Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/parisc-2.6
[linux-2.6/cjktty.git] / mm / rmap.c
blobf21f4a1d6a1ce144d2ce45c30123eb2010f93bb8
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
61 #include <asm/tlbflush.h>
63 #include "internal.h"
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
68 static inline struct anon_vma *anon_vma_alloc(void)
70 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 void anon_vma_free(struct anon_vma *anon_vma)
75 kmem_cache_free(anon_vma_cachep, anon_vma);
78 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
80 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
83 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
85 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
88 /**
89 * anon_vma_prepare - attach an anon_vma to a memory region
90 * @vma: the memory region in question
92 * This makes sure the memory mapping described by 'vma' has
93 * an 'anon_vma' attached to it, so that we can associate the
94 * anonymous pages mapped into it with that anon_vma.
96 * The common case will be that we already have one, but if
97 * not we either need to find an adjacent mapping that we
98 * can re-use the anon_vma from (very common when the only
99 * reason for splitting a vma has been mprotect()), or we
100 * allocate a new one.
102 * Anon-vma allocations are very subtle, because we may have
103 * optimistically looked up an anon_vma in page_lock_anon_vma()
104 * and that may actually touch the spinlock even in the newly
105 * allocated vma (it depends on RCU to make sure that the
106 * anon_vma isn't actually destroyed).
108 * As a result, we need to do proper anon_vma locking even
109 * for the new allocation. At the same time, we do not want
110 * to do any locking for the common case of already having
111 * an anon_vma.
113 * This must be called with the mmap_sem held for reading.
115 int anon_vma_prepare(struct vm_area_struct *vma)
117 struct anon_vma *anon_vma = vma->anon_vma;
118 struct anon_vma_chain *avc;
120 might_sleep();
121 if (unlikely(!anon_vma)) {
122 struct mm_struct *mm = vma->vm_mm;
123 struct anon_vma *allocated;
125 avc = anon_vma_chain_alloc();
126 if (!avc)
127 goto out_enomem;
129 anon_vma = find_mergeable_anon_vma(vma);
130 allocated = NULL;
131 if (!anon_vma) {
132 anon_vma = anon_vma_alloc();
133 if (unlikely(!anon_vma))
134 goto out_enomem_free_avc;
135 allocated = anon_vma;
137 * This VMA had no anon_vma yet. This anon_vma is
138 * the root of any anon_vma tree that might form.
140 anon_vma->root = anon_vma;
143 anon_vma_lock(anon_vma);
144 /* page_table_lock to protect against threads */
145 spin_lock(&mm->page_table_lock);
146 if (likely(!vma->anon_vma)) {
147 vma->anon_vma = anon_vma;
148 avc->anon_vma = anon_vma;
149 avc->vma = vma;
150 list_add(&avc->same_vma, &vma->anon_vma_chain);
151 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
152 allocated = NULL;
153 avc = NULL;
155 spin_unlock(&mm->page_table_lock);
156 anon_vma_unlock(anon_vma);
158 if (unlikely(allocated))
159 anon_vma_free(allocated);
160 if (unlikely(avc))
161 anon_vma_chain_free(avc);
163 return 0;
165 out_enomem_free_avc:
166 anon_vma_chain_free(avc);
167 out_enomem:
168 return -ENOMEM;
171 static void anon_vma_chain_link(struct vm_area_struct *vma,
172 struct anon_vma_chain *avc,
173 struct anon_vma *anon_vma)
175 avc->vma = vma;
176 avc->anon_vma = anon_vma;
177 list_add(&avc->same_vma, &vma->anon_vma_chain);
179 anon_vma_lock(anon_vma);
181 * It's critical to add new vmas to the tail of the anon_vma,
182 * see comment in huge_memory.c:__split_huge_page().
184 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
185 anon_vma_unlock(anon_vma);
189 * Attach the anon_vmas from src to dst.
190 * Returns 0 on success, -ENOMEM on failure.
192 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
194 struct anon_vma_chain *avc, *pavc;
196 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
197 avc = anon_vma_chain_alloc();
198 if (!avc)
199 goto enomem_failure;
200 anon_vma_chain_link(dst, avc, pavc->anon_vma);
202 return 0;
204 enomem_failure:
205 unlink_anon_vmas(dst);
206 return -ENOMEM;
210 * Attach vma to its own anon_vma, as well as to the anon_vmas that
211 * the corresponding VMA in the parent process is attached to.
212 * Returns 0 on success, non-zero on failure.
214 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
216 struct anon_vma_chain *avc;
217 struct anon_vma *anon_vma;
219 /* Don't bother if the parent process has no anon_vma here. */
220 if (!pvma->anon_vma)
221 return 0;
224 * First, attach the new VMA to the parent VMA's anon_vmas,
225 * so rmap can find non-COWed pages in child processes.
227 if (anon_vma_clone(vma, pvma))
228 return -ENOMEM;
230 /* Then add our own anon_vma. */
231 anon_vma = anon_vma_alloc();
232 if (!anon_vma)
233 goto out_error;
234 avc = anon_vma_chain_alloc();
235 if (!avc)
236 goto out_error_free_anon_vma;
239 * The root anon_vma's spinlock is the lock actually used when we
240 * lock any of the anon_vmas in this anon_vma tree.
242 anon_vma->root = pvma->anon_vma->root;
244 * With KSM refcounts, an anon_vma can stay around longer than the
245 * process it belongs to. The root anon_vma needs to be pinned
246 * until this anon_vma is freed, because the lock lives in the root.
