remove init of dev->perm_addr in drivers
[linux-2.6/cjktty.git] / drivers / net / ethernet / realtek / 8139cp.c
blobb62a32484f6a629874413e045eb364b75d38d596
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
19 See the file COPYING in this distribution for more information.
21 Contributors:
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
27 TODO:
28 * Test Tx checksumming thoroughly
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
51 #define DRV_NAME "8139cp"
52 #define DRV_VERSION "1.3"
53 #define DRV_RELDATE "Mar 22, 2004"
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <asm/uaccess.h>
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
100 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
101 NETIF_MSG_PROBE | \
102 NETIF_MSG_LINK)
103 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE (0xff + 1)
106 #define CP_REGS_VER 1 /* version 1 */
107 #define CP_RX_RING_SIZE 64
108 #define CP_TX_RING_SIZE 64
109 #define CP_RING_BYTES \
110 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
111 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
112 CP_STATS_SIZE)
113 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP) \
116 (((CP)->tx_tail <= (CP)->tx_head) ? \
117 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
118 (CP)->tx_tail - (CP)->tx_head - 1)
120 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY 32
123 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
125 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT (6*HZ)
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
134 #define CP_MAX_MTU 4096
136 enum {
137 /* NIC register offsets */
138 MAC0 = 0x00, /* Ethernet hardware address. */
139 MAR0 = 0x08, /* Multicast filter. */
140 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
141 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
142 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
143 Cmd = 0x37, /* Command register */
144 IntrMask = 0x3C, /* Interrupt mask */
145 IntrStatus = 0x3E, /* Interrupt status */
146 TxConfig = 0x40, /* Tx configuration */
147 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
148 RxConfig = 0x44, /* Rx configuration */
149 RxMissed = 0x4C, /* 24 bits valid, write clears */
150 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 Config1 = 0x52, /* Config1 */
152 Config3 = 0x59, /* Config3 */
153 Config4 = 0x5A, /* Config4 */
154 MultiIntr = 0x5C, /* Multiple interrupt select */
155 BasicModeCtrl = 0x62, /* MII BMCR */
156 BasicModeStatus = 0x64, /* MII BMSR */
157 NWayAdvert = 0x66, /* MII ADVERTISE */
158 NWayLPAR = 0x68, /* MII LPA */
159 NWayExpansion = 0x6A, /* MII Expansion */
160 Config5 = 0xD8, /* Config5 */
161 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
162 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
163 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
164 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
165 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
166 TxThresh = 0xEC, /* Early Tx threshold */
167 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
168 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
170 /* Tx and Rx status descriptors */
171 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
172 RingEnd = (1 << 30), /* End of descriptor ring */
173 FirstFrag = (1 << 29), /* First segment of a packet */
174 LastFrag = (1 << 28), /* Final segment of a packet */
175 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
176 MSSShift = 16, /* MSS value position */
177 MSSMask = 0xfff, /* MSS value: 11 bits */
178 TxError = (1 << 23), /* Tx error summary */
179 RxError = (1 << 20), /* Rx error summary */
180 IPCS = (1 << 18), /* Calculate IP checksum */
181 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
182 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
183 TxVlanTag = (1 << 17), /* Add VLAN tag */
184 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
185 IPFail = (1 << 15), /* IP checksum failed */
186 UDPFail = (1 << 14), /* UDP/IP checksum failed */
187 TCPFail = (1 << 13), /* TCP/IP checksum failed */
188 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
189 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
190 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
191 RxProtoTCP = 1,
192 RxProtoUDP = 2,
193 RxProtoIP = 3,
194 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
195 TxOWC = (1 << 22), /* Tx Out-of-window collision */
196 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
197 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
198 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
199 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
200 RxErrFrame = (1 << 27), /* Rx frame alignment error */
201 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
202 RxErrCRC = (1 << 18), /* Rx CRC error */
203 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
204 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
205 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
207 /* StatsAddr register */
208 DumpStats = (1 << 3), /* Begin stats dump */
210 /* RxConfig register */
211 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
212 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
213 AcceptErr = 0x20, /* Accept packets with CRC errors */
214 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
215 AcceptBroadcast = 0x08, /* Accept broadcast packets */
216 AcceptMulticast = 0x04, /* Accept multicast packets */
217 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
218 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
220 /* IntrMask / IntrStatus registers */
221 PciErr = (1 << 15), /* System error on the PCI bus */
222 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
223 LenChg = (1 << 13), /* Cable length change */
224 SWInt = (1 << 8), /* Software-requested interrupt */
225 TxEmpty = (1 << 7), /* No Tx descriptors available */
226 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
227 LinkChg = (1 << 5), /* Packet underrun, or link change */
228 RxEmpty = (1 << 4), /* No Rx descriptors available */
229 TxErr = (1 << 3), /* Tx error */
230 TxOK = (1 << 2), /* Tx packet sent */
231 RxErr = (1 << 1), /* Rx error */
232 RxOK = (1 << 0), /* Rx packet received */
233 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
234 but hardware likes to raise it */
236 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
237 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
238 RxErr | RxOK | IntrResvd,
240 /* C mode command register */
241 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
242 RxOn = (1 << 3), /* Rx mode enable */
243 TxOn = (1 << 2), /* Tx mode enable */
245 /* C+ mode command register */
246 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
247 RxChkSum = (1 << 5), /* Rx checksum offload enable */
248 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
249 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
