= ~CFG_ADHOC_PERSIST;
3930 return i;
3934 if (i == MAX_STATIONS)
3935 return IPW_INVALID_STATION;
3937 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3939 entry.reserved = 0;
3940 entry.support_mode = 0;
3941 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3942 memcpy(priv->stations[i], bssid, ETH_ALEN);
3943 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3944 &entry, sizeof(entry));
3945 priv->num_stations++;
3947 return i;
3950 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3952 int i;
3954 for (i = 0; i < priv->num_stations; i++)
3955 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3956 return i;
3958 return IPW_INVALID_STATION;
3961 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3963 int err;
3965 if (priv->status & STATUS_ASSOCIATING) {
3966 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3967 schedule_work(&priv->disassociate);
3968 return;
3971 if (!(priv->status & STATUS_ASSOCIATED)) {
3972 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3973 return;
3976 IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3977 "on channel %d.\n",
3978 priv->assoc_request.bssid,
3979 priv->assoc_request.channel);
3981 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3982 priv->status |= STATUS_DISASSOCIATING;
3984 if (quiet)
3985 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3986 else
3987 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3989 err = ipw_send_associate(priv, &priv->assoc_request);
3990 if (err) {
3991 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3992 "failed.\n");
3993 return;
3998 static int ipw_disassociate(void *data)
4000 struct ipw_priv *priv = data;
4001 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
4002 return 0;
4003 ipw_send_disassociate(data, 0);
4004 netif_carrier_off(priv->net_dev);
4005 return 1;
4008 static void ipw_bg_disassociate(struct work_struct *work)
4010 struct ipw_priv *priv =
4011 container_of(work, struct ipw_priv, disassociate);
4012 mutex_lock(&priv->mutex);
4013 ipw_disassociate(priv);
4014 mutex_unlock(&priv->mutex);
4017 static void ipw_system_config(struct work_struct *work)
4019 struct ipw_priv *priv =
4020 container_of(work, struct ipw_priv, system_config);
4022 #ifdef CONFIG_IPW2200_PROMISCUOUS
4023 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4024 priv->sys_config.accept_all_data_frames = 1;
4025 priv->sys_config.accept_non_directed_frames = 1;
4026 priv->sys_config.accept_all_mgmt_bcpr = 1;
4027 priv->sys_config.accept_all_mgmt_frames = 1;
4029 #endif
4031 ipw_send_system_config(priv);
4034 struct ipw_status_code {
4035 u16 status;
4036 const char *reason;
4039 static const struct ipw_status_code ipw_status_codes[] = {
4040 {0x00, "Successful"},
4041 {0x01, "Unspecified failure"},
4042 {0x0A, "Cannot support all requested capabilities in the "
4043 "Capability information field"},
4044 {0x0B, "Reassociation denied due to inability to confirm that "
4045 "association exists"},
4046 {0x0C, "Association denied due to reason outside the scope of this "
4047 "standard"},
4048 {0x0D,
4049 "Responding station does not support the specified authentication "
4050 "algorithm"},
4051 {0x0E,
4052 "Received an Authentication frame with authentication sequence "
4053 "transaction sequence number out of expected sequence"},
4054 {0x0F, "Authentication rejected because of challenge failure"},
4055 {0x10, "Authentication rejected due to timeout waiting for next "
4056 "frame in sequence"},
4057 {0x11, "Association denied because AP is unable to handle additional "
4058 "associated stations"},
4059 {0x12,
4060 "Association denied due to requesting station not supporting all "
4061 "of the datarates in the BSSBasicServiceSet Parameter"},
4062 {0x13,
4063 "Association denied due to requesting station not supporting "
4064 "short preamble operation"},
4065 {0x14,
4066 "Association denied due to requesting station not supporting "
4067 "PBCC encoding"},
4068 {0x15,
4069 "Association denied due to requesting station not supporting "
4070 "channel agility"},
4071 {0x19,
4072 "Association denied due to requesting station not supporting "
4073 "short slot operation"},
4074 {0x1A,
4075 "Association denied due to requesting station not supporting "
4076 "DSSS-OFDM operation"},
4077 {0x28, "Invalid Information Element"},
4078 {0x29, "Group Cipher is not valid"},
4079 {0x2A, "Pairwise Cipher is not valid"},
4080 {0x2B, "AKMP is not valid"},
4081 {0x2C, "Unsupported RSN IE version"},
4082 {0x2D, "Invalid RSN IE Capabilities"},
4083 {0x2E, "Cipher suite is rejected per security policy"},
4086 static const char *ipw_get_status_code(u16 status)
4088 int i;
4089 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4090 if (ipw_status_codes[i].status == (status & 0xff))
4091 return ipw_status_codes[i].reason;
4092 return "Unknown status value.";
4095 static void inline average_init(struct average *avg)
4097 memset(avg, 0, sizeof(*avg));
4100 #define DEPTH_RSSI 8
4101 #define DEPTH_NOISE 16
4102 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4104 return ((depth-1)*prev_avg + val)/depth;
4107 static void average_add(struct average *avg, s16 val)
4109 avg->sum -= avg->entries[avg->pos];
4110 avg->sum += val;
4111 avg->entries[avg->pos++] = val;
4112 if (unlikely(avg->pos == AVG_ENTRIES)) {
4113 avg->init = 1;
4114 avg->pos = 0;
4118 static s16 average_value(struct average *avg)
4120 if (!unlikely(avg->init)) {
4121 if (avg->pos)
4122 return avg->sum / avg->pos;
4123 return 0;
4126 return avg->sum / AVG_ENTRIES;
4129 static void ipw_reset_stats(struct ipw_priv *priv)
4131 u32 len = sizeof(u32);
4133 priv->quality = 0;
4135 average_init(&priv->average_missed_beacons);
4136 priv->exp_avg_rssi = -60;
4137 priv->exp_avg_noise = -85 + 0x100;
4139 priv->last_rate = 0;
4140 priv->last_missed_beacons = 0;
4141 priv->last_rx_packets = 0;
4142 priv->last_tx_packets = 0;
4143 priv->last_tx_failures = 0;
4145 /* Firmware managed, reset only when NIC is restarted, so we have to
4146 * normalize on the current value */
4147 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4148 &priv->last_rx_err, &len);
4149 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4150 &priv->last_tx_failures, &len);
4152 /* Driver managed, reset with each association */
4153 priv->missed_adhoc_beacons = 0;
4154 priv->missed_beacons = 0;
4155 priv->tx_packets = 0;
4156 priv->rx_packets = 0;
4160 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4162 u32 i = 0x80000000;
4163 u32 mask = priv->rates_mask;
4164 /* If currently associated in B mode, restrict the maximum
4165 * rate match to B rates */
4166 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4167 mask &= LIBIPW_CCK_RATES_MASK;
4169 /* TODO: Verify that the rate is supported by the current rates
4170 * list. */
4172 while (i && !(mask & i))
4173 i >>= 1;
4174 switch (i) {
4175 case LIBIPW_CCK_RATE_1MB_MASK:
4176 return 1000000;
4177 case LIBIPW_CCK_RATE_2MB_MASK:
4178 return 2000000;
4179 case LIBIPW_CCK_RATE_5MB_MASK:
4180 return 5500000;
4181 case LIBIPW_OFDM_RATE_6MB_MASK:
4182 return 6000000;
4183 case LIBIPW_OFDM_RATE_9MB_MASK:
4184 return 9000000;
4185 case LIBIPW_CCK_RATE_11MB_MASK:
4186 return 11000000;
4187 case LIBIPW_OFDM_RATE_12MB_MASK:
4188 return 12000000;
4189 case LIBIPW_OFDM_RATE_18MB_MASK:
4190 return 18000000;
4191 case LIBIPW_OFDM_RATE_24MB_MASK:
4192 return 24000000;
4193 case LIBIPW_OFDM_RATE_36MB_MASK:
4194 return 36000000;
4195 case LIBIPW_OFDM_RATE_48MB_MASK:
4196 return 48000000;
4197 case LIBIPW_OFDM_RATE_54MB_MASK:
4198 return 54000000;
4201 if (priv->ieee->mode == IEEE_B)
4202 return 11000000;
4203 else
4204 return 54000000;
4207 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4209 u32 rate, len = sizeof(rate);
4210 int err;
4212 if (!(priv->status & STATUS_ASSOCIATED))
4213 return 0;
4215 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4216 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4217 &len);
4218 if (err) {
4219 IPW_DEBUG_INFO("failed querying ordinals.\n");
4220 return 0;
4222 } else
4223 return ipw_get_max_rate(priv);
4225 switch (rate) {
4226 case IPW_TX_RATE_1MB:
4227 return 1000000;
4228 case IPW_TX_RATE_2MB:
4229 return 2000000;
4230 case IPW_TX_RATE_5MB:
4231 return 5500000;
4232 case IPW_TX_RATE_6MB:
4233 return 6000000;
4234 case IPW_TX_RATE_9MB:
4235 return 9000000;
4236 case IPW_TX_RATE_11MB:
4237 return 11000000;
4238 case IPW_TX_RATE_12MB:
4239 return 12000000;
4240 case IPW_TX_RATE_18MB:
4241 return 18000000;
4242 case IPW_TX_RATE_24MB:
4243 return 24000000;
4244 case IPW_TX_RATE_36MB:
4245 return 36000000;
4246 case IPW_TX_RATE_48MB:
4247 return 48000000;
4248 case IPW_TX_RATE_54MB:
4249 return 54000000;
4252 return 0;
4255 #define IPW_STATS_INTERVAL (2 * HZ)
4256 static void ipw_gather_stats(struct ipw_priv *priv)
4258 u32 rx_err, rx_err_delta, rx_packets_delta;
4259 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4260 u32 missed_beacons_percent, missed_beacons_delta;
4261 u32 quality = 0;
4262 u32 len = sizeof(u32);
4263 s16 rssi;
4264 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4265 rate_quality;
4266 u32 max_rate;
4268 if (!(priv->status & STATUS_ASSOCIATED)) {
4269 priv->quality = 0;
4270 return;
4273 /* Update the statistics */
4274 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4275 &priv->missed_beacons, &len);
4276 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4277 priv->last_missed_beacons = priv->missed_beacons;
4278 if (priv->assoc_request.beacon_interval) {
4279 missed_beacons_percent = missed_beacons_delta *
4280 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4281 (IPW_STATS_INTERVAL * 10);
4282 } else {
4283 missed_beacons_percent = 0;
4285 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4287 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4288 rx_err_delta = rx_err - priv->last_rx_err;
4289 priv->last_rx_err = rx_err;
4291 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4292 tx_failures_delta = tx_failures - priv->last_tx_failures;
4293 priv->last_tx_failures = tx_failures;
4295 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4296 priv->last_rx_packets = priv->rx_packets;
4298 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4299 priv->last_tx_packets = priv->tx_packets;
4301 /* Calculate quality based on the following:
4303 * Missed beacon: 100% = 0, 0% = 70% missed
4304 * Rate: 60% = 1Mbs, 100% = Max
4305 * Rx and Tx errors represent a straight % of total Rx/Tx
4306 * RSSI: 100% = > -50, 0% = < -80
4307 * Rx errors: 100% = 0, 0% = 50% missed
4309 * The lowest computed quality is used.
4312 #define BEACON_THRESHOLD 5
4313 beacon_quality = 100 - missed_beacons_percent;
4314 if (beacon_quality < BEACON_THRESHOLD)
4315 beacon_quality = 0;
4316 else
4317 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4318 (100 - BEACON_THRESHOLD);
4319 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4320 beacon_quality, missed_beacons_percent);
4322 priv->last_rate = ipw_get_current_rate(priv);
4323 max_rate = ipw_get_max_rate(priv);
4324 rate_quality = priv->last_rate * 40 / max_rate + 60;
4325 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4326 rate_quality, priv->last_rate / 1000000);
4328 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4329 rx_quality = 100 - (rx_err_delta * 100) /
4330 (rx_packets_delta + rx_err_delta);
4331 else
4332 rx_quality = 100;
4333 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4334 rx_quality, rx_err_delta, rx_packets_delta);
4336 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4337 tx_quality = 100 - (tx_failures_delta * 100) /
4338 (tx_packets_delta + tx_failures_delta);
4339 else
4340 tx_quality = 100;
4341 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4342 tx_quality, tx_failures_delta, tx_packets_delta);
4344 rssi = priv->exp_avg_rssi;
4345 signal_quality =
4346 (100 *
4347 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4348 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4349 (priv->ieee->perfect_rssi - rssi) *
4350 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4351 62 * (priv->ieee->perfect_rssi - rssi))) /
4352 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4353 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4354 if (signal_quality > 100)
4355 signal_quality = 100;
4356 else if (signal_quality < 1)
4357 signal_quality = 0;
4359 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4360 signal_quality, rssi);
4362 quality = min(rx_quality, signal_quality);
4363 quality = min(tx_quality, quality);
4364 quality = min(rate_quality, quality);
4365 quality = min(beacon_quality, quality);
4366 if (quality == beacon_quality)
4367 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4368 quality);
4369 if (quality == rate_quality)
4370 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4371 quality);
4372 if (quality == tx_quality)
4373 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4374 quality);
4375 if (quality == rx_quality)
4376 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4377 quality);
4378 if (quality == signal_quality)
4379 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4380 quality);
4382 priv->quality = quality;
4384 schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4387 static void ipw_bg_gather_stats(struct work_struct *work)
4389 struct ipw_priv *priv =
4390 container_of(work, struct ipw_priv, gather_stats.work);
4391 mutex_lock(&priv->mutex);
4392 ipw_gather_stats(priv);
4393 mutex_unlock(&priv->mutex);
4396 /* Missed beacon behavior:
4397 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4398 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4399 * Above disassociate threshold, give up and stop scanning.
4400 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4401 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4402 int missed_count)
4404 priv->notif_missed_beacons = missed_count;
4406 if (missed_count > priv->disassociate_threshold &&
4407 priv->status & STATUS_ASSOCIATED) {
4408 /* If associated and we've hit the missed
4409 * beacon threshold, disassociate, turn
4410 * off roaming, and abort any active scans */
4411 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4412 IPW_DL_STATE | IPW_DL_ASSOC,
4413 "Missed beacon: %d - disassociate\n", missed_count);
4414 priv->status &= ~STATUS_ROAMING;
4415 if (priv->status & STATUS_SCANNING) {
4416 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4417 IPW_DL_STATE,
4418 "Aborting scan with missed beacon.\n");
4419 schedule_work(&priv->abort_scan);
4422 schedule_work(&priv->disassociate);
4423 return;
4426 if (priv->status & STATUS_ROAMING) {
4427 /* If we are currently roaming, then just
4428 * print a debug statement... */
4429 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4430 "Missed beacon: %d - roam in progress\n",
4431 missed_count);
4432 return;
4435 if (roaming &&
4436 (missed_count > priv->roaming_threshold &&
4437 missed_count <= priv->disassociate_threshold)) {
4438 /* If we are not already roaming, set the ROAM
4439 * bit in the status and kick off a scan.
4440 * This can happen several times before we reach
4441 * disassociate_threshold. */
4442 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4443 "Missed beacon: %d - initiate "
4444 "roaming\n", missed_count);
4445 if (!(priv->status & STATUS_ROAMING)) {
4446 priv->status |= STATUS_ROAMING;
4447 if (!(priv->status & STATUS_SCANNING))
4448 schedule_delayed_work(&priv->request_scan, 0);
4450 return;
4453 if (priv->status & STATUS_SCANNING &&
4454 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4455 /* Stop scan to keep fw from getting
4456 * stuck (only if we aren't roaming --
4457 * otherwise we'll never scan more than 2 or 3
4458 * channels..) */
4459 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4460 "Aborting scan with missed beacon.\n");
4461 schedule_work(&priv->abort_scan);
4464 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4467 static void ipw_scan_event(struct work_struct *work)
4469 union iwreq_data wrqu;
4471 struct ipw_priv *priv =
4472 container_of(work, struct ipw_priv, scan_event.work);
4474 wrqu.data.length = 0;
4475 wrqu.data.flags = 0;
4476 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4479 static void handle_scan_event(struct ipw_priv *priv)
4481 /* Only userspace-requested scan completion events go out immediately */
4482 if (!priv->user_requested_scan) {
4483 if (!delayed_work_pending(&priv->scan_event))
4484 schedule_delayed_work(&priv->scan_event,
4485 round_jiffies_relative(msecs_to_jiffies(4000)));
4486 } else {
4487 union iwreq_data wrqu;
4489 priv->user_requested_scan = 0;
4490 cancel_delayed_work(&priv->scan_event);
4492 wrqu.data.length = 0;
4493 wrqu.data.flags = 0;
4494 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4499 * Handle host notification packet.
4500 * Called from interrupt routine
4502 static void ipw_rx_notification(struct ipw_priv *priv,
4503 struct ipw_rx_notification *notif)
4505 DECLARE_SSID_BUF(ssid);
4506 u16 size = le16_to_cpu(notif->size);
4508 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4510 switch (notif->subtype) {
4511 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4512 struct notif_association *assoc = &notif->u.assoc;
4514 switch (assoc->state) {
4515 case CMAS_ASSOCIATED:{
4516 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4517 IPW_DL_ASSOC,
4518 "associated: '%s' %pM\n",
4519 print_ssid(ssid, priv->essid,
4520 priv->essid_len),
4521 priv->bssid);
4523 switch (priv->ieee->iw_mode) {
4524 case IW_MODE_INFRA:
4525 memcpy(priv->ieee->bssid,
4526 priv->bssid, ETH_ALEN);
4527 break;
4529 case IW_MODE_ADHOC:
4530 memcpy(priv->ieee->bssid,
4531 priv->bssid, ETH_ALEN);
4533 /* clear out the station table */
4534 priv->num_stations = 0;
4536 IPW_DEBUG_ASSOC
4537 ("queueing adhoc check\n");
4538 schedule_delayed_work(
4539 &priv->adhoc_check,
4540 le16_to_cpu(priv->
4541 assoc_request.
4542 beacon_interval));
4543 break;
4546 priv->status &= ~STATUS_ASSOCIATING;
4547 priv->status |= STATUS_ASSOCIATED;
4548 schedule_work(&priv->system_config);
4550 #ifdef CONFIG_IPW2200_QOS
4551 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4552 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4553 if ((priv->status & STATUS_AUTH) &&
4554 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4555 == IEEE80211_STYPE_ASSOC_RESP)) {
4556 if ((sizeof
4557 (struct
4558 libipw_assoc_response)
4559 <= size)
4560 && (size <= 2314)) {
4561 struct
4562 libipw_rx_stats
4563 stats = {
4564 .len = size - 1,
4567 IPW_DEBUG_QOS
4568 ("QoS Associate "
4569 "size %d\n", size);
4570 libipw_rx_mgt(priv->
4571 ieee,
4572 (struct
4573 libipw_hdr_4addr
4575 &notif->u.raw, &stats);
4578 #endif
4580 schedule_work(&priv->link_up);
4582 break;
4585 case CMAS_AUTHENTICATED:{
4586 if (priv->
4587 status & (STATUS_ASSOCIATED |
4588 STATUS_AUTH)) {
4589 struct notif_authenticate *auth
4590 = &notif->u.auth;
4591 IPW_DEBUG(IPW_DL_NOTIF |
4592 IPW_DL_STATE |
4593 IPW_DL_ASSOC,
4594 "deauthenticated: '%s' "
4595 "%pM"
4596 ": (0x%04X) - %s\n",
4597 print_ssid(ssid,
4598 priv->
4599 essid,
4600 priv->
4601 essid_len),
4602 priv->bssid,
4603 le16_to_cpu(auth->status),
4604 ipw_get_status_code
4605 (le16_to_cpu
4606 (auth->status)));
4608 priv->status &=
4609 ~(STATUS_ASSOCIATING |
4610 STATUS_AUTH |
4611 STATUS_ASSOCIATED);
4613 schedule_work(&priv->link_down);
4614 break;
4617 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4618 IPW_DL_ASSOC,
4619 "authenticated: '%s' %pM\n",
4620 print_ssid(ssid, priv->essid,
4621 priv->essid_len),
4622 priv->bssid);
4623 break;
4626 case CMAS_INIT:{
4627 if (priv->status & STATUS_AUTH) {
4628 struct
4629 libipw_assoc_response
4630 *resp;
4631 resp =
4632 (struct
4633 libipw_assoc_response
4634 *)&notif->u.raw;
4635 IPW_DEBUG(IPW_DL_NOTIF |
4636 IPW_DL_STATE |
4637 IPW_DL_ASSOC,
4638 "association failed (0x%04X): %s\n",
4639 le16_to_cpu(resp->status),
4640 ipw_get_status_code
4641 (le16_to_cpu
4642 (resp->status)));
4645 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4646 IPW_DL_ASSOC,
4647 "disassociated: '%s' %pM\n",
4648 print_ssid(ssid, priv->essid,
4649 priv->essid_len),
4650 priv->bssid);
4652 priv->status &=
4653 ~(STATUS_DISASSOCIATING |
4654 STATUS_ASSOCIATING |
4655 STATUS_ASSOCIATED | STATUS_AUTH);
4656 if (priv->assoc_network
4657 && (priv->assoc_network->
4658 capability &
4659 WLAN_CAPABILITY_IBSS))
4660 ipw_remove_current_network
4661 (priv);
4663 schedule_work(&priv->link_down);
4665 break;
4668 case CMAS_RX_ASSOC_RESP:
4669 break;
4671 default:
4672 IPW_ERROR("assoc: unknown (%d)\n",
4673 assoc->state);
4674 break;
4677 break;
4680 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4681 struct notif_authenticate *auth = &notif->u.auth;
4682 switch (auth->state) {
4683 case CMAS_AUTHENTICATED:
4684 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4685 "authenticated: '%s' %pM\n",
4686 print_ssid(ssid, priv->essid,
4687 priv->essid_len),
4688 priv->bssid);
4689 priv->status |= STATUS_AUTH;
4690 break;
4692 case CMAS_INIT:
4693 if (priv->status & STATUS_AUTH) {
4694 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4695 IPW_DL_ASSOC,
4696 "authentication failed (0x%04X): %s\n",
4697 le16_to_cpu(auth->status),
4698 ipw_get_status_code(le16_to_cpu
4699 (auth->
4700 status)));
4702 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4703 IPW_DL_ASSOC,
4704 "deauthenticated: '%s' %pM\n",
4705 print_ssid(ssid, priv->essid,
4706 priv->essid_len),
4707 priv->bssid);
4709 priv->status &= ~(STATUS_ASSOCIATING |
4710 STATUS_AUTH |
4711 STATUS_ASSOCIATED);
4713 schedule_work(&priv->link_down);
4714 break;
4716 case CMAS_TX_AUTH_SEQ_1:
4717 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4718 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4719 break;
4720 case CMAS_RX_AUTH_SEQ_2:
4721 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4722 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4723 break;
4724 case CMAS_AUTH_SEQ_1_PASS:
4725 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4726 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4727 break;
4728 case CMAS_AUTH_SEQ_1_FAIL:
4729 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4730 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4731 break;
4732 case CMAS_TX_AUTH_SEQ_3:
4733 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4734 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4735 break;
4736 case CMAS_RX_AUTH_SEQ_4:
4737 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4738 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4739 break;
4740 case CMAS_AUTH_SEQ_2_PASS:
4741 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4742 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4743 break;
4744 case CMAS_AUTH_SEQ_2_FAIL:
4745 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4746 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4747 break;
4748 case CMAS_TX_ASSOC:
4749 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4750 IPW_DL_ASSOC, "TX_ASSOC\n");
4751 break;
4752 case CMAS_RX_ASSOC_RESP:
4753 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4754 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4756 break;
4757 case CMAS_ASSOCIATED:
4758 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4759 IPW_DL_ASSOC, "ASSOCIATED\n");
4760 break;
4761 default:
4762 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4763 auth->state);
4764 break;
4766 break;
4769 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4770 struct notif_channel_result *x =
4771 &notif->u.channel_result;
4773 if (size == sizeof(*x)) {
4774 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4775 x->channel_num);
4776 } else {
4777 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4778 "(should be %zd)\n",
4779 size, sizeof(*x));
4781 break;
4784 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4785 struct notif_scan_complete *x = &notif->u.scan_complete;
4786 if (size == sizeof(*x)) {
4787 IPW_DEBUG_SCAN
4788 ("Scan completed: type %d, %d channels, "
4789 "%d status\n", x->scan_type,
4790 x->num_channels, x->status);
4791 } else {
4792 IPW_ERROR("Scan completed of wrong size %d "
4793 "(should be %zd)\n",
4794 size, sizeof(*x));
4797 priv->status &=
4798 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4800 wake_up_interruptible(&priv->wait_state);
4801 cancel_delayed_work(&priv->scan_check);
4803 if (priv->status & STATUS_EXIT_PENDING)
4804 break;
4806 priv->ieee->scans++;
4808 #ifdef CONFIG_IPW2200_MONITOR
4809 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4810 priv->status |= STATUS_SCAN_FORCED;
4811 schedule_delayed_work(&priv->request_scan, 0);
4812 break;
4814 priv->status &= ~STATUS_SCAN_FORCED;
4815 #endif /* CONFIG_IPW2200_MONITOR */
4817 /* Do queued direct scans first */
4818 if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4819 schedule_delayed_work(&priv->request_direct_scan, 0);
4821 if (!(priv->status & (STATUS_ASSOCIATED |
4822 STATUS_ASSOCIATING |
4823 STATUS_ROAMING |
4824 STATUS_DISASSOCIATING)))
4825 schedule_work(&priv->associate);
4826 else if (priv->status & STATUS_ROAMING) {
4827 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4828 /* If a scan completed and we are in roam mode, then
4829 * the scan that completed was the one requested as a
4830 * result of entering roam... so, schedule the
4831 * roam work */
4832 schedule_work(&priv->roam);
4833 else
4834 /* Don't schedule if we aborted the scan */
4835 priv->status &= ~STATUS_ROAMING;
4836 } else if (priv->status & STATUS_SCAN_PENDING)
4837 schedule_delayed_work(&priv->request_scan, 0);
4838 else if (priv->config & CFG_BACKGROUND_SCAN
4839 && priv->status & STATUS_ASSOCIATED)
4840 schedule_delayed_work(&priv->request_scan,
4841 round_jiffies_relative(HZ));
4843 /* Send an empty event to user space.
4844 * We don't send the received data on the event because
4845 * it would require us to do complex transcoding, and
4846 * we want to minimise the work done in the irq handler
4847 * Use a request to extract the data.
4848 * Also, we generate this even for any scan, regardless
4849 * on how the scan was initiated. User space can just
4850 * sync on periodic scan to get fresh data...