248 get_anon_vma(anon_vma->root);
249 /* Mark this anon_vma as the one where our new (COWed) pages go. */
250 vma->anon_vma = anon_vma;
251 anon_vma_chain_link(vma, avc, anon_vma);
253 return 0;
255 out_error_free_anon_vma:
256 anon_vma_free(anon_vma);
257 out_error:
258 unlink_anon_vmas(vma);
259 return -ENOMEM;
262 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
264 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
265 int empty;
267 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
268 if (!anon_vma)
269 return;
271 anon_vma_lock(anon_vma);
272 list_del(&anon_vma_chain->same_anon_vma);
274 /* We must garbage collect the anon_vma if it's empty */
275 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
276 anon_vma_unlock(anon_vma);
278 if (empty) {
279 /* We no longer need the root anon_vma */
280 if (anon_vma->root != anon_vma)
281 drop_anon_vma(anon_vma->root);
282 anon_vma_free(anon_vma);
286 void unlink_anon_vmas(struct vm_area_struct *vma)
288 struct anon_vma_chain *avc, *next;
291 * Unlink each anon_vma chained to the VMA. This list is ordered
292 * from newest to oldest, ensuring the root anon_vma gets freed last.
294 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
295 anon_vma_unlink(avc);
296 list_del(&avc->same_vma);
297 anon_vma_chain_free(avc);
301 static void anon_vma_ctor(void *data)
303 struct anon_vma *anon_vma = data;
305 spin_lock_init(&anon_vma->lock);
306 anonvma_external_refcount_init(anon_vma);
307 INIT_LIST_HEAD(&anon_vma->head);
310 void __init anon_vma_init(void)
312 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
313 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
314 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
318 * Getting a lock on a stable anon_vma from a page off the LRU is
319 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
321 struct anon_vma *__page_lock_anon_vma(struct page *page)
323 struct anon_vma *anon_vma, *root_anon_vma;
324 unsigned long anon_mapping;
326 rcu_read_lock();
327 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
328 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
329 goto out;
330 if (!page_mapped(page))
331 goto out;
333 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
334 root_anon_vma = ACCESS_ONCE(anon_vma->root);
335 spin_lock(&root_anon_vma->lock);
338 * If this page is still mapped, then its anon_vma cannot have been
339 * freed. But if it has been unmapped, we have no security against
340 * the anon_vma structure being freed and reused (for another anon_vma:
341 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
342 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
343 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
345 if (page_mapped(page))
346 return anon_vma;
348 spin_unlock(&root_anon_vma->lock);
349 out:
350 rcu_read_unlock();
351 return NULL;
354 void page_unlock_anon_vma(struct anon_vma *anon_vma)
355 __releases(&anon_vma->root->lock)
356 __releases(RCU)
358 anon_vma_unlock(anon_vma);
359 rcu_read_unlock();
363 * At what user virtual address is page expected in @vma?
364 * Returns virtual address or -EFAULT if page's index/offset is not
365 * within the range mapped the @vma.
367 inline unsigned long
368 vma_address(struct page *page, struct vm_area_struct *vma)
370 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
371 unsigned long address;
373 if (unlikely(is_vm_hugetlb_page(vma)))
374 pgoff = page->index << huge_page_order(page_hstate(page));
375 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
376 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
377 /* page should be within @vma mapping range */
378 return -EFAULT;
380 return address;
384 * At what user virtual address is page expected in vma?
385 * Caller should check the page is actually part of the vma.
387 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
389 if (PageAnon(page)) {
390 struct anon_vma *page__anon_vma = page_anon_vma(page);
392 * Note: swapoff's unuse_vma() is more efficient with this
393 * check, and needs it to match anon_vma when KSM is active.
395 if (!vma->anon_vma || !page__anon_vma ||
396 vma->anon_vma->root != page__anon_vma->root)
397 return -EFAULT;
398 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
399 if (!vma->vm_file ||
400 vma->vm_file->f_mapping != page->mapping)
401 return -EFAULT;
402 } else
403 return -EFAULT;
404 return vma_address(page, vma);
408 * Check that @page is mapped at @address into @mm.
410 * If @sync is false, page_check_address may perform a racy check to avoid
411 * the page table lock when the pte is not present (helpful when reclaiming
412 * highly shared pages).
414 * On success returns with pte mapped and locked.
416 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
417 unsigned long address, spinlock_t **ptlp, int sync)
419 pgd_t *pgd;
420 pud_t *pud;
421 pmd_t *pmd;
422 pte_t *pte;
423 spinlock_t *ptl;
425 if (unlikely(PageHuge(page))) {
426 pte = huge_pte_offset(mm, address);
427 ptl = &mm->page_table_lock;
428 goto check;
431 pgd = pgd_offset(mm, address);
432 if (!pgd_present(*pgd))
433 return NULL;
435 pud = pud_offset(pgd, address);
436 if (!pud_present(*pud))
437 return NULL;
439 pmd = pmd_offset(pud, address);
440 if (!pmd_present(*pmd))
441 return NULL;
442 if (pmd_trans_huge(*pmd))
443 return NULL;
445 pte = pte_offset_map(pmd, address);
446 /* Make a quick check before getting the lock */
447 if (!sync && !pte_present(*pte)) {
448 pte_unmap(pte);
449 return NULL;
452 ptl = pte_lockptr(mm, pmd);
453 check:
454 spin_lock(ptl);
455 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
456 *ptlp = ptl;
457 return pte;
459 pte_unmap_unlock(pte, ptl);
460 return NULL;
464 * page_mapped_in_vma - check whether a page is really mapped in a VMA
465 * @page: the page to test
466 * @vma: the VMA to test
468 * Returns 1 if the page is mapped into the page tables of the VMA, 0
469 * if the page is not mapped into the page tables of this VMA. Only
470 * valid for normal file or anonymous VMAs.