250 CpRxOn = (1 << 1), /* Rx mode enable */
251 CpTxOn = (1 << 0), /* Tx mode enable */
253 /* Cfg9436 EEPROM control register */
254 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
255 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
257 /* TxConfig register */
258 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
259 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
261 /* Early Tx Threshold register */
262 TxThreshMask = 0x3f, /* Mask bits 5-0 */
263 TxThreshMax = 2048, /* Max early Tx threshold */
265 /* Config1 register */
266 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
267 LWACT = (1 << 4), /* LWAKE active mode */
268 PMEnable = (1 << 0), /* Enable various PM features of chip */
270 /* Config3 register */
271 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
272 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
273 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
275 /* Config4 register */
276 LWPTN = (1 << 1), /* LWAKE Pattern */
277 LWPME = (1 << 4), /* LANWAKE vs PMEB */
279 /* Config5 register */
280 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
281 MWF = (1 << 5), /* Accept Multicast wakeup frame */
282 UWF = (1 << 4), /* Accept Unicast wakeup frame */
283 LANWake = (1 << 1), /* Enable LANWake signal */
284 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
286 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
287 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
288 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
291 static const unsigned int cp_rx_config =
292 (RX_FIFO_THRESH << RxCfgFIFOShift) |
293 (RX_DMA_BURST << RxCfgDMAShift);
295 struct cp_desc {
296 __le32 opts1;
297 __le32 opts2;
298 __le64 addr;
301 struct cp_dma_stats {
302 __le64 tx_ok;
303 __le64 rx_ok;
304 __le64 tx_err;
305 __le32 rx_err;
306 __le16 rx_fifo;
307 __le16 frame_align;
308 __le32 tx_ok_1col;
309 __le32 tx_ok_mcol;
310 __le64 rx_ok_phys;
311 __le64 rx_ok_bcast;
312 __le32 rx_ok_mcast;
313 __le16 tx_abort;
314 __le16 tx_underrun;
315 } __packed;
317 struct cp_extra_stats {
318 unsigned long rx_frags;
321 struct cp_private {
322 void __iomem *regs;
323 struct net_device *dev;
324 spinlock_t lock;
325 u32 msg_enable;
327 struct napi_struct napi;
329 struct pci_dev *pdev;
330 u32 rx_config;
331 u16 cpcmd;
333 struct cp_extra_stats cp_stats;
335 unsigned rx_head ____cacheline_aligned;
336 unsigned rx_tail;
337 struct cp_desc *rx_ring;
338 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
340 unsigned tx_head ____cacheline_aligned;
341 unsigned tx_tail;
342 struct cp_desc *tx_ring;
343 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
345 unsigned rx_buf_sz;
346 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
348 dma_addr_t ring_dma;
350 struct mii_if_info mii_if;
353 #define cpr8(reg) readb(cp->regs + (reg))
354 #define cpr16(reg) readw(cp->regs + (reg))
355 #define cpr32(reg) readl(cp->regs + (reg))
356 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
357 #define cpw16(reg,val) writew((val), cp->regs + (reg))
358 #define cpw32(reg,val) writel((val), cp->regs + (reg))
359 #define cpw8_f(reg,val) do { \
360 writeb((val), cp->regs + (reg)); \
361 readb(cp->regs + (reg)); \
362 } while (0)
363 #define cpw16_f(reg,val) do { \
364 writew((val), cp->regs + (reg)); \
365 readw(cp->regs + (reg)); \
366 } while (0)
367 #define cpw32_f(reg,val) do { \
368 writel((val), cp->regs + (reg)); \
369 readl(cp->regs + (reg)); \
370 } while (0)
373 static void __cp_set_rx_mode (struct net_device *dev);
374 static void cp_tx (struct cp_private *cp);
375 static void cp_clean_rings (struct cp_private *cp);
376 #ifdef CONFIG_NET_POLL_CONTROLLER
377 static void cp_poll_controller(struct net_device *dev);
378 #endif
379 static int cp_get_eeprom_len(struct net_device *dev);
380 static int cp_get_eeprom(struct net_device *dev,
381 struct ethtool_eeprom *eeprom, u8 *data);
382 static int cp_set_eeprom(struct net_device *dev,
383 struct ethtool_eeprom *eeprom, u8 *data);
385 static DEFINE_PCI_DEVICE_TABLE(cp_pci_tbl) = {
386 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
387 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
388 { },
390 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
392 static struct {
393 const char str[ETH_GSTRING_LEN];
394 } ethtool_stats_keys[] = {
395 { "tx_ok" },
396 { "rx_ok" },
397 { "tx_err" },
398 { "rx_err" },
399 { "rx_fifo" },
400 { "frame_align" },
401 { "tx_ok_1col" },
402 { "tx_ok_mcol" },
403 { "rx_ok_phys" },
404 { "rx_ok_bcast" },
405 { "rx_ok_mcast" },
406 { "tx_abort" },
407 { "tx_underrun" },
408 { "rx_frags" },
412 static inline void cp_set_rxbufsize (struct cp_private *cp)
414 unsigned int mtu = cp->dev->mtu;
416 if (mtu > ETH_DATA_LEN)
417 /* MTU + ethernet header + FCS + optional VLAN tag */
418 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
419 else
420 cp->rx_buf_sz = PKT_BUF_SZ;
423 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
424 struct cp_desc *desc)
426 u32 opts2 = le32_to_cpu(desc->opts2);
428 skb->protocol = eth_type_trans (skb, cp->dev);
430 cp->dev->stats.rx_packets++;
431 cp->dev->stats.rx_bytes += skb->len;
433 if (opts2 & RxVlanTagged)
434 __vlan_hwaccel_put_tag(skb, swab16(opts2 & 0xffff));
436 napi_gro_receive(&cp->napi, skb);
439 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
440 u32 status, u32 len)
442 netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
443 rx_tail, status, len);
444 cp->dev->stats.rx_errors++;
445 if (status & RxErrFrame)
446 cp->dev->stats.rx_frame_errors++;
447 if (status & RxErrCRC)
448 cp->dev->stats.rx_crc_errors++;
449 if ((status & RxErrRunt) || (status & RxErrLong))
450 cp->dev->stats.rx_length_errors++;
451 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
452 cp->dev->stats.rx_length_errors++;
453 if (status & RxErrFIFO)
454 cp->dev->stats.rx_fifo_errors++;
457 static inline unsigned int cp_rx_csum_ok (u32 status)
459 unsigned int protocol = (status >> 16) & 0x3;
461 if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
462 ((protocol == RxProtoUDP) && !(status & UDPFail)))
463 return 1;
464 else
465 return 0;
468 static int cp_rx_poll(struct napi_struct *napi, int budget)
470 struct cp_private *cp = container_of(napi, struct cp_private, napi);
471 struct net_device *dev = cp->dev;
472 unsigned int rx_tail = cp->rx_tail;
473 int rx;
475 rx_status_loop:
476 rx = 0;
477 cpw16(IntrStatus, cp_rx_intr_mask);
479 while (1) {
480 u32 status, len;
481 dma_addr_t mapping;
482 struct sk_buff *skb, *new_skb;
483 struct cp_desc *desc;
484 const unsigned buflen = cp->rx_buf_sz;
486 skb = cp->rx_skb[rx_tail];
487 BUG_ON(!skb);
489 desc = &cp->rx_ring[rx_tail];
490 status = le32_to_cpu(desc->opts1);
491 if (status & DescOwn)
492 break;
494 len = (status & 0x1fff) - 4;
495 mapping = le64_to_cpu(desc->addr);
497 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
498 /* we don't support incoming fragmented frames.