4851 * Jean II */
4852 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4853 handle_scan_event(priv);
4854 break;
4857 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4858 struct notif_frag_length *x = &notif->u.frag_len;
4860 if (size == sizeof(*x))
4861 IPW_ERROR("Frag length: %d\n",
4862 le16_to_cpu(x->frag_length));
4863 else
4864 IPW_ERROR("Frag length of wrong size %d "
4865 "(should be %zd)\n",
4866 size, sizeof(*x));
4867 break;
4870 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4871 struct notif_link_deterioration *x =
4872 &notif->u.link_deterioration;
4874 if (size == sizeof(*x)) {
4875 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4876 "link deterioration: type %d, cnt %d\n",
4877 x->silence_notification_type,
4878 x->silence_count);
4879 memcpy(&priv->last_link_deterioration, x,
4880 sizeof(*x));
4881 } else {
4882 IPW_ERROR("Link Deterioration of wrong size %d "
4883 "(should be %zd)\n",
4884 size, sizeof(*x));
4886 break;
4889 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4890 IPW_ERROR("Dino config\n");
4891 if (priv->hcmd
4892 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4893 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4895 break;
4898 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4899 struct notif_beacon_state *x = &notif->u.beacon_state;
4900 if (size != sizeof(*x)) {
4901 IPW_ERROR
4902 ("Beacon state of wrong size %d (should "
4903 "be %zd)\n", size, sizeof(*x));
4904 break;
4907 if (le32_to_cpu(x->state) ==
4908 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4909 ipw_handle_missed_beacon(priv,
4910 le32_to_cpu(x->
4911 number));
4913 break;
4916 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4917 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4918 if (size == sizeof(*x)) {
4919 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4920 "0x%02x station %d\n",
4921 x->key_state, x->security_type,
4922 x->station_index);
4923 break;
4926 IPW_ERROR
4927 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4928 size, sizeof(*x));
4929 break;
4932 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4933 struct notif_calibration *x = &notif->u.calibration;
4935 if (size == sizeof(*x)) {
4936 memcpy(&priv->calib, x, sizeof(*x));
4937 IPW_DEBUG_INFO("TODO: Calibration\n");
4938 break;
4941 IPW_ERROR
4942 ("Calibration of wrong size %d (should be %zd)\n",
4943 size, sizeof(*x));
4944 break;
4947 case HOST_NOTIFICATION_NOISE_STATS:{
4948 if (size == sizeof(u32)) {
4949 priv->exp_avg_noise =
4950 exponential_average(priv->exp_avg_noise,
4951 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4952 DEPTH_NOISE);
4953 break;
4956 IPW_ERROR
4957 ("Noise stat is wrong size %d (should be %zd)\n",
4958 size, sizeof(u32));
4959 break;
4962 default:
4963 IPW_DEBUG_NOTIF("Unknown notification: "
4964 "subtype=%d,flags=0x%2x,size=%d\n",
4965 notif->subtype, notif->flags, size);
4970 * Destroys all DMA structures and initialise them again
4972 * @param priv
4973 * @return error code
4975 static int ipw_queue_reset(struct ipw_priv *priv)
4977 int rc = 0;
4978 /** @todo customize queue sizes */
4979 int nTx = 64, nTxCmd = 8;
4980 ipw_tx_queue_free(priv);
4981 /* Tx CMD queue */
4982 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4983 IPW_TX_CMD_QUEUE_READ_INDEX,
4984 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4985 IPW_TX_CMD_QUEUE_BD_BASE,
4986 IPW_TX_CMD_QUEUE_BD_SIZE);
4987 if (rc) {
4988 IPW_ERROR("Tx Cmd queue init failed\n");
4989 goto error;
4991 /* Tx queue(s) */
4992 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4993 IPW_TX_QUEUE_0_READ_INDEX,
4994 IPW_TX_QUEUE_0_WRITE_INDEX,
4995 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4996 if (rc) {
4997 IPW_ERROR("Tx 0 queue init failed\n");
4998 goto error;
5000 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
5001 IPW_TX_QUEUE_1_READ_INDEX,
5002 IPW_TX_QUEUE_1_WRITE_INDEX,
5003 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
5004 if (rc) {
5005 IPW_ERROR("Tx 1 queue init failed\n");
5006 goto error;
5008 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
5009 IPW_TX_QUEUE_2_READ_INDEX,
5010 IPW_TX_QUEUE_2_WRITE_INDEX,
5011 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
5012 if (rc) {
5013 IPW_ERROR("Tx 2 queue init failed\n");
5014 goto error;
5016 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
5017 IPW_TX_QUEUE_3_READ_INDEX,
5018 IPW_TX_QUEUE_3_WRITE_INDEX,
5019 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
5020 if (rc) {
5021 IPW_ERROR("Tx 3 queue init failed\n");
5022 goto error;
5024 /* statistics */
5025 priv->rx_bufs_min = 0;
5026 priv->rx_pend_max = 0;
5027 return rc;
5029 error:
5030 ipw_tx_queue_free(priv);
5031 return rc;
5035 * Reclaim Tx queue entries no more used by NIC.
5037 * When FW advances 'R' index, all entries between old and
5038 * new 'R' index need to be reclaimed. As result, some free space
5039 * forms. If there is enough free space (> low mark), wake Tx queue.
5041 * @note Need to protect against garbage in 'R' index
5042 * @param priv
5043 * @param txq
5044 * @param qindex
5045 * @return Number of used entries remains in the queue
5047 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5048 struct clx2_tx_queue *txq, int qindex)
5050 u32 hw_tail;
5051 int used;
5052 struct clx2_queue *q = &txq->q;
5054 hw_tail = ipw_read32(priv, q->reg_r);
5055 if (hw_tail >= q->n_bd) {
5056 IPW_ERROR
5057 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5058 hw_tail, q->n_bd);
5059 goto done;
5061 for (; q->last_used != hw_tail;
5062 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5063 ipw_queue_tx_free_tfd(priv, txq);
5064 priv->tx_packets++;
5066 done:
5067 if ((ipw_tx_queue_space(q) > q->low_mark) &&
5068 (qindex >= 0))
5069 netif_wake_queue(priv->net_dev);
5070 used = q->first_empty - q->last_used;
5071 if (used < 0)
5072 used += q->n_bd;
5074 return used;
5077 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5078 int len, int sync)
5080 struct clx2_tx_queue *txq = &priv->txq_cmd;
5081 struct clx2_queue *q = &txq->q;
5082 struct tfd_frame *tfd;
5084 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5085 IPW_ERROR("No space for Tx\n");
5086 return -EBUSY;
5089 tfd = &txq->bd[q->first_empty];
5090 txq->txb[q->first_empty] = NULL;
5092 memset(tfd, 0, sizeof(*tfd));
5093 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5094 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5095 priv->hcmd_seq++;
5096 tfd->u.cmd.index = hcmd;
5097 tfd->u.cmd.length = len;
5098 memcpy(tfd->u.cmd.payload, buf, len);
5099 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5100 ipw_write32(priv, q->reg_w, q->first_empty);
5101 _ipw_read32(priv, 0x90);
5103 return 0;
5107 * Rx theory of operation
5109 * The host allocates 32 DMA target addresses and passes the host address
5110 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5111 * 0 to 31
5113 * Rx Queue Indexes
5114 * The host/firmware share two index registers for managing the Rx buffers.
5116 * The READ index maps to the first position that the firmware may be writing
5117 * to -- the driver can read up to (but not including) this position and get
5118 * good data.
5119 * The READ index is managed by the firmware once the card is enabled.
5121 * The WRITE index maps to the last position the driver has read from -- the
5122 * position preceding WRITE is the last slot the firmware can place a packet.
5124 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5125 * WRITE = READ.
5127 * During initialization the host sets up the READ queue position to the first
5128 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5130 * When the firmware places a packet in a buffer it will advance the READ index
5131 * and fire the RX interrupt. The driver can then query the READ index and
5132 * process as many packets as possible, moving the WRITE index forward as it
5133 * resets the Rx queue buffers with new memory.
5135 * The management in the driver is as follows:
5136 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5137 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5138 * to replensish the ipw->rxq->rx_free.
5139 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5140 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5141 * 'processed' and 'read' driver indexes as well)
5142 * + A received packet is processed and handed to the kernel network stack,
5143 * detached from the ipw->rxq. The driver 'processed' index is updated.
5144 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5145 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5146 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5147 * were enough free buffers and RX_STALLED is set it is cleared.
5150 * Driver sequence:
5152 * ipw_rx_queue_alloc() Allocates rx_free
5153 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5154 * ipw_rx_queue_restock
5155 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5156 * queue, updates firmware pointers, and updates
5157 * the WRITE index. If insufficient rx_free buffers
5158 * are available, schedules ipw_rx_queue_replenish
5160 * -- enable interrupts --
5161 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5162 * READ INDEX, detaching the SKB from the pool.
5163 * Moves the packet buffer from queue to rx_used.
5164 * Calls ipw_rx_queue_restock to refill any empty
5165 * slots.
5166 * ...
5171 * If there are slots in the RX queue that need to be restocked,
5172 * and we have free pre-allocated buffers, fill the ranks as much
5173 * as we can pulling from rx_free.
5175 * This moves the 'write' index forward to catch up with 'processed', and
5176 * also updates the memory address in the firmware to reference the new
5177 * target buffer.
5179 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5181 struct ipw_rx_queue *rxq = priv->rxq;
5182 struct list_head *element;
5183 struct ipw_rx_mem_buffer *rxb;
5184 unsigned long flags;
5185 int write;
5187 spin_lock_irqsave(&rxq->lock, flags);
5188 write = rxq->write;
5189 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5190 element = rxq->rx_free.next;
5191 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5192 list_del(element);
5194 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5195 rxb->dma_addr);
5196 rxq->queue[rxq->write] = rxb;
5197 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5198 rxq->free_count--;
5200 spin_unlock_irqrestore(&rxq->lock, flags);
5202 /* If the pre-allocated buffer pool is dropping low, schedule to
5203 * refill it */
5204 if (rxq->free_count <= RX_LOW_WATERMARK)
5205 schedule_work(&priv->rx_replenish);
5207 /* If we've added more space for the firmware to place data, tell it */
5208 if (write != rxq->write)
5209 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5213 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5214 * Also restock the Rx queue via ipw_rx_queue_restock.
5216 * This is called as a scheduled work item (except for during intialization)
5218 static void ipw_rx_queue_replenish(void *data)
5220 struct ipw_priv *priv = data;
5221 struct ipw_rx_queue *rxq = priv->rxq;
5222 struct list_head *element;
5223 struct ipw_rx_mem_buffer *rxb;
5224 unsigned long flags;
5226 spin_lock_irqsave(&rxq->lock, flags);
5227 while (!list_empty(&rxq->rx_used)) {
5228 element = rxq->rx_used.next;
5229 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5230 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5231 if (!rxb->skb) {
5232 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5233 priv->net_dev->name);
5234 /* We don't reschedule replenish work here -- we will
5235 * call the restock method and if it still needs
5236 * more buffers it will schedule replenish */
5237 break;
5239 list_del(element);
5241 rxb->dma_addr =
5242 pci_map_single(priv->pci_dev, rxb->skb->data,
5243 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5245 list_add_tail(&rxb->list, &rxq->rx_free);
5246 rxq->free_count++;
5248 spin_unlock_irqrestore(&rxq->lock, flags);
5250 ipw_rx_queue_restock(priv);
5253 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5255 struct ipw_priv *priv =
5256 container_of(work, struct ipw_priv, rx_replenish);
5257 mutex_lock(&priv->mutex);
5258 ipw_rx_queue_replenish(priv);
5259 mutex_unlock(&priv->mutex);
5262 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5263 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5264 * This free routine walks the list of POOL entries and if SKB is set to
5265 * non NULL it is unmapped and freed
5267 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5269 int i;
5271 if (!rxq)
5272 return;
5274 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5275 if (rxq->pool[i].skb != NULL) {
5276 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5277 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5278 dev_kfree_skb(rxq->pool[i].skb);
5282 kfree(rxq);
5285 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5287 struct ipw_rx_queue *rxq;
5288 int i;
5290 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5291 if (unlikely(!rxq)) {
5292 IPW_ERROR("memory allocation failed\n");
5293 return NULL;
5295 spin_lock_init(&rxq->lock);
5296 INIT_LIST_HEAD(&rxq->rx_free);
5297 INIT_LIST_HEAD(&rxq->rx_used);
5299 /* Fill the rx_used queue with _all_ of the Rx buffers */
5300 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5301 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5303 /* Set us so that we have processed and used all buffers, but have
5304 * not restocked the Rx queue with fresh buffers */
5305 rxq->read = rxq->write = 0;
5306 rxq->free_count = 0;
5308 return rxq;
5311 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5313 rate &= ~LIBIPW_BASIC_RATE_MASK;
5314 if (ieee_mode == IEEE_A) {
5315 switch (rate) {
5316 case LIBIPW_OFDM_RATE_6MB:
5317 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5318 1 : 0;
5319 case LIBIPW_OFDM_RATE_9MB:
5320 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5321 1 : 0;
5322 case LIBIPW_OFDM_RATE_12MB:
5323 return priv->
5324 rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5325 case LIBIPW_OFDM_RATE_18MB:
5326 return priv->
5327 rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5328 case LIBIPW_OFDM_RATE_24MB:
5329 return priv->
5330 rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5331 case LIBIPW_OFDM_RATE_36MB:
5332 return priv->
5333 rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5334 case LIBIPW_OFDM_RATE_48MB:
5335 return priv->
5336 rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5337 case LIBIPW_OFDM_RATE_54MB:
5338 return priv->
5339 rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5340 default:
5341 return 0;
5345 /* B and G mixed */
5346 switch (rate) {
5347 case LIBIPW_CCK_RATE_1MB:
5348 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5349 case LIBIPW_CCK_RATE_2MB:
5350 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5351 case LIBIPW_CCK_RATE_5MB:
5352 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5353 case LIBIPW_CCK_RATE_11MB:
5354 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5357 /* If we are limited to B modulations, bail at this point */
5358 if (ieee_mode == IEEE_B)
5359 return 0;
5361 /* G */
5362 switch (rate) {
5363 case LIBIPW_OFDM_RATE_6MB:
5364 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5365 case LIBIPW_OFDM_RATE_9MB:
5366 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5367 case LIBIPW_OFDM_RATE_12MB:
5368 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5369 case LIBIPW_OFDM_RATE_18MB:
5370 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5371 case LIBIPW_OFDM_RATE_24MB:
5372 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5373 case LIBIPW_OFDM_RATE_36MB:
5374 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5375 case LIBIPW_OFDM_RATE_48MB:
5376 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5377 case LIBIPW_OFDM_RATE_54MB:
5378 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5381 return 0;
5384 static int ipw_compatible_rates(struct ipw_priv *priv,
5385 const struct libipw_network *network,
5386 struct ipw_supported_rates *rates)
5388 int num_rates, i;
5390 memset(rates, 0, sizeof(*rates));
5391 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5392 rates->num_rates = 0;
5393 for (i = 0; i < num_rates; i++) {
5394 if (!ipw_is_rate_in_mask(priv, network->mode,
5395 network->rates[i])) {
5397 if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5398 IPW_DEBUG_SCAN("Adding masked mandatory "
5399 "rate %02X\n",
5400 network->rates[i]);
5401 rates->supported_rates[rates->num_rates++] =
5402 network->rates[i];
5403 continue;
5406 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5407 network->rates[i], priv->rates_mask);
5408 continue;
5411 rates->supported_rates[rates->num_rates++] = network->rates[i];
5414 num_rates = min(network->rates_ex_len,
5415 (u8) (IPW_MAX_RATES - num_rates));
5416 for (i = 0; i < num_rates; i++) {
5417 if (!ipw_is_rate_in_mask(priv, network->mode,
5418 network->rates_ex[i])) {
5419 if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5420 IPW_DEBUG_SCAN("Adding masked mandatory "
5421 "rate %02X\n",
5422 network->rates_ex[i]);
5423 rates->supported_rates[rates->num_rates++] =
5424 network->rates[i];
5425 continue;
5428 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5429 network->rates_ex[i], priv->rates_mask);
5430 continue;
5433 rates->supported_rates[rates->num_rates++] =
5434 network->rates_ex[i];
5437 return 1;
5440 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5441 const struct ipw_supported_rates *src)
5443 u8 i;
5444 for (i = 0; i < src->num_rates; i++)
5445 dest->supported_rates[i] = src->supported_rates[i];
5446 dest->num_rates = src->num_rates;
5449 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5450 * mask should ever be used -- right now all callers to add the scan rates are
5451 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5452 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5453 u8 modulation, u32 rate_mask)
5455 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5456 LIBIPW_BASIC_RATE_MASK : 0;
5458 if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5459 rates->supported_rates[rates->num_rates++] =
5460 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5462 if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5463 rates->supported_rates[rates->num_rates++] =
5464 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5466 if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5467 rates->supported_rates[rates->num_rates++] = basic_mask |
5468 LIBIPW_CCK_RATE_5MB;
5470 if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5471 rates->supported_rates[rates->num_rates++] = basic_mask |
5472 LIBIPW_CCK_RATE_11MB;
5475 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5476 u8 modulation, u32 rate_mask)
5478 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5479 LIBIPW_BASIC_RATE_MASK : 0;
5481 if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5482 rates->supported_rates[rates->num_rates++] = basic_mask |
5483 LIBIPW_OFDM_RATE_6MB;
5485 if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5486 rates->supported_rates[rates->num_rates++] =
5487 LIBIPW_OFDM_RATE_9MB;
5489 if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5490 rates->supported_rates[rates->num_rates++] = basic_mask |
5491 LIBIPW_OFDM_RATE_12MB;
5493 if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5494 rates->supported_rates[rates->num_rates++] =
5495 LIBIPW_OFDM_RATE_18MB;
5497 if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5498 rates->supported_rates[rates->num_rates++] = basic_mask |
5499 LIBIPW_OFDM_RATE_24MB;
5501 if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5502 rates->supported_rates[rates->num_rates++] =
5503 LIBIPW_OFDM_RATE_36MB;
5505 if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5506 rates->supported_rates[rates->num_rates++] =
5507 LIBIPW_OFDM_RATE_48MB;
5509 if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5510 rates->supported_rates[rates->num_rates++] =
5511 LIBIPW_OFDM_RATE_54MB;
5514 struct ipw_network_match {
5515 struct libipw_network *network;
5516 struct ipw_supported_rates rates;
5519 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5520 struct ipw_network_match *match,
5521 struct libipw_network *network,
5522 int roaming)
5524 struct ipw_supported_rates rates;
5525 DECLARE_SSID_BUF(ssid);
5527 /* Verify that this network's capability is compatible with the
5528 * current mode (AdHoc or Infrastructure) */
5529 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5530 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5531 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5532 "capability mismatch.\n",
5533 print_ssid(ssid, network->ssid,
5534 network->ssid_len),
5535 network->bssid);
5536 return 0;
5539 if (unlikely(roaming)) {
5540 /* If we are roaming, then ensure check if this is a valid
5541 * network to try and roam to */
5542 if ((network->ssid_len != match->network->ssid_len) ||
5543 memcmp(network->ssid, match->network->ssid,
5544 network->ssid_len)) {
5545 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5546 "because of non-network ESSID.\n",
5547 print_ssid(ssid, network->ssid,
5548 network->ssid_len),
5549 network->bssid);
5550 return 0;
5552 } else {
5553 /* If an ESSID has been configured then compare the broadcast
5554 * ESSID to ours */
5555 if ((priv->config & CFG_STATIC_ESSID) &&
5556 ((network->ssid_len != priv->essid_len) ||
5557 memcmp(network->ssid, priv->essid,
5558 min(network->ssid_len, priv->essid_len)))) {
5559 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5561 strncpy(escaped,
5562 print_ssid(ssid, network->ssid,
5563 network->ssid_len),
5564 sizeof(escaped));
5565 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5566 "because of ESSID mismatch: '%s'.\n",
5567 escaped, network->bssid,
5568 print_ssid(ssid, priv->essid,
5569 priv->essid_len));
5570 return 0;
5574 /* If the old network rate is better than this one, don't bother
5575 * testing everything else. */
5577 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5578 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5579 "current network.\n",
5580 print_ssid(ssid, match->network->ssid,
5581 match->network->ssid_len));
5582 return 0;
5583 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5584 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5585 "current network.\n",
5586 print_ssid(ssid, match->network->ssid,
5587 match->network->ssid_len));
5588 return 0;
5591 /* Now go through and see if the requested network is valid... */
5592 if (priv->ieee->scan_age != 0 &&
5593 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5594 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5595 "because of age: %ums.\n",
5596 print_ssid(ssid, network->ssid,
5597 network->ssid_len),
5598 network->bssid,
5599 jiffies_to_msecs(jiffies -
5600 network->last_scanned));
5601 return 0;
5604 if ((priv->config & CFG_STATIC_CHANNEL) &&
5605 (network->channel != priv->channel)) {
5606 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5607 "because of channel mismatch: %d != %d.\n",
5608 print_ssid(ssid, network->ssid,
5609 network->ssid_len),
5610 network->bssid,
5611 network->channel, priv->channel);
5612 return 0;
5615 /* Verify privacy compatibility */
5616 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5617 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5618 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5619 "because of privacy mismatch: %s != %s.\n",
5620 print_ssid(ssid, network->ssid,
5621 network->ssid_len),
5622 network->bssid,
5623 priv->
5624 capability & CAP_PRIVACY_ON ? "on" : "off",
5625 network->
5626 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5627 "off");
5628 return 0;
5631 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5632 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5633 "because of the same BSSID match: %pM"
5634 ".\n", print_ssid(ssid, network->ssid,
5635 network->ssid_len),
5636 network->bssid,
5637 priv->bssid);
5638 return 0;
5641 /* Filter out any incompatible freq / mode combinations */
5642 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5643 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5644 "because of invalid frequency/mode "
5645 "combination.\n",
5646 print_ssid(ssid, network->ssid,
5647 network->ssid_len),
5648 network->bssid);
5649 return 0;
5652 /* Ensure that the rates supported by the driver are compatible with
5653 * this AP, including verification of basic rates (mandatory) */
5654 if (!ipw_compatible_rates(priv, network, &rates)) {
5655 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5656 "because configured rate mask excludes "
5657 "AP mandatory rate.\n",
5658 print_ssid(ssid, network->ssid,
5659 network->ssid_len),
5660 network->bssid);
5661 return 0;
5664 if (rates.num_rates == 0) {
5665 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5666 "because of no compatible rates.\n",
5667 print_ssid(ssid, network->ssid,
5668 network->ssid_len),
5669 network->bssid);
5670 return 0;
5673 /* TODO: Perform any further minimal comparititive tests. We do not
5674 * want to put too much policy logic here; intelligent scan selection
5675 * should occur within a generic IEEE 802.11 user space tool. */
5677 /* Set up 'new' AP to this network */
5678 ipw_copy_rates(&match->rates, &rates);
5679 match->network = network;
5680 IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5681 print_ssid(ssid, network->ssid, network->ssid_len),
5682 network->bssid);
5684 return 1;
5687 static void ipw_merge_adhoc_network(struct work_struct *work)
5689 DECLARE_SSID_BUF(ssid);
5690 struct ipw_priv *priv =
5691 container_of(work, struct ipw_priv, merge_networks);
5692 struct libipw_network *network = NULL;
5693 struct ipw_network_match match = {
5694 .network = priv->assoc_network
5697 if ((priv->status & STATUS_ASSOCIATED) &&
5698 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5699 /* First pass through ROAM process -- look for a better
5700 * network */
5701 unsigned long flags;
5703 spin_lock_irqsave(&priv->ieee->lock, flags);
5704 list_for_each_entry(network, &priv->ieee->network_list, list) {
5705 if (network != priv->assoc_network)
5706 ipw_find_adhoc_network(priv, &match, network,
5709 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5711 if (match.network == priv->assoc_network) {
5712 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5713 "merge to.\n");
5714 return;
5717 mutex_lock(&priv->mutex);
5718 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5719 IPW_DEBUG_MERGE("remove network %s\n",
5720 print_ssid(ssid, priv->essid,
5721 priv->essid_len));
5722 ipw_remove_current_network(priv);
5725 ipw_disassociate(priv);
5726 priv->assoc_network = match.network;
5727 mutex_unlock(&priv->mutex);
5728 return;
5732 static int ipw_best_network(struct ipw_priv *priv,
5733 struct ipw_network_match *match,
5734 struct libipw_network *network, int roaming)
5736 struct ipw_supported_rates rates;
5737 DECLARE_SSID_BUF(ssid);
5739 /* Verify that this network's capability is compatible with the
5740 * current mode (AdHoc or Infrastructure) */
5741 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5742 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5743 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5744 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5745 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5746 "capability mismatch.\n",
5747 print_ssid(ssid, network->ssid,
5748 network->ssid_len),
5749 network->bssid);
5750 return 0;
5753 if (unlikely(roaming)) {
5754 /* If we are roaming, then ensure check if this is a valid
5755 * network to try and roam to */
5756 if ((network->ssid_len != match->network->ssid_len) ||
5757 memcmp(network->ssid, match->network->ssid,
5758 network->ssid_len)) {
5759 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5760 "because of non-network ESSID.\n",
5761 print_ssid(ssid, network->ssid,
5762 network->ssid_len),
5763 network->bssid);
5764 return 0;
5766 } else {
5767 /* If an ESSID has been configured then compare the broadcast
5768 * ESSID to ours */
5769 if ((priv->config & CFG_STATIC_ESSID) &&
5770 ((network->ssid_len != priv->essid_len) ||
5771 memcmp(network->ssid, priv->essid,
5772 min(network->ssid_len, priv->essid_len)))) {
5773 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5774 strncpy(escaped,
5775 print_ssid(ssid, network->ssid,
5776 network->ssid_len),
5777 sizeof(escaped));
5778 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5779 "because of ESSID mismatch: '%s'.\n",
5780 escaped, network->bssid,
5781 print_ssid(ssid, priv->essid,
5782 priv->essid_len));
5783 return 0;
5787 /* If the old network rate is better than this one, don't bother
5788 * testing everything else. */
5789 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5790 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5791 strncpy(escaped,
5792 print_ssid(ssid, network->ssid, network->ssid_len),
5793 sizeof(escaped));
5794 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5795 "'%s (%pM)' has a stronger signal.\n",
5796 escaped, network->bssid,
5797 print_ssid(ssid, match->network->ssid,
5798 match->network->ssid_len),
5799 match->network->bssid);
5800 return 0;
5803 /* If this network has already had an association attempt within the
5804 * last 3 seconds, do not try and associate again... */
5805 if (network->last_associate &&
5806 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5807 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5808 "because of storming (%ums since last "
5809 "assoc attempt).\n",
5810 print_ssid(ssid, network->ssid,
5811 network->ssid_len),
5812 network->bssid,
5813 jiffies_to_msecs(jiffies -
5814 network->last_associate));
5815 return 0;
5818 /* Now go through and see if the requested network is valid... */
5819 if (priv->ieee->scan_age != 0 &&
5820 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5821 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5822 "because of age: %ums.\n",
5823 print_ssid(ssid, network->ssid,
5824 network->ssid_len),
5825 network->bssid,
5826 jiffies_to_msecs(jiffies -
5827 network->last_scanned));
5828 return 0;
5831 if ((priv->config & CFG_STATIC_CHANNEL) &&
5832 (network->channel != priv->channel)) {
5833 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5834 "because of channel mismatch: %d != %d.\n",
5835 print_ssid(ssid, network->ssid,
5836 network->ssid_len),
5837 network->bssid,
5838 network->channel, priv->channel);
5839 return 0;
5842 /* Verify privacy compatibility */
5843 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5844 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5845 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5846 "because of privacy mismatch: %s != %s.\n",
5847 print_ssid(ssid, network->ssid,
5848 network->ssid_len),
5849 network->bssid,
5850 priv->capability & CAP_PRIVACY_ON ? "on" :
5851 "off",
5852 network->capability &
5853 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5854 return 0;
5857 if ((priv->config & CFG_STATIC_BSSID) &&
5858 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5859 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5860 "because of BSSID mismatch: %pM.\n",
5861 print_ssid(ssid, network->ssid,
5862 network->ssid_len),
5863 network->bssid, priv->bssid);
5864 return 0;
5867 /* Filter out any incompatible freq / mode combinations */
5868 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5869 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5870 "because of invalid frequency/mode "
5871 "combination.\n",
5872 print_ssid(ssid, network->ssid,
5873 network->ssid_len),
5874 network->bssid);
5875 return 0;
5878 /* Filter out invalid channel in current GEO */
5879 if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5880 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5881 "because of invalid channel in current GEO\n",
5882 print_ssid(ssid, network->ssid,
5883 network->ssid_len),
5884 network->bssid);
5885 return 0;
5888 /* Ensure that the rates supported by the driver are compatible with
5889 * this AP, including verification of basic rates (mandatory) */
5890 if (!ipw_compatible_rates(priv, network, &rates)) {
5891 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5892 "because configured rate mask excludes "
5893 "AP mandatory rate.\n",
5894 print_ssid(ssid, network->ssid,
5895 network->ssid_len),
5896 network->bssid);
5897 return 0;
5900 if (rates.num_rates == 0) {
5901 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5902 "because of no compatible rates.\n",
5903 print_ssid(ssid, network->ssid,
5904 network->ssid_len),
5905 network->bssid);
5906 return 0;
5909 /* TODO: Perform any further minimal comparititive tests. We do not
5910 * want to put too much policy logic here; intelligent scan selection
5911 * should occur within a generic IEEE 802.11 user space tool. */
5913 /* Set up 'new' AP to this network */
5914 ipw_copy_rates(&match->rates, &rates);
5915 match->network = network;
5917 IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5918 print_ssid(ssid, network->ssid, network->ssid_len),
5919 network->bssid);
5921 return 1;
5924 static void ipw_adhoc_create(struct ipw_priv *priv,
5925 struct libipw_network *network)
5927 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5928 int i;
5931 * For the purposes of scanning, we can set our wireless mode
5932 * to trigger scans across combinations of bands, but when it
5933 * comes to creating a new ad-hoc network, we have tell the FW
5934 * exactly which band to use.
5936 * We also have the possibility of an invalid channel for the
5937 * chossen band. Attempting to create a new ad-hoc network
5938 * with an invalid channel for wireless mode will trigger a
5939 * FW fatal error.