472 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
474 unsigned long address;
475 pte_t *pte;
476 spinlock_t *ptl;
478 address = vma_address(page, vma);
479 if (address == -EFAULT) /* out of vma range */
480 return 0;
481 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
482 if (!pte) /* the page is not in this mm */
483 return 0;
484 pte_unmap_unlock(pte, ptl);
486 return 1;
490 * Subfunctions of page_referenced: page_referenced_one called
491 * repeatedly from either page_referenced_anon or page_referenced_file.
493 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
494 unsigned long address, unsigned int *mapcount,
495 unsigned long *vm_flags)
497 struct mm_struct *mm = vma->vm_mm;
498 int referenced = 0;
501 * Don't want to elevate referenced for mlocked page that gets this far,
502 * in order that it progresses to try_to_unmap and is moved to the
503 * unevictable list.
505 if (vma->vm_flags & VM_LOCKED) {
506 *mapcount = 0; /* break early from loop */
507 *vm_flags |= VM_LOCKED;
508 goto out;
511 /* Pretend the page is referenced if the task has the
512 swap token and is in the middle of a page fault. */
513 if (mm != current->mm && has_swap_token(mm) &&
514 rwsem_is_locked(&mm->mmap_sem))
515 referenced++;
517 if (unlikely(PageTransHuge(page))) {
518 pmd_t *pmd;
520 spin_lock(&mm->page_table_lock);
521 pmd = page_check_address_pmd(page, mm, address,
522 PAGE_CHECK_ADDRESS_PMD_FLAG);
523 if (pmd && !pmd_trans_splitting(*pmd) &&
524 pmdp_clear_flush_young_notify(vma, address, pmd))
525 referenced++;
526 spin_unlock(&mm->page_table_lock);
527 } else {
528 pte_t *pte;
529 spinlock_t *ptl;
531 pte = page_check_address(page, mm, address, &ptl, 0);
532 if (!pte)
533 goto out;
535 if (ptep_clear_flush_young_notify(vma, address, pte)) {
537 * Don't treat a reference through a sequentially read
538 * mapping as such. If the page has been used in
539 * another mapping, we will catch it; if this other
540 * mapping is already gone, the unmap path will have
541 * set PG_referenced or activated the page.
543 if (likely(!VM_SequentialReadHint(vma)))
544 referenced++;
546 pte_unmap_unlock(pte, ptl);
549 (*mapcount)--;
551 if (referenced)
552 *vm_flags |= vma->vm_flags;
553 out:
554 return referenced;
557 static int page_referenced_anon(struct page *page,
558 struct mem_cgroup *mem_cont,
559 unsigned long *vm_flags)
561 unsigned int mapcount;
562 struct anon_vma *anon_vma;
563 struct anon_vma_chain *avc;
564 int referenced = 0;
566 anon_vma = page_lock_anon_vma(page);
567 if (!anon_vma)
568 return referenced;
570 mapcount = page_mapcount(page);
571 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
572 struct vm_area_struct *vma = avc->vma;
573 unsigned long address = vma_address(page, vma);
574 if (address == -EFAULT)
575 continue;
577 * If we are reclaiming on behalf of a cgroup, skip
578 * counting on behalf of references from different
579 * cgroups
581 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
582 continue;
583 referenced += page_referenced_one(page, vma, address,
584 &mapcount, vm_flags);
585 if (!mapcount)
586 break;
589 page_unlock_anon_vma(anon_vma);
590 return referenced;
594 * page_referenced_file - referenced check for object-based rmap
595 * @page: the page we're checking references on.
596 * @mem_cont: target memory controller
597 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
599 * For an object-based mapped page, find all the places it is mapped and
600 * check/clear the referenced flag. This is done by following the page->mapping
601 * pointer, then walking the chain of vmas it holds. It returns the number
602 * of references it found.
604 * This function is only called from page_referenced for object-based pages.
606 static int page_referenced_file(struct page *page,
607 struct mem_cgroup *mem_cont,
608 unsigned long *vm_flags)
610 unsigned int mapcount;
611 struct address_space *mapping = page->mapping;
612 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
613 struct vm_area_struct *vma;
614 struct prio_tree_iter iter;
615 int referenced = 0;
618 * The caller's checks on page->mapping and !PageAnon have made
619 * sure that this is a file page: the check for page->mapping
620 * excludes the case just before it gets set on an anon page.
622 BUG_ON(PageAnon(page));
625 * The page lock not only makes sure that page->mapping cannot
626 * suddenly be NULLified by truncation, it makes sure that the
627 * structure at mapping cannot be freed and reused yet,
628 * so we can safely take mapping->i_mmap_lock.
630 BUG_ON(!PageLocked(page));
632 spin_lock(&mapping->i_mmap_lock);
635 * i_mmap_lock does not stabilize mapcount at all, but mapcount
636 * is more likely to be accurate if we note it after spinning.
638 mapcount = page_mapcount(page);
640 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
641 unsigned long address = vma_address(page, vma);
642 if (address == -EFAULT)
643 continue;
645 * If we are reclaiming on behalf of a cgroup, skip
646 * counting on behalf of references from different
647 * cgroups
649 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
650 continue;
651 referenced += page_referenced_one(page, vma, address,
652 &mapcount, vm_flags);
653 if (!mapcount)
654 break;
657 spin_unlock(&mapping->i_mmap_lock);
658 return referenced;
662 * page_referenced - test if the page was referenced
663 * @page: the page to test
664 * @is_locked: caller holds lock on the page
665 * @mem_cont: target memory controller
666 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
668 * Quick test_and_clear_referenced for all mappings to a page,
669 * returns the number of ptes which referenced the page.