499 * instead, we attempt to ensure that the
500 * pre-allocated RX skbs are properly sized such
501 * that RX fragments are never encountered
503 cp_rx_err_acct(cp, rx_tail, status, len);
504 dev->stats.rx_dropped++;
505 cp->cp_stats.rx_frags++;
506 goto rx_next;
509 if (status & (RxError | RxErrFIFO)) {
510 cp_rx_err_acct(cp, rx_tail, status, len);
511 goto rx_next;
514 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
515 rx_tail, status, len);
517 new_skb = netdev_alloc_skb_ip_align(dev, buflen);
518 if (!new_skb) {
519 dev->stats.rx_dropped++;
520 goto rx_next;
523 dma_unmap_single(&cp->pdev->dev, mapping,
524 buflen, PCI_DMA_FROMDEVICE);
526 /* Handle checksum offloading for incoming packets. */
527 if (cp_rx_csum_ok(status))
528 skb->ip_summed = CHECKSUM_UNNECESSARY;
529 else
530 skb_checksum_none_assert(skb);
532 skb_put(skb, len);
534 mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
535 PCI_DMA_FROMDEVICE);
536 cp->rx_skb[rx_tail] = new_skb;
538 cp_rx_skb(cp, skb, desc);
539 rx++;
541 rx_next:
542 cp->rx_ring[rx_tail].opts2 = 0;
543 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
544 if (rx_tail == (CP_RX_RING_SIZE - 1))
545 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
546 cp->rx_buf_sz);
547 else
548 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
549 rx_tail = NEXT_RX(rx_tail);
551 if (rx >= budget)
552 break;
555 cp->rx_tail = rx_tail;
557 /* if we did not reach work limit, then we're done with
558 * this round of polling
560 if (rx < budget) {
561 unsigned long flags;
563 if (cpr16(IntrStatus) & cp_rx_intr_mask)
564 goto rx_status_loop;
566 napi_gro_flush(napi, false);
567 spin_lock_irqsave(&cp->lock, flags);
568 __napi_complete(napi);
569 cpw16_f(IntrMask, cp_intr_mask);
570 spin_unlock_irqrestore(&cp->lock, flags);
573 return rx;
576 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
578 struct net_device *dev = dev_instance;
579 struct cp_private *cp;
580 int handled = 0;
581 u16 status;
583 if (unlikely(dev == NULL))
584 return IRQ_NONE;
585 cp = netdev_priv(dev);
587 spin_lock(&cp->lock);
589 status = cpr16(IntrStatus);
590 if (!status || (status == 0xFFFF))
591 goto out_unlock;
593 handled = 1;
595 netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
596 status, cpr8(Cmd), cpr16(CpCmd));
598 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
600 /* close possible race's with dev_close */
601 if (unlikely(!netif_running(dev))) {
602 cpw16(IntrMask, 0);
603 goto out_unlock;
606 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
607 if (napi_schedule_prep(&cp->napi)) {
608 cpw16_f(IntrMask, cp_norx_intr_mask);
609 __napi_schedule(&cp->napi);
612 if (status & (TxOK | TxErr | TxEmpty | SWInt))
613 cp_tx(cp);
614 if (status & LinkChg)
615 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
618 if (status & PciErr) {
619 u16 pci_status;
621 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
622 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
623 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
624 status, pci_status);
626 /* TODO: reset hardware */
629 out_unlock:
630 spin_unlock(&cp->lock);
632 return IRQ_RETVAL(handled);
635 #ifdef CONFIG_NET_POLL_CONTROLLER
637 * Polling receive - used by netconsole and other diagnostic tools
638 * to allow network i/o with interrupts disabled.
640 static void cp_poll_controller(struct net_device *dev)
642 struct cp_private *cp = netdev_priv(dev);
643 const int irq = cp->pdev->irq;
645 disable_irq(irq);
646 cp_interrupt(irq, dev);
647 enable_irq(irq);
649 #endif
651 static void cp_tx (struct cp_private *cp)
653 unsigned tx_head = cp->tx_head;
654 unsigned tx_tail = cp->tx_tail;
655 unsigned bytes_compl = 0, pkts_compl = 0;
657 while (tx_tail != tx_head) {
658 struct cp_desc *txd = cp->tx_ring + tx_tail;
659 struct sk_buff *skb;
660 u32 status;
662 rmb();
663 status = le32_to_cpu(txd->opts1);
664 if (status & DescOwn)
665 break;
667 skb = cp->tx_skb[tx_tail];
668 BUG_ON(!skb);
670 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
671 le32_to_cpu(txd->opts1) & 0xffff,
672 PCI_DMA_TODEVICE);
674 bytes_compl += skb->len;
675 pkts_compl++;
677 if (status & LastFrag) {
678 if (status & (TxError | TxFIFOUnder)) {
679 netif_dbg(cp, tx_err, cp->dev,
680 "tx err, status 0x%x\n", status);
681 cp->dev->stats.tx_errors++;
682 if (status & TxOWC)
683 cp->dev->stats.tx_window_errors++;
684 if (status & TxMaxCol)
685 cp->dev->stats.tx_aborted_errors++;
686 if (status & TxLinkFail)
687 cp->dev->stats.tx_carrier_errors++;
688 if (status & TxFIFOUnder)
689 cp->dev->stats.tx_fifo_errors++;
690 } else {
691 cp->dev->stats.collisions +=
692 ((status >> TxColCntShift) & TxColCntMask);
693 cp->dev->stats.tx_packets++;
694 cp->dev->stats.tx_bytes += skb->len;
695 netif_dbg(cp, tx_done, cp->dev,
696 "tx done, slot %d\n", tx_tail);
698 dev_kfree_skb_irq(skb);
701 cp->tx_skb[tx_tail] = NULL;
703 tx_tail = NEXT_TX(tx_tail);
706 cp->tx_tail = tx_tail;
708 netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
709 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
710 netif_wake_queue(cp->dev);
713 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
715 return vlan_tx_tag_present(skb) ?
716 TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00;
719 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
720 struct net_device *dev)
722 struct cp_private *cp = netdev_priv(dev);
723 unsigned entry;
724 u32 eor, flags;
725 unsigned long intr_flags;
726 __le32 opts2;
727 int mss = 0;
729 spin_lock_irqsave(&cp->lock, intr_flags);
731 /* This is a hard error, log it. */
732 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
733 netif_stop_queue(dev);
734 spin_unlock_irqrestore(&cp->lock, intr_flags);
735 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
736 return NETDEV_TX_BUSY;
739 entry = cp->tx_head;
740 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
741 mss = skb_shinfo(skb)->gso_size;
743 opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
745 if (skb_shinfo(skb)->nr_frags == 0) {
746 struct cp_desc *txd = &cp->tx_ring[entry];
747 u32 len;
748 dma_addr_t mapping;
750 len = skb->len;
751 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
752 txd->opts2 = opts2;
753 txd->addr = cpu_to_le64(mapping);
754 wmb();
756 flags = eor | len | DescOwn | FirstFrag | LastFrag;
758 if (mss)
759 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
760 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
761 const struct iphdr *ip = ip_hdr(skb);
762 if (ip->protocol == IPPROTO_TCP)
763 flags |= IPCS | TCPCS;
764 else if (ip->protocol == IPPROTO_UDP)
765 flags |= IPCS | UDPCS;
766 else
767 WARN_ON(1); /* we need a WARN() */
770 txd->opts1 = cpu_to_le32(flags);
771 wmb();
773 cp->tx_skb[entry] = skb;
774 entry = NEXT_TX(entry);
775 } else {
776 struct cp_desc *txd;
777 u32 first_len, first_eor;
778 dma_addr_t first_mapping;
779 int frag, first_entry = entry;
780 const struct iphdr *ip = ip_hdr(skb);
782 /* We must give this initial chunk to the device last.
783 * Otherwise we could race with the device.
