1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52 #include <linux/prefetch.h>
56 #define DRV_EXTRAVERSION "-k"
58 #define DRV_VERSION "2.2.14" DRV_EXTRAVERSION
59 char e1000e_driver_name
[] = "e1000e";
60 const char e1000e_driver_version
[] = DRV_VERSION
;
62 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
63 static int debug
= -1;
64 module_param(debug
, int, 0);
65 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
67 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
);
69 static const struct e1000_info
*e1000_info_tbl
[] = {
70 [board_82571
] = &e1000_82571_info
,
71 [board_82572
] = &e1000_82572_info
,
72 [board_82573
] = &e1000_82573_info
,
73 [board_82574
] = &e1000_82574_info
,
74 [board_82583
] = &e1000_82583_info
,
75 [board_80003es2lan
] = &e1000_es2_info
,
76 [board_ich8lan
] = &e1000_ich8_info
,
77 [board_ich9lan
] = &e1000_ich9_info
,
78 [board_ich10lan
] = &e1000_ich10_info
,
79 [board_pchlan
] = &e1000_pch_info
,
80 [board_pch2lan
] = &e1000_pch2_info
,
81 [board_pch_lpt
] = &e1000_pch_lpt_info
,
84 struct e1000_reg_info
{
89 static const struct e1000_reg_info e1000_reg_info_tbl
[] = {
90 /* General Registers */
92 {E1000_STATUS
, "STATUS"},
93 {E1000_CTRL_EXT
, "CTRL_EXT"},
95 /* Interrupt Registers */
100 {E1000_RDLEN(0), "RDLEN"},
101 {E1000_RDH(0), "RDH"},
102 {E1000_RDT(0), "RDT"},
103 {E1000_RDTR
, "RDTR"},
104 {E1000_RXDCTL(0), "RXDCTL"},
106 {E1000_RDBAL(0), "RDBAL"},
107 {E1000_RDBAH(0), "RDBAH"},
108 {E1000_RDFH
, "RDFH"},
109 {E1000_RDFT
, "RDFT"},
110 {E1000_RDFHS
, "RDFHS"},
111 {E1000_RDFTS
, "RDFTS"},
112 {E1000_RDFPC
, "RDFPC"},
115 {E1000_TCTL
, "TCTL"},
116 {E1000_TDBAL(0), "TDBAL"},
117 {E1000_TDBAH(0), "TDBAH"},
118 {E1000_TDLEN(0), "TDLEN"},
119 {E1000_TDH(0), "TDH"},
120 {E1000_TDT(0), "TDT"},
121 {E1000_TIDV
, "TIDV"},
122 {E1000_TXDCTL(0), "TXDCTL"},
123 {E1000_TADV
, "TADV"},
124 {E1000_TARC(0), "TARC"},
125 {E1000_TDFH
, "TDFH"},
126 {E1000_TDFT
, "TDFT"},
127 {E1000_TDFHS
, "TDFHS"},
128 {E1000_TDFTS
, "TDFTS"},
129 {E1000_TDFPC
, "TDFPC"},
131 /* List Terminator */
136 * e1000_regdump - register printout routine
137 * @hw: pointer to the HW structure
138 * @reginfo: pointer to the register info table
140 static void e1000_regdump(struct e1000_hw
*hw
, struct e1000_reg_info
*reginfo
)
146 switch (reginfo
->ofs
) {
147 case E1000_RXDCTL(0):
148 for (n
= 0; n
< 2; n
++)
149 regs
[n
] = __er32(hw
, E1000_RXDCTL(n
));
151 case E1000_TXDCTL(0):
152 for (n
= 0; n
< 2; n
++)
153 regs
[n
] = __er32(hw
, E1000_TXDCTL(n
));
156 for (n
= 0; n
< 2; n
++)
157 regs
[n
] = __er32(hw
, E1000_TARC(n
));
160 pr_info("%-15s %08x\n",
161 reginfo
->name
, __er32(hw
, reginfo
->ofs
));
165 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-1]");
166 pr_info("%-15s %08x %08x\n", rname
, regs
[0], regs
[1]);
169 static void e1000e_dump_ps_pages(struct e1000_adapter
*adapter
,
170 struct e1000_buffer
*bi
)
173 struct e1000_ps_page
*ps_page
;
175 for (i
= 0; i
< adapter
->rx_ps_pages
; i
++) {
176 ps_page
= &bi
->ps_pages
[i
];
179 pr_info("packet dump for ps_page %d:\n", i
);
180 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
181 16, 1, page_address(ps_page
->page
),
188 * e1000e_dump - Print registers, Tx-ring and Rx-ring
189 * @adapter: board private structure
191 static void e1000e_dump(struct e1000_adapter
*adapter
)
193 struct net_device
*netdev
= adapter
->netdev
;
194 struct e1000_hw
*hw
= &adapter
->hw
;
195 struct e1000_reg_info
*reginfo
;
196 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
197 struct e1000_tx_desc
*tx_desc
;
202 struct e1000_buffer
*buffer_info
;