671 int page_referenced(struct page *page,
672 int is_locked,
673 struct mem_cgroup *mem_cont,
674 unsigned long *vm_flags)
676 int referenced = 0;
677 int we_locked = 0;
679 *vm_flags = 0;
680 if (page_mapped(page) && page_rmapping(page)) {
681 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
682 we_locked = trylock_page(page);
683 if (!we_locked) {
684 referenced++;
685 goto out;
688 if (unlikely(PageKsm(page)))
689 referenced += page_referenced_ksm(page, mem_cont,
690 vm_flags);
691 else if (PageAnon(page))
692 referenced += page_referenced_anon(page, mem_cont,
693 vm_flags);
694 else if (page->mapping)
695 referenced += page_referenced_file(page, mem_cont,
696 vm_flags);
697 if (we_locked)
698 unlock_page(page);
700 out:
701 if (page_test_and_clear_young(page))
702 referenced++;
704 return referenced;
707 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
708 unsigned long address)
710 struct mm_struct *mm = vma->vm_mm;
711 pte_t *pte;
712 spinlock_t *ptl;
713 int ret = 0;
715 pte = page_check_address(page, mm, address, &ptl, 1);
716 if (!pte)
717 goto out;
719 if (pte_dirty(*pte) || pte_write(*pte)) {
720 pte_t entry;
722 flush_cache_page(vma, address, pte_pfn(*pte));
723 entry = ptep_clear_flush_notify(vma, address, pte);
724 entry = pte_wrprotect(entry);
725 entry = pte_mkclean(entry);
726 set_pte_at(mm, address, pte, entry);
727 ret = 1;
730 pte_unmap_unlock(pte, ptl);
731 out:
732 return ret;
735 static int page_mkclean_file(struct address_space *mapping, struct page *page)
737 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
738 struct vm_area_struct *vma;
739 struct prio_tree_iter iter;
740 int ret = 0;
742 BUG_ON(PageAnon(page));
744 spin_lock(&mapping->i_mmap_lock);
745 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
746 if (vma->vm_flags & VM_SHARED) {
747 unsigned long address = vma_address(page, vma);
748 if (address == -EFAULT)
749 continue;
750 ret += page_mkclean_one(page, vma, address);
753 spin_unlock(&mapping->i_mmap_lock);
754 return ret;
757 int page_mkclean(struct page *page)
759 int ret = 0;
761 BUG_ON(!PageLocked(page));
763 if (page_mapped(page)) {
764 struct address_space *mapping = page_mapping(page);
765 if (mapping) {
766 ret = page_mkclean_file(mapping, page);
767 if (page_test_dirty(page)) {
768 page_clear_dirty(page, 1);
769 ret = 1;
774 return ret;
776 EXPORT_SYMBOL_GPL(page_mkclean);
779 * page_move_anon_rmap - move a page to our anon_vma
780 * @page: the page to move to our anon_vma
781 * @vma: the vma the page belongs to
782 * @address: the user virtual address mapped
784 * When a page belongs exclusively to one process after a COW event,
785 * that page can be moved into the anon_vma that belongs to just that
786 * process, so the rmap code will not search the parent or sibling
787 * processes.
789 void page_move_anon_rmap(struct page *page,
790 struct vm_area_struct *vma, unsigned long address)
792 struct anon_vma *anon_vma = vma->anon_vma;
794 VM_BUG_ON(!PageLocked(page));
795 VM_BUG_ON(!anon_vma);
796 VM_BUG_ON(page->index != linear_page_index(vma, address));
798 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
799 page->mapping = (struct address_space *) anon_vma;
803 * __page_set_anon_rmap - set up new anonymous rmap
804 * @page: Page to add to rmap
805 * @vma: VM area to add page to.
806 * @address: User virtual address of the mapping
807 * @exclusive: the page is exclusively owned by the current process
809 static void __page_set_anon_rmap(struct page *page,
810 struct vm_area_struct *vma, unsigned long address, int exclusive)
812 struct anon_vma *anon_vma = vma->anon_vma;
814 BUG_ON(!anon_vma);
816 if (PageAnon(page))
817 return;
820 * If the page isn't exclusively mapped into this vma,
821 * we must use the _oldest_ possible anon_vma for the
822 * page mapping!
824 if (!exclusive)
825 anon_vma = anon_vma->root;
827 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
828 page->mapping = (struct address_space *) anon_vma;
829 page->index = linear_page_index(vma, address);
833 * __page_check_anon_rmap - sanity check anonymous rmap addition
834 * @page: the page to add the mapping to
835 * @vma: the vm area in which the mapping is added
836 * @address: the user virtual address mapped
838 static void __page_check_anon_rmap(struct page *page,
839 struct vm_area_struct *vma, unsigned long address)
841 #ifdef CONFIG_DEBUG_VM
843 * The page's anon-rmap details (mapping and index) are guaranteed to
844 * be set up correctly at this point.
846 * We have exclusion against page_add_anon_rmap because the caller
847 * always holds the page locked, except if called from page_dup_rmap,
848 * in which case the page is already known to be setup.
850 * We have exclusion against page_add_new_anon_rmap because those pages
851 * are initially only visible via the pagetables, and the pte is locked
852 * over the call to page_add_new_anon_rmap.
854 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
855 BUG_ON(page->index != linear_page_index(vma, address));
856 #endif
860 * page_add_anon_rmap - add pte mapping to an anonymous page
861 * @page: the page to add the mapping to
862 * @vma: the vm area in which the mapping is added
863 * @address: the user virtual address mapped
865 * The caller needs to hold the pte lock, and the page must be locked in
866 * the anon_vma case: to serialize mapping,index checking after setting,
867 * and to ensure that PageAnon is not being upgraded racily to PageKsm
868 * (but PageKsm is never downgraded to PageAnon).
870 void page_add_anon_rmap(struct page *page,
871 struct vm_area_struct *vma, unsigned long address)
873 do_page_add_anon_rmap(page, vma, address, 0);
877 * Special version of the above for do_swap_page, which often runs
878 * into pages that are exclusively owned by the current process.