785 first_eor = eor;
786 first_len = skb_headlen(skb);
787 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
788 first_len, PCI_DMA_TODEVICE);
789 cp->tx_skb[entry] = skb;
790 entry = NEXT_TX(entry);
792 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
793 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
794 u32 len;
795 u32 ctrl;
796 dma_addr_t mapping;
798 len = skb_frag_size(this_frag);
799 mapping = dma_map_single(&cp->pdev->dev,
800 skb_frag_address(this_frag),
801 len, PCI_DMA_TODEVICE);
802 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
804 ctrl = eor | len | DescOwn;
806 if (mss)
807 ctrl |= LargeSend |
808 ((mss & MSSMask) << MSSShift);
809 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
810 if (ip->protocol == IPPROTO_TCP)
811 ctrl |= IPCS | TCPCS;
812 else if (ip->protocol == IPPROTO_UDP)
813 ctrl |= IPCS | UDPCS;
814 else
815 BUG();
818 if (frag == skb_shinfo(skb)->nr_frags - 1)
819 ctrl |= LastFrag;
821 txd = &cp->tx_ring[entry];
822 txd->opts2 = opts2;
823 txd->addr = cpu_to_le64(mapping);
824 wmb();
826 txd->opts1 = cpu_to_le32(ctrl);
827 wmb();
829 cp->tx_skb[entry] = skb;
830 entry = NEXT_TX(entry);
833 txd = &cp->tx_ring[first_entry];
834 txd->opts2 = opts2;
835 txd->addr = cpu_to_le64(first_mapping);
836 wmb();
838 if (skb->ip_summed == CHECKSUM_PARTIAL) {
839 if (ip->protocol == IPPROTO_TCP)
840 txd->opts1 = cpu_to_le32(first_eor | first_len |
841 FirstFrag | DescOwn |
842 IPCS | TCPCS);
843 else if (ip->protocol == IPPROTO_UDP)
844 txd->opts1 = cpu_to_le32(first_eor | first_len |
845 FirstFrag | DescOwn |
846 IPCS | UDPCS);
847 else
848 BUG();
849 } else
850 txd->opts1 = cpu_to_le32(first_eor | first_len |
851 FirstFrag | DescOwn);
852 wmb();
854 cp->tx_head = entry;
856 netdev_sent_queue(dev, skb->len);
857 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
858 entry, skb->len);
859 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
860 netif_stop_queue(dev);
862 spin_unlock_irqrestore(&cp->lock, intr_flags);
864 cpw8(TxPoll, NormalTxPoll);
866 return NETDEV_TX_OK;
869 /* Set or clear the multicast filter for this adaptor.
870 This routine is not state sensitive and need not be SMP locked. */
872 static void __cp_set_rx_mode (struct net_device *dev)
874 struct cp_private *cp = netdev_priv(dev);
875 u32 mc_filter[2]; /* Multicast hash filter */
876 int rx_mode;
878 /* Note: do not reorder, GCC is clever about common statements. */
879 if (dev->flags & IFF_PROMISC) {
880 /* Unconditionally log net taps. */
881 rx_mode =
882 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
883 AcceptAllPhys;
884 mc_filter[1] = mc_filter[0] = 0xffffffff;
885 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
886 (dev->flags & IFF_ALLMULTI)) {
887 /* Too many to filter perfectly -- accept all multicasts. */
888 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
889 mc_filter[1] = mc_filter[0] = 0xffffffff;
890 } else {
891 struct netdev_hw_addr *ha;
892 rx_mode = AcceptBroadcast | AcceptMyPhys;
893 mc_filter[1] = mc_filter[0] = 0;
894 netdev_for_each_mc_addr(ha, dev) {
895 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
897 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
898 rx_mode |= AcceptMulticast;
902 /* We can safely update without stopping the chip. */
903 cp->rx_config = cp_rx_config | rx_mode;
904 cpw32_f(RxConfig, cp->rx_config);
906 cpw32_f (MAR0 + 0, mc_filter[0]);
907 cpw32_f (MAR0 + 4, mc_filter[1]);
910 static void cp_set_rx_mode (struct net_device *dev)
912 unsigned long flags;
913 struct cp_private *cp = netdev_priv(dev);
915 spin_lock_irqsave (&cp->lock, flags);
916 __cp_set_rx_mode(dev);
917 spin_unlock_irqrestore (&cp->lock, flags);
920 static void __cp_get_stats(struct cp_private *cp)
922 /* only lower 24 bits valid; write any value to clear */
923 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
924 cpw32 (RxMissed, 0);
927 static struct net_device_stats *cp_get_stats(struct net_device *dev)
929 struct cp_private *cp = netdev_priv(dev);
930 unsigned long flags;
932 /* The chip only need report frame silently dropped. */
933 spin_lock_irqsave(&cp->lock, flags);
934 if (netif_running(dev) && netif_device_present(dev))
935 __cp_get_stats(cp);
936 spin_unlock_irqrestore(&cp->lock, flags);
938 return &dev->stats;
941 static void cp_stop_hw (struct cp_private *cp)
943 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
944 cpw16_f(IntrMask, 0);
945 cpw8(Cmd, 0);
946 cpw16_f(CpCmd, 0);
947 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
949 cp->rx_tail = 0;
950 cp->tx_head = cp->tx_tail = 0;
952 netdev_reset_queue(cp->dev);
955 static void cp_reset_hw (struct cp_private *cp)
957 unsigned work = 1000;
959 cpw8(Cmd, CmdReset);
961 while (work--) {
962 if (!(cpr8(Cmd) & CmdReset))
963 return;
965 schedule_timeout_uninterruptible(10);
968 netdev_err(cp->dev, "hardware reset timeout\n");
971 static inline void cp_start_hw (struct cp_private *cp)
973 dma_addr_t ring_dma;
975 cpw16(CpCmd, cp->cpcmd);
978 * These (at least TxRingAddr) need to be configured after the
979 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
980 * (C+ Command Register) recommends that these and more be configured
981 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
982 * it's been observed that the TxRingAddr is actually reset to garbage
983 * when C+ mode Tx is enabled in CpCmd.
985 cpw32_f(HiTxRingAddr, 0);
986 cpw32_f(HiTxRingAddr + 4, 0);
988 ring_dma = cp->ring_dma;
989 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
990 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
992 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
993 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
994 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
997 * Strictly speaking, the datasheet says this should be enabled
998 * *before* setting the descriptor addresses. But what, then, would
999 * prevent it from doing DMA to random unconfigured addresses?
1000 * This variant appears to work fine.