203 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
204 union e1000_rx_desc_packet_split
*rx_desc_ps
;
205 union e1000_rx_desc_extended
*rx_desc
;
215 if (!netif_msg_hw(adapter
))
218 /* Print netdevice Info */
220 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
221 pr_info("Device Name state trans_start last_rx\n");
222 pr_info("%-15s %016lX %016lX %016lX\n",
223 netdev
->name
, netdev
->state
, netdev
->trans_start
,
227 /* Print Registers */
228 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
229 pr_info(" Register Name Value\n");
230 for (reginfo
= (struct e1000_reg_info
*)e1000_reg_info_tbl
;
231 reginfo
->name
; reginfo
++) {
232 e1000_regdump(hw
, reginfo
);
235 /* Print Tx Ring Summary */
236 if (!netdev
|| !netif_running(netdev
))
239 dev_info(&adapter
->pdev
->dev
, "Tx Ring Summary\n");
240 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
241 buffer_info
= &tx_ring
->buffer_info
[tx_ring
->next_to_clean
];
242 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
243 0, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
244 (unsigned long long)buffer_info
->dma
,
246 buffer_info
->next_to_watch
,
247 (unsigned long long)buffer_info
->time_stamp
);
250 if (!netif_msg_tx_done(adapter
))
251 goto rx_ring_summary
;
253 dev_info(&adapter
->pdev
->dev
, "Tx Ring Dump\n");
255 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
257 * Legacy Transmit Descriptor
258 * +--------------------------------------------------------------+
259 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
260 * +--------------------------------------------------------------+
261 * 8 | Special | CSS | Status | CMD | CSO | Length |
262 * +--------------------------------------------------------------+
263 * 63 48 47 36 35 32 31 24 23 16 15 0
265 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
266 * 63 48 47 40 39 32 31 16 15 8 7 0
267 * +----------------------------------------------------------------+
268 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
269 * +----------------------------------------------------------------+
270 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
271 * +----------------------------------------------------------------+
272 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
274 * Extended Data Descriptor (DTYP=0x1)
275 * +----------------------------------------------------------------+
276 * 0 | Buffer Address [63:0] |
277 * +----------------------------------------------------------------+
278 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
279 * +----------------------------------------------------------------+
280 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
282 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
283 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
284 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
285 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
286 const char *next_desc
;
287 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
288 buffer_info
= &tx_ring
->buffer_info
[i
];
289 u0
= (struct my_u0
*)tx_desc
;
290 if (i
== tx_ring
->next_to_use
&& i
== tx_ring
->next_to_clean
)
291 next_desc
= " NTC/U";
292 else if (i
== tx_ring
->next_to_use
)
294 else if (i
== tx_ring
->next_to_clean
)
298 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
299 (!(le64_to_cpu(u0
->b
) & (1 << 29)) ? 'l' :
300 ((le64_to_cpu(u0
->b
) & (1 << 20)) ? 'd' : 'c')),
302 (unsigned long long)le64_to_cpu(u0
->a
),
303 (unsigned long long)le64_to_cpu(u0
->b
),
304 (unsigned long long)buffer_info
->dma
,
305 buffer_info
->length
, buffer_info
->next_to_watch
,