879 * Everybody else should continue to use page_add_anon_rmap above.
881 void do_page_add_anon_rmap(struct page *page,
882 struct vm_area_struct *vma, unsigned long address, int exclusive)
884 int first = atomic_inc_and_test(&page->_mapcount);
885 if (first) {
886 if (!PageTransHuge(page))
887 __inc_zone_page_state(page, NR_ANON_PAGES);
888 else
889 __inc_zone_page_state(page,
890 NR_ANON_TRANSPARENT_HUGEPAGES);
892 if (unlikely(PageKsm(page)))
893 return;
895 VM_BUG_ON(!PageLocked(page));
896 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
897 if (first)
898 __page_set_anon_rmap(page, vma, address, exclusive);
899 else
900 __page_check_anon_rmap(page, vma, address);
904 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
905 * @page: the page to add the mapping to
906 * @vma: the vm area in which the mapping is added
907 * @address: the user virtual address mapped
909 * Same as page_add_anon_rmap but must only be called on *new* pages.
910 * This means the inc-and-test can be bypassed.
911 * Page does not have to be locked.
913 void page_add_new_anon_rmap(struct page *page,
914 struct vm_area_struct *vma, unsigned long address)
916 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
917 SetPageSwapBacked(page);
918 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
919 if (!PageTransHuge(page))
920 __inc_zone_page_state(page, NR_ANON_PAGES);
921 else
922 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
923 __page_set_anon_rmap(page, vma, address, 1);
924 if (page_evictable(page, vma))
925 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
926 else
927 add_page_to_unevictable_list(page);
931 * page_add_file_rmap - add pte mapping to a file page
932 * @page: the page to add the mapping to
934 * The caller needs to hold the pte lock.
936 void page_add_file_rmap(struct page *page)
938 if (atomic_inc_and_test(&page->_mapcount)) {
939 __inc_zone_page_state(page, NR_FILE_MAPPED);
940 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
945 * page_remove_rmap - take down pte mapping from a page
946 * @page: page to remove mapping from
948 * The caller needs to hold the pte lock.
950 void page_remove_rmap(struct page *page)
952 /* page still mapped by someone else? */
953 if (!atomic_add_negative(-1, &page->_mapcount))
954 return;
957 * Now that the last pte has gone, s390 must transfer dirty
958 * flag from storage key to struct page. We can usually skip
959 * this if the page is anon, so about to be freed; but perhaps
960 * not if it's in swapcache - there might be another pte slot
961 * containing the swap entry, but page not yet written to swap.
963 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
964 page_clear_dirty(page, 1);
965 set_page_dirty(page);
968 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
969 * and not charged by memcg for now.
971 if (unlikely(PageHuge(page)))
972 return;
973 if (PageAnon(page)) {
974 mem_cgroup_uncharge_page(page);
975 if (!PageTransHuge(page))
976 __dec_zone_page_state(page, NR_ANON_PAGES);
977 else
978 __dec_zone_page_state(page,
979 NR_ANON_TRANSPARENT_HUGEPAGES);
980 } else {
981 __dec_zone_page_state(page, NR_FILE_MAPPED);
982 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
985 * It would be tidy to reset the PageAnon mapping here,
986 * but that might overwrite a racing page_add_anon_rmap
987 * which increments mapcount after us but sets mapping
988 * before us: so leave the reset to free_hot_cold_page,
989 * and remember that it's only reliable while mapped.
990 * Leaving it set also helps swapoff to reinstate ptes
991 * faster for those pages still in swapcache.
996 * Subfunctions of try_to_unmap: try_to_unmap_one called
997 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
999 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1000 unsigned long address, enum ttu_flags flags)
1002 struct mm_struct *mm = vma->vm_mm;
1003 pte_t *pte;
1004 pte_t pteval;
1005 spinlock_t *ptl;
1006 int ret = SWAP_AGAIN;
1008 pte = page_check_address(page, mm, address, &ptl, 0);
1009 if (!pte)
1010 goto out;
1013 * If the page is mlock()d, we cannot swap it out.
1014 * If it's recently referenced (perhaps page_referenced
1015 * skipped over this mm) then we should reactivate it.
1017 if (!(flags & TTU_IGNORE_MLOCK)) {
1018 if (vma->vm_flags & VM_LOCKED)
1019 goto out_mlock;
1021 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1022 goto out_unmap;
1024 if (!(flags & TTU_IGNORE_ACCESS)) {
1025 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1026 ret = SWAP_FAIL;
1027 goto out_unmap;
1031 /* Nuke the page table entry. */
1032 flush_cache_page(vma, address, page_to_pfn(page));
1033 pteval = ptep_clear_flush_notify(vma, address, pte);
1035 /* Move the dirty bit to the physical page now the pte is gone. */
1036 if (pte_dirty(pteval))
1037 set_page_dirty(page);
1039 /* Update high watermark before we lower rss */
1040 update_hiwater_rss(mm);
1042 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1043 if (PageAnon(page))
1044 dec_mm_counter(mm, MM_ANONPAGES);
1045 else
1046 dec_mm_counter(mm, MM_FILEPAGES);
1047 set_pte_at(mm, address, pte,
1048 swp_entry_to_pte(make_hwpoison_entry(page)));
1049 } else if (PageAnon(page)) {
1050 swp_entry_t entry = { .val = page_private(page) };
1052 if (PageSwapCache(page)) {
1054 * Store the swap location in the pte.
1055 * See handle_pte_fault() ...