1002 cpw8(Cmd, RxOn | TxOn);
1004 netdev_reset_queue(cp->dev);
1007 static void cp_enable_irq(struct cp_private *cp)
1009 cpw16_f(IntrMask, cp_intr_mask);
1012 static void cp_init_hw (struct cp_private *cp)
1014 struct net_device *dev = cp->dev;
1016 cp_reset_hw(cp);
1018 cpw8_f (Cfg9346, Cfg9346_Unlock);
1020 /* Restore our idea of the MAC address. */
1021 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1022 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1024 cp_start_hw(cp);
1025 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1027 __cp_set_rx_mode(dev);
1028 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1030 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1031 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1032 cpw8(Config3, PARMEnable);
1033 cp->wol_enabled = 0;
1035 cpw8(Config5, cpr8(Config5) & PMEStatus);
1037 cpw16(MultiIntr, 0);
1039 cpw8_f(Cfg9346, Cfg9346_Lock);
1042 static int cp_refill_rx(struct cp_private *cp)
1044 struct net_device *dev = cp->dev;
1045 unsigned i;
1047 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1048 struct sk_buff *skb;
1049 dma_addr_t mapping;
1051 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1052 if (!skb)
1053 goto err_out;
1055 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1056 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1057 cp->rx_skb[i] = skb;
1059 cp->rx_ring[i].opts2 = 0;
1060 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1061 if (i == (CP_RX_RING_SIZE - 1))
1062 cp->rx_ring[i].opts1 =
1063 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1064 else
1065 cp->rx_ring[i].opts1 =
1066 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1069 return 0;
1071 err_out:
1072 cp_clean_rings(cp);
1073 return -ENOMEM;
1076 static void cp_init_rings_index (struct cp_private *cp)
1078 cp->rx_tail = 0;
1079 cp->tx_head = cp->tx_tail = 0;
1082 static int cp_init_rings (struct cp_private *cp)
1084 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1085 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1087 cp_init_rings_index(cp);
1089 return cp_refill_rx (cp);
1092 static int cp_alloc_rings (struct cp_private *cp)
1094 struct device *d = &cp->pdev->dev;
1095 void *mem;
1096 int rc;
1098 mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1099 if (!mem)
1100 return -ENOMEM;
1102 cp->rx_ring = mem;
1103 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1105 rc = cp_init_rings(cp);
1106 if (rc < 0)
1107 dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1109 return rc;
1112 static void cp_clean_rings (struct cp_private *cp)
1114 struct cp_desc *desc;
1115 unsigned i;
1117 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1118 if (cp->rx_skb[i]) {
1119 desc = cp->rx_ring + i;
1120 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1121 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1122 dev_kfree_skb(cp->rx_skb[i]);
1126 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1127 if (cp->tx_skb[i]) {
1128 struct sk_buff *skb = cp->tx_skb[i];
1130 desc = cp->tx_ring + i;
1131 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1132 le32_to_cpu(desc->opts1) & 0xffff,
1133 PCI_DMA_TODEVICE);
1134 if (le32_to_cpu(desc->opts1) & LastFrag)
1135 dev_kfree_skb(skb);
1136 cp->dev->stats.tx_dropped++;
1140 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1141 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1143 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1144 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1147 static void cp_free_rings (struct cp_private *cp)
1149 cp_clean_rings(cp);
1150 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1151 cp->ring_dma);
1152 cp->rx_ring = NULL;
1153 cp->tx_ring = NULL;
1156 static int cp_open (struct net_device *dev)
1158 struct cp_private *cp = netdev_priv(dev);
1159 const int irq = cp->pdev->irq;
1160 int rc;
1162 netif_dbg(cp, ifup, dev, "enabling interface\n");
1164 rc = cp_alloc_rings(cp);
1165 if (rc)
1166 return rc;
1168 napi_enable(&cp->napi);
1170 cp_init_hw(cp);
1172 rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1173 if (rc)
1174 goto err_out_hw;
1176 cp_enable_irq(cp);
1178 netif_carrier_off(dev);
1179 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1180 netif_start_queue(dev);
1182 return 0;
1184 err_out_hw:
1185 napi_disable(&cp->napi);
1186 cp_stop_hw(cp);
1187 cp_free_rings(cp);
1188 return rc;
1191 static int cp_close (struct net_device *dev)
1193 struct cp_private *cp = netdev_priv(dev);
1194 unsigned long flags;
1196 napi_disable(&cp->napi);
1198 netif_dbg(cp, ifdown, dev, "disabling interface\n");
1200 spin_lock_irqsave(&cp->lock, flags);
1202 netif_stop_queue(dev);
1203 netif_carrier_off(dev);
1205 cp_stop_hw(cp);
1207 spin_unlock_irqrestore(&cp->lock, flags);
1209 free_irq(cp->pdev->irq, dev);
1211 cp_free_rings(cp);
1212 return 0;
1215 static void cp_tx_timeout(struct net_device *dev)
1217 struct cp_private *cp = netdev_priv(dev);
1218 unsigned long flags;
1219 int rc;
1221 netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1222 cpr8(Cmd), cpr16(CpCmd),
1223 cpr16(IntrStatus), cpr16(IntrMask));
1225 spin_lock_irqsave(&cp->lock, flags);
1227 cp_stop_hw(cp);
1228 cp_clean_rings(cp);
1229 rc = cp_init_rings(cp);
1230 cp_start_hw(cp);
1231 cp_enable_irq(cp);
1233 netif_wake_queue(dev);
1235 spin_unlock_irqrestore(&cp->lock, flags);
1238 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1240 struct cp_private *cp = netdev_priv(dev);
1242 /* check for invalid MTU, according to hardware limits */
1243 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1244 return -EINVAL;
1246 /* if network interface not up, no need for complexity */
1247 if (!netif_running(dev)) {
1248 dev->mtu = new_mtu;
1249 cp_set_rxbufsize(cp); /* set new rx buf size */
1250 return 0;
1253 /* network IS up, close it, reset MTU, and come up again. */
1254 cp_close(dev);
1255 dev->mtu = new_mtu;
1256 cp_set_rxbufsize(cp);
1257 return cp_open(dev);
1260 static const char mii_2_8139_map[8] = {
1261 BasicModeCtrl,
1262 BasicModeStatus,
1265 NWayAdvert,
1266 NWayLPAR,
1267 NWayExpansion,
1271 static int mdio_read(struct net_device *dev, int phy_id, int location)
1273 struct cp_private *cp = netdev_priv(dev);
1275 return location < 8 && mii_2_8139_map[location] ?