5942 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5943 case LIBIPW_52GHZ_BAND:
5944 network->mode = IEEE_A;
5945 i = libipw_channel_to_index(priv->ieee, priv->channel);
5946 BUG_ON(i == -1);
5947 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5948 IPW_WARNING("Overriding invalid channel\n");
5949 priv->channel = geo->a[0].channel;
5951 break;
5953 case LIBIPW_24GHZ_BAND:
5954 if (priv->ieee->mode & IEEE_G)
5955 network->mode = IEEE_G;
5956 else
5957 network->mode = IEEE_B;
5958 i = libipw_channel_to_index(priv->ieee, priv->channel);
5959 BUG_ON(i == -1);
5960 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5961 IPW_WARNING("Overriding invalid channel\n");
5962 priv->channel = geo->bg[0].channel;
5964 break;
5966 default:
5967 IPW_WARNING("Overriding invalid channel\n");
5968 if (priv->ieee->mode & IEEE_A) {
5969 network->mode = IEEE_A;
5970 priv->channel = geo->a[0].channel;
5971 } else if (priv->ieee->mode & IEEE_G) {
5972 network->mode = IEEE_G;
5973 priv->channel = geo->bg[0].channel;
5974 } else {
5975 network->mode = IEEE_B;
5976 priv->channel = geo->bg[0].channel;
5978 break;
5981 network->channel = priv->channel;
5982 priv->config |= CFG_ADHOC_PERSIST;
5983 ipw_create_bssid(priv, network->bssid);
5984 network->ssid_len = priv->essid_len;
5985 memcpy(network->ssid, priv->essid, priv->essid_len);
5986 memset(&network->stats, 0, sizeof(network->stats));
5987 network->capability = WLAN_CAPABILITY_IBSS;
5988 if (!(priv->config & CFG_PREAMBLE_LONG))
5989 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5990 if (priv->capability & CAP_PRIVACY_ON)
5991 network->capability |= WLAN_CAPABILITY_PRIVACY;
5992 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5993 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5994 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5995 memcpy(network->rates_ex,
5996 &priv->rates.supported_rates[network->rates_len],
5997 network->rates_ex_len);
5998 network->last_scanned = 0;
5999 network->flags = 0;
6000 network->last_associate = 0;
6001 network->time_stamp[0] = 0;
6002 network->time_stamp[1] = 0;
6003 network->beacon_interval = 100; /* Default */
6004 network->listen_interval = 10; /* Default */
6005 network->atim_window = 0; /* Default */
6006 network->wpa_ie_len = 0;
6007 network->rsn_ie_len = 0;
6010 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
6012 struct ipw_tgi_tx_key key;
6014 if (!(priv->ieee->sec.flags & (1 << index)))
6015 return;
6017 key.key_id = index;
6018 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
6019 key.security_type = type;
6020 key.station_index = 0; /* always 0 for BSS */
6021 key.flags = 0;
6022 /* 0 for new key; previous value of counter (after fatal error) */
6023 key.tx_counter[0] = cpu_to_le32(0);
6024 key.tx_counter[1] = cpu_to_le32(0);
6026 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
6029 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
6031 struct ipw_wep_key key;
6032 int i;
6034 key.cmd_id = DINO_CMD_WEP_KEY;
6035 key.seq_num = 0;
6037 /* Note: AES keys cannot be set for multiple times.
6038 * Only set it at the first time. */
6039 for (i = 0; i < 4; i++) {
6040 key.key_index = i | type;
6041 if (!(priv->ieee->sec.flags & (1 << i))) {
6042 key.key_size = 0;
6043 continue;
6046 key.key_size = priv->ieee->sec.key_sizes[i];
6047 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
6049 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
6053 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
6055 if (priv->ieee->host_encrypt)
6056 return;
6058 switch (level) {
6059 case SEC_LEVEL_3:
6060 priv->sys_config.disable_unicast_decryption = 0;
6061 priv->ieee->host_decrypt = 0;
6062 break;
6063 case SEC_LEVEL_2:
6064 priv->sys_config.disable_unicast_decryption = 1;
6065 priv->ieee->host_decrypt = 1;
6066 break;
6067 case SEC_LEVEL_1:
6068 priv->sys_config.disable_unicast_decryption = 0;
6069 priv->ieee->host_decrypt = 0;
6070 break;
6071 case SEC_LEVEL_0:
6072 priv->sys_config.disable_unicast_decryption = 1;
6073 break;
6074 default:
6075 break;
6079 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
6081 if (priv->ieee->host_encrypt)
6082 return;
6084 switch (level) {
6085 case SEC_LEVEL_3:
6086 priv->sys_config.disable_multicast_decryption = 0;
6087 break;
6088 case SEC_LEVEL_2:
6089 priv->sys_config.disable_multicast_decryption = 1;
6090 break;
6091 case SEC_LEVEL_1:
6092 priv->sys_config.disable_multicast_decryption = 0;
6093 break;
6094 case SEC_LEVEL_0:
6095 priv->sys_config.disable_multicast_decryption = 1;
6096 break;
6097 default:
6098 break;
6102 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6104 switch (priv->ieee->sec.level) {
6105 case SEC_LEVEL_3:
6106 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6107 ipw_send_tgi_tx_key(priv,
6108 DCT_FLAG_EXT_SECURITY_CCM,
6109 priv->ieee->sec.active_key);
6111 if (!priv->ieee->host_mc_decrypt)
6112 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6113 break;
6114 case SEC_LEVEL_2:
6115 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6116 ipw_send_tgi_tx_key(priv,
6117 DCT_FLAG_EXT_SECURITY_TKIP,
6118 priv->ieee->sec.active_key);
6119 break;
6120 case SEC_LEVEL_1:
6121 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6122 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6123 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6124 break;
6125 case SEC_LEVEL_0:
6126 default:
6127 break;
6131 static void ipw_adhoc_check(void *data)
6133 struct ipw_priv *priv = data;
6135 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6136 !(priv->config & CFG_ADHOC_PERSIST)) {
6137 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6138 IPW_DL_STATE | IPW_DL_ASSOC,
6139 "Missed beacon: %d - disassociate\n",
6140 priv->missed_adhoc_beacons);
6141 ipw_remove_current_network(priv);
6142 ipw_disassociate(priv);
6143 return;
6146 schedule_delayed_work(&priv->adhoc_check,
6147 le16_to_cpu(priv->assoc_request.beacon_interval));
6150 static void ipw_bg_adhoc_check(struct work_struct *work)
6152 struct ipw_priv *priv =
6153 container_of(work, struct ipw_priv, adhoc_check.work);
6154 mutex_lock(&priv->mutex);
6155 ipw_adhoc_check(priv);
6156 mutex_unlock(&priv->mutex);
6159 static void ipw_debug_config(struct ipw_priv *priv)
6161 DECLARE_SSID_BUF(ssid);
6162 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6163 "[CFG 0x%08X]\n", priv->config);
6164 if (priv->config & CFG_STATIC_CHANNEL)
6165 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6166 else
6167 IPW_DEBUG_INFO("Channel unlocked.\n");
6168 if (priv->config & CFG_STATIC_ESSID)
6169 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6170 print_ssid(ssid, priv->essid, priv->essid_len));
6171 else
6172 IPW_DEBUG_INFO("ESSID unlocked.\n");
6173 if (priv->config & CFG_STATIC_BSSID)
6174 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6175 else
6176 IPW_DEBUG_INFO("BSSID unlocked.\n");
6177 if (priv->capability & CAP_PRIVACY_ON)
6178 IPW_DEBUG_INFO("PRIVACY on\n");
6179 else
6180 IPW_DEBUG_INFO("PRIVACY off\n");
6181 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6184 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6186 /* TODO: Verify that this works... */
6187 struct ipw_fixed_rate fr;
6188 u32 reg;
6189 u16 mask = 0;
6190 u16 new_tx_rates = priv->rates_mask;
6192 /* Identify 'current FW band' and match it with the fixed
6193 * Tx rates */
6195 switch (priv->ieee->freq_band) {
6196 case LIBIPW_52GHZ_BAND: /* A only */
6197 /* IEEE_A */
6198 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6199 /* Invalid fixed rate mask */
6200 IPW_DEBUG_WX
6201 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6202 new_tx_rates = 0;
6203 break;
6206 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6207 break;
6209 default: /* 2.4Ghz or Mixed */
6210 /* IEEE_B */
6211 if (mode == IEEE_B) {
6212 if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6213 /* Invalid fixed rate mask */
6214 IPW_DEBUG_WX
6215 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6216 new_tx_rates = 0;
6218 break;
6221 /* IEEE_G */
6222 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6223 LIBIPW_OFDM_RATES_MASK)) {
6224 /* Invalid fixed rate mask */
6225 IPW_DEBUG_WX
6226 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6227 new_tx_rates = 0;
6228 break;
6231 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6232 mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6233 new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6236 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6237 mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6238 new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6241 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6242 mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6243 new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6246 new_tx_rates |= mask;
6247 break;
6250 fr.tx_rates = cpu_to_le16(new_tx_rates);
6252 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6253 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6256 static void ipw_abort_scan(struct ipw_priv *priv)
6258 int err;
6260 if (priv->status & STATUS_SCAN_ABORTING) {
6261 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6262 return;
6264 priv->status |= STATUS_SCAN_ABORTING;
6266 err = ipw_send_scan_abort(priv);
6267 if (err)
6268 IPW_DEBUG_HC("Request to abort scan failed.\n");
6271 static void ipw_add_scan_channels(struct ipw_priv *priv,
6272 struct ipw_scan_request_ext *scan,
6273 int scan_type)
6275 int channel_index = 0;
6276 const struct libipw_geo *geo;
6277 int i;
6279 geo = libipw_get_geo(priv->ieee);
6281 if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6282 int start = channel_index;
6283 for (i = 0; i < geo->a_channels; i++) {
6284 if ((priv->status & STATUS_ASSOCIATED) &&
6285 geo->a[i].channel == priv->channel)
6286 continue;
6287 channel_index++;
6288 scan->channels_list[channel_index] = geo->a[i].channel;
6289 ipw_set_scan_type(scan, channel_index,
6290 geo->a[i].
6291 flags & LIBIPW_CH_PASSIVE_ONLY ?
6292 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6293 scan_type);
6296 if (start != channel_index) {
6297 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6298 (channel_index - start);
6299 channel_index++;
6303 if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6304 int start = channel_index;
6305 if (priv->config & CFG_SPEED_SCAN) {
6306 int index;
6307 u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6308 /* nop out the list */
6309 [0] = 0
6312 u8 channel;
6313 while (channel_index < IPW_SCAN_CHANNELS - 1) {
6314 channel =
6315 priv->speed_scan[priv->speed_scan_pos];
6316 if (channel == 0) {
6317 priv->speed_scan_pos = 0;
6318 channel = priv->speed_scan[0];
6320 if ((priv->status & STATUS_ASSOCIATED) &&
6321 channel == priv->channel) {
6322 priv->speed_scan_pos++;
6323 continue;
6326 /* If this channel has already been
6327 * added in scan, break from loop
6328 * and this will be the first channel
6329 * in the next scan.
6331 if (channels[channel - 1] != 0)
6332 break;
6334 channels[channel - 1] = 1;
6335 priv->speed_scan_pos++;
6336 channel_index++;
6337 scan->channels_list[channel_index] = channel;
6338 index =
6339 libipw_channel_to_index(priv->ieee, channel);
6340 ipw_set_scan_type(scan, channel_index,
6341 geo->bg[index].
6342 flags &
6343 LIBIPW_CH_PASSIVE_ONLY ?
6344 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6345 : scan_type);
6347 } else {
6348 for (i = 0; i < geo->bg_channels; i++) {
6349 if ((priv->status & STATUS_ASSOCIATED) &&
6350 geo->bg[i].channel == priv->channel)
6351 continue;
6352 channel_index++;
6353 scan->channels_list[channel_index] =
6354 geo->bg[i].channel;
6355 ipw_set_scan_type(scan, channel_index,
6356 geo->bg[i].
6357 flags &
6358 LIBIPW_CH_PASSIVE_ONLY ?
6359 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6360 : scan_type);
6364 if (start != channel_index) {
6365 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6366 (channel_index - start);
6371 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6373 /* staying on passive channels longer than the DTIM interval during a
6374 * scan, while associated, causes the firmware to cancel the scan
6375 * without notification. Hence, don't stay on passive channels longer
6376 * than the beacon interval.
6378 if (priv->status & STATUS_ASSOCIATED
6379 && priv->assoc_network->beacon_interval > 10)
6380 return priv->assoc_network->beacon_interval - 10;
6381 else
6382 return 120;
6385 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6387 struct ipw_scan_request_ext scan;
6388 int err = 0, scan_type;
6390 if (!(priv->status & STATUS_INIT) ||
6391 (priv->status & STATUS_EXIT_PENDING))
6392 return 0;
6394 mutex_lock(&priv->mutex);
6396 if (direct && (priv->direct_scan_ssid_len == 0)) {
6397 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6398 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6399 goto done;
6402 if (priv->status & STATUS_SCANNING) {
6403 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6404 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6405 STATUS_SCAN_PENDING;
6406 goto done;
6409 if (!(priv->status & STATUS_SCAN_FORCED) &&
6410 priv->status & STATUS_SCAN_ABORTING) {
6411 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6412 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6413 STATUS_SCAN_PENDING;
6414 goto done;
6417 if (priv->status & STATUS_RF_KILL_MASK) {
6418 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6419 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6420 STATUS_SCAN_PENDING;
6421 goto done;
6424 memset(&scan, 0, sizeof(scan));
6425 scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6427 if (type == IW_SCAN_TYPE_PASSIVE) {
6428 IPW_DEBUG_WX("use passive scanning\n");
6429 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6430 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6431 cpu_to_le16(ipw_passive_dwell_time(priv));
6432 ipw_add_scan_channels(priv, &scan, scan_type);
6433 goto send_request;
6436 /* Use active scan by default. */
6437 if (priv->config & CFG_SPEED_SCAN)
6438 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6439 cpu_to_le16(30);
6440 else
6441 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6442 cpu_to_le16(20);
6444 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6445 cpu_to_le16(20);
6447 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6448 cpu_to_le16(ipw_passive_dwell_time(priv));
6449 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6451 #ifdef CONFIG_IPW2200_MONITOR
6452 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6453 u8 channel;
6454 u8 band = 0;
6456 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6457 case LIBIPW_52GHZ_BAND:
6458 band = (u8) (IPW_A_MODE << 6) | 1;
6459 channel = priv->channel;
6460 break;
6462 case LIBIPW_24GHZ_BAND:
6463 band = (u8) (IPW_B_MODE << 6) | 1;
6464 channel = priv->channel;
6465 break;
6467 default:
6468 band = (u8) (IPW_B_MODE << 6) | 1;
6469 channel = 9;
6470 break;
6473 scan.channels_list[0] = band;
6474 scan.channels_list[1] = channel;
6475 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6477 /* NOTE: The card will sit on this channel for this time
6478 * period. Scan aborts are timing sensitive and frequently
6479 * result in firmware restarts. As such, it is best to
6480 * set a small dwell_time here and just keep re-issuing
6481 * scans. Otherwise fast channel hopping will not actually
6482 * hop channels.
6484 * TODO: Move SPEED SCAN support to all modes and bands */
6485 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6486 cpu_to_le16(2000);
6487 } else {
6488 #endif /* CONFIG_IPW2200_MONITOR */
6489 /* Honor direct scans first, otherwise if we are roaming make
6490 * this a direct scan for the current network. Finally,
6491 * ensure that every other scan is a fast channel hop scan */
6492 if (direct) {
6493 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6494 priv->direct_scan_ssid_len);
6495 if (err) {
6496 IPW_DEBUG_HC("Attempt to send SSID command "
6497 "failed\n");
6498 goto done;
6501 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6502 } else if ((priv->status & STATUS_ROAMING)
6503 || (!(priv->status & STATUS_ASSOCIATED)
6504 && (priv->config & CFG_STATIC_ESSID)
6505 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6506 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6507 if (err) {
6508 IPW_DEBUG_HC("Attempt to send SSID command "
6509 "failed.\n");
6510 goto done;
6513 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6514 } else
6515 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6517 ipw_add_scan_channels(priv, &scan, scan_type);
6518 #ifdef CONFIG_IPW2200_MONITOR
6520 #endif
6522 send_request:
6523 err = ipw_send_scan_request_ext(priv, &scan);
6524 if (err) {
6525 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6526 goto done;
6529 priv->status |= STATUS_SCANNING;
6530 if (direct) {
6531 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6532 priv->direct_scan_ssid_len = 0;
6533 } else
6534 priv->status &= ~STATUS_SCAN_PENDING;
6536 schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6537 done:
6538 mutex_unlock(&priv->mutex);
6539 return err;
6542 static void ipw_request_passive_scan(struct work_struct *work)
6544 struct ipw_priv *priv =
6545 container_of(work, struct ipw_priv, request_passive_scan.work);
6546 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6549 static void ipw_request_scan(struct work_struct *work)
6551 struct ipw_priv *priv =
6552 container_of(work, struct ipw_priv, request_scan.work);
6553 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6556 static void ipw_request_direct_scan(struct work_struct *work)
6558 struct ipw_priv *priv =
6559 container_of(work, struct ipw_priv, request_direct_scan.work);
6560 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6563 static void ipw_bg_abort_scan(struct work_struct *work)
6565 struct ipw_priv *priv =
6566 container_of(work, struct ipw_priv, abort_scan);
6567 mutex_lock(&priv->mutex);
6568 ipw_abort_scan(priv);
6569 mutex_unlock(&priv->mutex);
6572 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6574 /* This is called when wpa_supplicant loads and closes the driver
6575 * interface. */
6576 priv->ieee->wpa_enabled = value;
6577 return 0;
6580 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6582 struct libipw_device *ieee = priv->ieee;
6583 struct libipw_security sec = {
6584 .flags = SEC_AUTH_MODE,
6586 int ret = 0;
6588 if (value & IW_AUTH_ALG_SHARED_KEY) {
6589 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6590 ieee->open_wep = 0;
6591 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6592 sec.auth_mode = WLAN_AUTH_OPEN;
6593 ieee->open_wep = 1;
6594 } else if (value & IW_AUTH_ALG_LEAP) {
6595 sec.auth_mode = WLAN_AUTH_LEAP;
6596 ieee->open_wep = 1;
6597 } else
6598 return -EINVAL;
6600 if (ieee->set_security)
6601 ieee->set_security(ieee->dev, &sec);
6602 else
6603 ret = -EOPNOTSUPP;
6605 return ret;
6608 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6609 int wpa_ie_len)
6611 /* make sure WPA is enabled */
6612 ipw_wpa_enable(priv, 1);
6615 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6616 char *capabilities, int length)
6618 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6620 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6621 capabilities);
6625 * WE-18 support
6628 /* SIOCSIWGENIE */
6629 static int ipw_wx_set_genie(struct net_device *dev,
6630 struct iw_request_info *info,
6631 union iwreq_data *wrqu, char *extra)
6633 struct ipw_priv *priv = libipw_priv(dev);
6634 struct libipw_device *ieee = priv->ieee;
6635 u8 *buf;
6636 int err = 0;
6638 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6639 (wrqu->data.length && extra == NULL))
6640 return -EINVAL;
6642 if (wrqu->data.length) {
6643 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6644 if (buf == NULL) {
6645 err = -ENOMEM;
6646 goto out;
6649 kfree(ieee->wpa_ie);
6650 ieee->wpa_ie = buf;
6651 ieee->wpa_ie_len = wrqu->data.length;
6652 } else {
6653 kfree(ieee->wpa_ie);
6654 ieee->wpa_ie = NULL;
6655 ieee->wpa_ie_len = 0;
6658 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6659 out:
6660 return err;
6663 /* SIOCGIWGENIE */
6664 static int ipw_wx_get_genie(struct net_device *dev,
6665 struct iw_request_info *info,
6666 union iwreq_data *wrqu, char *extra)
6668 struct ipw_priv *priv = libipw_priv(dev);
6669 struct libipw_device *ieee = priv->ieee;
6670 int err = 0;
6672 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6673 wrqu->data.length = 0;
6674 goto out;
6677 if (wrqu->data.length < ieee->wpa_ie_len) {
6678 err = -E2BIG;
6679 goto out;
6682 wrqu->data.length = ieee->wpa_ie_len;
6683 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6685 out:
6686 return err;
6689 static int wext_cipher2level(int cipher)
6691 switch (cipher) {
6692 case IW_AUTH_CIPHER_NONE:
6693 return SEC_LEVEL_0;
6694 case IW_AUTH_CIPHER_WEP40:
6695 case IW_AUTH_CIPHER_WEP104:
6696 return SEC_LEVEL_1;
6697 case IW_AUTH_CIPHER_TKIP:
6698 return SEC_LEVEL_2;
6699 case IW_AUTH_CIPHER_CCMP:
6700 return SEC_LEVEL_3;
6701 default:
6702 return -1;
6706 /* SIOCSIWAUTH */
6707 static int ipw_wx_set_auth(struct net_device *dev,
6708 struct iw_request_info *info,
6709 union iwreq_data *wrqu, char *extra)
6711 struct ipw_priv *priv = libipw_priv(dev);
6712 struct libipw_device *ieee = priv->ieee;
6713 struct iw_param *param = &wrqu->param;
6714 struct lib80211_crypt_data *crypt;
6715 unsigned long flags;
6716 int ret = 0;
6718 switch (param->flags & IW_AUTH_INDEX) {
6719 case IW_AUTH_WPA_VERSION:
6720 break;
6721 case IW_AUTH_CIPHER_PAIRWISE:
6722 ipw_set_hw_decrypt_unicast(priv,
6723 wext_cipher2level(param->value));
6724 break;
6725 case IW_AUTH_CIPHER_GROUP:
6726 ipw_set_hw_decrypt_multicast(priv,
6727 wext_cipher2level(param->value));
6728 break;
6729 case IW_AUTH_KEY_MGMT:
6731 * ipw2200 does not use these parameters
6733 break;
6735 case IW_AUTH_TKIP_COUNTERMEASURES:
6736 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6737 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6738 break;
6740 flags = crypt->ops->get_flags(crypt->priv);
6742 if (param->value)
6743 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6744 else
6745 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6747 crypt->ops->set_flags(flags, crypt->priv);
6749 break;
6751 case IW_AUTH_DROP_UNENCRYPTED:{
6752 /* HACK:
6754 * wpa_supplicant calls set_wpa_enabled when the driver
6755 * is loaded and unloaded, regardless of if WPA is being
6756 * used. No other calls are made which can be used to
6757 * determine if encryption will be used or not prior to
6758 * association being expected. If encryption is not being
6759 * used, drop_unencrypted is set to false, else true -- we
6760 * can use this to determine if the CAP_PRIVACY_ON bit should
6761 * be set.
6763 struct libipw_security sec = {
6764 .flags = SEC_ENABLED,
6765 .enabled = param->value,
6767 priv->ieee->drop_unencrypted = param->value;
6768 /* We only change SEC_LEVEL for open mode. Others
6769 * are set by ipw_wpa_set_encryption.
6771 if (!param->value) {
6772 sec.flags |= SEC_LEVEL;
6773 sec.level = SEC_LEVEL_0;
6774 } else {
6775 sec.flags |= SEC_LEVEL;
6776 sec.level = SEC_LEVEL_1;
6778 if (priv->ieee->set_security)
6779 priv->ieee->set_security(priv->ieee->dev, &sec);
6780 break;
6783 case IW_AUTH_80211_AUTH_ALG:
6784 ret = ipw_wpa_set_auth_algs(priv, param->value);
6785 break;
6787 case IW_AUTH_WPA_ENABLED:
6788 ret = ipw_wpa_enable(priv, param->value);
6789 ipw_disassociate(priv);
6790 break;
6792 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6793 ieee->ieee802_1x = param->value;
6794 break;
6796 case IW_AUTH_PRIVACY_INVOKED:
6797 ieee->privacy_invoked = param->value;
6798 break;
6800 default:
6801 return -EOPNOTSUPP;
6803 return ret;
6806 /* SIOCGIWAUTH */
6807 static int ipw_wx_get_auth(struct net_device *dev,
6808 struct iw_request_info *info,
6809 union iwreq_data *wrqu, char *extra)
6811 struct ipw_priv *priv = libipw_priv(dev);
6812 struct libipw_device *ieee = priv->ieee;
6813 struct lib80211_crypt_data *crypt;
6814 struct iw_param *param = &wrqu->param;
6816 switch (param->flags & IW_AUTH_INDEX) {
6817 case IW_AUTH_WPA_VERSION:
6818 case IW_AUTH_CIPHER_PAIRWISE:
6819 case IW_AUTH_CIPHER_GROUP:
6820 case IW_AUTH_KEY_MGMT:
6822 * wpa_supplicant will control these internally
6824 return -EOPNOTSUPP;
6826 case IW_AUTH_TKIP_COUNTERMEASURES:
6827 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6828 if (!crypt || !crypt->ops->get_flags)
6829 break;
6831 param->value = (crypt->ops->get_flags(crypt->priv) &
6832 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6834 break;
6836 case IW_AUTH_DROP_UNENCRYPTED:
6837 param->value = ieee->drop_unencrypted;
6838 break;
6840 case IW_AUTH_80211_AUTH_ALG:
6841 param->value = ieee->sec.auth_mode;
6842 break;
6844 case IW_AUTH_WPA_ENABLED:
6845 param->value = ieee->wpa_enabled;
6846 break;
6848 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6849 param->value = ieee->ieee802_1x;
6850 break;
6852 case IW_AUTH_ROAMING_CONTROL:
6853 case IW_AUTH_PRIVACY_INVOKED:
6854 param->value = ieee->privacy_invoked;
6855 break;
6857 default:
6858 return -EOPNOTSUPP;
6860 return 0;
6863 /* SIOCSIWENCODEEXT */
6864 static int ipw_wx_set_encodeext(struct net_device *dev,
6865 struct iw_request_info *info,
6866 union iwreq_data *wrqu, char *extra)
6868 struct ipw_priv *priv = libipw_priv(dev);
6869 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6871 if (hwcrypto) {
6872 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6873 /* IPW HW can't build TKIP MIC,
6874 host decryption still needed */
6875 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6876 priv->ieee->host_mc_decrypt = 1;
6877 else {
6878 priv->ieee->host_encrypt = 0;
6879 priv->ieee->host_encrypt_msdu = 1;
6880 priv->ieee->host_decrypt = 1;
6882 } else {
6883 priv->ieee->host_encrypt = 0;
6884 priv->ieee->host_encrypt_msdu = 0;
6885 priv->ieee->host_decrypt = 0;
6886 priv->ieee->host_mc_decrypt = 0;
6890 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6893 /* SIOCGIWENCODEEXT */
6894 static int ipw_wx_get_encodeext(struct net_device *dev,
6895 struct iw_request_info *info,
6896 union iwreq_data *wrqu, char *extra)
6898 struct ipw_priv *priv = libipw_priv(dev);
6899 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6902 /* SIOCSIWMLME */
6903 static int ipw_wx_set_mlme(struct net_device *dev,
6904 struct iw_request_info *info,
6905 union iwreq_data *wrqu, char *extra)
6907 struct ipw_priv *priv = libipw_priv(dev);
6908 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6909 __le16 reason;
6911 reason = cpu_to_le16(mlme->reason_code);
6913 switch (mlme->cmd) {
6914 case IW_MLME_DEAUTH:
6915 /* silently ignore */
6916 break;
6918 case IW_MLME_DISASSOC:
6919 ipw_disassociate(priv);
6920 break;
6922 default:
6923 return -EOPNOTSUPP;
6925 return 0;
6928 #ifdef CONFIG_IPW2200_QOS
6930 /* QoS */
6932 * get the modulation type of the current network or
6933 * the card current mode
6935 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6937 u8 mode = 0;
6939 if (priv->status & STATUS_ASSOCIATED) {
6940 unsigned long flags;
6942 spin_lock_irqsave(&priv->ieee->lock, flags);
6943 mode = priv->assoc_network->mode;
6944 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6945 } else {
6946 mode = priv->ieee->mode;
6948 IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6949 return mode;
6953 * Handle management frame beacon and probe response
6955 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6956 int active_network,
6957 struct libipw_network *network)
6959 u32 size = sizeof(struct libipw_qos_parameters);
6961 if (network->capability & WLAN_CAPABILITY_IBSS)
6962 network->qos_data.active = network->qos_data.supported;
6964 if (network->flags & NETWORK_HAS_QOS_MASK) {
6965 if (active_network &&
6966 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6967 network->qos_data.active = network->qos_data.supported;
6969 if ((network->qos_data.active == 1) && (active_network == 1) &&
6970 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6971 (network->qos_data.old_param_count !=
6972 network->qos_data.param_count)) {
6973 network->qos_data.old_param_count =
6974 network->qos_data.param_count;
6975 schedule_work(&priv->qos_activate);
6976 IPW_DEBUG_QOS("QoS parameters change call "
6977 "qos_activate\n");
6979 } else {
6980 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6981 memcpy(&network->qos_data.parameters,
6982 &def_parameters_CCK, size);
6983 else
6984 memcpy(&network->qos_data.parameters,
6985 &def_parameters_OFDM, size);
6987 if ((network->qos_data.active == 1) && (active_network == 1)) {
6988 IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6989 schedule_work(&priv->qos_activate);
6992 network->qos_data.active = 0;
6993 network->qos_data.supported = 0;
6995 if ((priv->status & STATUS_ASSOCIATED) &&
6996 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6997 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6998 if (network->capability & WLAN_CAPABILITY_IBSS)
6999 if ((network->ssid_len ==
7000 priv->assoc_network->ssid_len) &&
7001 !memcmp(network->ssid,
7002 priv->assoc_network->ssid,
7003 network->ssid_len)) {
7004 schedule_work(&priv->merge_networks);
7008 return 0;
7012 * This function set up the firmware to support QoS. It sends
7013 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
7015 static int ipw_qos_activate(struct ipw_priv *priv,
7016 struct libipw_qos_data *qos_network_data)
7018 int err;
7019 struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
7020 struct libipw_qos_parameters *active_one = NULL;
7021 u32 size = sizeof(struct libipw_qos_parameters);
7022 u32 burst_duration;
7023 int i;
7024 u8 type;
7026 type = ipw_qos_current_mode(priv);
7028 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
7029 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
7030 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
7031 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
7033 if (qos_network_data == NULL) {
7034 if (type == IEEE_B) {
7035 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7036 active_one = &def_parameters_CCK;
7037 } else
7038 active_one = &def_parameters_OFDM;
7040 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7041 burst_duration = ipw_qos_get_burst_duration(priv);
7042 for (i = 0; i < QOS_QUEUE_NUM; i++)
7043 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7044 cpu_to_le16(burst_duration);
7045 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7046 if (type == IEEE_B) {
7047 IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
7048 type);
7049 if (priv->qos_data.qos_enable == 0)
7050 active_one = &def_parameters_CCK;
7051 else
7052 active_one = priv->qos_data.def_qos_parm_CCK;
7053 } else {
7054 if (priv->qos_data.qos_enable == 0)
7055 active_one = &def_parameters_OFDM;
7056 else
7057 active_one = priv->qos_data.def_qos_parm_OFDM;
7059 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7060 } else {
7061 unsigned long flags;
7062 int active;
7064 spin_lock_irqsave(&priv->ieee->lock, flags);
7065 active_one = &(qos_network_data->parameters);
7066 qos_network_data->old_param_count =
7067 qos_network_data->param_count;
7068 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7069 active = qos_network_data->supported;
7070 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7072 if (active == 0) {
7073 burst_duration = ipw_qos_get_burst_duration(priv);
7074 for (i = 0; i < QOS_QUEUE_NUM; i++)
7075 qos_parameters[QOS_PARAM_SET_ACTIVE].