1057 if (swap_duplicate(entry) < 0) {
1058 set_pte_at(mm, address, pte, pteval);
1059 ret = SWAP_FAIL;
1060 goto out_unmap;
1062 if (list_empty(&mm->mmlist)) {
1063 spin_lock(&mmlist_lock);
1064 if (list_empty(&mm->mmlist))
1065 list_add(&mm->mmlist, &init_mm.mmlist);
1066 spin_unlock(&mmlist_lock);
1068 dec_mm_counter(mm, MM_ANONPAGES);
1069 inc_mm_counter(mm, MM_SWAPENTS);
1070 } else if (PAGE_MIGRATION) {
1072 * Store the pfn of the page in a special migration
1073 * pte. do_swap_page() will wait until the migration
1074 * pte is removed and then restart fault handling.
1076 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1077 entry = make_migration_entry(page, pte_write(pteval));
1079 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1080 BUG_ON(pte_file(*pte));
1081 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1082 /* Establish migration entry for a file page */
1083 swp_entry_t entry;
1084 entry = make_migration_entry(page, pte_write(pteval));
1085 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1086 } else
1087 dec_mm_counter(mm, MM_FILEPAGES);
1089 page_remove_rmap(page);
1090 page_cache_release(page);
1092 out_unmap:
1093 pte_unmap_unlock(pte, ptl);
1094 out:
1095 return ret;
1097 out_mlock:
1098 pte_unmap_unlock(pte, ptl);
1102 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1103 * unstable result and race. Plus, We can't wait here because
1104 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1105 * if trylock failed, the page remain in evictable lru and later
1106 * vmscan could retry to move the page to unevictable lru if the
1107 * page is actually mlocked.
1109 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1110 if (vma->vm_flags & VM_LOCKED) {
1111 mlock_vma_page(page);
1112 ret = SWAP_MLOCK;
1114 up_read(&vma->vm_mm->mmap_sem);
1116 return ret;
1120 * objrmap doesn't work for nonlinear VMAs because the assumption that
1121 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1122 * Consequently, given a particular page and its ->index, we cannot locate the
1123 * ptes which are mapping that page without an exhaustive linear search.
1125 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1126 * maps the file to which the target page belongs. The ->vm_private_data field
1127 * holds the current cursor into that scan. Successive searches will circulate
1128 * around the vma's virtual address space.
1130 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1131 * more scanning pressure is placed against them as well. Eventually pages
1132 * will become fully unmapped and are eligible for eviction.
1134 * For very sparsely populated VMAs this is a little inefficient - chances are
1135 * there there won't be many ptes located within the scan cluster. In this case
1136 * maybe we could scan further - to the end of the pte page, perhaps.
1138 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1139 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1140 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1141 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1143 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1144 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1146 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1147 struct vm_area_struct *vma, struct page *check_page)
1149 struct mm_struct *mm = vma->vm_mm;
1150 pgd_t *pgd;
1151 pud_t *pud;
1152 pmd_t *pmd;
1153 pte_t *pte;
1154 pte_t pteval;
1155 spinlock_t *ptl;
1156 struct page *page;
1157 unsigned long address;
1158 unsigned long end;
1159 int ret = SWAP_AGAIN;
1160 int locked_vma = 0;
1162 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1163 end = address + CLUSTER_SIZE;
1164 if (address < vma->vm_start)
1165 address = vma->vm_start;
1166 if (end > vma->vm_end)
1167 end = vma->vm_end;
1169 pgd = pgd_offset(mm, address);
1170 if (!pgd_present(*pgd))
1171 return ret;
1173 pud = pud_offset(pgd, address);
1174 if (!pud_present(*pud))
1175 return ret;
1177 pmd = pmd_offset(pud, address);
1178 if (!pmd_present(*pmd))
1179 return ret;
1182 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1183 * keep the sem while scanning the cluster for mlocking pages.
1185 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1186 locked_vma = (vma->vm_flags & VM_LOCKED);
1187 if (!locked_vma)
1188 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1191 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1193 /* Update high watermark before we lower rss */
1194 update_hiwater_rss(mm);
1196 for (; address < end; pte++, address += PAGE_SIZE) {
1197 if (!pte_present(*pte))
1198 continue;
1199 page = vm_normal_page(vma, address, *pte);
1200 BUG_ON(!page || PageAnon(page));
1202 if (locked_vma) {
1203 mlock_vma_page(page); /* no-op if already mlocked */
1204 if (page == check_page)
1205 ret = SWAP_MLOCK;
1206 continue; /* don't unmap */
1209 if (ptep_clear_flush_young_notify(vma, address, pte))
1210 continue;
1212 /* Nuke the page table entry. */
1213 flush_cache_page(vma, address, pte_pfn(*pte));
1214 pteval = ptep_clear_flush_notify(vma, address, pte);
1216 /* If nonlinear, store the file page offset in the pte. */
1217 if (page->index != linear_page_index(vma, address))
1218 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1220 /* Move the dirty bit to the physical page now the pte is gone. */
1221 if (pte_dirty(pteval))
1222 set_page_dirty(page);
1224 page_remove_rmap(page);
1225 page_cache_release(page);
1226 dec_mm_counter(mm, MM_FILEPAGES);
1227 (*mapcount)--;
1229 pte_unmap_unlock(pte - 1, ptl);
1230 if (locked_vma)
1231 up_read(&vma->vm_mm->mmap_sem);
1232 return ret;
1235 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1237 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1239 if (!maybe_stack)
1240 return false;
1242 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1243 VM_STACK_INCOMPLETE_SETUP)
1244 return true;
1246 return false;
1250 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1251 * rmap method
1252 * @page: the page to unmap/unlock
1253 * @flags: action and flags
1255 * Find all the mappings of a page using the mapping pointer and the vma chains
1256 * contained in the anon_vma struct it points to.
1258 * This function is only called from try_to_unmap/try_to_munlock for
1259 * anonymous pages.
1260 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1261 * where the page was found will be held for write. So, we won't recheck
1262 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1263 * 'LOCKED.