1276 readw(cp->regs + mii_2_8139_map[location]) : 0;
1280 static void mdio_write(struct net_device *dev, int phy_id, int location,
1281 int value)
1283 struct cp_private *cp = netdev_priv(dev);
1285 if (location == 0) {
1286 cpw8(Cfg9346, Cfg9346_Unlock);
1287 cpw16(BasicModeCtrl, value);
1288 cpw8(Cfg9346, Cfg9346_Lock);
1289 } else if (location < 8 && mii_2_8139_map[location])
1290 cpw16(mii_2_8139_map[location], value);
1293 /* Set the ethtool Wake-on-LAN settings */
1294 static int netdev_set_wol (struct cp_private *cp,
1295 const struct ethtool_wolinfo *wol)
1297 u8 options;
1299 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1300 /* If WOL is being disabled, no need for complexity */
1301 if (wol->wolopts) {
1302 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1303 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1306 cpw8 (Cfg9346, Cfg9346_Unlock);
1307 cpw8 (Config3, options);
1308 cpw8 (Cfg9346, Cfg9346_Lock);
1310 options = 0; /* Paranoia setting */
1311 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1312 /* If WOL is being disabled, no need for complexity */
1313 if (wol->wolopts) {
1314 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1315 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1316 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1319 cpw8 (Config5, options);
1321 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1323 return 0;
1326 /* Get the ethtool Wake-on-LAN settings */
1327 static void netdev_get_wol (struct cp_private *cp,
1328 struct ethtool_wolinfo *wol)
1330 u8 options;
1332 wol->wolopts = 0; /* Start from scratch */
1333 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1334 WAKE_MCAST | WAKE_UCAST;
1335 /* We don't need to go on if WOL is disabled */
1336 if (!cp->wol_enabled) return;
1338 options = cpr8 (Config3);
1339 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1340 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1342 options = 0; /* Paranoia setting */
1343 options = cpr8 (Config5);
1344 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1345 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1346 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1349 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1351 struct cp_private *cp = netdev_priv(dev);
1353 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1354 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1355 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1358 static void cp_get_ringparam(struct net_device *dev,
1359 struct ethtool_ringparam *ring)
1361 ring->rx_max_pending = CP_RX_RING_SIZE;
1362 ring->tx_max_pending = CP_TX_RING_SIZE;
1363 ring->rx_pending = CP_RX_RING_SIZE;
1364 ring->tx_pending = CP_TX_RING_SIZE;
1367 static int cp_get_regs_len(struct net_device *dev)
1369 return CP_REGS_SIZE;
1372 static int cp_get_sset_count (struct net_device *dev, int sset)
1374 switch (sset) {
1375 case ETH_SS_STATS:
1376 return CP_NUM_STATS;
1377 default:
1378 return -EOPNOTSUPP;
1382 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1384 struct cp_private *cp = netdev_priv(dev);
1385 int rc;
1386 unsigned long flags;
1388 spin_lock_irqsave(&cp->lock, flags);
1389 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1390 spin_unlock_irqrestore(&cp->lock, flags);
1392 return rc;
1395 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1397 struct cp_private *cp = netdev_priv(dev);
1398 int rc;
1399 unsigned long flags;
1401 spin_lock_irqsave(&cp->lock, flags);
1402 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1403 spin_unlock_irqrestore(&cp->lock, flags);
1405 return rc;
1408 static int cp_nway_reset(struct net_device *dev)
1410 struct cp_private *cp = netdev_priv(dev);
1411 return mii_nway_restart(&cp->mii_if);
1414 static u32 cp_get_msglevel(struct net_device *dev)
1416 struct cp_private *cp = netdev_priv(dev);
1417 return cp->msg_enable;
1420 static void cp_set_msglevel(struct net_device *dev, u32 value)
1422 struct cp_private *cp = netdev_priv(dev);
1423 cp->msg_enable = value;
1426 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1428 struct cp_private *cp = netdev_priv(dev);
1429 unsigned long flags;
1431 if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1432 return 0;
1434 spin_lock_irqsave(&cp->lock, flags);
1436 if (features & NETIF_F_RXCSUM)
1437 cp->cpcmd |= RxChkSum;
1438 else
1439 cp->cpcmd &= ~RxChkSum;
1441 if (features & NETIF_F_HW_VLAN_RX)
1442 cp->cpcmd |= RxVlanOn;
1443 else
1444 cp->cpcmd &= ~RxVlanOn;
1446 cpw16_f(CpCmd, cp->cpcmd);
1447 spin_unlock_irqrestore(&cp->lock, flags);
1449 return 0;
1452 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1453 void *p)
1455 struct cp_private *cp = netdev_priv(dev);
1456 unsigned long flags;
1458 if (regs->len < CP_REGS_SIZE)
1459 return /* -EINVAL */;
1461 regs->version = CP_REGS_VER;
1463 spin_lock_irqsave(&cp->lock, flags);
1464 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1465 spin_unlock_irqrestore(&cp->lock, flags);
1468 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1470 struct cp_private *cp = netdev_priv(dev);
1471 unsigned long flags;
1473 spin_lock_irqsave (&cp->lock, flags);
1474 netdev_get_wol (cp, wol);
1475 spin_unlock_irqrestore (&cp->lock, flags);
1478 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1480 struct cp_private *cp = netdev_priv(dev);
1481 unsigned long flags;
1482 int rc;
1484 spin_lock_irqsave (&cp->lock, flags);
1485 rc = netdev_set_wol (cp, wol);
1486 spin_unlock_irqrestore (&cp->lock, flags);
1488 return rc;
1491 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1493 switch (stringset) {
1494 case ETH_SS_STATS:
1495 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1496 break;
1497 default:
1498 BUG();
1499 break;
1503 static void cp_get_ethtool_stats (struct net_device *dev,
1504 struct ethtool_stats *estats, u64 *tmp_stats)
1506 struct cp_private *cp = netdev_priv(dev);
1507 struct cp_dma_stats *nic_stats;
1508 dma_addr_t dma;
1509 int i;
1511 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1512 &dma, GFP_KERNEL);
1513 if (!nic_stats)
1514 return;
1516 /* begin NIC statistics dump */
1517 cpw32(StatsAddr + 4, (u64)dma >> 32);
1518 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1519 cpr32(StatsAddr);
1521 for (i = 0; i < 1000; i++) {
1522 if ((cpr32(StatsAddr) & DumpStats) == 0)
1523 break;
1524 udelay(10);
1526 cpw32(StatsAddr, 0);
1527 cpw32(StatsAddr + 4, 0);
1528 cpr32(StatsAddr);
1530 i = 0;
1531 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1532 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1533 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1534 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1535 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1536 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1537 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1538 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1539 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1540 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1541 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1542 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1543 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1544 tmp_stats[i++] = cp->cp_stats.rx_frags;
1545 BUG_ON(i != CP_NUM_STATS);
1547 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1550 static const struct ethtool_ops cp_ethtool_ops = {
1551 .get_drvinfo = cp_get_drvinfo,
1552 .get_regs_len = cp_get_regs_len,
1553 .get_sset_count = cp_get_sset_count,
1554 .get_settings = cp_get_settings,
1555 .set_settings = cp_set_settings,
1556 .nway_reset = cp_nway_reset,
1557 .get_link = ethtool_op_get_link,
1558 .get_msglevel = cp_get_msglevel,
1559 .set_msglevel = cp_set_msglevel,
1560 .get_regs = cp_get_regs,
1561 .get_wol = cp_get_wol,
1562 .set_wol = cp_set_wol,
1563 .get_strings = cp_get_strings,
1564 .get_ethtool_stats = cp_get_ethtool_stats,
1565 .get_eeprom_len = cp_get_eeprom_len,
1566 .get_eeprom = cp_get_eeprom,
1567 .set_eeprom = cp_set_eeprom,
1568 .get_ringparam = cp_get_ringparam,
1571 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1573 struct cp_private *cp = netdev_priv(dev);
1574 int rc;
1575 unsigned long flags;
1577 if (!netif_running(dev))
1578 return -EINVAL;
1580 spin_lock_irqsave(&cp->lock, flags);
1581 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1582 spin_unlock_irqrestore(&cp->lock, flags);
1583 return rc;
1586 static int cp_set_mac_address(struct net_device *dev, void *p)
1588 struct cp_private *cp = netdev_priv(dev);
1589 struct sockaddr *addr = p;
1591 if (!is_valid_ether_addr(addr->sa_data))
1592 return -EADDRNOTAVAIL;
1594 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1596 spin_lock_irq(&cp->lock);
1598 cpw8_f(Cfg9346, Cfg9346_Unlock);
1599 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1600 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1601 cpw8_f(Cfg9346, Cfg9346_Lock);
1603 spin_unlock_irq(&cp->lock);
1605 return 0;
1608 /* Serial EEPROM section. */
1610 /* EEPROM_Ctrl bits. */
1611 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1612 #define EE_CS 0x08 /* EEPROM chip select. */
1613 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1614 #define EE_WRITE_0 0x00
1615 #define EE_WRITE_1 0x02
1616 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1617 #define EE_ENB (0x80 | EE_CS)
1619 /* Delay between EEPROM clock transitions.