7076 tx_op_limit[i] = cpu_to_le16(burst_duration);
7080 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7081 err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
7082 if (err)
7083 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7085 return err;
7089 * send IPW_CMD_WME_INFO to the firmware
7091 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7093 int ret = 0;
7094 struct libipw_qos_information_element qos_info;
7096 if (priv == NULL)
7097 return -1;
7099 qos_info.elementID = QOS_ELEMENT_ID;
7100 qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7102 qos_info.version = QOS_VERSION_1;
7103 qos_info.ac_info = 0;
7105 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7106 qos_info.qui_type = QOS_OUI_TYPE;
7107 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7109 ret = ipw_send_qos_info_command(priv, &qos_info);
7110 if (ret != 0) {
7111 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7113 return ret;
7117 * Set the QoS parameter with the association request structure
7119 static int ipw_qos_association(struct ipw_priv *priv,
7120 struct libipw_network *network)
7122 int err = 0;
7123 struct libipw_qos_data *qos_data = NULL;
7124 struct libipw_qos_data ibss_data = {
7125 .supported = 1,
7126 .active = 1,
7129 switch (priv->ieee->iw_mode) {
7130 case IW_MODE_ADHOC:
7131 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7133 qos_data = &ibss_data;
7134 break;
7136 case IW_MODE_INFRA:
7137 qos_data = &network->qos_data;
7138 break;
7140 default:
7141 BUG();
7142 break;
7145 err = ipw_qos_activate(priv, qos_data);
7146 if (err) {
7147 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7148 return err;
7151 if (priv->qos_data.qos_enable && qos_data->supported) {
7152 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7153 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7154 return ipw_qos_set_info_element(priv);
7157 return 0;
7161 * handling the beaconing responses. if we get different QoS setting
7162 * off the network from the associated setting, adjust the QoS
7163 * setting
7165 static int ipw_qos_association_resp(struct ipw_priv *priv,
7166 struct libipw_network *network)
7168 int ret = 0;
7169 unsigned long flags;
7170 u32 size = sizeof(struct libipw_qos_parameters);
7171 int set_qos_param = 0;
7173 if ((priv == NULL) || (network == NULL) ||
7174 (priv->assoc_network == NULL))
7175 return ret;
7177 if (!(priv->status & STATUS_ASSOCIATED))
7178 return ret;
7180 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7181 return ret;
7183 spin_lock_irqsave(&priv->ieee->lock, flags);
7184 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7185 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7186 sizeof(struct libipw_qos_data));
7187 priv->assoc_network->qos_data.active = 1;
7188 if ((network->qos_data.old_param_count !=
7189 network->qos_data.param_count)) {
7190 set_qos_param = 1;
7191 network->qos_data.old_param_count =
7192 network->qos_data.param_count;
7195 } else {
7196 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7197 memcpy(&priv->assoc_network->qos_data.parameters,
7198 &def_parameters_CCK, size);
7199 else
7200 memcpy(&priv->assoc_network->qos_data.parameters,
7201 &def_parameters_OFDM, size);
7202 priv->assoc_network->qos_data.active = 0;
7203 priv->assoc_network->qos_data.supported = 0;
7204 set_qos_param = 1;
7207 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7209 if (set_qos_param == 1)
7210 schedule_work(&priv->qos_activate);
7212 return ret;
7215 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7217 u32 ret = 0;
7219 if ((priv == NULL))
7220 return 0;
7222 if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7223 ret = priv->qos_data.burst_duration_CCK;
7224 else
7225 ret = priv->qos_data.burst_duration_OFDM;
7227 return ret;
7231 * Initialize the setting of QoS global
7233 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7234 int burst_enable, u32 burst_duration_CCK,
7235 u32 burst_duration_OFDM)
7237 priv->qos_data.qos_enable = enable;
7239 if (priv->qos_data.qos_enable) {
7240 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7241 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7242 IPW_DEBUG_QOS("QoS is enabled\n");
7243 } else {
7244 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7245 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7246 IPW_DEBUG_QOS("QoS is not enabled\n");
7249 priv->qos_data.burst_enable = burst_enable;
7251 if (burst_enable) {
7252 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7253 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7254 } else {
7255 priv->qos_data.burst_duration_CCK = 0;
7256 priv->qos_data.burst_duration_OFDM = 0;
7261 * map the packet priority to the right TX Queue
7263 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7265 if (priority > 7 || !priv->qos_data.qos_enable)
7266 priority = 0;
7268 return from_priority_to_tx_queue[priority] - 1;
7271 static int ipw_is_qos_active(struct net_device *dev,
7272 struct sk_buff *skb)
7274 struct ipw_priv *priv = libipw_priv(dev);
7275 struct libipw_qos_data *qos_data = NULL;
7276 int active, supported;
7277 u8 *daddr = skb->data + ETH_ALEN;
7278 int unicast = !is_multicast_ether_addr(daddr);
7280 if (!(priv->status & STATUS_ASSOCIATED))
7281 return 0;
7283 qos_data = &priv->assoc_network->qos_data;
7285 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7286 if (unicast == 0)
7287 qos_data->active = 0;
7288 else
7289 qos_data->active = qos_data->supported;
7291 active = qos_data->active;
7292 supported = qos_data->supported;
7293 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7294 "unicast %d\n",
7295 priv->qos_data.qos_enable, active, supported, unicast);
7296 if (active && priv->qos_data.qos_enable)
7297 return 1;
7299 return 0;
7303 * add QoS parameter to the TX command
7305 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7306 u16 priority,
7307 struct tfd_data *tfd)
7309 int tx_queue_id = 0;
7312 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7313 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7315 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7316 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7317 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7319 return 0;
7323 * background support to run QoS activate functionality
7325 static void ipw_bg_qos_activate(struct work_struct *work)
7327 struct ipw_priv *priv =
7328 container_of(work, struct ipw_priv, qos_activate);
7330 mutex_lock(&priv->mutex);
7332 if (priv->status & STATUS_ASSOCIATED)
7333 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7335 mutex_unlock(&priv->mutex);
7338 static int ipw_handle_probe_response(struct net_device *dev,
7339 struct libipw_probe_response *resp,
7340 struct libipw_network *network)
7342 struct ipw_priv *priv = libipw_priv(dev);
7343 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7344 (network == priv->assoc_network));
7346 ipw_qos_handle_probe_response(priv, active_network, network);
7348 return 0;
7351 static int ipw_handle_beacon(struct net_device *dev,
7352 struct libipw_beacon *resp,
7353 struct libipw_network *network)
7355 struct ipw_priv *priv = libipw_priv(dev);
7356 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7357 (network == priv->assoc_network));
7359 ipw_qos_handle_probe_response(priv, active_network, network);
7361 return 0;
7364 static int ipw_handle_assoc_response(struct net_device *dev,
7365 struct libipw_assoc_response *resp,
7366 struct libipw_network *network)
7368 struct ipw_priv *priv = libipw_priv(dev);
7369 ipw_qos_association_resp(priv, network);
7370 return 0;
7373 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7374 *qos_param)
7376 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7377 sizeof(*qos_param) * 3, qos_param);
7380 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7381 *qos_param)
7383 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7384 qos_param);
7387 #endif /* CONFIG_IPW2200_QOS */
7389 static int ipw_associate_network(struct ipw_priv *priv,
7390 struct libipw_network *network,
7391 struct ipw_supported_rates *rates, int roaming)
7393 int err;
7394 DECLARE_SSID_BUF(ssid);
7396 if (priv->config & CFG_FIXED_RATE)
7397 ipw_set_fixed_rate(priv, network->mode);
7399 if (!(priv->config & CFG_STATIC_ESSID)) {
7400 priv->essid_len = min(network->ssid_len,
7401 (u8) IW_ESSID_MAX_SIZE);
7402 memcpy(priv->essid, network->ssid, priv->essid_len);
7405 network->last_associate = jiffies;
7407 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7408 priv->assoc_request.channel = network->channel;
7409 priv->assoc_request.auth_key = 0;
7411 if ((priv->capability & CAP_PRIVACY_ON) &&
7412 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7413 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7414 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7416 if (priv->ieee->sec.level == SEC_LEVEL_1)
7417 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7419 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7420 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7421 priv->assoc_request.auth_type = AUTH_LEAP;
7422 else
7423 priv->assoc_request.auth_type = AUTH_OPEN;
7425 if (priv->ieee->wpa_ie_len) {
7426 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7427 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7428 priv->ieee->wpa_ie_len);
7432 * It is valid for our ieee device to support multiple modes, but
7433 * when it comes to associating to a given network we have to choose
7434 * just one mode.
7436 if (network->mode & priv->ieee->mode & IEEE_A)
7437 priv->assoc_request.ieee_mode = IPW_A_MODE;
7438 else if (network->mode & priv->ieee->mode & IEEE_G)
7439 priv->assoc_request.ieee_mode = IPW_G_MODE;
7440 else if (network->mode & priv->ieee->mode & IEEE_B)
7441 priv->assoc_request.ieee_mode = IPW_B_MODE;
7443 priv->assoc_request.capability = cpu_to_le16(network->capability);
7444 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7445 && !(priv->config & CFG_PREAMBLE_LONG)) {
7446 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7447 } else {
7448 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7450 /* Clear the short preamble if we won't be supporting it */
7451 priv->assoc_request.capability &=
7452 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7455 /* Clear capability bits that aren't used in Ad Hoc */
7456 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7457 priv->assoc_request.capability &=
7458 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7460 IPW_DEBUG_ASSOC("%ssociation attempt: '%s', channel %d, "
7461 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7462 roaming ? "Rea" : "A",
7463 print_ssid(ssid, priv->essid, priv->essid_len),
7464 network->channel,
7465 ipw_modes[priv->assoc_request.ieee_mode],
7466 rates->num_rates,
7467 (priv->assoc_request.preamble_length ==
7468 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7469 network->capability &
7470 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7471 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7472 priv->capability & CAP_PRIVACY_ON ?
7473 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7474 "(open)") : "",
7475 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7476 priv->capability & CAP_PRIVACY_ON ?
7477 '1' + priv->ieee->sec.active_key : '.',
7478 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7480 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7481 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7482 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7483 priv->assoc_request.assoc_type = HC_IBSS_START;
7484 priv->assoc_request.assoc_tsf_msw = 0;
7485 priv->assoc_request.assoc_tsf_lsw = 0;
7486 } else {
7487 if (unlikely(roaming))
7488 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7489 else
7490 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7491 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7492 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7495 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7497 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7498 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7499 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7500 } else {
7501 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7502 priv->assoc_request.atim_window = 0;
7505 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7507 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7508 if (err) {
7509 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7510 return err;
7513 rates->ieee_mode = priv->assoc_request.ieee_mode;
7514 rates->purpose = IPW_RATE_CONNECT;
7515 ipw_send_supported_rates(priv, rates);
7517 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7518 priv->sys_config.dot11g_auto_detection = 1;
7519 else
7520 priv->sys_config.dot11g_auto_detection = 0;
7522 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7523 priv->sys_config.answer_broadcast_ssid_probe = 1;
7524 else
7525 priv->sys_config.answer_broadcast_ssid_probe = 0;
7527 err = ipw_send_system_config(priv);
7528 if (err) {
7529 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7530 return err;
7533 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7534 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7535 if (err) {
7536 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7537 return err;
7541 * If preemption is enabled, it is possible for the association
7542 * to complete before we return from ipw_send_associate. Therefore
7543 * we have to be sure and update our priviate data first.
7545 priv->channel = network->channel;
7546 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7547 priv->status |= STATUS_ASSOCIATING;
7548 priv->status &= ~STATUS_SECURITY_UPDATED;
7550 priv->assoc_network = network;
7552 #ifdef CONFIG_IPW2200_QOS
7553 ipw_qos_association(priv, network);
7554 #endif
7556 err = ipw_send_associate(priv, &priv->assoc_request);
7557 if (err) {
7558 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7559 return err;
7562 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM\n",
7563 print_ssid(ssid, priv->essid, priv->essid_len),
7564 priv->bssid);
7566 return 0;
7569 static void ipw_roam(void *data)
7571 struct ipw_priv *priv = data;
7572 struct libipw_network *network = NULL;
7573 struct ipw_network_match match = {
7574 .network = priv->assoc_network
7577 /* The roaming process is as follows:
7579 * 1. Missed beacon threshold triggers the roaming process by
7580 * setting the status ROAM bit and requesting a scan.
7581 * 2. When the scan completes, it schedules the ROAM work
7582 * 3. The ROAM work looks at all of the known networks for one that
7583 * is a better network than the currently associated. If none
7584 * found, the ROAM process is over (ROAM bit cleared)
7585 * 4. If a better network is found, a disassociation request is
7586 * sent.
7587 * 5. When the disassociation completes, the roam work is again
7588 * scheduled. The second time through, the driver is no longer
7589 * associated, and the newly selected network is sent an
7590 * association request.
7591 * 6. At this point ,the roaming process is complete and the ROAM
7592 * status bit is cleared.
7595 /* If we are no longer associated, and the roaming bit is no longer
7596 * set, then we are not actively roaming, so just return */
7597 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7598 return;
7600 if (priv->status & STATUS_ASSOCIATED) {
7601 /* First pass through ROAM process -- look for a better
7602 * network */
7603 unsigned long flags;
7604 u8 rssi = priv->assoc_network->stats.rssi;
7605 priv->assoc_network->stats.rssi = -128;
7606 spin_lock_irqsave(&priv->ieee->lock, flags);
7607 list_for_each_entry(network, &priv->ieee->network_list, list) {
7608 if (network != priv->assoc_network)
7609 ipw_best_network(priv, &match, network, 1);
7611 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7612 priv->assoc_network->stats.rssi = rssi;
7614 if (match.network == priv->assoc_network) {
7615 IPW_DEBUG_ASSOC("No better APs in this network to "
7616 "roam to.\n");
7617 priv->status &= ~STATUS_ROAMING;
7618 ipw_debug_config(priv);
7619 return;
7622 ipw_send_disassociate(priv, 1);
7623 priv->assoc_network = match.network;
7625 return;
7628 /* Second pass through ROAM process -- request association */
7629 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7630 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7631 priv->status &= ~STATUS_ROAMING;
7634 static void ipw_bg_roam(struct work_struct *work)
7636 struct ipw_priv *priv =
7637 container_of(work, struct ipw_priv, roam);
7638 mutex_lock(&priv->mutex);
7639 ipw_roam(priv);
7640 mutex_unlock(&priv->mutex);
7643 static int ipw_associate(void *data)
7645 struct ipw_priv *priv = data;
7647 struct libipw_network *network = NULL;
7648 struct ipw_network_match match = {
7649 .network = NULL
7651 struct ipw_supported_rates *rates;
7652 struct list_head *element;
7653 unsigned long flags;
7654 DECLARE_SSID_BUF(ssid);
7656 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7657 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7658 return 0;
7661 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7662 IPW_DEBUG_ASSOC("Not attempting association (already in "
7663 "progress)\n");
7664 return 0;
7667 if (priv->status & STATUS_DISASSOCIATING) {
7668 IPW_DEBUG_ASSOC("Not attempting association (in "
7669 "disassociating)\n ");
7670 schedule_work(&priv->associate);
7671 return 0;
7674 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7675 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7676 "initialized)\n");
7677 return 0;
7680 if (!(priv->config & CFG_ASSOCIATE) &&
7681 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7682 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7683 return 0;
7686 /* Protect our use of the network_list */
7687 spin_lock_irqsave(&priv->ieee->lock, flags);
7688 list_for_each_entry(network, &priv->ieee->network_list, list)
7689 ipw_best_network(priv, &match, network, 0);
7691 network = match.network;
7692 rates = &match.rates;
7694 if (network == NULL &&
7695 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7696 priv->config & CFG_ADHOC_CREATE &&
7697 priv->config & CFG_STATIC_ESSID &&
7698 priv->config & CFG_STATIC_CHANNEL) {
7699 /* Use oldest network if the free list is empty */
7700 if (list_empty(&priv->ieee->network_free_list)) {
7701 struct libipw_network *oldest = NULL;
7702 struct libipw_network *target;
7704 list_for_each_entry(target, &priv->ieee->network_list, list) {
7705 if ((oldest == NULL) ||
7706 (target->last_scanned < oldest->last_scanned))
7707 oldest = target;
7710 /* If there are no more slots, expire the oldest */
7711 list_del(&oldest->list);
7712 target = oldest;
7713 IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7714 "network list.\n",
7715 print_ssid(ssid, target->ssid,
7716 target->ssid_len),
7717 target->bssid);
7718 list_add_tail(&target->list,
7719 &priv->ieee->network_free_list);
7722 element = priv->ieee->network_free_list.next;
7723 network = list_entry(element, struct libipw_network, list);
7724 ipw_adhoc_create(priv, network);
7725 rates = &priv->rates;
7726 list_del(element);
7727 list_add_tail(&network->list, &priv->ieee->network_list);
7729 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7731 /* If we reached the end of the list, then we don't have any valid
7732 * matching APs */
7733 if (!network) {
7734 ipw_debug_config(priv);
7736 if (!(priv->status & STATUS_SCANNING)) {
7737 if (!(priv->config & CFG_SPEED_SCAN))
7738 schedule_delayed_work(&priv->request_scan,
7739 SCAN_INTERVAL);
7740 else
7741 schedule_delayed_work(&priv->request_scan, 0);
7744 return 0;
7747 ipw_associate_network(priv, network, rates, 0);
7749 return 1;
7752 static void ipw_bg_associate(struct work_struct *work)
7754 struct ipw_priv *priv =
7755 container_of(work, struct ipw_priv, associate);
7756 mutex_lock(&priv->mutex);
7757 ipw_associate(priv);
7758 mutex_unlock(&priv->mutex);
7761 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7762 struct sk_buff *skb)
7764 struct ieee80211_hdr *hdr;
7765 u16 fc;
7767 hdr = (struct ieee80211_hdr *)skb->data;
7768 fc = le16_to_cpu(hdr->frame_control);
7769 if (!(fc & IEEE80211_FCTL_PROTECTED))
7770 return;
7772 fc &= ~IEEE80211_FCTL_PROTECTED;
7773 hdr->frame_control = cpu_to_le16(fc);
7774 switch (priv->ieee->sec.level) {
7775 case SEC_LEVEL_3:
7776 /* Remove CCMP HDR */
7777 memmove(skb->data + LIBIPW_3ADDR_LEN,
7778 skb->data + LIBIPW_3ADDR_LEN + 8,
7779 skb->len - LIBIPW_3ADDR_LEN - 8);
7780 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7781 break;
7782 case SEC_LEVEL_2:
7783 break;
7784 case SEC_LEVEL_1:
7785 /* Remove IV */
7786 memmove(skb->data + LIBIPW_3ADDR_LEN,
7787 skb->data + LIBIPW_3ADDR_LEN + 4,
7788 skb->len - LIBIPW_3ADDR_LEN - 4);
7789 skb_trim(skb, skb->len - 8); /* IV + ICV */
7790 break;
7791 case SEC_LEVEL_0:
7792 break;
7793 default:
7794 printk(KERN_ERR "Unknown security level %d\n",
7795 priv->ieee->sec.level);
7796 break;
7800 static void ipw_handle_data_packet(struct ipw_priv *priv,
7801 struct ipw_rx_mem_buffer *rxb,
7802 struct libipw_rx_stats *stats)
7804 struct net_device *dev = priv->net_dev;
7805 struct libipw_hdr_4addr *hdr;
7806 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7808 /* We received data from the HW, so stop the watchdog */
7809 dev->trans_start = jiffies;
7811 /* We only process data packets if the
7812 * interface is open */
7813 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7814 skb_tailroom(rxb->skb))) {
7815 dev->stats.rx_errors++;
7816 priv->wstats.discard.misc++;
7817 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7818 return;
7819 } else if (unlikely(!netif_running(priv->net_dev))) {
7820 dev->stats.rx_dropped++;
7821 priv->wstats.discard.misc++;
7822 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7823 return;
7826 /* Advance skb->data to the start of the actual payload */
7827 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7829 /* Set the size of the skb to the size of the frame */
7830 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7832 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7834 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7835 hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7836 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7837 (is_multicast_ether_addr(hdr->addr1) ?
7838 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7839 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7841 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7842 dev->stats.rx_errors++;
7843 else { /* libipw_rx succeeded, so it now owns the SKB */
7844 rxb->skb = NULL;
7845 __ipw_led_activity_on(priv);
7849 #ifdef CONFIG_IPW2200_RADIOTAP
7850 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7851 struct ipw_rx_mem_buffer *rxb,
7852 struct libipw_rx_stats *stats)
7854 struct net_device *dev = priv->net_dev;
7855 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7856 struct ipw_rx_frame *frame = &pkt->u.frame;
7858 /* initial pull of some data */
7859 u16 received_channel = frame->received_channel;
7860 u8 antennaAndPhy = frame->antennaAndPhy;
7861 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7862 u16 pktrate = frame->rate;
7864 /* Magic struct that slots into the radiotap header -- no reason
7865 * to build this manually element by element, we can write it much
7866 * more efficiently than we can parse it. ORDER MATTERS HERE */
7867 struct ipw_rt_hdr *ipw_rt;
7869 unsigned short len = le16_to_cpu(pkt->u.frame.length);
7871 /* We received data from the HW, so stop the watchdog */
7872 dev->trans_start = jiffies;
7874 /* We only process data packets if the
7875 * interface is open */
7876 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7877 skb_tailroom(rxb->skb))) {
7878 dev->stats.rx_errors++;
7879 priv->wstats.discard.misc++;
7880 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7881 return;
7882 } else if (unlikely(!netif_running(priv->net_dev))) {
7883 dev->stats.rx_dropped++;
7884 priv->wstats.discard.misc++;
7885 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7886 return;
7889 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7890 * that now */
7891 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7892 /* FIXME: Should alloc bigger skb instead */
7893 dev->stats.rx_dropped++;
7894 priv->wstats.discard.misc++;
7895 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7896 return;
7899 /* copy the frame itself */
7900 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7901 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7903 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7905 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7906 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7907 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7909 /* Big bitfield of all the fields we provide in radiotap */
7910 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7911 (1 << IEEE80211_RADIOTAP_TSFT) |
7912 (1 << IEEE80211_RADIOTAP_FLAGS) |
7913 (1 << IEEE80211_RADIOTAP_RATE) |
7914 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7915 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7916 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7917 (1 << IEEE80211_RADIOTAP_ANTENNA));
7919 /* Zero the flags, we'll add to them as we go */
7920 ipw_rt->rt_flags = 0;
7921 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7922 frame->parent_tsf[2] << 16 |
7923 frame->parent_tsf[1] << 8 |
7924 frame->parent_tsf[0]);
7926 /* Convert signal to DBM */
7927 ipw_rt->rt_dbmsignal = antsignal;
7928 ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7930 /* Convert the channel data and set the flags */
7931 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7932 if (received_channel > 14) { /* 802.11a */
7933 ipw_rt->rt_chbitmask =
7934 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7935 } else if (antennaAndPhy & 32) { /* 802.11b */
7936 ipw_rt->rt_chbitmask =
7937 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7938 } else { /* 802.11g */
7939 ipw_rt->rt_chbitmask =
7940 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7943 /* set the rate in multiples of 500k/s */
7944 switch (pktrate) {
7945 case IPW_TX_RATE_1MB:
7946 ipw_rt->rt_rate = 2;
7947 break;
7948 case IPW_TX_RATE_2MB:
7949 ipw_rt->rt_rate = 4;
7950 break;
7951 case IPW_TX_RATE_5MB:
7952 ipw_rt->rt_rate = 10;
7953 break;
7954 case IPW_TX_RATE_6MB:
7955 ipw_rt->rt_rate = 12;
7956 break;
7957 case IPW_TX_RATE_9MB:
7958 ipw_rt->rt_rate = 18;
7959 break;
7960 case IPW_TX_RATE_11MB:
7961 ipw_rt->rt_rate = 22;
7962 break;
7963 case IPW_TX_RATE_12MB:
7964 ipw_rt->rt_rate = 24;
7965 break;
7966 case IPW_TX_RATE_18MB:
7967 ipw_rt->rt_rate = 36;
7968 break;
7969 case IPW_TX_RATE_24MB:
7970 ipw_rt->rt_rate = 48;
7971 break;
7972 case IPW_TX_RATE_36MB:
7973 ipw_rt->rt_rate = 72;
7974 break;
7975 case IPW_TX_RATE_48MB:
7976 ipw_rt->rt_rate = 96;
7977 break;
7978 case IPW_TX_RATE_54MB:
7979 ipw_rt->rt_rate = 108;
7980 break;
7981 default:
7982 ipw_rt->rt_rate = 0;
7983 break;
7986 /* antenna number */
7987 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7989 /* set the preamble flag if we have it */
7990 if ((antennaAndPhy & 64))
7991 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7993 /* Set the size of the skb to the size of the frame */
7994 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7996 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7998 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7999 dev->stats.rx_errors++;
8000 else { /* libipw_rx succeeded, so it now owns the SKB */
8001 rxb->skb = NULL;
8002 /* no LED during capture */
8005 #endif
8007 #ifdef CONFIG_IPW2200_PROMISCUOUS
8008 #define libipw_is_probe_response(fc) \
8009 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
8010 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
8012 #define libipw_is_management(fc) \
8013 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
8015 #define libipw_is_control(fc) \
8016 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
8018 #define libipw_is_data(fc) \
8019 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
8021 #define libipw_is_assoc_request(fc) \
8022 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
8024 #define libipw_is_reassoc_request(fc) \
8025 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
8027 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
8028 struct ipw_rx_mem_buffer *rxb,
8029 struct libipw_rx_stats *stats)
8031 struct net_device *dev = priv->prom_net_dev;
8032 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
8033 struct ipw_rx_frame *frame = &pkt->u.frame;
8034 struct ipw_rt_hdr *ipw_rt;
8036 /* First cache any information we need before we overwrite
8037 * the information provided in the skb from the hardware */
8038 struct ieee80211_hdr *hdr;
8039 u16 channel = frame->received_channel;
8040 u8 phy_flags = frame->antennaAndPhy;
8041 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
8042 s8 noise = (s8) le16_to_cpu(frame->noise);
8043 u8 rate = frame->rate;
8044 unsigned short len = le16_to_cpu(pkt->u.frame.length);
8045 struct sk_buff *skb;
8046 int hdr_only = 0;
8047 u16 filter = priv->prom_priv->filter;
8049 /* If the filter is set to not include Rx frames then return */
8050 if (filter & IPW_PROM_NO_RX)
8051 return;
8053 /* We received data from the HW, so stop the watchdog */
8054 dev->trans_start = jiffies;
8056 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
8057 dev->stats.rx_errors++;
8058 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8059 return;
8062 /* We only process data packets if the interface is open */
8063 if (unlikely(!netif_running(dev))) {
8064 dev->stats.rx_dropped++;
8065 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8066 return;
8069 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8070 * that now */
8071 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8072 /* FIXME: Should alloc bigger skb instead */
8073 dev->stats.rx_dropped++;
8074 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8075 return;
8078 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8079 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
8080 if (filter & IPW_PROM_NO_MGMT)
8081 return;
8082 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8083 hdr_only = 1;
8084 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
8085 if (filter & IPW_PROM_NO_CTL)
8086 return;
8087 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8088 hdr_only = 1;
8089 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
8090 if (filter & IPW_PROM_NO_DATA)
8091 return;
8092 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8093 hdr_only = 1;
8096 /* Copy the SKB since this is for the promiscuous side */
8097 skb = skb_copy(rxb->skb, GFP_ATOMIC);
8098 if (skb == NULL) {
8099 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8100 return;
8103 /* copy the frame data to write after where the radiotap header goes */
8104 ipw_rt = (void *)skb->data;
8106 if (hdr_only)
8107 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8109 memcpy(ipw_rt->payload, hdr, len);
8111 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8112 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8113 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8115 /* Set the size of the skb to the size of the frame */
8116 skb_put(skb, sizeof(*ipw_rt) + len);
8118 /* Big bitfield of all the fields we provide in radiotap */
8119 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8120 (1 << IEEE80211_RADIOTAP_TSFT) |
8121 (1 << IEEE80211_RADIOTAP_FLAGS) |
8122 (1 << IEEE80211_RADIOTAP_RATE) |
8123 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8124 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8125 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8126 (1 << IEEE80211_RADIOTAP_ANTENNA));
8128 /* Zero the flags, we'll add to them as we go */
8129 ipw_rt->rt_flags = 0;
8130 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8131 frame->parent_tsf[2] << 16 |
8132 frame->parent_tsf[1] << 8 |
8133 frame->parent_tsf[0]);
8135 /* Convert to DBM */
8136 ipw_rt->rt_dbmsignal = signal;
8137 ipw_rt->rt_dbmnoise = noise;
8139 /* Convert the channel data and set the flags */
8140 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8141 if (channel > 14) { /* 802.11a */
8142 ipw_rt->rt_chbitmask =
8143 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8144 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8145 ipw_rt->rt_chbitmask =
8146 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8147 } else { /* 802.11g */
8148 ipw_rt->rt_chbitmask =
8149 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8152 /* set the rate in multiples of 500k/s */
8153 switch (rate) {
8154 case IPW_TX_RATE_1MB:
8155 ipw_rt->rt_rate = 2;
8156 break;
8157 case IPW_TX_RATE_2MB:
8158 ipw_rt->rt_rate = 4;
8159 break;
8160 case IPW_TX_RATE_5MB:
8161 ipw_rt->rt_rate = 10;
8162 break;
8163 case IPW_TX_RATE_6MB:
8164 ipw_rt->rt_rate = 12;
8165 break;
8166 case IPW_TX_RATE_9MB:
8167 ipw_rt->rt_rate = 18;
8168 break;
8169 case IPW_TX_RATE_11MB:
8170 ipw_rt->rt_rate = 22;
8171 break;
8172 case IPW_TX_RATE_12MB:
8173 ipw_rt->rt_rate = 24;
8174 break;
8175 case IPW_TX_RATE_18MB:
8176 ipw_rt->rt_rate = 36;
8177 break;
8178 case IPW_TX_RATE_24MB:
8179 ipw_rt->rt_rate = 48;
8180 break;
8181 case IPW_TX_RATE_36MB:
8182 ipw_rt->rt_rate = 72;
8183 break;
8184 case IPW_TX_RATE_48MB:
8185 ipw_rt->rt_rate = 96;
8186 break;
8187 case IPW_TX_RATE_54MB:
8188 ipw_rt->rt_rate = 108;
8189 break;
8190 default:
8191 ipw_rt->rt_rate = 0;
8192 break;
8195 /* antenna number */
8196 ipw_rt->rt_antenna = (phy_flags & 3);
8198 /* set the preamble flag if we have it */
8199 if (phy_flags & (1 << 6))
8200 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8202 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8204 if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8205 dev->stats.rx_errors++;
8206 dev_kfree_skb_any(skb);
8209 #endif
8211 static int is_network_packet(struct ipw_priv *priv,
8212 struct libipw_hdr_4addr *header)
8214 /* Filter incoming packets to determine if they are targeted toward
8215 * this network, discarding packets coming from ourselves */
8216 switch (priv->ieee->iw_mode) {
8217 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8218 /* packets from our adapter are dropped (echo) */
8219 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8220 return 0;
8222 /* {broad,multi}cast packets to our BSSID go through */
8223 if (is_multicast_ether_addr(header->addr1))
8224 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8226 /* packets to our adapter go through */
8227 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8228 ETH_ALEN);
8230 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8231 /* packets from our adapter are dropped (echo) */
8232 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8233 return 0;
8235 /* {broad,multi}cast packets to our BSS go through */
8236 if (is_multicast_ether_addr(header->addr1))
8237 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8239 /* packets to our adapter go through */
8240 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8241 ETH_ALEN);
8244 return 1;
8247 #define IPW_PACKET_RETRY_TIME HZ
8249 static int is_duplicate_packet(struct ipw_priv *priv,
8250 struct libipw_hdr_4addr *header)
8252 u16 sc = le16_to_cpu(header->seq_ctl);
8253 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8254 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8255 u16 *last_seq, *last_frag;
8256 unsigned long *last_time;
8258 switch (priv->ieee->iw_mode) {
8259 case IW_MODE_ADHOC:
8261 struct list_head *p;
8262 struct ipw_ibss_seq *entry = NULL;
8263 u8 *mac = header->addr2;
8264 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8266 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8267 entry =
8268 list_entry(p, struct ipw_ibss_seq, list);
8269 if (!memcmp(entry->mac, mac, ETH_ALEN))
8270 break;
8272 if (p == &priv->ibss_mac_hash[index]) {
8273 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8274 if (!entry) {
8275 IPW_ERROR
8276 ("Cannot malloc new mac entry\n");
8277 return 0;
8279 memcpy(entry->mac, mac, ETH_ALEN);
8280 entry->seq_num = seq;
8281 entry->frag_num = frag;
8282 entry->packet_time = jiffies;
8283 list_add(&entry->list,
8284 &priv->ibss_mac_hash[index]);
8285 return 0;
8287 last_seq = &entry->seq_num;
8288 last_frag = &entry->frag_num;
8289 last_time = &entry->packet_time;
8290 break;
8292 case IW_MODE_INFRA:
8293 last_seq = &priv->last_seq_num;
8294 last_frag = &priv->last_frag_num;
8295 last_time = &priv->last_packet_time;
8296 break;
8297 default:
8298 return 0;
8300 if ((*last_seq == seq) &&
8301 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8302 if (*last_frag == frag)
8303 goto drop;
8304 if (*last_frag + 1 != frag)
8305 /* out-of-order fragment */
8306 goto drop;
8307 } else
8308 *last_seq = seq;
8310 *last_frag = frag;
8311 *last_time = jiffies;
8312 return 0;
8314 drop:
8315 /* Comment this line now since we observed the card receives
8316 * duplicate packets but the FCTL_RETRY bit is not set in the
8317 * IBSS mode with fragmentation enabled.