1265 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1267 struct anon_vma *anon_vma;
1268 struct anon_vma_chain *avc;
1269 int ret = SWAP_AGAIN;
1271 anon_vma = page_lock_anon_vma(page);
1272 if (!anon_vma)
1273 return ret;
1275 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1276 struct vm_area_struct *vma = avc->vma;
1277 unsigned long address;
1280 * During exec, a temporary VMA is setup and later moved.
1281 * The VMA is moved under the anon_vma lock but not the
1282 * page tables leading to a race where migration cannot
1283 * find the migration ptes. Rather than increasing the
1284 * locking requirements of exec(), migration skips
1285 * temporary VMAs until after exec() completes.
1287 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1288 is_vma_temporary_stack(vma))
1289 continue;
1291 address = vma_address(page, vma);
1292 if (address == -EFAULT)
1293 continue;
1294 ret = try_to_unmap_one(page, vma, address, flags);
1295 if (ret != SWAP_AGAIN || !page_mapped(page))
1296 break;
1299 page_unlock_anon_vma(anon_vma);
1300 return ret;
1304 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1305 * @page: the page to unmap/unlock
1306 * @flags: action and flags
1308 * Find all the mappings of a page using the mapping pointer and the vma chains
1309 * contained in the address_space struct it points to.
1311 * This function is only called from try_to_unmap/try_to_munlock for
1312 * object-based pages.
1313 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1314 * where the page was found will be held for write. So, we won't recheck
1315 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1316 * 'LOCKED.
1318 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1320 struct address_space *mapping = page->mapping;
1321 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1322 struct vm_area_struct *vma;
1323 struct prio_tree_iter iter;
1324 int ret = SWAP_AGAIN;
1325 unsigned long cursor;
1326 unsigned long max_nl_cursor = 0;
1327 unsigned long max_nl_size = 0;
1328 unsigned int mapcount;
1330 spin_lock(&mapping->i_mmap_lock);
1331 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1332 unsigned long address = vma_address(page, vma);
1333 if (address == -EFAULT)
1334 continue;
1335 ret = try_to_unmap_one(page, vma, address, flags);
1336 if (ret != SWAP_AGAIN || !page_mapped(page))
1337 goto out;
1340 if (list_empty(&mapping->i_mmap_nonlinear))
1341 goto out;
1344 * We don't bother to try to find the munlocked page in nonlinears.
1345 * It's costly. Instead, later, page reclaim logic may call
1346 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1348 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1349 goto out;
1351 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1352 shared.vm_set.list) {
1353 cursor = (unsigned long) vma->vm_private_data;
1354 if (cursor > max_nl_cursor)
1355 max_nl_cursor = cursor;
1356 cursor = vma->vm_end - vma->vm_start;
1357 if (cursor > max_nl_size)
1358 max_nl_size = cursor;
1361 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1362 ret = SWAP_FAIL;
1363 goto out;
1367 * We don't try to search for this page in the nonlinear vmas,
1368 * and page_referenced wouldn't have found it anyway. Instead
1369 * just walk the nonlinear vmas trying to age and unmap some.
1370 * The mapcount of the page we came in with is irrelevant,
1371 * but even so use it as a guide to how hard we should try?
1373 mapcount = page_mapcount(page);
1374 if (!mapcount)
1375 goto out;
1376 cond_resched_lock(&mapping->i_mmap_lock);
1378 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1379 if (max_nl_cursor == 0)
1380 max_nl_cursor = CLUSTER_SIZE;
1382 do {
1383 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1384 shared.vm_set.list) {
1385 cursor = (unsigned long) vma->vm_private_data;
1386 while ( cursor < max_nl_cursor &&
1387 cursor < vma->vm_end - vma->vm_start) {
1388 if (try_to_unmap_cluster(cursor, &mapcount,
1389 vma, page) == SWAP_MLOCK)
1390 ret = SWAP_MLOCK;
1391 cursor += CLUSTER_SIZE;
1392 vma->vm_private_data = (void *) cursor;
1393 if ((int)mapcount <= 0)
1394 goto out;
1396 vma->vm_private_data = (void *) max_nl_cursor;
1398 cond_resched_lock(&mapping->i_mmap_lock);
1399 max_nl_cursor += CLUSTER_SIZE;
1400 } while (max_nl_cursor <= max_nl_size);
1403 * Don't loop forever (perhaps all the remaining pages are
1404 * in locked vmas). Reset cursor on all unreserved nonlinear
1405 * vmas, now forgetting on which ones it had fallen behind.
1407 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1408 vma->vm_private_data = NULL;
1409 out:
1410 spin_unlock(&mapping->i_mmap_lock);
1411 return ret;
1415 * try_to_unmap - try to remove all page table mappings to a page
1416 * @page: the page to get unmapped
1417 * @flags: action and flags
1419 * Tries to remove all the page table entries which are mapping this
1420 * page, used in the pageout path. Caller must hold the page lock.
1421 * Return values are:
1423 * SWAP_SUCCESS - we succeeded in removing all mappings
1424 * SWAP_AGAIN - we missed a mapping, try again later
1425 * SWAP_FAIL - the page is unswappable
1426 * SWAP_MLOCK - page is mlocked.
1428 int try_to_unmap(struct page *page, enum ttu_flags flags)
1430 int ret;
1432 BUG_ON(!PageLocked(page));
1433 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1435 if (unlikely(PageKsm(page)))
1436 ret = try_to_unmap_ksm(page, flags);
1437 else if (PageAnon(page))
1438 ret = try_to_unmap_anon(page, flags);
1439 else
1440 ret = try_to_unmap_file(page, flags);
1441 if (ret != SWAP_MLOCK && !page_mapped(page))
1442 ret = SWAP_SUCCESS;
1443 return ret;
1447 * try_to_munlock - try to munlock a page
1448 * @page: the page to be munlocked
1450 * Called from munlock code. Checks all of the VMAs mapping the page
1451 * to make sure nobody else has this page mlocked. The page will be
1452 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1454 * Return values are:
1456 * SWAP_AGAIN - no vma is holding page mlocked, or,
1457 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1458 * SWAP_FAIL - page cannot be located at present
1459 * SWAP_MLOCK - page is now mlocked.