1620 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1623 #define eeprom_delay() readb(ee_addr)
1625 /* The EEPROM commands include the alway-set leading bit. */
1626 #define EE_EXTEND_CMD (4)
1627 #define EE_WRITE_CMD (5)
1628 #define EE_READ_CMD (6)
1629 #define EE_ERASE_CMD (7)
1631 #define EE_EWDS_ADDR (0)
1632 #define EE_WRAL_ADDR (1)
1633 #define EE_ERAL_ADDR (2)
1634 #define EE_EWEN_ADDR (3)
1636 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1638 static void eeprom_cmd_start(void __iomem *ee_addr)
1640 writeb (EE_ENB & ~EE_CS, ee_addr);
1641 writeb (EE_ENB, ee_addr);
1642 eeprom_delay ();
1645 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1647 int i;
1649 /* Shift the command bits out. */
1650 for (i = cmd_len - 1; i >= 0; i--) {
1651 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1652 writeb (EE_ENB | dataval, ee_addr);
1653 eeprom_delay ();
1654 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1655 eeprom_delay ();
1657 writeb (EE_ENB, ee_addr);
1658 eeprom_delay ();
1661 static void eeprom_cmd_end(void __iomem *ee_addr)
1663 writeb(0, ee_addr);
1664 eeprom_delay ();
1667 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1668 int addr_len)
1670 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1672 eeprom_cmd_start(ee_addr);
1673 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1674 eeprom_cmd_end(ee_addr);
1677 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1679 int i;
1680 u16 retval = 0;
1681 void __iomem *ee_addr = ioaddr + Cfg9346;
1682 int read_cmd = location | (EE_READ_CMD << addr_len);
1684 eeprom_cmd_start(ee_addr);
1685 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1687 for (i = 16; i > 0; i--) {
1688 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1689 eeprom_delay ();
1690 retval =
1691 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1693 writeb (EE_ENB, ee_addr);
1694 eeprom_delay ();
1697 eeprom_cmd_end(ee_addr);
1699 return retval;
1702 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1703 int addr_len)
1705 int i;
1706 void __iomem *ee_addr = ioaddr + Cfg9346;
1707 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1709 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1711 eeprom_cmd_start(ee_addr);
1712 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1713 eeprom_cmd(ee_addr, val, 16);
1714 eeprom_cmd_end(ee_addr);
1716 eeprom_cmd_start(ee_addr);
1717 for (i = 0; i < 20000; i++)
1718 if (readb(ee_addr) & EE_DATA_READ)
1719 break;
1720 eeprom_cmd_end(ee_addr);
1722 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1725 static int cp_get_eeprom_len(struct net_device *dev)
1727 struct cp_private *cp = netdev_priv(dev);
1728 int size;
1730 spin_lock_irq(&cp->lock);
1731 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1732 spin_unlock_irq(&cp->lock);
1734 return size;
1737 static int cp_get_eeprom(struct net_device *dev,
1738 struct ethtool_eeprom *eeprom, u8 *data)
1740 struct cp_private *cp = netdev_priv(dev);
1741 unsigned int addr_len;
1742 u16 val;
1743 u32 offset = eeprom->offset >> 1;
1744 u32 len = eeprom->len;
1745 u32 i = 0;
1747 eeprom->magic = CP_EEPROM_MAGIC;
1749 spin_lock_irq(&cp->lock);
1751 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1753 if (eeprom->offset & 1) {
1754 val = read_eeprom(cp->regs, offset, addr_len);
1755 data[i++] = (u8)(val >> 8);
1756 offset++;
1759 while (i < len - 1) {
1760 val = read_eeprom(cp->regs, offset, addr_len);
1761 data[i++] = (u8)val;
1762 data[i++] = (u8)(val >> 8);
1763 offset++;
1766 if (i < len) {
1767 val = read_eeprom(cp->regs, offset, addr_len);
1768 data[i] = (u8)val;
1771 spin_unlock_irq(&cp->lock);
1772 return 0;
1775 static int cp_set_eeprom(struct net_device *dev,
1776 struct ethtool_eeprom *eeprom, u8 *data)
1778 struct cp_private *cp = netdev_priv(dev);
1779 unsigned int addr_len;
1780 u16 val;
1781 u32 offset = eeprom->offset >> 1;
1782 u32 len = eeprom->len;
1783 u32 i = 0;
1785 if (eeprom->magic != CP_EEPROM_MAGIC)
1786 return -EINVAL;
1788 spin_lock_irq(&cp->lock);
1790 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1792 if (eeprom->offset & 1) {
1793 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1794 val |= (u16)data[i++] << 8;
1795 write_eeprom(cp->regs, offset, val, addr_len);
1796 offset++;
1799 while (i < len - 1) {
1800 val = (u16)data[i++];
1801 val |= (u16)data[i++] << 8;
1802 write_eeprom(cp->regs, offset, val, addr_len);
1803 offset++;
1806 if (i < len) {
1807 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1808 val |= (u16)data[i];
1809 write_eeprom(cp->regs, offset, val, addr_len);
1812 spin_unlock_irq(&cp->lock);
1813 return 0;
1816 /* Put the board into D3cold state and wait for WakeUp signal */
1817 static void cp_set_d3_state (struct cp_private *cp)
1819 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1820 pci_set_power_state (cp->pdev, PCI_D3hot);
1823 static const struct net_device_ops cp_netdev_ops = {
1824 .ndo_open = cp_open,
1825 .ndo_stop = cp_close,
1826 .ndo_validate_addr = eth_validate_addr,
1827 .ndo_set_mac_address = cp_set_mac_address,
1828 .ndo_set_rx_mode = cp_set_rx_mode,
1829 .ndo_get_stats = cp_get_stats,
1830 .ndo_do_ioctl = cp_ioctl,
1831 .ndo_start_xmit = cp_start_xmit,
1832 .ndo_tx_timeout = cp_tx_timeout,
1833 .ndo_set_features = cp_set_features,
1834 .ndo_change_mtu = cp_change_mtu,
1836 #ifdef CONFIG_NET_POLL_CONTROLLER
1837 .ndo_poll_controller = cp_poll_controller,
1838 #endif
1841 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1843 struct net_device *dev;
1844 struct cp_private *cp;
1845 int rc;
1846 void __iomem *regs;
1847 resource_size_t pciaddr;
1848 unsigned int addr_len, i, pci_using_dac;
1850 #ifndef MODULE
1851 static int version_printed;
1852 if (version_printed++ == 0)
1853 pr_info("%s", version);
1854 #endif
1856 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1857 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1858 dev_info(&pdev->dev,
1859 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1860 pdev->vendor, pdev->device, pdev->revision);