8318 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8319 return 1;
8322 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8323 struct ipw_rx_mem_buffer *rxb,
8324 struct libipw_rx_stats *stats)
8326 struct sk_buff *skb = rxb->skb;
8327 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8328 struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8329 (skb->data + IPW_RX_FRAME_SIZE);
8331 libipw_rx_mgt(priv->ieee, header, stats);
8333 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8334 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8335 IEEE80211_STYPE_PROBE_RESP) ||
8336 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8337 IEEE80211_STYPE_BEACON))) {
8338 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8339 ipw_add_station(priv, header->addr2);
8342 if (priv->config & CFG_NET_STATS) {
8343 IPW_DEBUG_HC("sending stat packet\n");
8345 /* Set the size of the skb to the size of the full
8346 * ipw header and 802.11 frame */
8347 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8348 IPW_RX_FRAME_SIZE);
8350 /* Advance past the ipw packet header to the 802.11 frame */
8351 skb_pull(skb, IPW_RX_FRAME_SIZE);
8353 /* Push the libipw_rx_stats before the 802.11 frame */
8354 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8356 skb->dev = priv->ieee->dev;
8358 /* Point raw at the libipw_stats */
8359 skb_reset_mac_header(skb);
8361 skb->pkt_type = PACKET_OTHERHOST;
8362 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8363 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8364 netif_rx(skb);
8365 rxb->skb = NULL;
8370 * Main entry function for receiving a packet with 80211 headers. This
8371 * should be called when ever the FW has notified us that there is a new
8372 * skb in the receive queue.
8374 static void ipw_rx(struct ipw_priv *priv)
8376 struct ipw_rx_mem_buffer *rxb;
8377 struct ipw_rx_packet *pkt;
8378 struct libipw_hdr_4addr *header;
8379 u32 r, w, i;
8380 u8 network_packet;
8381 u8 fill_rx = 0;
8383 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8384 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8385 i = priv->rxq->read;
8387 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8388 fill_rx = 1;
8390 while (i != r) {
8391 rxb = priv->rxq->queue[i];
8392 if (unlikely(rxb == NULL)) {
8393 printk(KERN_CRIT "Queue not allocated!\n");
8394 break;
8396 priv->rxq->queue[i] = NULL;
8398 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8399 IPW_RX_BUF_SIZE,
8400 PCI_DMA_FROMDEVICE);
8402 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8403 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8404 pkt->header.message_type,
8405 pkt->header.rx_seq_num, pkt->header.control_bits);
8407 switch (pkt->header.message_type) {
8408 case RX_FRAME_TYPE: /* 802.11 frame */ {
8409 struct libipw_rx_stats stats = {
8410 .rssi = pkt->u.frame.rssi_dbm -
8411 IPW_RSSI_TO_DBM,
8412 .signal =
8413 pkt->u.frame.rssi_dbm -
8414 IPW_RSSI_TO_DBM + 0x100,
8415 .noise =
8416 le16_to_cpu(pkt->u.frame.noise),
8417 .rate = pkt->u.frame.rate,
8418 .mac_time = jiffies,
8419 .received_channel =
8420 pkt->u.frame.received_channel,
8421 .freq =
8422 (pkt->u.frame.
8423 control & (1 << 0)) ?
8424 LIBIPW_24GHZ_BAND :
8425 LIBIPW_52GHZ_BAND,
8426 .len = le16_to_cpu(pkt->u.frame.length),
8429 if (stats.rssi != 0)
8430 stats.mask |= LIBIPW_STATMASK_RSSI;
8431 if (stats.signal != 0)
8432 stats.mask |= LIBIPW_STATMASK_SIGNAL;
8433 if (stats.noise != 0)
8434 stats.mask |= LIBIPW_STATMASK_NOISE;
8435 if (stats.rate != 0)
8436 stats.mask |= LIBIPW_STATMASK_RATE;
8438 priv->rx_packets++;
8440 #ifdef CONFIG_IPW2200_PROMISCUOUS
8441 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8442 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8443 #endif
8445 #ifdef CONFIG_IPW2200_MONITOR
8446 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8447 #ifdef CONFIG_IPW2200_RADIOTAP
8449 ipw_handle_data_packet_monitor(priv,
8450 rxb,
8451 &stats);
8452 #else
8453 ipw_handle_data_packet(priv, rxb,
8454 &stats);
8455 #endif
8456 break;
8458 #endif
8460 header =
8461 (struct libipw_hdr_4addr *)(rxb->skb->
8462 data +
8463 IPW_RX_FRAME_SIZE);
8464 /* TODO: Check Ad-Hoc dest/source and make sure
8465 * that we are actually parsing these packets
8466 * correctly -- we should probably use the
8467 * frame control of the packet and disregard
8468 * the current iw_mode */
8470 network_packet =
8471 is_network_packet(priv, header);
8472 if (network_packet && priv->assoc_network) {
8473 priv->assoc_network->stats.rssi =
8474 stats.rssi;
8475 priv->exp_avg_rssi =
8476 exponential_average(priv->exp_avg_rssi,
8477 stats.rssi, DEPTH_RSSI);
8480 IPW_DEBUG_RX("Frame: len=%u\n",
8481 le16_to_cpu(pkt->u.frame.length));
8483 if (le16_to_cpu(pkt->u.frame.length) <
8484 libipw_get_hdrlen(le16_to_cpu(
8485 header->frame_ctl))) {
8486 IPW_DEBUG_DROP
8487 ("Received packet is too small. "
8488 "Dropping.\n");
8489 priv->net_dev->stats.rx_errors++;
8490 priv->wstats.discard.misc++;
8491 break;
8494 switch (WLAN_FC_GET_TYPE
8495 (le16_to_cpu(header->frame_ctl))) {
8497 case IEEE80211_FTYPE_MGMT:
8498 ipw_handle_mgmt_packet(priv, rxb,
8499 &stats);
8500 break;
8502 case IEEE80211_FTYPE_CTL:
8503 break;
8505 case IEEE80211_FTYPE_DATA:
8506 if (unlikely(!network_packet ||
8507 is_duplicate_packet(priv,
8508 header)))
8510 IPW_DEBUG_DROP("Dropping: "
8511 "%pM, "
8512 "%pM, "
8513 "%pM\n",
8514 header->addr1,
8515 header->addr2,
8516 header->addr3);
8517 break;
8520 ipw_handle_data_packet(priv, rxb,
8521 &stats);
8523 break;
8525 break;
8528 case RX_HOST_NOTIFICATION_TYPE:{
8529 IPW_DEBUG_RX
8530 ("Notification: subtype=%02X flags=%02X size=%d\n",
8531 pkt->u.notification.subtype,
8532 pkt->u.notification.flags,
8533 le16_to_cpu(pkt->u.notification.size));
8534 ipw_rx_notification(priv, &pkt->u.notification);
8535 break;
8538 default:
8539 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8540 pkt->header.message_type);
8541 break;
8544 /* For now we just don't re-use anything. We can tweak this
8545 * later to try and re-use notification packets and SKBs that
8546 * fail to Rx correctly */
8547 if (rxb->skb != NULL) {
8548 dev_kfree_skb_any(rxb->skb);
8549 rxb->skb = NULL;
8552 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8553 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8554 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8556 i = (i + 1) % RX_QUEUE_SIZE;
8558 /* If there are a lot of unsued frames, restock the Rx queue
8559 * so the ucode won't assert */
8560 if (fill_rx) {
8561 priv->rxq->read = i;
8562 ipw_rx_queue_replenish(priv);
8566 /* Backtrack one entry */
8567 priv->rxq->read = i;
8568 ipw_rx_queue_restock(priv);
8571 #define DEFAULT_RTS_THRESHOLD 2304U
8572 #define MIN_RTS_THRESHOLD 1U
8573 #define MAX_RTS_THRESHOLD 2304U
8574 #define DEFAULT_BEACON_INTERVAL 100U
8575 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8576 #define DEFAULT_LONG_RETRY_LIMIT 4U
8579 * ipw_sw_reset
8580 * @option: options to control different reset behaviour
8581 * 0 = reset everything except the 'disable' module_param
8582 * 1 = reset everything and print out driver info (for probe only)
8583 * 2 = reset everything
8585 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8587 int band, modulation;
8588 int old_mode = priv->ieee->iw_mode;
8590 /* Initialize module parameter values here */
8591 priv->config = 0;
8593 /* We default to disabling the LED code as right now it causes
8594 * too many systems to lock up... */
8595 if (!led_support)
8596 priv->config |= CFG_NO_LED;
8598 if (associate)
8599 priv->config |= CFG_ASSOCIATE;
8600 else
8601 IPW_DEBUG_INFO("Auto associate disabled.\n");
8603 if (auto_create)
8604 priv->config |= CFG_ADHOC_CREATE;
8605 else
8606 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8608 priv->config &= ~CFG_STATIC_ESSID;
8609 priv->essid_len = 0;
8610 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8612 if (disable && option) {
8613 priv->status |= STATUS_RF_KILL_SW;
8614 IPW_DEBUG_INFO("Radio disabled.\n");
8617 if (default_channel != 0) {
8618 priv->config |= CFG_STATIC_CHANNEL;
8619 priv->channel = default_channel;
8620 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8621 /* TODO: Validate that provided channel is in range */
8623 #ifdef CONFIG_IPW2200_QOS
8624 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8625 burst_duration_CCK, burst_duration_OFDM);
8626 #endif /* CONFIG_IPW2200_QOS */
8628 switch (network_mode) {
8629 case 1:
8630 priv->ieee->iw_mode = IW_MODE_ADHOC;
8631 priv->net_dev->type = ARPHRD_ETHER;
8633 break;
8634 #ifdef CONFIG_IPW2200_MONITOR
8635 case 2:
8636 priv->ieee->iw_mode = IW_MODE_MONITOR;
8637 #ifdef CONFIG_IPW2200_RADIOTAP
8638 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8639 #else
8640 priv->net_dev->type = ARPHRD_IEEE80211;
8641 #endif
8642 break;
8643 #endif
8644 default:
8645 case 0:
8646 priv->net_dev->type = ARPHRD_ETHER;
8647 priv->ieee->iw_mode = IW_MODE_INFRA;
8648 break;
8651 if (hwcrypto) {
8652 priv->ieee->host_encrypt = 0;
8653 priv->ieee->host_encrypt_msdu = 0;
8654 priv->ieee->host_decrypt = 0;
8655 priv->ieee->host_mc_decrypt = 0;
8657 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8659 /* IPW2200/2915 is abled to do hardware fragmentation. */
8660 priv->ieee->host_open_frag = 0;
8662 if ((priv->pci_dev->device == 0x4223) ||
8663 (priv->pci_dev->device == 0x4224)) {
8664 if (option == 1)
8665 printk(KERN_INFO DRV_NAME
8666 ": Detected Intel PRO/Wireless 2915ABG Network "
8667 "Connection\n");
8668 priv->ieee->abg_true = 1;
8669 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8670 modulation = LIBIPW_OFDM_MODULATION |
8671 LIBIPW_CCK_MODULATION;
8672 priv->adapter = IPW_2915ABG;
8673 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8674 } else {
8675 if (option == 1)
8676 printk(KERN_INFO DRV_NAME
8677 ": Detected Intel PRO/Wireless 2200BG Network "
8678 "Connection\n");
8680 priv->ieee->abg_true = 0;
8681 band = LIBIPW_24GHZ_BAND;
8682 modulation = LIBIPW_OFDM_MODULATION |
8683 LIBIPW_CCK_MODULATION;
8684 priv->adapter = IPW_2200BG;
8685 priv->ieee->mode = IEEE_G | IEEE_B;
8688 priv->ieee->freq_band = band;
8689 priv->ieee->modulation = modulation;
8691 priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8693 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8694 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8696 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8697 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8698 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8700 /* If power management is turned on, default to AC mode */
8701 priv->power_mode = IPW_POWER_AC;
8702 priv->tx_power = IPW_TX_POWER_DEFAULT;
8704 return old_mode == priv->ieee->iw_mode;
8708 * This file defines the Wireless Extension handlers. It does not
8709 * define any methods of hardware manipulation and relies on the
8710 * functions defined in ipw_main to provide the HW interaction.
8712 * The exception to this is the use of the ipw_get_ordinal()
8713 * function used to poll the hardware vs. making unnecessary calls.
8717 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8719 if (channel == 0) {
8720 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8721 priv->config &= ~CFG_STATIC_CHANNEL;
8722 IPW_DEBUG_ASSOC("Attempting to associate with new "
8723 "parameters.\n");
8724 ipw_associate(priv);
8725 return 0;
8728 priv->config |= CFG_STATIC_CHANNEL;
8730 if (priv->channel == channel) {
8731 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8732 channel);
8733 return 0;
8736 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8737 priv->channel = channel;
8739 #ifdef CONFIG_IPW2200_MONITOR
8740 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8741 int i;
8742 if (priv->status & STATUS_SCANNING) {
8743 IPW_DEBUG_SCAN("Scan abort triggered due to "
8744 "channel change.\n");
8745 ipw_abort_scan(priv);
8748 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8749 udelay(10);
8751 if (priv->status & STATUS_SCANNING)
8752 IPW_DEBUG_SCAN("Still scanning...\n");
8753 else
8754 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8755 1000 - i);
8757 return 0;
8759 #endif /* CONFIG_IPW2200_MONITOR */
8761 /* Network configuration changed -- force [re]association */
8762 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8763 if (!ipw_disassociate(priv))
8764 ipw_associate(priv);
8766 return 0;
8769 static int ipw_wx_set_freq(struct net_device *dev,
8770 struct iw_request_info *info,
8771 union iwreq_data *wrqu, char *extra)
8773 struct ipw_priv *priv = libipw_priv(dev);
8774 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8775 struct iw_freq *fwrq = &wrqu->freq;
8776 int ret = 0, i;
8777 u8 channel, flags;
8778 int band;
8780 if (fwrq->m == 0) {
8781 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8782 mutex_lock(&priv->mutex);
8783 ret = ipw_set_channel(priv, 0);
8784 mutex_unlock(&priv->mutex);
8785 return ret;
8787 /* if setting by freq convert to channel */
8788 if (fwrq->e == 1) {
8789 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8790 if (channel == 0)
8791 return -EINVAL;
8792 } else
8793 channel = fwrq->m;
8795 if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8796 return -EINVAL;
8798 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8799 i = libipw_channel_to_index(priv->ieee, channel);
8800 if (i == -1)
8801 return -EINVAL;
8803 flags = (band == LIBIPW_24GHZ_BAND) ?