306 (unsigned long long)buffer_info
->time_stamp
,
307 buffer_info
->skb
, next_desc
);
309 if (netif_msg_pktdata(adapter
) && buffer_info
->skb
)
310 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
311 16, 1, buffer_info
->skb
->data
,
312 buffer_info
->skb
->len
, true);
315 /* Print Rx Ring Summary */
317 dev_info(&adapter
->pdev
->dev
, "Rx Ring Summary\n");
318 pr_info("Queue [NTU] [NTC]\n");
319 pr_info(" %5d %5X %5X\n",
320 0, rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
323 if (!netif_msg_rx_status(adapter
))
326 dev_info(&adapter
->pdev
->dev
, "Rx Ring Dump\n");
327 switch (adapter
->rx_ps_pages
) {
331 /* [Extended] Packet Split Receive Descriptor Format
333 * +-----------------------------------------------------+
334 * 0 | Buffer Address 0 [63:0] |
335 * +-----------------------------------------------------+
336 * 8 | Buffer Address 1 [63:0] |
337 * +-----------------------------------------------------+
338 * 16 | Buffer Address 2 [63:0] |
339 * +-----------------------------------------------------+
340 * 24 | Buffer Address 3 [63:0] |
341 * +-----------------------------------------------------+
343 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
344 /* [Extended] Receive Descriptor (Write-Back) Format
346 * 63 48 47 32 31 13 12 8 7 4 3 0
347 * +------------------------------------------------------+
348 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
349 * | Checksum | Ident | | Queue | | Type |
350 * +------------------------------------------------------+
351 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
352 * +------------------------------------------------------+
353 * 63 48 47 32 31 20 19 0
355 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
356 for (i
= 0; i
< rx_ring
->count
; i
++) {
357 const char *next_desc
;
358 buffer_info
= &rx_ring
->buffer_info
[i
];
359 rx_desc_ps
= E1000_RX_DESC_PS(*rx_ring
, i
);
360 u1
= (struct my_u1
*)rx_desc_ps
;
362 le32_to_cpu(rx_desc_ps
->wb
.middle
.status_error
);
364 if (i
== rx_ring
->next_to_use
)
366 else if (i
== rx_ring
->next_to_clean
)
371 if (staterr
& E1000_RXD_STAT_DD
) {
372 /* Descriptor Done */
373 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
375 (unsigned long long)le64_to_cpu(u1
->a
),
376 (unsigned long long)le64_to_cpu(u1
->b
),
377 (unsigned long long)le64_to_cpu(u1
->c
),
378 (unsigned long long)le64_to_cpu(u1
->d
),
379 buffer_info
->skb
, next_desc
);
381 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
383 (unsigned long long)le64_to_cpu(u1
->a
),
384 (unsigned long long)le64_to_cpu(u1
->b
),
385 (unsigned long long)le64_to_cpu(u1
->c
),
386 (unsigned long long)le64_to_cpu(u1
->d
),
387 (unsigned long long)buffer_info
->dma
,
388 buffer_info
->skb
, next_desc
);
390 if (netif_msg_pktdata(adapter
))
391 e1000e_dump_ps_pages(adapter
,
398 /* Extended Receive Descriptor (Read) Format
400 * +-----------------------------------------------------+
401 * 0 | Buffer Address [63:0] |
402 * +-----------------------------------------------------+
404 * +-----------------------------------------------------+
406 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
407 /* Extended Receive Descriptor (Write-Back) Format
409 * 63 48 47 32 31 24 23 4 3 0
410 * +------------------------------------------------------+
412 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
413 * | Packet | IP | | | Type |
414 * | Checksum | Ident | | | |
415 * +------------------------------------------------------+
416 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
417 * +------------------------------------------------------+
418 * 63 48 47 32 31 20 19 0