1861 return -ENODEV;
1864 dev = alloc_etherdev(sizeof(struct cp_private));
1865 if (!dev)
1866 return -ENOMEM;
1867 SET_NETDEV_DEV(dev, &pdev->dev);
1869 cp = netdev_priv(dev);
1870 cp->pdev = pdev;
1871 cp->dev = dev;
1872 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1873 spin_lock_init (&cp->lock);
1874 cp->mii_if.dev = dev;
1875 cp->mii_if.mdio_read = mdio_read;
1876 cp->mii_if.mdio_write = mdio_write;
1877 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1878 cp->mii_if.phy_id_mask = 0x1f;
1879 cp->mii_if.reg_num_mask = 0x1f;
1880 cp_set_rxbufsize(cp);
1882 rc = pci_enable_device(pdev);
1883 if (rc)
1884 goto err_out_free;
1886 rc = pci_set_mwi(pdev);
1887 if (rc)
1888 goto err_out_disable;
1890 rc = pci_request_regions(pdev, DRV_NAME);
1891 if (rc)
1892 goto err_out_mwi;
1894 pciaddr = pci_resource_start(pdev, 1);
1895 if (!pciaddr) {
1896 rc = -EIO;
1897 dev_err(&pdev->dev, "no MMIO resource\n");
1898 goto err_out_res;
1900 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1901 rc = -EIO;
1902 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1903 (unsigned long long)pci_resource_len(pdev, 1));
1904 goto err_out_res;
1907 /* Configure DMA attributes. */
1908 if ((sizeof(dma_addr_t) > 4) &&
1909 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1910 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1911 pci_using_dac = 1;
1912 } else {
1913 pci_using_dac = 0;
1915 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1916 if (rc) {
1917 dev_err(&pdev->dev,
1918 "No usable DMA configuration, aborting\n");
1919 goto err_out_res;
1921 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1922 if (rc) {
1923 dev_err(&pdev->dev,
1924 "No usable consistent DMA configuration, aborting\n");
1925 goto err_out_res;
1929 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1930 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1932 dev->features |= NETIF_F_RXCSUM;
1933 dev->hw_features |= NETIF_F_RXCSUM;
1935 regs = ioremap(pciaddr, CP_REGS_SIZE);
1936 if (!regs) {
1937 rc = -EIO;
1938 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1939 (unsigned long long)pci_resource_len(pdev, 1),
1940 (unsigned long long)pciaddr);
1941 goto err_out_res;
1943 cp->regs = regs;
1945 cp_stop_hw(cp);
1947 /* read MAC address from EEPROM */
1948 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1949 for (i = 0; i < 3; i++)
1950 ((__le16 *) (dev->dev_addr))[i] =
1951 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1953 dev->netdev_ops = &cp_netdev_ops;
1954 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1955 dev->ethtool_ops = &cp_ethtool_ops;
1956 dev->watchdog_timeo = TX_TIMEOUT;
1958 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1960 if (pci_using_dac)
1961 dev->features |= NETIF_F_HIGHDMA;
1963 /* disabled by default until verified */
1964 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1965 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1966 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1967 NETIF_F_HIGHDMA;
1969 rc = register_netdev(dev);
1970 if (rc)
1971 goto err_out_iomap;
1973 netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
1974 regs, dev->dev_addr, pdev->irq);
1976 pci_set_drvdata(pdev, dev);
1978 /* enable busmastering and memory-write-invalidate */
1979 pci_set_master(pdev);
1981 if (cp->wol_enabled)
1982 cp_set_d3_state (cp);
1984 return 0;
1986 err_out_iomap:
1987 iounmap(regs);
1988 err_out_res:
1989 pci_release_regions(pdev);
1990 err_out_mwi:
1991 pci_clear_mwi(pdev);
1992 err_out_disable:
1993 pci_disable_device(pdev);
1994 err_out_free:
1995 free_netdev(dev);
1996 return rc;
1999 static void cp_remove_one (struct pci_dev *pdev)
2001 struct net_device *dev = pci_get_drvdata(pdev);
2002 struct cp_private *cp = netdev_priv(dev);
2004 unregister_netdev(dev);
2005 iounmap(cp->regs);
2006 if (cp->wol_enabled)
2007 pci_set_power_state (pdev, PCI_D0);
2008 pci_release_regions(pdev);
2009 pci_clear_mwi(pdev);
2010 pci_disable_device(pdev);
2011 pci_set_drvdata(pdev, NULL);
2012 free_netdev(dev);
2015 #ifdef CONFIG_PM
2016 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2018 struct net_device *dev = pci_get_drvdata(pdev);
2019 struct cp_private *cp = netdev_priv(dev);
2020 unsigned long flags;
2022 if (!netif_running(dev))
2023 return 0;
2025 netif_device_detach (dev);
2026 netif_stop_queue (dev);
2028 spin_lock_irqsave (&cp->lock, flags);
2030 /* Disable Rx and Tx */
2031 cpw16 (IntrMask, 0);
2032 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2034 spin_unlock_irqrestore (&cp->lock, flags);
2036 pci_save_state(pdev);
2037 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2038 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2040 return 0;
2043 static int cp_resume (struct pci_dev *pdev)
2045 struct net_device *dev = pci_get_drvdata (pdev);
2046 struct cp_private *cp = netdev_priv(dev);
2047 unsigned long flags;
2049 if (!netif_running(dev))
2050 return 0;
2052 netif_device_attach (dev);
2054 pci_set_power_state(pdev, PCI_D0);
2055 pci_restore_state(pdev);
2056 pci_enable_wake(pdev, PCI_D0, 0);
2058 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2059 cp_init_rings_index (cp);
2060 cp_init_hw (cp);
2061 cp_enable_irq(cp);
2062 netif_start_queue (dev);
2064 spin_lock_irqsave (&cp->lock, flags);
2066 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2068 spin_unlock_irqrestore (&cp->lock, flags);
2070 return 0;
2072 #endif /* CONFIG_PM */
2074 static struct pci_driver cp_driver = {
2075 .name = DRV_NAME,
2076 .id_table = cp_pci_tbl,
2077 .probe = cp_init_one,
2078 .remove = cp_remove_one,
2079 #ifdef CONFIG_PM
2080 .resume = cp_resume,
2081 .suspend = cp_suspend,
2082 #endif
2085 static int __init cp_init (void)
2087 #ifdef MODULE
2088 pr_info("%s", version);
2089 #endif
2090 return pci_register_driver(&cp_driver);
2093 static void __exit cp_exit (void)
2095 pci_unregister_driver (&cp_driver);
2098 module_init(cp_init);
2099 module_exit(cp_exit);