8804 geo->bg[i].flags : geo->a[i].flags;
8805 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8806 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8807 return -EINVAL;
8811 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8812 mutex_lock(&priv->mutex);
8813 ret = ipw_set_channel(priv, channel);
8814 mutex_unlock(&priv->mutex);
8815 return ret;
8818 static int ipw_wx_get_freq(struct net_device *dev,
8819 struct iw_request_info *info,
8820 union iwreq_data *wrqu, char *extra)
8822 struct ipw_priv *priv = libipw_priv(dev);
8824 wrqu->freq.e = 0;
8826 /* If we are associated, trying to associate, or have a statically
8827 * configured CHANNEL then return that; otherwise return ANY */
8828 mutex_lock(&priv->mutex);
8829 if (priv->config & CFG_STATIC_CHANNEL ||
8830 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8831 int i;
8833 i = libipw_channel_to_index(priv->ieee, priv->channel);
8834 BUG_ON(i == -1);
8835 wrqu->freq.e = 1;
8837 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8838 case LIBIPW_52GHZ_BAND:
8839 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8840 break;
8842 case LIBIPW_24GHZ_BAND:
8843 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8844 break;
8846 default:
8847 BUG();
8849 } else
8850 wrqu->freq.m = 0;
8852 mutex_unlock(&priv->mutex);
8853 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8854 return 0;
8857 static int ipw_wx_set_mode(struct net_device *dev,
8858 struct iw_request_info *info,
8859 union iwreq_data *wrqu, char *extra)
8861 struct ipw_priv *priv = libipw_priv(dev);
8862 int err = 0;
8864 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8866 switch (wrqu->mode) {
8867 #ifdef CONFIG_IPW2200_MONITOR
8868 case IW_MODE_MONITOR:
8869 #endif
8870 case IW_MODE_ADHOC:
8871 case IW_MODE_INFRA:
8872 break;
8873 case IW_MODE_AUTO:
8874 wrqu->mode = IW_MODE_INFRA;
8875 break;
8876 default:
8877 return -EINVAL;
8879 if (wrqu->mode == priv->ieee->iw_mode)
8880 return 0;
8882 mutex_lock(&priv->mutex);
8884 ipw_sw_reset(priv, 0);
8886 #ifdef CONFIG_IPW2200_MONITOR
8887 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8888 priv->net_dev->type = ARPHRD_ETHER;
8890 if (wrqu->mode == IW_MODE_MONITOR)
8891 #ifdef CONFIG_IPW2200_RADIOTAP
8892 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8893 #else
8894 priv->net_dev->type = ARPHRD_IEEE80211;
8895 #endif
8896 #endif /* CONFIG_IPW2200_MONITOR */
8898 /* Free the existing firmware and reset the fw_loaded
8899 * flag so ipw_load() will bring in the new firmware */
8900 free_firmware();
8902 priv->ieee->iw_mode = wrqu->mode;
8904 schedule_work(&priv->adapter_restart);
8905 mutex_unlock(&priv->mutex);
8906 return err;
8909 static int ipw_wx_get_mode(struct net_device *dev,
8910 struct iw_request_info *info,
8911 union iwreq_data *wrqu, char *extra)
8913 struct ipw_priv *priv = libipw_priv(dev);
8914 mutex_lock(&priv->mutex);
8915 wrqu->mode = priv->ieee->iw_mode;
8916 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8917 mutex_unlock(&priv->mutex);
8918 return 0;
8921 /* Values are in microsecond */
8922 static const s32 timeout_duration[] = {
8923 350000,
8924 250000,
8925 75000,
8926 37000,
8927 25000,
8930 static const s32 period_duration[] = {
8931 400000,
8932 700000,
8933 1000000,
8934 1000000,
8935 1000000
8938 static int ipw_wx_get_range(struct net_device *dev,
8939 struct iw_request_info *info,
8940 union iwreq_data *wrqu, char *extra)
8942 struct ipw_priv *priv = libipw_priv(dev);
8943 struct iw_range *range = (struct iw_range *)extra;
8944 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8945 int i = 0, j;
8947 wrqu->data.length = sizeof(*range);
8948 memset(range, 0, sizeof(*range));
8950 /* 54Mbs == ~27 Mb/s real (802.11g) */
8951 range->throughput = 27 * 1000 * 1000;
8953 range->max_qual.qual = 100;
8954 /* TODO: Find real max RSSI and stick here */
8955 range->max_qual.level = 0;
8956 range->max_qual.noise = 0;
8957 range->max_qual.updated = 7; /* Updated all three */
8959 range->avg_qual.qual = 70;
8960 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8961 range->avg_qual.level = 0; /* FIXME to real average level */
8962 range->avg_qual.noise = 0;
8963 range->avg_qual.updated = 7; /* Updated all three */
8964 mutex_lock(&priv->mutex);
8965 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8967 for (i = 0; i < range->num_bitrates; i++)
8968 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8969 500000;
8971 range->max_rts = DEFAULT_RTS_THRESHOLD;
8972 range->min_frag = MIN_FRAG_THRESHOLD;
8973 range->max_frag = MAX_FRAG_THRESHOLD;
8975 range->encoding_size[0] = 5;
8976 range->encoding_size[1] = 13;
8977 range->num_encoding_sizes = 2;
8978 range->max_encoding_tokens = WEP_KEYS;
8980 /* Set the Wireless Extension versions */
8981 range->we_version_compiled = WIRELESS_EXT;
8982 range->we_version_source = 18;
8984 i = 0;
8985 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8986 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8987 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8988 (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8989 continue;
8991 range->freq[i].i = geo->bg[j].channel;
8992 range->freq[i].m = geo->bg[j].freq * 100000;
8993 range->freq[i].e = 1;
8994 i++;
8998 if (priv->ieee->mode & IEEE_A) {
8999 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
9000 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
9001 (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
9002 continue;
9004 range->freq[i].i = geo->a[j].channel;
9005 range->freq[i].m = geo->a[j].freq * 100000;
9006 range->freq[i].e = 1;
9007 i++;
9011 range->num_channels = i;
9012 range->num_frequency = i;
9014 mutex_unlock(&priv->mutex);
9016 /* Event capability (kernel + driver) */
9017 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
9018 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
9019 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
9020 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
9021 range->event_capa[1] = IW_EVENT_CAPA_K_1;
9023 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
9024 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
9026 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
9028 IPW_DEBUG_WX("GET Range\n");
9029 return 0;
9032 static int ipw_wx_set_wap(struct net_device *dev,
9033 struct iw_request_info *info,
9034 union iwreq_data *wrqu, char *extra)
9036 struct ipw_priv *priv = libipw_priv(dev);
9038 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
9039 return -EINVAL;
9040 mutex_lock(&priv->mutex);
9041 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
9042 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
9043 /* we disable mandatory BSSID association */
9044 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9045 priv->config &= ~CFG_STATIC_BSSID;
9046 IPW_DEBUG_ASSOC("Attempting to associate with new "
9047 "parameters.\n");
9048 ipw_associate(priv);
9049 mutex_unlock(&priv->mutex);
9050 return 0;
9053 priv->config |= CFG_STATIC_BSSID;
9054 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9055 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9056 mutex_unlock(&priv->mutex);
9057 return 0;
9060 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9061 wrqu->ap_addr.sa_data);
9063 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9065 /* Network configuration changed -- force [re]association */
9066 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9067 if (!ipw_disassociate(priv))
9068 ipw_associate(priv);
9070 mutex_unlock(&priv->mutex);
9071 return 0;
9074 static int ipw_wx_get_wap(struct net_device *dev,
9075 struct iw_request_info *info,
9076 union iwreq_data *wrqu, char *extra)
9078 struct ipw_priv *priv = libipw_priv(dev);
9080 /* If we are associated, trying to associate, or have a statically
9081 * configured BSSID then return that; otherwise return ANY */
9082 mutex_lock(&priv->mutex);
9083 if (priv->config & CFG_STATIC_BSSID ||
9084 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9085 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9086 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9087 } else
9088 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9090 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9091 wrqu->ap_addr.sa_data);
9092 mutex_unlock(&priv->mutex);
9093 return 0;
9096 static int ipw_wx_set_essid(struct net_device *dev,
9097 struct iw_request_info *info,
9098 union iwreq_data *wrqu, char *extra)
9100 struct ipw_priv *priv = libipw_priv(dev);
9101 int length;
9102 DECLARE_SSID_BUF(ssid);
9104 mutex_lock(&priv->mutex);
9106 if (!wrqu->essid.flags)
9108 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9109 ipw_disassociate(priv);
9110 priv->config &= ~CFG_STATIC_ESSID;
9111 ipw_associate(priv);
9112 mutex_unlock(&priv->mutex);
9113 return 0;
9116 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9118 priv->config |= CFG_STATIC_ESSID;
9120 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9121 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9122 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9123 mutex_unlock(&priv->mutex);
9124 return 0;
9127 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9128 print_ssid(ssid, extra, length), length);
9130 priv->essid_len = length;
9131 memcpy(priv->essid, extra, priv->essid_len);
9133 /* Network configuration changed -- force [re]association */
9134 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9135 if (!ipw_disassociate(priv))
9136 ipw_associate(priv);
9138 mutex_unlock(&priv->mutex);
9139 return 0;
9142 static int ipw_wx_get_essid(struct net_device *dev,
9143 struct iw_request_info *info,
9144 union iwreq_data *wrqu, char *extra)
9146 struct ipw_priv *priv = libipw_priv(dev);
9147 DECLARE_SSID_BUF(ssid);
9149 /* If we are associated, trying to associate, or have a statically
9150 * configured ESSID then return that; otherwise return ANY */
9151 mutex_lock(&priv->mutex);
9152 if (priv->config & CFG_STATIC_ESSID ||
9153 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9154 IPW_DEBUG_WX("Getting essid: '%s'\n",
9155 print_ssid(ssid, priv->essid, priv->essid_len));
9156 memcpy(extra, priv->essid, priv->essid_len);
9157 wrqu->essid.length = priv->essid_len;
9158 wrqu->essid.flags = 1; /* active */
9159 } else {
9160 IPW_DEBUG_WX("Getting essid: ANY\n");
9161 wrqu->essid.length = 0;
9162 wrqu->essid.flags = 0; /* active */
9164 mutex_unlock(&priv->mutex);
9165 return 0;
9168 static int ipw_wx_set_nick(struct net_device *dev,
9169 struct iw_request_info *info,
9170 union iwreq_data *wrqu, char *extra)
9172 struct ipw_priv *priv = libipw_priv(dev);
9174 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9175 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9176 return -E2BIG;
9177 mutex_lock(&priv->mutex);
9178 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9179 memset(priv->nick, 0, sizeof(priv->nick));
9180 memcpy(priv->nick, extra, wrqu->data.length);
9181 IPW_DEBUG_TRACE("<<\n");
9182 mutex_unlock(&priv->mutex);
9183 return 0;
9187 static int ipw_wx_get_nick(struct net_device *dev,
9188 struct iw_request_info *info,
9189 union iwreq_data *wrqu, char *extra)
9191 struct ipw_priv *priv = libipw_priv(dev);
9192 IPW_DEBUG_WX("Getting nick\n");
9193 mutex_lock(&priv->mutex);
9194 wrqu->data.length = strlen(priv->nick);
9195 memcpy(extra, priv->nick, wrqu->data.length);
9196 wrqu->data.flags = 1; /* active */
9197 mutex_unlock(&priv->mutex);
9198 return 0;
9201 static int ipw_wx_set_sens(struct net_device *dev,
9202 struct iw_request_info *info,
9203 union iwreq_data *wrqu, char *extra)
9205 struct ipw_priv *priv = libipw_priv(dev);
9206 int err = 0;
9208 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9209 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9210 mutex_lock(&priv->mutex);
9212 if (wrqu->sens.fixed == 0)
9214 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9215 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9216 goto out;
9218 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9219 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9220 err = -EINVAL;
9221 goto out;
9224 priv->roaming_threshold = wrqu->sens.value;
9225 priv->disassociate_threshold = 3*wrqu->sens.value;
9226 out:
9227 mutex_unlock(&priv->mutex);
9228 return err;
9231 static int ipw_wx_get_sens(struct net_device *dev,
9232 struct iw_request_info *info,
9233 union iwreq_data *wrqu, char *extra)
9235 struct ipw_priv *priv = libipw_priv(dev);
9236 mutex_lock(&priv->mutex);
9237 wrqu->sens.fixed = 1;
9238 wrqu->sens.value = priv->roaming_threshold;
9239 mutex_unlock(&priv->mutex);
9241 IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9242 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9244 return 0;
9247 static int ipw_wx_set_rate(struct net_device *dev,
9248 struct iw_request_info *info,
9249 union iwreq_data *wrqu, char *extra)
9251 /* TODO: We should use semaphores or locks for access to priv */
9252 struct ipw_priv *priv = libipw_priv(dev);
9253 u32 target_rate = wrqu->bitrate.value;
9254 u32 fixed, mask;
9256 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9257 /* value = X, fixed = 1 means only rate X */
9258 /* value = X, fixed = 0 means all rates lower equal X */
9260 if (target_rate == -1) {
9261 fixed = 0;
9262 mask = LIBIPW_DEFAULT_RATES_MASK;
9263 /* Now we should reassociate */
9264 goto apply;
9267 mask = 0;
9268 fixed = wrqu->bitrate.fixed;
9270 if (target_rate == 1000000 || !fixed)
9271 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9272 if (target_rate == 1000000)
9273 goto apply;
9275 if (target_rate == 2000000 || !fixed)
9276 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9277 if (target_rate == 2000000)
9278 goto apply;
9280 if (target_rate == 5500000 || !fixed)
9281 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9282 if (target_rate == 5500000)
9283 goto apply;
9285 if (target_rate == 6000000 || !fixed)
9286 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9287 if (target_rate == 6000000)
9288 goto apply;
9290 if (target_rate == 9000000 || !fixed)
9291 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9292 if (target_rate == 9000000)
9293 goto apply;
9295 if (target_rate == 11000000 || !fixed)
9296 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9297 if (target_rate == 11000000)
9298 goto apply;
9300 if (target_rate == 12000000 || !fixed)
9301 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9302 if (target_rate == 12000000)
9303 goto apply;
9305 if (target_rate == 18000000 || !fixed)
9306 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9307 if (target_rate == 18000000)
9308 goto apply;
9310 if (target_rate == 24000000 || !fixed)
9311 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9312 if (target_rate == 24000000)
9313 goto apply;
9315 if (target_rate == 36000000 || !fixed)
9316 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9317 if (target_rate == 36000000)
9318 goto apply;
9320 if (target_rate == 48000000 || !fixed)
9321 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9322 if (target_rate == 48000000)
9323 goto apply;
9325 if (target_rate == 54000000 || !fixed)
9326 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9327 if (target_rate == 54000000)
9328 goto apply;
9330 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9331 return -EINVAL;
9333 apply:
9334 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9335 mask, fixed ? "fixed" : "sub-rates");
9336 mutex_lock(&priv->mutex);
9337 if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9338 priv->config &= ~CFG_FIXED_RATE;
9339 ipw_set_fixed_rate(priv, priv->ieee->mode);
9340 } else
9341 priv->config |= CFG_FIXED_RATE;
9343 if (priv->rates_mask == mask) {
9344 IPW_DEBUG_WX("Mask set to current mask.\n");
9345 mutex_unlock(&priv->mutex);
9346 return 0;
9349 priv->rates_mask = mask;
9351 /* Network configuration changed -- force [re]association */
9352 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9353 if (!ipw_disassociate(priv))
9354 ipw_associate(priv);
9356 mutex_unlock(&priv->mutex);
9357 return 0;
9360 static int ipw_wx_get_rate(struct net_device *dev,
9361 struct iw_request_info *info,
9362 union iwreq_data *wrqu, char *extra)
9364 struct ipw_priv *priv = libipw_priv(dev);
9365 mutex_lock(&priv->mutex);
9366 wrqu->bitrate.value = priv->last_rate;
9367 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9368 mutex_unlock(&priv->mutex);
9369 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9370 return 0;
9373 static int ipw_wx_set_rts(struct net_device *dev,
9374 struct iw_request_info *info,
9375 union iwreq_data *wrqu, char *extra)
9377 struct ipw_priv *priv = libipw_priv(dev);
9378 mutex_lock(&priv->mutex);
9379 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9380 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9381 else {
9382 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9383 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9384 mutex_unlock(&priv->mutex);
9385 return -EINVAL;
9387 priv->rts_threshold = wrqu->rts.value;
9390 ipw_send_rts_threshold(priv, priv->rts_threshold);
9391 mutex_unlock(&priv->mutex);
9392 IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9393 return 0;
9396 static int ipw_wx_get_rts(struct net_device *dev,
9397 struct iw_request_info *info,
9398 union iwreq_data *wrqu, char *extra)
9400 struct ipw_priv *priv = libipw_priv(dev);
9401 mutex_lock(&priv->mutex);
9402 wrqu->rts.value = priv->rts_threshold;
9403 wrqu->rts.fixed = 0; /* no auto select */
9404 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9405 mutex_unlock(&priv->mutex);
9406 IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9407 return 0;
9410 static int ipw_wx_set_txpow(struct net_device *dev,
9411 struct iw_request_info *info,
9412 union iwreq_data *wrqu, char *extra)
9414 struct ipw_priv *priv = libipw_priv(dev);
9415 int err = 0;
9417 mutex_lock(&priv->mutex);
9418 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9419 err = -EINPROGRESS;
9420 goto out;
9423 if (!wrqu->power.fixed)
9424 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9426 if (wrqu->power.flags != IW_TXPOW_DBM) {
9427 err = -EINVAL;
9428 goto out;
9431 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9432 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9433 err = -EINVAL;
9434 goto out;
9437 priv->tx_power = wrqu->power.value;
9438 err = ipw_set_tx_power(priv);
9439 out:
9440 mutex_unlock(&priv->mutex);
9441 return err;
9444 static int ipw_wx_get_txpow(struct net_device *dev,
9445 struct iw_request_info *info,
9446 union iwreq_data *wrqu, char *extra)
9448 struct ipw_priv *priv = libipw_priv(dev);
9449 mutex_lock(&priv->mutex);
9450 wrqu->power.value = priv->tx_power;
9451 wrqu->power.fixed = 1;
9452 wrqu->power.flags = IW_TXPOW_DBM;
9453 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9454 mutex_unlock(&priv->mutex);
9456 IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9457 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9459 return 0;
9462 static int ipw_wx_set_frag(struct net_device *dev,
9463 struct iw_request_info *info,
9464 union iwreq_data *wrqu, char *extra)
9466 struct ipw_priv *priv = libipw_priv(dev);
9467 mutex_lock(&priv->mutex);
9468 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9469 priv->ieee->fts = DEFAULT_FTS;
9470 else {
9471 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9472 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9473 mutex_unlock(&priv->mutex);
9474 return -EINVAL;
9477 priv->ieee->fts = wrqu->frag.value & ~0x1;
9480 ipw_send_frag_threshold(priv, wrqu->frag.value);
9481 mutex_unlock(&priv->mutex);
9482 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9483 return 0;
9486 static int ipw_wx_get_frag(struct net_device *dev,
9487 struct iw_request_info *info,
9488 union iwreq_data *wrqu, char *extra)
9490 struct ipw_priv *priv = libipw_priv(dev);
9491 mutex_lock(&priv->mutex);
9492 wrqu->frag.value = priv->ieee->fts;
9493 wrqu->frag.fixed = 0; /* no auto select */
9494 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9495 mutex_unlock(&priv->mutex);
9496 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9498 return 0;
9501 static int ipw_wx_set_retry(struct net_device *dev,
9502 struct iw_request_info *info,
9503 union iwreq_data *wrqu, char *extra)
9505 struct ipw_priv *priv = libipw_priv(dev);
9507 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9508 return -EINVAL;
9510 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9511 return 0;
9513 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9514 return -EINVAL;
9516 mutex_lock(&priv->mutex);
9517 if (wrqu->retry.flags & IW_RETRY_SHORT)
9518 priv->short_retry_limit = (u8) wrqu->retry.value;
9519 else if (wrqu->retry.flags & IW_RETRY_LONG)
9520 priv->long_retry_limit = (u8) wrqu->retry.value;
9521 else {
9522 priv->short_retry_limit = (u8) wrqu->retry.value;
9523 priv->long_retry_limit = (u8) wrqu->retry.value;
9526 ipw_send_retry_limit(priv, priv->short_retry_limit,
9527 priv->long_retry_limit);
9528 mutex_unlock(&priv->mutex);
9529 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9530 priv->short_retry_limit, priv->long_retry_limit);
9531 return 0;
9534 static int ipw_wx_get_retry(struct net_device *dev,
9535 struct iw_request_info *info,
9536 union iwreq_data *wrqu, char *extra)
9538 struct ipw_priv *priv = libipw_priv(dev);
9540 mutex_lock(&priv->mutex);
9541 wrqu->retry.disabled = 0;
9543 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9544 mutex_unlock(&priv->mutex);
9545 return -EINVAL;
9548 if (wrqu->retry.flags & IW_RETRY_LONG) {
9549 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9550 wrqu->retry.value = priv->long_retry_limit;
9551 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9552 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9553 wrqu->retry.value = priv->short_retry_limit;
9554 } else {
9555 wrqu->retry.flags = IW_RETRY_LIMIT;
9556 wrqu->retry.value = priv->short_retry_limit;
9558 mutex_unlock(&priv->mutex);
9560 IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9562 return 0;
9565 static int ipw_wx_set_scan(struct net_device *dev,
9566 struct iw_request_info *info,
9567 union iwreq_data *wrqu, char *extra)
9569 struct ipw_priv *priv = libipw_priv(dev);
9570 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9571 struct delayed_work *work = NULL;
9573 mutex_lock(&priv->mutex);
9575 priv->user_requested_scan = 1;
9577 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9578 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9579 int len = min((int)req->essid_len,
9580 (int)sizeof(priv->direct_scan_ssid));
9581 memcpy(priv->direct_scan_ssid, req->essid, len);
9582 priv->direct_scan_ssid_len = len;
9583 work = &priv->request_direct_scan;
9584 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9585 work = &priv->request_passive_scan;
9587 } else {
9588 /* Normal active broadcast scan */
9589 work = &priv->request_scan;
9592 mutex_unlock(&priv->mutex);
9594 IPW_DEBUG_WX("Start scan\n");
9596 schedule_delayed_work(work, 0);
9598 return 0;
9601 static int ipw_wx_get_scan(struct net_device *dev,
9602 struct iw_request_info *info,
9603 union iwreq_data *wrqu, char *extra)
9605 struct ipw_priv *priv = libipw_priv(dev);
9606 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9609 static int ipw_wx_set_encode(struct net_device *dev,
9610 struct iw_request_info *info,
9611 union iwreq_data *wrqu, char *key)
9613 struct ipw_priv *priv = libipw_priv(dev);
9614 int ret;
9615 u32 cap = priv->capability;
9617 mutex_lock(&priv->mutex);
9618 ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9620 /* In IBSS mode, we need to notify the firmware to update
9621 * the beacon info after we changed the capability. */
9622 if (cap != priv->capability &&
9623 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9624 priv->status & STATUS_ASSOCIATED)
9625 ipw_disassociate(priv);
9627 mutex_unlock(&priv->mutex);
9628 return ret;
9631 static int ipw_wx_get_encode(struct net_device *dev,
9632 struct iw_request_info *info,
9633 union iwreq_data *wrqu, char *key)
9635 struct ipw_priv *priv = libipw_priv(dev);
9636 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9639 static int ipw_wx_set_power(struct net_device *dev,
9640 struct iw_request_info *info,
9641 union iwreq_data *wrqu, char *extra)
9643 struct ipw_priv *priv = libipw_priv(dev);
9644 int err;
9645 mutex_lock(&priv->mutex);
9646 if (wrqu->power.disabled) {
9647 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9648 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9649 if (err) {
9650 IPW_DEBUG_WX("failed setting power mode.\n");
9651 mutex_unlock(&priv->mutex);
9652 return err;
9654 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9655 mutex_unlock(&priv->mutex);
9656 return 0;
9659 switch (wrqu->power.flags & IW_POWER_MODE) {
9660 case IW_POWER_ON: /* If not specified */
9661 case IW_POWER_MODE: /* If set all mask */
9662 case IW_POWER_ALL_R: /* If explicitly state all */
9663 break;
9664 default: /* Otherwise we don't support it */
9665 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9666 wrqu->power.flags);
9667 mutex_unlock(&priv->mutex);
9668 return -EOPNOTSUPP;
9671 /* If the user hasn't specified a power management mode yet, default
9672 * to BATTERY */
9673 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9674 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9675 else
9676 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9678 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9679 if (err) {
9680 IPW_DEBUG_WX("failed setting power mode.\n");
9681 mutex_unlock(&priv->mutex);
9682 return err;
9685 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9686 mutex_unlock(&priv->mutex);
9687 return 0;
9690 static int ipw_wx_get_power(struct net_device *dev,
9691 struct iw_request_info *info,
9692 union iwreq_data *wrqu, char *extra)
9694 struct ipw_priv *priv = libipw_priv(dev);
9695 mutex_lock(&priv->mutex);
9696 if (!(priv->power_mode & IPW_POWER_ENABLED))
9697 wrqu->power.disabled = 1;
9698 else
9699 wrqu->power.disabled = 0;
9701 mutex_unlock(&priv->mutex);
9702 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9704 return 0;
9707 static int ipw_wx_set_powermode(struct net_device *dev,
9708 struct iw_request_info *info,
9709 union iwreq_data *wrqu, char *extra)
9711 struct ipw_priv *priv = libipw_priv(dev);
9712 int mode = *(int *)extra;
9713 int err;
9715 mutex_lock(&priv->mutex);
9716 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9717 mode = IPW_POWER_AC;
9719 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9720 err = ipw_send_power_mode(priv, mode);
9721 if (err) {
9722 IPW_DEBUG_WX("failed setting power mode.\n");
9723 mutex_unlock(&priv->mutex);
9724 return err;
9726 priv->power_mode = IPW_POWER_ENABLED | mode;
9728 mutex_unlock(&priv->mutex);
9729 return 0;
9732 #define MAX_WX_STRING 80
9733 static int ipw_wx_get_powermode(struct net_device *dev,
9734 struct iw_request_info *info,
9735 union iwreq_data *wrqu, char *extra)
9737 struct ipw_priv *priv = libipw_priv(dev);
9738 int level = IPW_POWER_LEVEL(priv->power_mode);
9739 char *p = extra;
9741 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9743 switch (level) {
9744 case IPW_POWER_AC:
9745 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9746 break;
9747 case IPW_POWER_BATTERY:
9748 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9749 break;
9750 default:
9751 p += snprintf(p, MAX_WX_STRING - (p - extra),
9752 "(Timeout %dms, Period %dms)",
9753 timeout_duration[level - 1] / 1000,
9754 period_duration[level - 1] / 1000);
9757 if (!(priv->power_mode & IPW_POWER_ENABLED))
9758 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9760 wrqu->data.length = p - extra + 1;
9762 return 0;
9765 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9766 struct iw_request_info *info,
9767 union iwreq_data *wrqu, char *extra)
9769 struct ipw_priv *priv = libipw_priv(dev);
9770 int mode = *(int *)extra;
9771 u8 band = 0, modulation = 0;
9773 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9774 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9775 return -EINVAL;
9777 mutex_lock(&priv->mutex);
9778 if (priv->adapter == IPW_2915ABG) {
9779 priv->ieee->abg_true = 1;
9780 if (mode & IEEE_A) {
9781 band |= LIBIPW_52GHZ_BAND;
9782 modulation |= LIBIPW_OFDM_MODULATION;
9783 } else
9784 priv->ieee->abg_true = 0;
9785 } else {
9786 if (mode & IEEE_A) {
9787 IPW_WARNING("Attempt to set 2200BG into "
9788 "802.11a mode\n");
9789 mutex_unlock(&priv->mutex);
9790 return -EINVAL;
9793 priv->ieee->abg_true = 0;
9796 if (mode & IEEE_B) {
9797 band |= LIBIPW_24GHZ_BAND;
9798 modulation |= LIBIPW_CCK_MODULATION;
9799 } else
9800 priv->ieee->abg_true = 0;
9802 if (mode & IEEE_G) {
9803 band |= LIBIPW_24GHZ_BAND;
9804 modulation |= LIBIPW_OFDM_MODULATION;
9805 } else
9806 priv->ieee->abg_true = 0;
9808 priv->ieee->mode = mode;
9809 priv->ieee->freq_band = band;
9810 priv->ieee->modulation = modulation;
9811 init_supported_rates(priv, &priv->rates);
9813 /* Network configuration changed -- force [re]association */
9814 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9815 if (!ipw_disassociate(priv)) {
9816 ipw_send_supported_rates(priv, &priv->rates);
9817 ipw_associate(priv);
9820 /* Update the band LEDs */
9821 ipw_led_band_on(priv);
9823 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9824 mode & IEEE_A ? 'a' : '.',
9825 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9826 mutex_unlock(&priv->mutex);
9827 return 0;
9830 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9831 struct iw_request_info *info,
9832 union iwreq_data *wrqu, char *extra)
9834 struct ipw_priv *priv = libipw_priv(dev);
9835 mutex_lock(&priv->mutex);
9836 switch (priv->ieee->mode) {
9837 case IEEE_A:
9838 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9839 break;
9840 case IEEE_B:
9841 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9842 break;
9843 case IEEE_A | IEEE_B:
9844 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9845 break;
9846 case IEEE_G:
9847 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9848 break;
9849 case IEEE_A | IEEE_G:
9850 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9851 break;
9852 case IEEE_B | IEEE_G:
9853 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9854 break;
9855 case IEEE_A | IEEE_B | IEEE_G:
9856 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9857 break;
9858 default:
9859 strncpy(extra, "unknown", MAX_WX_STRING);
9860 break;
9863 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9865 wrqu->data.length = strlen(extra) + 1;
9866 mutex_unlock(&priv->mutex);
9868 return 0;
9871 static int ipw_wx_set_preamble(struct net_device *dev,
9872 struct iw_request_info *info,
9873 union iwreq_data *wrqu, char *extra)
9875 struct ipw_priv *priv = libipw_priv(dev);
9876 int mode = *(int *)extra;
9877 mutex_lock(&priv->mutex);
9878 /* Switching from SHORT -> LONG requires a disassociation */
9879 if (mode == 1) {
9880 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9881 priv->config |= CFG_PREAMBLE_LONG;
9883 /* Network configuration changed -- force [re]association */
9884 IPW_DEBUG_ASSOC
9885 ("[re]association triggered due to preamble change.\n");
9886 if (!ipw_disassociate(priv))
9887 ipw_associate(priv);
9889 goto done;
9892 if (mode == 0) {
9893 priv->config &= ~CFG_PREAMBLE_LONG;
9894 goto done;
9896 mutex_unlock(&priv->mutex);
9897 return -EINVAL;
9899 done:
9900 mutex_unlock(&priv->mutex);
9901 return 0;
9904 static int ipw_wx_get_preamble(struct net_device *dev,
9905 struct iw_request_info *info,
9906 union iwreq_data *wrqu, char *extra)
9908 struct ipw_priv *priv = libipw_priv(dev);
9909 mutex_lock(&priv->mutex);
9910 if (priv->config & CFG_PREAMBLE_LONG)
9911 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9912 else
9913 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9914 mutex_unlock(&priv->mutex);
9915 return 0;
9918 #ifdef CONFIG_IPW2200_MONITOR
9919 static int ipw_wx_set_monitor(struct net_device *dev,
9920 struct iw_request_info *info,
9921 union iwreq_data *wrqu, char *extra)
9923 struct ipw_priv *priv = libipw_priv(dev);
9924 int *parms = (int *)extra;
9925 int enable = (parms[0] > 0);
9926 mutex_lock(&priv->mutex);
9927 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9928 if (enable) {
9929 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9930 #ifdef CONFIG_IPW2200_RADIOTAP
9931 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9932 #else
9933 priv->net_dev->type = ARPHRD_IEEE80211;
9934 #endif
9935 schedule_work(&priv->adapter_restart);
9938 ipw_set_channel(priv, parms[1]);
9939 } else {
9940 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9941 mutex_unlock(&priv->mutex);
9942 return 0;
9944 priv->net_dev->type = ARPHRD_ETHER;
9945 schedule_work(&priv->adapter_restart);
9947 mutex_unlock(&priv->mutex);
9948 return 0;
9951 #endif /* CONFIG_IPW2200_MONITOR */
9953 static int ipw_wx_reset(struct net_device *dev,
9954 struct iw_request_info *info,
9955 union iwreq_data *wrqu, char *extra)
9957 struct ipw_priv *priv = libipw_priv(dev);
9958 IPW_DEBUG_WX("RESET\n");
9959 schedule_work(&priv->adapter_restart);
9960 return 0;
9963 static int ipw_wx_sw_reset(struct net_device *dev,
9964 struct iw_request_info *info,
9965 union iwreq_data *wrqu, char *extra)
9967 struct ipw_priv *priv = libipw_priv(dev);
9968 union iwreq_data wrqu_sec = {
9969 .encoding = {
9970 .flags = IW_ENCODE_DISABLED,
9973 int ret;
9975 IPW_DEBUG_WX("SW_RESET\n");
9977 mutex_lock(&priv->mutex);
9979 ret = ipw_sw_reset(priv, 2);
9980 if (!ret) {
9981 free_firmware();
9982 ipw_adapter_restart(priv);
9985 /* The SW reset bit might have been toggled on by the 'disable'
9986 * module parameter, so take appropriate action */
9987 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9989 mutex_unlock(&priv->mutex);
9990 libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9991 mutex_lock(&priv->mutex);
9993 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9994 /* Configuration likely changed -- force [re]association */
9995 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9996 "reset.\n");
9997 if (!ipw_disassociate(priv))
9998 ipw_associate(priv);
10001 mutex_unlock(&priv->mutex);
10003 return 0;
10006 /* Rebase the WE IOCTLs to zero for the handler array */
10007 static iw_handler ipw_wx_handlers[] = {
10008 IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
10009 IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
10010 IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
10011 IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
10012 IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
10013 IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
10014 IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
10015 IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
10016 IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
10017 IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
10018 IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
10019 IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
10020 IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
10021 IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
10022 IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
10023 IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
10024 IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
10025 IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
10026 IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
10027 IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
10028 IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
10029 IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
10030 IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
10031 IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
10032 IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
10033 IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
10034 IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
10035 IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
10036 IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
10037 IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
10038 IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
10039 IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
10040 IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
10041 IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
10042 IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
10043 IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
10044 IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
10045 IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
10046 IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
10047 IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
10048 IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
10051 enum {
10052 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10053 IPW_PRIV_GET_POWER,
10054 IPW_PRIV_SET_MODE,
10055 IPW_PRIV_GET_MODE,
10056 IPW_PRIV_SET_PREAMBLE,
10057 IPW_PRIV_GET_PREAMBLE,
10058 IPW_PRIV_RESET,
10059 IPW_PRIV_SW_RESET,
10060 #ifdef CONFIG_IPW2200_MONITOR
10061 IPW_PRIV_SET_MONITOR,
10062 #endif
10065 static struct iw_priv_args ipw_priv_args[] = {
10067 .cmd = IPW_PRIV_SET_POWER,
10068 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10069 .name = "set_power"},
10071 .cmd = IPW_PRIV_GET_POWER,
10072 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10073 .name = "get_power"},
10075 .cmd = IPW_PRIV_SET_MODE,
10076 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10077 .name = "set_mode"},
10079 .cmd = IPW_PRIV_GET_MODE,
10080 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10081 .name = "get_mode"},
10083 .cmd = IPW_PRIV_SET_PREAMBLE,
10084 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10085 .name = "set_preamble"},
10087 .cmd = IPW_PRIV_GET_PREAMBLE,
10088 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10089 .name = "get_preamble"},
10091 IPW_PRIV_RESET,
10092 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10094 IPW_PRIV_SW_RESET,
10095 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10096 #ifdef CONFIG_IPW2200_MONITOR
10098 IPW_PRIV_SET_MONITOR,
10099 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10100 #endif /* CONFIG_IPW2200_MONITOR */
10103 static iw_handler ipw_priv_handler[] = {
10104 ipw_wx_set_powermode,
10105 ipw_wx_get_powermode,
10106 ipw_wx_set_wireless_mode,
10107 ipw_wx_get_wireless_mode,
10108 ipw_wx_set_preamble,
10109 ipw_wx_get_preamble,
10110 ipw_wx_reset,
10111 ipw_wx_sw_reset,
10112 #ifdef CONFIG_IPW2200_MONITOR
10113 ipw_wx_set_monitor,
10114 #endif
10117 static struct iw_handler_def ipw_wx_handler_def = {
10118 .standard = ipw_wx_handlers,
10119 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10120 .num_private = ARRAY_SIZE(ipw_priv_handler),
10121 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10122 .private = ipw_priv_handler,
10123 .private_args = ipw_priv_args,
10124 .get_wireless_stats = ipw_get_wireless_stats,
10128 * Get wireless statistics.