1461 int try_to_munlock(struct page *page)
1463 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1465 if (unlikely(PageKsm(page)))
1466 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1467 else if (PageAnon(page))
1468 return try_to_unmap_anon(page, TTU_MUNLOCK);
1469 else
1470 return try_to_unmap_file(page, TTU_MUNLOCK);
1473 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1475 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1476 * if necessary. Be careful to do all the tests under the lock. Once
1477 * we know we are the last user, nobody else can get a reference and we
1478 * can do the freeing without the lock.
1480 void drop_anon_vma(struct anon_vma *anon_vma)
1482 BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
1483 if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1484 struct anon_vma *root = anon_vma->root;
1485 int empty = list_empty(&anon_vma->head);
1486 int last_root_user = 0;
1487 int root_empty = 0;
1490 * The refcount on a non-root anon_vma got dropped. Drop
1491 * the refcount on the root and check if we need to free it.
1493 if (empty && anon_vma != root) {
1494 BUG_ON(atomic_read(&root->external_refcount) <= 0);
1495 last_root_user = atomic_dec_and_test(&root->external_refcount);
1496 root_empty = list_empty(&root->head);
1498 anon_vma_unlock(anon_vma);
1500 if (empty) {
1501 anon_vma_free(anon_vma);
1502 if (root_empty && last_root_user)
1503 anon_vma_free(root);
1507 #endif
1509 #ifdef CONFIG_MIGRATION
1511 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1512 * Called by migrate.c to remove migration ptes, but might be used more later.
1514 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1515 struct vm_area_struct *, unsigned long, void *), void *arg)
1517 struct anon_vma *anon_vma;
1518 struct anon_vma_chain *avc;
1519 int ret = SWAP_AGAIN;
1522 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1523 * because that depends on page_mapped(); but not all its usages
1524 * are holding mmap_sem. Users without mmap_sem are required to
1525 * take a reference count to prevent the anon_vma disappearing
1527 anon_vma = page_anon_vma(page);
1528 if (!anon_vma)
1529 return ret;
1530 anon_vma_lock(anon_vma);
1531 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1532 struct vm_area_struct *vma = avc->vma;
1533 unsigned long address = vma_address(page, vma);
1534 if (address == -EFAULT)
1535 continue;
1536 ret = rmap_one(page, vma, address, arg);
1537 if (ret != SWAP_AGAIN)
1538 break;
1540 anon_vma_unlock(anon_vma);
1541 return ret;
1544 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1545 struct vm_area_struct *, unsigned long, void *), void *arg)
1547 struct address_space *mapping = page->mapping;
1548 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1549 struct vm_area_struct *vma;
1550 struct prio_tree_iter iter;
1551 int ret = SWAP_AGAIN;
1553 if (!mapping)
1554 return ret;
1555 spin_lock(&mapping->i_mmap_lock);
1556 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1557 unsigned long address = vma_address(page, vma);
1558 if (address == -EFAULT)
1559 continue;
1560 ret = rmap_one(page, vma, address, arg);
1561 if (ret != SWAP_AGAIN)
1562 break;
1565 * No nonlinear handling: being always shared, nonlinear vmas
1566 * never contain migration ptes. Decide what to do about this
1567 * limitation to linear when we need rmap_walk() on nonlinear.
1569 spin_unlock(&mapping->i_mmap_lock);
1570 return ret;
1573 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1574 struct vm_area_struct *, unsigned long, void *), void *arg)
1576 VM_BUG_ON(!PageLocked(page));
1578 if (unlikely(PageKsm(page)))
1579 return rmap_walk_ksm(page, rmap_one, arg);
1580 else if (PageAnon(page))
1581 return rmap_walk_anon(page, rmap_one, arg);
1582 else
1583 return rmap_walk_file(page, rmap_one, arg);
1585 #endif /* CONFIG_MIGRATION */
1587 #ifdef CONFIG_HUGETLB_PAGE
1589 * The following three functions are for anonymous (private mapped) hugepages.
1590 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1591 * and no lru code, because we handle hugepages differently from common pages.
1593 static void __hugepage_set_anon_rmap(struct page *page,
1594 struct vm_area_struct *vma, unsigned long address, int exclusive)
1596 struct anon_vma *anon_vma = vma->anon_vma;
1598 BUG_ON(!anon_vma);
1600 if (PageAnon(page))
1601 return;
1602 if (!exclusive)
1603 anon_vma = anon_vma->root;
1605 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1606 page->mapping = (struct address_space *) anon_vma;
1607 page->index = linear_page_index(vma, address);
1610 void hugepage_add_anon_rmap(struct page *page,
1611 struct vm_area_struct *vma, unsigned long address)
1613 struct anon_vma *anon_vma = vma->anon_vma;
1614 int first;
1616 BUG_ON(!PageLocked(page));
1617 BUG_ON(!anon_vma);
1618 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1619 first = atomic_inc_and_test(&page->_mapcount);
1620 if (first)
1621 __hugepage_set_anon_rmap(page, vma, address, 0);
1624 void hugepage_add_new_anon_rmap(struct page *page,
1625 struct vm_area_struct *vma, unsigned long address)
1627 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1628 atomic_set(&page->_mapcount, 0);
1629 __hugepage_set_anon_rmap(page, vma, address, 1);
1631 #endif /* CONFIG_HUGETLB_PAGE */