10129 * Called by /proc/net/wireless
10130 * Also called by SIOCGIWSTATS
10132 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10134 struct ipw_priv *priv = libipw_priv(dev);
10135 struct iw_statistics *wstats;
10137 wstats = &priv->wstats;
10139 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10140 * netdev->get_wireless_stats seems to be called before fw is
10141 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10142 * and associated; if not associcated, the values are all meaningless
10143 * anyway, so set them all to NULL and INVALID */
10144 if (!(priv->status & STATUS_ASSOCIATED)) {
10145 wstats->miss.beacon = 0;
10146 wstats->discard.retries = 0;
10147 wstats->qual.qual = 0;
10148 wstats->qual.level = 0;
10149 wstats->qual.noise = 0;
10150 wstats->qual.updated = 7;
10151 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10152 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10153 return wstats;
10156 wstats->qual.qual = priv->quality;
10157 wstats->qual.level = priv->exp_avg_rssi;
10158 wstats->qual.noise = priv->exp_avg_noise;
10159 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10160 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10162 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10163 wstats->discard.retries = priv->last_tx_failures;
10164 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10166 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10167 goto fail_get_ordinal;
10168 wstats->discard.retries += tx_retry; */
10170 return wstats;
10173 /* net device stuff */
10175 static void init_sys_config(struct ipw_sys_config *sys_config)
10177 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10178 sys_config->bt_coexistence = 0;
10179 sys_config->answer_broadcast_ssid_probe = 0;
10180 sys_config->accept_all_data_frames = 0;
10181 sys_config->accept_non_directed_frames = 1;
10182 sys_config->exclude_unicast_unencrypted = 0;
10183 sys_config->disable_unicast_decryption = 1;
10184 sys_config->exclude_multicast_unencrypted = 0;
10185 sys_config->disable_multicast_decryption = 1;
10186 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10187 antenna = CFG_SYS_ANTENNA_BOTH;
10188 sys_config->antenna_diversity = antenna;
10189 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10190 sys_config->dot11g_auto_detection = 0;
10191 sys_config->enable_cts_to_self = 0;
10192 sys_config->bt_coexist_collision_thr = 0;
10193 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10194 sys_config->silence_threshold = 0x1e;
10197 static int ipw_net_open(struct net_device *dev)
10199 IPW_DEBUG_INFO("dev->open\n");
10200 netif_start_queue(dev);
10201 return 0;
10204 static int ipw_net_stop(struct net_device *dev)
10206 IPW_DEBUG_INFO("dev->close\n");
10207 netif_stop_queue(dev);
10208 return 0;
10212 todo:
10214 modify to send one tfd per fragment instead of using chunking. otherwise
10215 we need to heavily modify the libipw_skb_to_txb.
10218 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10219 int pri)
10221 struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10222 txb->fragments[0]->data;
10223 int i = 0;
10224 struct tfd_frame *tfd;
10225 #ifdef CONFIG_IPW2200_QOS
10226 int tx_id = ipw_get_tx_queue_number(priv, pri);
10227 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10228 #else
10229 struct clx2_tx_queue *txq = &priv->txq[0];
10230 #endif
10231 struct clx2_queue *q = &txq->q;
10232 u8 id, hdr_len, unicast;
10233 int fc;
10235 if (!(priv->status & STATUS_ASSOCIATED))
10236 goto drop;
10238 hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10239 switch (priv->ieee->iw_mode) {
10240 case IW_MODE_ADHOC:
10241 unicast = !is_multicast_ether_addr(hdr->addr1);
10242 id = ipw_find_station(priv, hdr->addr1);
10243 if (id == IPW_INVALID_STATION) {
10244 id = ipw_add_station(priv, hdr->addr1);
10245 if (id == IPW_INVALID_STATION) {
10246 IPW_WARNING("Attempt to send data to "
10247 "invalid cell: %pM\n",
10248 hdr->addr1);
10249 goto drop;
10252 break;
10254 case IW_MODE_INFRA:
10255 default:
10256 unicast = !is_multicast_ether_addr(hdr->addr3);
10257 id = 0;
10258 break;
10261 tfd = &txq->bd[q->first_empty];
10262 txq->txb[q->first_empty] = txb;
10263 memset(tfd, 0, sizeof(*tfd));
10264 tfd->u.data.station_number = id;
10266 tfd->control_flags.message_type = TX_FRAME_TYPE;
10267 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10269 tfd->u.data.cmd_id = DINO_CMD_TX;
10270 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10272 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10273 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10274 else
10275 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10277 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10278 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10280 fc = le16_to_cpu(hdr->frame_ctl);
10281 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10283 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10285 if (likely(unicast))
10286 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10288 if (txb->encrypted && !priv->ieee->host_encrypt) {
10289 switch (priv->ieee->sec.level) {
10290 case SEC_LEVEL_3:
10291 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10292 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10293 /* XXX: ACK flag must be set for CCMP even if it
10294 * is a multicast/broadcast packet, because CCMP
10295 * group communication encrypted by GTK is
10296 * actually done by the AP. */
10297 if (!unicast)
10298 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10300 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10301 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10302 tfd->u.data.key_index = 0;
10303 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10304 break;
10305 case SEC_LEVEL_2:
10306 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10307 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10308 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10309 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10310 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10311 break;
10312 case SEC_LEVEL_1:
10313 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10314 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10315 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10316 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10318 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10319 else
10320 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10321 break;
10322 case SEC_LEVEL_0:
10323 break;
10324 default:
10325 printk(KERN_ERR "Unknown security level %d\n",
10326 priv->ieee->sec.level);
10327 break;
10329 } else
10330 /* No hardware encryption */
10331 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10333 #ifdef CONFIG_IPW2200_QOS
10334 if (fc & IEEE80211_STYPE_QOS_DATA)
10335 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10336 #endif /* CONFIG_IPW2200_QOS */
10338 /* payload */
10339 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10340 txb->nr_frags));
10341 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10342 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10343 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10344 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10345 i, le32_to_cpu(tfd->u.data.num_chunks),
10346 txb->fragments[i]->len - hdr_len);
10347 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10348 i, tfd->u.data.num_chunks,
10349 txb->fragments[i]->len - hdr_len);
10350 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10351 txb->fragments[i]->len - hdr_len);
10353 tfd->u.data.chunk_ptr[i] =
10354 cpu_to_le32(pci_map_single
10355 (priv->pci_dev,
10356 txb->fragments[i]->data + hdr_len,
10357 txb->fragments[i]->len - hdr_len,
10358 PCI_DMA_TODEVICE));
10359 tfd->u.data.chunk_len[i] =
10360 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10363 if (i != txb->nr_frags) {
10364 struct sk_buff *skb;
10365 u16 remaining_bytes = 0;
10366 int j;
10368 for (j = i; j < txb->nr_frags; j++)
10369 remaining_bytes += txb->fragments[j]->len - hdr_len;
10371 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10372 remaining_bytes);
10373 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10374 if (skb != NULL) {
10375 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10376 for (j = i; j < txb->nr_frags; j++) {
10377 int size = txb->fragments[j]->len - hdr_len;
10379 printk(KERN_INFO "Adding frag %d %d...\n",
10380 j, size);
10381 memcpy(skb_put(skb, size),
10382 txb->fragments[j]->data + hdr_len, size);
10384 dev_kfree_skb_any(txb->fragments[i]);
10385 txb->fragments[i] = skb;
10386 tfd->u.data.chunk_ptr[i] =
10387 cpu_to_le32(pci_map_single
10388 (priv->pci_dev, skb->data,
10389 remaining_bytes,
10390 PCI_DMA_TODEVICE));
10392 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10396 /* kick DMA */
10397 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10398 ipw_write32(priv, q->reg_w, q->first_empty);
10400 if (ipw_tx_queue_space(q) < q->high_mark)
10401 netif_stop_queue(priv->net_dev);
10403 return NETDEV_TX_OK;
10405 drop:
10406 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10407 libipw_txb_free(txb);
10408 return NETDEV_TX_OK;
10411 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10413 struct ipw_priv *priv = libipw_priv(dev);
10414 #ifdef CONFIG_IPW2200_QOS
10415 int tx_id = ipw_get_tx_queue_number(priv, pri);
10416 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10417 #else
10418 struct clx2_tx_queue *txq = &priv->txq[0];
10419 #endif /* CONFIG_IPW2200_QOS */
10421 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10422 return 1;
10424 return 0;
10427 #ifdef CONFIG_IPW2200_PROMISCUOUS
10428 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10429 struct libipw_txb *txb)
10431 struct libipw_rx_stats dummystats;
10432 struct ieee80211_hdr *hdr;
10433 u8 n;
10434 u16 filter = priv->prom_priv->filter;
10435 int hdr_only = 0;
10437 if (filter & IPW_PROM_NO_TX)
10438 return;
10440 memset(&dummystats, 0, sizeof(dummystats));
10442 /* Filtering of fragment chains is done against the first fragment */
10443 hdr = (void *)txb->fragments[0]->data;
10444 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10445 if (filter & IPW_PROM_NO_MGMT)
10446 return;
10447 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10448 hdr_only = 1;
10449 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10450 if (filter & IPW_PROM_NO_CTL)
10451 return;
10452 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10453 hdr_only = 1;
10454 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10455 if (filter & IPW_PROM_NO_DATA)
10456 return;
10457 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10458 hdr_only = 1;
10461 for(n=0; n<txb->nr_frags; ++n) {
10462 struct sk_buff *src = txb->fragments[n];
10463 struct sk_buff *dst;
10464 struct ieee80211_radiotap_header *rt_hdr;
10465 int len;
10467 if (hdr_only) {
10468 hdr = (void *)src->data;
10469 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10470 } else
10471 len = src->len;
10473 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10474 if (!dst)
10475 continue;
10477 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10479 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10480 rt_hdr->it_pad = 0;
10481 rt_hdr->it_present = 0; /* after all, it's just an idea */
10482 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10484 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10485 ieee80211chan2mhz(priv->channel));
10486 if (priv->channel > 14) /* 802.11a */
10487 *(__le16*)skb_put(dst, sizeof(u16)) =
10488 cpu_to_le16(IEEE80211_CHAN_OFDM |
10489 IEEE80211_CHAN_5GHZ);
10490 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10491 *(__le16*)skb_put(dst, sizeof(u16)) =
10492 cpu_to_le16(IEEE80211_CHAN_CCK |
10493 IEEE80211_CHAN_2GHZ);
10494 else /* 802.11g */
10495 *(__le16*)skb_put(dst, sizeof(u16)) =
10496 cpu_to_le16(IEEE80211_CHAN_OFDM |
10497 IEEE80211_CHAN_2GHZ);
10499 rt_hdr->it_len = cpu_to_le16(dst->len);
10501 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10503 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10504 dev_kfree_skb_any(dst);
10507 #endif
10509 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10510 struct net_device *dev, int pri)
10512 struct ipw_priv *priv = libipw_priv(dev);
10513 unsigned long flags;
10514 netdev_tx_t ret;
10516 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10517 spin_lock_irqsave(&priv->lock, flags);
10519 #ifdef CONFIG_IPW2200_PROMISCUOUS
10520 if (rtap_iface && netif_running(priv->prom_net_dev))
10521 ipw_handle_promiscuous_tx(priv, txb);
10522 #endif
10524 ret = ipw_tx_skb(priv, txb, pri);
10525 if (ret == NETDEV_TX_OK)
10526 __ipw_led_activity_on(priv);
10527 spin_unlock_irqrestore(&priv->lock, flags);
10529 return ret;
10532 static void ipw_net_set_multicast_list(struct net_device *dev)
10537 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10539 struct ipw_priv *priv = libipw_priv(dev);
10540 struct sockaddr *addr = p;
10542 if (!is_valid_ether_addr(addr->sa_data))
10543 return -EADDRNOTAVAIL;
10544 mutex_lock(&priv->mutex);
10545 priv->config |= CFG_CUSTOM_MAC;
10546 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10547 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10548 priv->net_dev->name, priv->mac_addr);
10549 schedule_work(&priv->adapter_restart);
10550 mutex_unlock(&priv->mutex);
10551 return 0;
10554 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10555 struct ethtool_drvinfo *info)
10557 struct ipw_priv *p = libipw_priv(dev);
10558 char vers[64];
10559 char date[32];
10560 u32 len;
10562 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10563 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10565 len = sizeof(vers);
10566 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10567 len = sizeof(date);
10568 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10570 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10571 vers, date);
10572 strlcpy(info->bus_info, pci_name(p->pci_dev),
10573 sizeof(info->bus_info));
10574 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10577 static u32 ipw_ethtool_get_link(struct net_device *dev)
10579 struct ipw_priv *priv = libipw_priv(dev);
10580 return (priv->status & STATUS_ASSOCIATED) != 0;
10583 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10585 return IPW_EEPROM_IMAGE_SIZE;
10588 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10589 struct ethtool_eeprom *eeprom, u8 * bytes)
10591 struct ipw_priv *p = libipw_priv(dev);
10593 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10594 return -EINVAL;
10595 mutex_lock(&p->mutex);
10596 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10597 mutex_unlock(&p->mutex);
10598 return 0;
10601 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10602 struct ethtool_eeprom *eeprom, u8 * bytes)
10604 struct ipw_priv *p = libipw_priv(dev);
10605 int i;
10607 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10608 return -EINVAL;
10609 mutex_lock(&p->mutex);
10610 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10611 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10612 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10613 mutex_unlock(&p->mutex);
10614 return 0;
10617 static const struct ethtool_ops ipw_ethtool_ops = {
10618 .get_link = ipw_ethtool_get_link,
10619 .get_drvinfo = ipw_ethtool_get_drvinfo,
10620 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10621 .get_eeprom = ipw_ethtool_get_eeprom,
10622 .set_eeprom = ipw_ethtool_set_eeprom,
10625 static irqreturn_t ipw_isr(int irq, void *data)
10627 struct ipw_priv *priv = data;
10628 u32 inta, inta_mask;
10630 if (!priv)
10631 return IRQ_NONE;
10633 spin_lock(&priv->irq_lock);
10635 if (!(priv->status & STATUS_INT_ENABLED)) {
10636 /* IRQ is disabled */
10637 goto none;
10640 inta = ipw_read32(priv, IPW_INTA_RW);
10641 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10643 if (inta == 0xFFFFFFFF) {
10644 /* Hardware disappeared */
10645 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10646 goto none;
10649 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10650 /* Shared interrupt */
10651 goto none;
10654 /* tell the device to stop sending interrupts */
10655 __ipw_disable_interrupts(priv);
10657 /* ack current interrupts */
10658 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10659 ipw_write32(priv, IPW_INTA_RW, inta);
10661 /* Cache INTA value for our tasklet */
10662 priv->isr_inta = inta;
10664 tasklet_schedule(&priv->irq_tasklet);
10666 spin_unlock(&priv->irq_lock);
10668 return IRQ_HANDLED;
10669 none:
10670 spin_unlock(&priv->irq_lock);
10671 return IRQ_NONE;
10674 static void ipw_rf_kill(void *adapter)
10676 struct ipw_priv *priv = adapter;
10677 unsigned long flags;
10679 spin_lock_irqsave(&priv->lock, flags);
10681 if (rf_kill_active(priv)) {
10682 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10683 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10684 goto exit_unlock;
10687 /* RF Kill is now disabled, so bring the device back up */
10689 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10690 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10691 "device\n");
10693 /* we can not do an adapter restart while inside an irq lock */
10694 schedule_work(&priv->adapter_restart);
10695 } else
10696 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10697 "enabled\n");
10699 exit_unlock:
10700 spin_unlock_irqrestore(&priv->lock, flags);
10703 static void ipw_bg_rf_kill(struct work_struct *work)
10705 struct ipw_priv *priv =
10706 container_of(work, struct ipw_priv, rf_kill.work);
10707 mutex_lock(&priv->mutex);
10708 ipw_rf_kill(priv);
10709 mutex_unlock(&priv->mutex);
10712 static void ipw_link_up(struct ipw_priv *priv)
10714 priv->last_seq_num = -1;
10715 priv->last_frag_num = -1;
10716 priv->last_packet_time = 0;
10718 netif_carrier_on(priv->net_dev);
10720 cancel_delayed_work(&priv->request_scan);
10721 cancel_delayed_work(&priv->request_direct_scan);
10722 cancel_delayed_work(&priv->request_passive_scan);
10723 cancel_delayed_work(&priv->scan_event);
10724 ipw_reset_stats(priv);
10725 /* Ensure the rate is updated immediately */
10726 priv->last_rate = ipw_get_current_rate(priv);
10727 ipw_gather_stats(priv);
10728 ipw_led_link_up(priv);
10729 notify_wx_assoc_event(priv);
10731 if (priv->config & CFG_BACKGROUND_SCAN)
10732 schedule_delayed_work(&priv->request_scan, HZ);
10735 static void ipw_bg_link_up(struct work_struct *work)
10737 struct ipw_priv *priv =
10738 container_of(work, struct ipw_priv, link_up);
10739 mutex_lock(&priv->mutex);
10740 ipw_link_up(priv);
10741 mutex_unlock(&priv->mutex);
10744 static void ipw_link_down(struct ipw_priv *priv)
10746 ipw_led_link_down(priv);
10747 netif_carrier_off(priv->net_dev);
10748 notify_wx_assoc_event(priv);
10750 /* Cancel any queued work ... */
10751 cancel_delayed_work(&priv->request_scan);
10752 cancel_delayed_work(&priv->request_direct_scan);
10753 cancel_delayed_work(&priv->request_passive_scan);
10754 cancel_delayed_work(&priv->adhoc_check);
10755 cancel_delayed_work(&priv->gather_stats);
10757 ipw_reset_stats(priv);
10759 if (!(priv->status & STATUS_EXIT_PENDING)) {
10760 /* Queue up another scan... */
10761 schedule_delayed_work(&priv->request_scan, 0);
10762 } else
10763 cancel_delayed_work(&priv->scan_event);
10766 static void ipw_bg_link_down(struct work_struct *work)
10768 struct ipw_priv *priv =
10769 container_of(work, struct ipw_priv, link_down);
10770 mutex_lock(&priv->mutex);
10771 ipw_link_down(priv);
10772 mutex_unlock(&priv->mutex);
10775 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10777 int ret = 0;
10779 init_waitqueue_head(&priv->wait_command_queue);
10780 init_waitqueue_head(&priv->wait_state);
10782 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10783 INIT_WORK(&priv->associate, ipw_bg_associate);
10784 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10785 INIT_WORK(&priv->system_config, ipw_system_config);
10786 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10787 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10788 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10789 INIT_WORK(&priv->up, ipw_bg_up);
10790 INIT_WORK(&priv->down, ipw_bg_down);
10791 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10792 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10793 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10794 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10795 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10796 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10797 INIT_WORK(&priv->roam, ipw_bg_roam);
10798 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10799 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10800 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10801 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10802 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10803 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10804 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10806 #ifdef CONFIG_IPW2200_QOS
10807 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10808 #endif /* CONFIG_IPW2200_QOS */
10810 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10811 ipw_irq_tasklet, (unsigned long)priv);
10813 return ret;
10816 static void shim__set_security(struct net_device *dev,
10817 struct libipw_security *sec)
10819 struct ipw_priv *priv = libipw_priv(dev);
10820 int i;
10821 for (i = 0; i < 4; i++) {
10822 if (sec->flags & (1 << i)) {
10823 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10824 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10825 if (sec->key_sizes[i] == 0)
10826 priv->ieee->sec.flags &= ~(1 << i);
10827 else {
10828 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10829 sec->key_sizes[i]);
10830 priv->ieee->sec.flags |= (1 << i);
10832 priv->status |= STATUS_SECURITY_UPDATED;
10833 } else if (sec->level != SEC_LEVEL_1)
10834 priv->ieee->sec.flags &= ~(1 << i);
10837 if (sec->flags & SEC_ACTIVE_KEY) {
10838 if (sec->active_key <= 3) {
10839 priv->ieee->sec.active_key = sec->active_key;
10840 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10841 } else
10842 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10843 priv->status |= STATUS_SECURITY_UPDATED;
10844 } else
10845 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10847 if ((sec->flags & SEC_AUTH_MODE) &&
10848 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10849 priv->ieee->sec.auth_mode = sec->auth_mode;
10850 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10851 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10852 priv->capability |= CAP_SHARED_KEY;
10853 else
10854 priv->capability &= ~CAP_SHARED_KEY;
10855 priv->status |= STATUS_SECURITY_UPDATED;
10858 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10859 priv->ieee->sec.flags |= SEC_ENABLED;
10860 priv->ieee->sec.enabled = sec->enabled;
10861 priv->status |= STATUS_SECURITY_UPDATED;
10862 if (sec->enabled)
10863 priv->capability |= CAP_PRIVACY_ON;
10864 else
10865 priv->capability &= ~CAP_PRIVACY_ON;
10868 if (sec->flags & SEC_ENCRYPT)
10869 priv->ieee->sec.encrypt = sec->encrypt;
10871 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10872 priv->ieee->sec.level = sec->level;
10873 priv->ieee->sec.flags |= SEC_LEVEL;
10874 priv->status |= STATUS_SECURITY_UPDATED;
10877 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10878 ipw_set_hwcrypto_keys(priv);
10880 /* To match current functionality of ipw2100 (which works well w/
10881 * various supplicants, we don't force a disassociate if the
10882 * privacy capability changes ... */
10883 #if 0
10884 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10885 (((priv->assoc_request.capability &
10886 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10887 (!(priv->assoc_request.capability &
10888 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10889 IPW_DEBUG_ASSOC("Disassociating due to capability "
10890 "change.\n");
10891 ipw_disassociate(priv);
10893 #endif
10896 static int init_supported_rates(struct ipw_priv *priv,
10897 struct ipw_supported_rates *rates)
10899 /* TODO: Mask out rates based on priv->rates_mask */
10901 memset(rates, 0, sizeof(*rates));
10902 /* configure supported rates */
10903 switch (priv->ieee->freq_band) {
10904 case LIBIPW_52GHZ_BAND:
10905 rates->ieee_mode = IPW_A_MODE;
10906 rates->purpose = IPW_RATE_CAPABILITIES;
10907 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10908 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10909 break;
10911 default: /* Mixed or 2.4Ghz */
10912 rates->ieee_mode = IPW_G_MODE;
10913 rates->purpose = IPW_RATE_CAPABILITIES;
10914 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10915 LIBIPW_CCK_DEFAULT_RATES_MASK);
10916 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10917 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10918 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10920 break;
10923 return 0;
10926 static int ipw_config(struct ipw_priv *priv)
10928 /* This is only called from ipw_up, which resets/reloads the firmware
10929 so, we don't need to first disable the card before we configure
10930 it */
10931 if (ipw_set_tx_power(priv))
10932 goto error;
10934 /* initialize adapter address */
10935 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10936 goto error;
10938 /* set basic system config settings */
10939 init_sys_config(&priv->sys_config);
10941 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10942 * Does not support BT priority yet (don't abort or defer our Tx) */
10943 if (bt_coexist) {
10944 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10946 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10947 priv->sys_config.bt_coexistence
10948 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10949 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10950 priv->sys_config.bt_coexistence
10951 |= CFG_BT_COEXISTENCE_OOB;
10954 #ifdef CONFIG_IPW2200_PROMISCUOUS
10955 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10956 priv->sys_config.accept_all_data_frames = 1;
10957 priv->sys_config.accept_non_directed_frames = 1;
10958 priv->sys_config.accept_all_mgmt_bcpr = 1;
10959 priv->sys_config.accept_all_mgmt_frames = 1;
10961 #endif
10963 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10964 priv->sys_config.answer_broadcast_ssid_probe = 1;
10965 else
10966 priv->sys_config.answer_broadcast_ssid_probe = 0;
10968 if (ipw_send_system_config(priv))
10969 goto error;
10971 init_supported_rates(priv, &priv->rates);
10972 if (ipw_send_supported_rates(priv, &priv->rates))
10973 goto error;
10975 /* Set request-to-send threshold */
10976 if (priv->rts_threshold) {
10977 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10978 goto error;
10980 #ifdef CONFIG_IPW2200_QOS
10981 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10982 ipw_qos_activate(priv, NULL);
10983 #endif /* CONFIG_IPW2200_QOS */
10985 if (ipw_set_random_seed(priv))
10986 goto error;
10988 /* final state transition to the RUN state */
10989 if (ipw_send_host_complete(priv))
10990 goto error;
10992 priv->status |= STATUS_INIT;
10994 ipw_led_init(priv);
10995 ipw_led_radio_on(priv);
10996 priv->notif_missed_beacons = 0;
10998 /* Set hardware WEP key if it is configured. */
10999 if ((priv->capability & CAP_PRIVACY_ON) &&
11000 (priv->ieee->sec.level == SEC_LEVEL_1) &&
11001 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
11002 ipw_set_hwcrypto_keys(priv);
11004 return 0;
11006 error:
11007 return -EIO;
11011 * NOTE:
11013 * These tables have been tested in conjunction with the
11014 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11016 * Altering this values, using it on other hardware, or in geographies
11017 * not intended for resale of the above mentioned Intel adapters has
11018 * not been tested.
11020 * Remember to update the table in README.ipw2200 when changing this
11021 * table.
11024 static const struct libipw_geo ipw_geos[] = {
11025 { /* Restricted */
11026 "---",
11027 .bg_channels = 11,
11028 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11029 {2427, 4}, {2432, 5}, {2437, 6},
11030 {2442, 7}, {2447, 8}, {2452, 9},
11031 {2457, 10}, {2462, 11}},
11034 { /* Custom US/Canada */
11035 "ZZF",
11036 .bg_channels = 11,
11037 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11038 {2427, 4}, {2432, 5}, {2437, 6},
11039 {2442, 7}, {2447, 8}, {2452, 9},
11040 {2457, 10}, {2462, 11}},
11041 .a_channels = 8,
11042 .a = {{5180, 36},
11043 {5200, 40},
11044 {5220, 44},
11045 {5240, 48},
11046 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11047 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11048 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11049 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
11052 { /* Rest of World */
11053 "ZZD",
11054 .bg_channels = 13,
11055 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11056 {2427, 4}, {2432, 5}, {2437, 6},
11057 {2442, 7}, {2447, 8}, {2452, 9},
11058 {2457, 10}, {2462, 11}, {2467, 12},
11059 {2472, 13}},
11062 { /* Custom USA & Europe & High */
11063 "ZZA",
11064 .bg_channels = 11,
11065 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11066 {2427, 4}, {2432, 5}, {2437, 6},
11067 {2442, 7}, {2447, 8}, {2452, 9},
11068 {2457, 10}, {2462, 11}},
11069 .a_channels = 13,
11070 .a = {{5180, 36},
11071 {5200, 40},
11072 {5220, 44},
11073 {5240, 48},
11074 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11075 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11076 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11077 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11078 {5745, 149},
11079 {5765, 153},
11080 {5785, 157},
11081 {5805, 161},
11082 {5825, 165}},
11085 { /* Custom NA & Europe */
11086 "ZZB",
11087 .bg_channels = 11,
11088 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11089 {2427, 4}, {2432, 5}, {2437, 6},
11090 {2442, 7}, {2447, 8}, {2452, 9},
11091 {2457, 10}, {2462, 11}},
11092 .a_channels = 13,
11093 .a = {{5180, 36},
11094 {5200, 40},
11095 {5220, 44},
11096 {5240, 48},
11097 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11098 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11099 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11100 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11101 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11102 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11103 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11104 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11105 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11108 { /* Custom Japan */
11109 "ZZC",
11110 .bg_channels = 11,
11111 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11112 {2427, 4}, {2432, 5}, {2437, 6},
11113 {2442, 7}, {2447, 8}, {2452, 9},
11114 {2457, 10}, {2462, 11}},
11115 .a_channels = 4,
11116 .a = {{5170, 34}, {5190, 38},
11117 {5210, 42}, {5230, 46}},
11120 { /* Custom */
11121 "ZZM",
11122 .bg_channels = 11,
11123 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11124 {2427, 4}, {2432, 5}, {2437, 6},
11125 {2442, 7}, {2447, 8}, {2452, 9},
11126 {2457, 10}, {2462, 11}},
11129 { /* Europe */
11130 "ZZE",
11131 .bg_channels = 13,
11132 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11133 {2427, 4}, {2432, 5}, {2437, 6},
11134 {2442, 7}, {2447, 8}, {2452, 9},
11135 {2457, 10}, {2462, 11}, {2467, 12},
11136 {2472, 13}},
11137 .a_channels = 19,
11138 .a = {{5180, 36},
11139 {5200, 40},
11140 {5220, 44},
11141 {5240, 48},
11142 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11143 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11144 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11145 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11146 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11147 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11148 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11149 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11150 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11151 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11152 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11153 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11154 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11155 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11156 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11159 { /* Custom Japan */
11160 "ZZJ",
11161 .bg_channels = 14,
11162 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11163 {2427, 4}, {2432, 5}, {2437, 6},
11164 {2442, 7}, {2447, 8}, {2452, 9},
11165 {2457, 10}, {2462, 11}, {2467, 12},
11166 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11167 .a_channels = 4,
11168 .a = {{5170, 34}, {5190, 38},
11169 {5210, 42}, {5230, 46}},
11172 { /* Rest of World */
11173 "ZZR",
11174 .bg_channels = 14,
11175 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11176 {2427, 4}, {2432, 5}, {2437, 6},
11177 {2442, 7}, {2447, 8}, {2452, 9},
11178 {2457, 10}, {2462, 11}, {2467, 12},
11179 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11180 LIBIPW_CH_PASSIVE_ONLY}},
11183 { /* High Band */
11184 "ZZH",
11185 .bg_channels = 13,
11186 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11187 {2427, 4}, {2432, 5}, {2437, 6},
11188 {2442, 7}, {2447, 8}, {2452, 9},
11189 {2457, 10}, {2462, 11},
11190 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11191 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11192 .a_channels = 4,
11193 .a = {{5745, 149}, {5765, 153},
11194 {5785, 157}, {5805, 161}},
11197 { /* Custom Europe */
11198 "ZZG",
11199 .bg_channels = 13,
11200 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11201 {2427, 4}, {2432, 5}, {2437, 6},
11202 {2442, 7}, {2447, 8}, {2452, 9},
11203 {2457, 10}, {2462, 11},
11204 {2467, 12}, {2472, 13}},
11205 .a_channels = 4,
11206 .a = {{5180, 36}, {5200, 40},
11207 {5220, 44}, {5240, 48}},
11210 { /* Europe */
11211 "ZZK",
11212 .bg_channels = 13,
11213 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11214 {2427, 4}, {2432, 5}, {2437, 6},
11215 {2442, 7}, {2447, 8}, {2452, 9},
11216 {2457, 10}, {2462, 11},
11217 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11218 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11219 .a_channels = 24,
11220 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11221 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11222 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11223 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11224 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11225 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11226 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11227 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11228 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11229 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11230 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11231 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11232 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11233 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11234 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11235 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11236 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11237 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11238 {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11239 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11240 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11241 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11242 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11243 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11246 { /* Europe */
11247 "ZZL",
11248 .bg_channels = 11,
11249 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11250 {2427, 4}, {2432, 5}, {2437, 6},
11251 {2442, 7}, {2447, 8}, {2452, 9},
11252 {2457, 10}, {2462, 11}},
11253 .a_channels = 13,
11254 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11255 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11256 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11257 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11258 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11259 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11260 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11261 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11262 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11263 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11264 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11265 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11266 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11270 static void ipw_set_geo(struct ipw_priv *priv)
11272 int j;
11274 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11275 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11276 ipw_geos[j].name, 3))
11277 break;
11280 if (j == ARRAY_SIZE(ipw_geos)) {
11281 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11282 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11283 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11284 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11285 j = 0;
11288 libipw_set_geo(priv->ieee, &ipw_geos[j]);
11291 #define MAX_HW_RESTARTS 5
11292 static int ipw_up(struct ipw_priv *priv)
11294 int rc, i;
11296 /* Age scan list entries found before suspend */
11297 if (priv->suspend_time) {
11298 libipw_networks_age(priv->ieee, priv->suspend_time);
11299 priv->suspend_time = 0;
11302 if (priv->status & STATUS_EXIT_PENDING)
11303 return -EIO;
11305 if (cmdlog && !priv->cmdlog) {
11306 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11307 GFP_KERNEL);
11308 if (priv->cmdlog == NULL) {
11309 IPW_ERROR("Error allocating %d command log entries.\n",
11310 cmdlog);
11311 return -ENOMEM;
11312 } else {
11313 priv->cmdlog_len = cmdlog;
11317 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11318 /* Load the microcode, firmware, and eeprom.
11319 * Also start the clocks. */
11320 rc = ipw_load(priv);
11321 if (rc) {
11322 IPW_ERROR("Unable to load firmware: %d\n", rc);
11323 return rc;
11326 ipw_init_ordinals(priv);
11327 if (!(priv->config & CFG_CUSTOM_MAC))
11328 eeprom_parse_mac(priv, priv->mac_addr);
11329 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11331 ipw_set_geo(priv);
11333 if (priv->status & STATUS_RF_KILL_SW) {
11334 IPW_WARNING("Radio disabled by module parameter.\n");
11335 return 0;
11336 } else if (rf_kill_active(priv)) {
11337 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11338 "Kill switch must be turned off for "
11339 "wireless networking to work.\n");
11340 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11341 return 0;
11344 rc = ipw_config(priv);
11345 if (!rc) {
11346 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11348 /* If configure to try and auto-associate, kick
11349 * off a scan. */
11350 schedule_delayed_work(&priv->request_scan, 0);
11352 return 0;
11355 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11356 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11357 i, MAX_HW_RESTARTS);
11359 /* We had an error bringing up the hardware, so take it
11360 * all the way back down so we can try again */
11361 ipw_down(priv);
11364 /* tried to restart and config the device for as long as our
11365 * patience could withstand */
11366 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11368 return -EIO;
11371 static void ipw_bg_up(struct work_struct *work)
11373 struct ipw_priv *priv =
11374 container_of(work, struct ipw_priv, up);
11375 mutex_lock(&priv->mutex);
11376 ipw_up(priv);
11377 mutex_unlock(&priv->mutex);
11380 static void ipw_deinit(struct ipw_priv *priv)
11382 int i;
11384 if (priv->status & STATUS_SCANNING) {
11385 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11386 ipw_abort_scan(priv);
11389 if (priv->status & STATUS_ASSOCIATED) {
11390 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11391 ipw_disassociate(priv);
11394 ipw_led_shutdown(priv);
11396 /* Wait up to 1s for status to change to not scanning and not
11397 * associated (disassociation can take a while for a ful 802.11
11398 * exchange */
11399 for (i = 1000; i && (priv->status &
11400 (STATUS_DISASSOCIATING |
11401 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11402 udelay(10);
11404 if (priv->status & (STATUS_DISASSOCIATING |
11405 STATUS_ASSOCIATED | STATUS_SCANNING))
11406 IPW_DEBUG_INFO("Still associated or scanning...\n");
11407 else
11408 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11410 /* Attempt to disable the card */
11411 ipw_send_card_disable(priv, 0);
11413 priv->status &= ~STATUS_INIT;
11416 static void ipw_down(struct ipw_priv *priv)
11418 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11420 priv->status |= STATUS_EXIT_PENDING;
11422 if (ipw_is_init(priv))
11423 ipw_deinit(priv);
11425 /* Wipe out the EXIT_PENDING status bit if we are not actually
11426 * exiting the module */
11427 if (!exit_pending)
11428 priv->status &= ~STATUS_EXIT_PENDING;
11430 /* tell the device to stop sending interrupts */
11431 ipw_disable_interrupts(priv);
11433 /* Clear all bits but the RF Kill */
11434 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11435 netif_carrier_off(priv->net_dev);
11437 ipw_stop_nic(priv);
11439 ipw_led_radio_off(priv);
11442 static void ipw_bg_down(struct work_struct *work)
11444 struct ipw_priv *priv =
11445 container_of(work, struct ipw_priv, down);
11446 mutex_lock(&priv->mutex);
11447 ipw_down(priv);
11448 mutex_unlock(&priv->mutex);
11451 static int ipw_wdev_init(struct net_device *dev)
11453 int i, rc = 0;
11454 struct ipw_priv *priv = libipw_priv(dev);
11455 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11456 struct wireless_dev *wdev = &priv->ieee->wdev;
11458 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11460 /* fill-out priv->ieee->bg_band */
11461 if (geo->bg_channels) {
11462 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11464 bg_band->band = IEEE80211_BAND_2GHZ;
11465 bg_band->n_channels = geo->bg_channels;
11466 bg_band->channels = kcalloc(geo->bg_channels,
11467 sizeof(struct ieee80211_channel),
11468 GFP_KERNEL);
11469 if (!bg_band->channels) {
11470 rc = -ENOMEM;
11471 goto out;
11473 /* translate geo->bg to bg_band.channels */
11474 for (i = 0; i < geo->bg_channels; i++) {
11475 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
11476 bg_band->channels[i].center_freq = geo->bg[i].freq;
11477 bg_band->channels[i].hw_value = geo->bg[i].channel;
11478 bg_band->channels[i].max_power = geo->bg[i].max_power;
11479 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11480 bg_band->channels[i].flags |=
11481 IEEE80211_CHAN_PASSIVE_SCAN;
11482 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11483 bg_band->channels[i].flags |=
11484 IEEE80211_CHAN_NO_IBSS;
11485 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11486 bg_band->channels[i].flags |=
11487 IEEE80211_CHAN_RADAR;
11488 /* No equivalent for LIBIPW_CH_80211H_RULES,
11489 LIBIPW_CH_UNIFORM_SPREADING, or
11490 LIBIPW_CH_B_ONLY... */
11492 /* point at bitrate info */
11493 bg_band->bitrates = ipw2200_bg_rates;
11494 bg_band->n_bitrates = ipw2200_num_bg_rates;
11496 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
11499 /* fill-out priv->ieee->a_band */
11500 if (geo->a_channels) {
11501 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11503 a_band->band = IEEE80211_BAND_5GHZ;
11504 a_band->n_channels = geo->a_channels;
11505 a_band->channels = kcalloc(geo->a_channels,
11506 sizeof(struct ieee80211_channel),
11507 GFP_KERNEL);
11508 if (!a_band->channels) {
11509 rc = -ENOMEM;
11510 goto out;
11512 /* translate geo->a to a_band.channels */
11513 for (i = 0; i < geo->a_channels; i++) {
11514 a_band->channels[i].band = IEEE80211_BAND_5GHZ;
11515 a_band->channels[i].center_freq = geo->a[i].freq;
11516 a_band->channels[i].hw_value = geo->a[i].channel;
11517 a_band->channels[i].max_power = geo->a[i].max_power;
11518 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11519 a_band->channels[i].flags |=
11520 IEEE80211_CHAN_PASSIVE_SCAN;
11521 if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11522 a_band->channels[i].flags |=
11523 IEEE80211_CHAN_NO_IBSS;
11524 if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11525 a_band->channels[i].flags |=
11526 IEEE80211_CHAN_RADAR;
11527 /* No equivalent for LIBIPW_CH_80211H_RULES,
11528 LIBIPW_CH_UNIFORM_SPREADING, or
11529 LIBIPW_CH_B_ONLY... */
11531 /* point at bitrate info */
11532 a_band->bitrates = ipw2200_a_rates;
11533 a_band->n_bitrates = ipw2200_num_a_rates;
11535 wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band;
11538 wdev->wiphy->cipher_suites = ipw_cipher_suites;
11539 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11541 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11543 /* With that information in place, we can now register the wiphy... */
11544 if (wiphy_register(wdev->wiphy))
11545 rc = -EIO;
11546 out:
11547 return rc;
11550 /* PCI driver stuff */
11551 static DEFINE_PCI_DEVICE_TABLE(card_ids) = {
11552 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11553 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11554 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11555 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11556 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11557 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11558 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11559 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11560 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11561 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11562 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11563 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11564 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11565 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11566 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11567 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11568 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11569 {PCI_VDEVICE(INTEL, 0x104f), 0},
11570 {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */
11571 {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */
11572 {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */
11573 {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */
11575 /* required last entry */
11576 {0,}
11579 MODULE_DEVICE_TABLE(pci, card_ids);
11581 static struct attribute *ipw_sysfs_entries[] = {
11582 &dev_attr_rf_kill.attr,
11583 &dev_attr_direct_dword.attr,
11584 &dev_attr_indirect_byte.attr,
11585 &dev_attr_indirect_dword.attr,
11586 &dev_attr_mem_gpio_reg.attr,
11587 &dev_attr_command_event_reg.attr,
11588 &dev_attr_nic_type.attr,
11589 &dev_attr_status.attr,
11590 &dev_attr_cfg.attr,
11591 &dev_attr_error.attr,
11592 &dev_attr_event_log.attr,
11593 &dev_attr_cmd_log.attr,
11594 &dev_attr_eeprom_delay.attr,
11595 &dev_attr_ucode_version.attr,
11596 &dev_attr_rtc.attr,
11597 &dev_attr_scan_age.attr,
11598 &dev_attr_led.attr,
11599 &dev_attr_speed_scan.attr,
11600 &dev_attr_net_stats.attr,
11601 &dev_attr_channels.attr,
11602 #ifdef CONFIG_IPW2200_PROMISCUOUS
11603 &dev_attr_rtap_iface.attr,
11604 &dev_attr_rtap_filter.attr,
11605 #endif
11606 NULL
11609 static struct attribute_group ipw_attribute_group = {
11610 .name = NULL, /* put in device directory */
11611 .attrs = ipw_sysfs_entries,
11614 #ifdef CONFIG_IPW2200_PROMISCUOUS
11615 static int ipw_prom_open(struct net_device *dev)
11617 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11618 struct ipw_priv *priv = prom_priv->priv;
11620 IPW_DEBUG_INFO("prom dev->open\n");
11621 netif_carrier_off(dev);
11623 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11624 priv->sys_config.accept_all_data_frames = 1;
11625 priv->sys_config.accept_non_directed_frames = 1;
11626 priv->sys_config.accept_all_mgmt_bcpr = 1;
11627 priv->sys_config.accept_all_mgmt_frames = 1;
11629 ipw_send_system_config(priv);
11632 return 0;
11635 static int ipw_prom_stop(struct net_device *dev)
11637 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11638 struct ipw_priv *priv = prom_priv->priv;
11640 IPW_DEBUG_INFO("prom dev->stop\n");
11642 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11643 priv->sys_config.accept_all_data_frames = 0;
11644 priv->sys_config.accept_non_directed_frames = 0;
11645 priv->sys_config.accept_all_mgmt_bcpr = 0;
11646 priv->sys_config.accept_all_mgmt_frames = 0;
11648 ipw_send_system_config(priv);
11651 return 0;
11654 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11655 struct net_device *dev)
11657 IPW_DEBUG_INFO("prom dev->xmit\n");
11658 dev_kfree_skb(skb);
11659 return NETDEV_TX_OK;
11662 static const struct net_device_ops ipw_prom_netdev_ops = {
11663 .ndo_open = ipw_prom_open,
11664 .ndo_stop = ipw_prom_stop,
11665 .ndo_start_xmit = ipw_prom_hard_start_xmit,
11666 .ndo_change_mtu = libipw_change_mtu,
11667 .ndo_set_mac_address = eth_mac_addr,
11668 .ndo_validate_addr = eth_validate_addr,
11671 static int ipw_prom_alloc(struct ipw_priv *priv)
11673 int rc = 0;
11675 if (priv->prom_net_dev)
11676 return -EPERM;
11678 priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11679 if (priv->prom_net_dev == NULL)
11680 return -ENOMEM;
11682 priv->prom_priv = libipw_priv(priv->prom_net_dev);
11683 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11684 priv->prom_priv->priv = priv;
11686 strcpy(priv->prom_net_dev->name, "rtap%d");
11687 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11689 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11690 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11692 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11693 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11695 rc = register_netdev(priv->prom_net_dev);
11696 if (rc) {
11697 free_libipw(priv->prom_net_dev, 1);
11698 priv->prom_net_dev = NULL;
11699 return rc;
11702 return 0;
11705 static void ipw_prom_free(struct ipw_priv *priv)
11707 if (!priv->prom_net_dev)
11708 return;
11710 unregister_netdev(priv->prom_net_dev);
11711 free_libipw(priv->prom_net_dev, 1);
11713 priv->prom_net_dev = NULL;
11716 #endif
11718 static const struct net_device_ops ipw_netdev_ops = {
11719 .ndo_open = ipw_net_open,
11720 .ndo_stop = ipw_net_stop,
11721 .ndo_set_rx_mode = ipw_net_set_multicast_list,
11722 .ndo_set_mac_address = ipw_net_set_mac_address,
11723 .ndo_start_xmit = libipw_xmit,
11724 .ndo_change_mtu = libipw_change_mtu,
11725 .ndo_validate_addr = eth_validate_addr,
11728 static int ipw_pci_probe(struct pci_dev *pdev,
11729 const struct pci_device_id *ent)
11731 int err = 0;
11732 struct net_device *net_dev;
11733 void __iomem *base;
11734 u32 length, val;
11735 struct ipw_priv *priv;
11736 int i;
11738 net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11739 if (net_dev == NULL) {
11740 err = -ENOMEM;
11741 goto out;
11744 priv = libipw_priv(net_dev);
11745 priv->ieee = netdev_priv(net_dev);
11747 priv->net_dev = net_dev;
11748 priv->pci_dev = pdev;
11749 ipw_debug_level = debug;
11750 spin_lock_init(&priv->irq_lock);
11751 spin_lock_init(&priv->lock);
11752 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11753 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11755 mutex_init(&priv->mutex);
11756 if (pci_enable_device(pdev)) {
11757 err = -ENODEV;
11758 goto out_free_libipw;
11761 pci_set_master(pdev);
11763 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11764 if (!err)
11765 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11766 if (err) {
11767 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11768 goto out_pci_disable_device;
11771 pci_set_drvdata(pdev, priv);
11773 err = pci_request_regions(pdev, DRV_NAME);
11774 if (err)
11775 goto out_pci_disable_device;
11777 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11778 * PCI Tx retries from interfering with C3 CPU state */
11779 pci_read_config_dword(pdev, 0x40, &val);
11780 if ((val & 0x0000ff00) != 0)
11781 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11783 length = pci_resource_len(pdev, 0);
11784 priv->hw_len = length;
11786 base = pci_ioremap_bar(pdev, 0);
11787 if (!base) {
11788 err = -ENODEV;
11789 goto out_pci_release_regions;
11792 priv->hw_base = base;
11793 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11794 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11796 err = ipw_setup_deferred_work(priv);
11797 if (err) {
11798 IPW_ERROR("Unable to setup deferred work\n");
11799 goto out_iounmap;
11802 ipw_sw_reset(priv, 1);
11804 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11805 if (err) {
11806 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11807 goto out_iounmap;
11810 SET_NETDEV_DEV(net_dev, &pdev->dev);
11812 mutex_lock(&priv->mutex);
11814 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11815 priv->ieee->set_security = shim__set_security;
11816 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11818 #ifdef CONFIG_IPW2200_QOS
11819 priv->ieee->is_qos_active = ipw_is_qos_active;
11820 priv->ieee->handle_probe_response = ipw_handle_beacon;
11821 priv->ieee->handle_beacon = ipw_handle_probe_response;
11822 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11823 #endif /* CONFIG_IPW2200_QOS */
11825 priv->ieee->perfect_rssi = -20;
11826 priv->ieee->worst_rssi = -85;
11828 net_dev->netdev_ops = &ipw_netdev_ops;
11829 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11830 net_dev->wireless_data = &priv->wireless_data;
11831 net_dev->wireless_handlers = &ipw_wx_handler_def;
11832 net_dev->ethtool_ops = &ipw_ethtool_ops;
11834 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11835 if (err) {
11836 IPW_ERROR("failed to create sysfs device attributes\n");
11837 mutex_unlock(&priv->mutex);
11838 goto out_release_irq;
11841 if (ipw_up(priv)) {
11842 mutex_unlock(&priv->mutex);
11843 err = -EIO;
11844 goto out_remove_sysfs;
11847 mutex_unlock(&priv->mutex);
11849 err = ipw_wdev_init(net_dev);
11850 if (err) {
11851 IPW_ERROR("failed to register wireless device\n");
11852 goto out_remove_sysfs;
11855 err = register_netdev(net_dev);
11856 if (err) {
11857 IPW_ERROR("failed to register network device\n");
11858 goto out_unregister_wiphy;
11861 #ifdef CONFIG_IPW2200_PROMISCUOUS
11862 if (rtap_iface) {
11863 err = ipw_prom_alloc(priv);
11864 if (err) {
11865 IPW_ERROR("Failed to register promiscuous network "
11866 "device (error %d).\n", err);
11867 unregister_netdev(priv->net_dev);
11868 goto out_unregister_wiphy;
11871 #endif
11873 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11874 "channels, %d 802.11a channels)\n",
11875 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11876 priv->ieee->geo.a_channels);
11878 return 0;
11880 out_unregister_wiphy:
11881 wiphy_unregister(priv->ieee->wdev.wiphy);
11882 kfree(priv->ieee->a_band.channels);
11883 kfree(priv->ieee->bg_band.channels);
11884 out_remove_sysfs:
11885 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11886 out_release_irq:
11887 free_irq(pdev->irq, priv);
11888 out_iounmap:
11889 iounmap(priv->hw_base);
11890 out_pci_release_regions:
11891 pci_release_regions(pdev);
11892 out_pci_disable_device:
11893 pci_disable_device(pdev);
11894 pci_set_drvdata(pdev, NULL);
11895 out_free_libipw:
11896 free_libipw(priv->net_dev, 0);
11897 out:
11898 return err;
11901 static void ipw_pci_remove(struct pci_dev *pdev)
11903 struct ipw_priv *priv = pci_get_drvdata(pdev);
11904 struct list_head *p, *q;
11905 int i;
11907 if (!priv)
11908 return;
11910 mutex_lock(&priv->mutex);
11912 priv->status |= STATUS_EXIT_PENDING;
11913 ipw_down(priv);
11914 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11916 mutex_unlock(&priv->mutex);
11918 unregister_netdev(priv->net_dev);
11920 if (priv->rxq) {
11921 ipw_rx_queue_free(priv, priv->rxq);
11922 priv->rxq = NULL;
11924 ipw_tx_queue_free(priv);
11926 if (priv->cmdlog) {
11927 kfree(priv->cmdlog);
11928 priv->cmdlog = NULL;
11931 /* make sure all works are inactive */
11932 cancel_delayed_work_sync(&priv->adhoc_check);
11933 cancel_work_sync(&priv->associate);
11934 cancel_work_sync(&priv->disassociate);
11935 cancel_work_sync(&priv->system_config);
11936 cancel_work_sync(&priv->rx_replenish);
11937 cancel_work_sync(&priv->adapter_restart);
11938 cancel_delayed_work_sync(&priv->rf_kill);
11939 cancel_work_sync(&priv->up);
11940 cancel_work_sync(&priv->down);
11941 cancel_delayed_work_sync(&priv->request_scan);
11942 cancel_delayed_work_sync(&priv->request_direct_scan);
11943 cancel_delayed_work_sync(&priv->request_passive_scan);
11944 cancel_delayed_work_sync(&priv->scan_event);
11945 cancel_delayed_work_sync(&priv->gather_stats);
11946 cancel_work_sync(&priv->abort_scan);
11947 cancel_work_sync(&priv->roam);
11948 cancel_delayed_work_sync(&priv->scan_check);
11949 cancel_work_sync(&priv->link_up);
11950 cancel_work_sync(&priv->link_down);
11951 cancel_delayed_work_sync(&priv->led_link_on);
11952 cancel_delayed_work_sync(&priv->led_link_off);
11953 cancel_delayed_work_sync(&priv->led_act_off);
11954 cancel_work_sync(&priv->merge_networks);
11956 /* Free MAC hash list for ADHOC */
11957 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11958 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11959 list_del(p);
11960 kfree(list_entry(p, struct ipw_ibss_seq, list));
11964 kfree(priv->error);
11965 priv->error = NULL;
11967 #ifdef CONFIG_IPW2200_PROMISCUOUS
11968 ipw_prom_free(priv);
11969 #endif
11971 free_irq(pdev->irq, priv);
11972 iounmap(priv->hw_base);
11973 pci_release_regions(pdev);
11974 pci_disable_device(pdev);
11975 pci_set_drvdata(pdev, NULL);
11976 /* wiphy_unregister needs to be here, before free_libipw */
11977 wiphy_unregister(priv->ieee->wdev.wiphy);
11978 kfree(priv->ieee->a_band.channels);
11979 kfree(priv->ieee->bg_band.channels);
11980 free_libipw(priv->net_dev, 0);
11981 free_firmware();
11984 #ifdef CONFIG_PM
11985 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11987 struct ipw_priv *priv = pci_get_drvdata(pdev);
11988 struct net_device *dev = priv->net_dev;
11990 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11992 /* Take down the device; powers it off, etc. */
11993 ipw_down(priv);
11995 /* Remove the PRESENT state of the device */
11996 netif_device_detach(dev);
11998 pci_save_state(pdev);
11999 pci_disable_device(pdev);
12000 pci_set_power_state(pdev, pci_choose_state(pdev, state));
12002 priv->suspend_at = get_seconds();
12004 return 0;
12007 static int ipw_pci_resume(struct pci_dev *pdev)
12009 struct ipw_priv *priv = pci_get_drvdata(pdev);
12010 struct net_device *dev = priv->net_dev;
12011 int err;
12012 u32 val;
12014 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
12016 pci_set_power_state(pdev, PCI_D0);
12017 err = pci_enable_device(pdev);
12018 if (err) {
12019 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
12020 dev->name);
12021 return err;
12023 pci_restore_state(pdev);
12026 * Suspend/Resume resets the PCI configuration space, so we have to
12027 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
12028 * from interfering with C3 CPU state. pci_restore_state won't help
12029 * here since it only restores the first 64 bytes pci config header.
12031 pci_read_config_dword(pdev, 0x40, &val);
12032 if ((val & 0x0000ff00) != 0)
12033 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
12035 /* Set the device back into the PRESENT state; this will also wake
12036 * the queue of needed */
12037 netif_device_attach(dev);
12039 priv->suspend_time = get_seconds() - priv->suspend_at;
12041 /* Bring the device back up */
12042 schedule_work(&priv->up);
12044 return 0;
12046 #endif
12048 static void ipw_pci_shutdown(struct pci_dev *pdev)
12050 struct ipw_priv *priv = pci_get_drvdata(pdev);
12052 /* Take down the device; powers it off, etc. */
12053 ipw_down(priv);
12055 pci_disable_device(pdev);
12058 /* driver initialization stuff */
12059 static struct pci_driver ipw_driver = {
12060 .name = DRV_NAME,
12061 .id_table = card_ids,
12062 .probe = ipw_pci_probe,
12063 .remove = ipw_pci_remove,
12064 #ifdef CONFIG_PM
12065 .suspend = ipw_pci_suspend,
12066 .resume = ipw_pci_resume,
12067 #endif
12068 .shutdown = ipw_pci_shutdown,
12071 static int __init ipw_init(void)
12073 int ret;
12075 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
12076 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
12078 ret = pci_register_driver(&ipw_driver);
12079 if (ret) {
12080 IPW_ERROR("Unable to initialize PCI module\n");
12081 return ret;
12084 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
12085 if (ret) {
12086 IPW_ERROR("Unable to create driver sysfs file\n");
12087 pci_unregister_driver(&ipw_driver);
12088 return ret;
12091 return ret;
12094 static void __exit ipw_exit(void)
12096 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
12097 pci_unregister_driver(&ipw_driver);
12100 module_param(disable, int, 0444);
12101 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
12103 module_param(associate, int, 0444);
12104 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12106 module_param(auto_create, int, 0444);
12107 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12109 module_param_named(led, led_support, int, 0444);
12110 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12112 module_param(debug, int, 0444);
12113 MODULE_PARM_DESC(debug, "debug output mask");
12115 module_param_named(channel, default_channel, int, 0444);
12116 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12118 #ifdef CONFIG_IPW2200_PROMISCUOUS
12119 module_param(rtap_iface, int, 0444);
12120 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12121 #endif
12123 #ifdef CONFIG_IPW2200_QOS
12124 module_param(qos_enable, int, 0444);
12125 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12127 module_param(qos_burst_enable, int, 0444);
12128 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12130 module_param(qos_no_ack_mask, int, 0444);
12131 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12133 module_param(burst_duration_CCK, int, 0444);
12134 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12136 module_param(burst_duration_OFDM, int, 0444);
12137 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12138 #endif /* CONFIG_IPW2200_QOS */
12140 #ifdef CONFIG_IPW2200_MONITOR
12141 module_param_named(mode, network_mode, int, 0444);
12142 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12143 #else
12144 module_param_named(mode, network_mode, int, 0444);
12145 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12146 #endif
12148 module_param(bt_coexist, int, 0444);
12149 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12151 module_param(hwcrypto, int, 0444);
12152 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12154 module_param(cmdlog, int, 0444);
12155 MODULE_PARM_DESC(cmdlog,
12156 "allocate a ring buffer for logging firmware commands");
12158 module_param(roaming, int, 0444);
12159 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12161 module_param(antenna, int, 0444);
12162 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12164 module_exit(ipw_exit);
12165 module_init(ipw_init);