420 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
422 for (i
= 0; i
< rx_ring
->count
; i
++) {
423 const char *next_desc
;
425 buffer_info
= &rx_ring
->buffer_info
[i
];
426 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
427 u1
= (struct my_u1
*)rx_desc
;
428 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
430 if (i
== rx_ring
->next_to_use
)
432 else if (i
== rx_ring
->next_to_clean
)
437 if (staterr
& E1000_RXD_STAT_DD
) {
438 /* Descriptor Done */
439 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
441 (unsigned long long)le64_to_cpu(u1
->a
),
442 (unsigned long long)le64_to_cpu(u1
->b
),
443 buffer_info
->skb
, next_desc
);
445 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
447 (unsigned long long)le64_to_cpu(u1
->a
),
448 (unsigned long long)le64_to_cpu(u1
->b
),
449 (unsigned long long)buffer_info
->dma
,
450 buffer_info
->skb
, next_desc
);
452 if (netif_msg_pktdata(adapter
) &&
454 print_hex_dump(KERN_INFO
, "",
455 DUMP_PREFIX_ADDRESS
, 16,
457 buffer_info
->skb
->data
,
458 adapter
->rx_buffer_len
,
466 * e1000_desc_unused - calculate if we have unused descriptors
468 static int e1000_desc_unused(struct e1000_ring
*ring
)
470 if (ring
->next_to_clean
> ring
->next_to_use
)
471 return ring
->next_to_clean
- ring
->next_to_use
- 1;
473 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
477 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
478 * @adapter: board private structure
479 * @hwtstamps: time stamp structure to update
480 * @systim: unsigned 64bit system time value.
482 * Convert the system time value stored in the RX/TXSTMP registers into a
483 * hwtstamp which can be used by the upper level time stamping functions.
485 * The 'systim_lock' spinlock is used to protect the consistency of the
486 * system time value. This is needed because reading the 64 bit time
487 * value involves reading two 32 bit registers. The first read latches the
490 static void e1000e_systim_to_hwtstamp(struct e1000_adapter
*adapter
,
491 struct skb_shared_hwtstamps
*hwtstamps
,
497 spin_lock_irqsave(&adapter
->systim_lock
, flags
);
498 ns
= timecounter_cyc2time(&adapter
->tc
, systim
);
499 spin_unlock_irqrestore(&adapter
->systim_lock
, flags
);
501 memset(hwtstamps
, 0, sizeof(*hwtstamps
));
502 hwtstamps
->hwtstamp
= ns_to_ktime(ns
);
506 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
507 * @adapter: board private structure
508 * @status: descriptor extended error and status field
509 * @skb: particular skb to include time stamp
511 * If the time stamp is valid, convert it into the timecounter ns value
512 * and store that result into the shhwtstamps structure which is passed
513 * up the network stack.
515 static void e1000e_rx_hwtstamp(struct e1000_adapter
*adapter
, u32 status
,
518 struct e1000_hw
*hw
= &adapter
->hw
;
521 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) ||
522 !(status
& E1000_RXDEXT_STATERR_TST
) ||
523 !(er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
))
526 /* The Rx time stamp registers contain the time stamp. No other
527 * received packet will be time stamped until the Rx time stamp
528 * registers are read. Because only one packet can be time stamped
529 * at a time, the register values must belong to this packet and
530 * therefore none of the other additional attributes need to be
533 rxstmp
= (u64
)er32(RXSTMPL
);
534 rxstmp
|= (u64
)er32(RXSTMPH
) << 32;
535 e1000e_systim_to_hwtstamp(adapter
, skb_hwtstamps(skb
), rxstmp
);
537 adapter
->flags2
&= ~FLAG2_CHECK_RX_HWTSTAMP
;
541 * e1000_receive_skb - helper function to handle Rx indications
542 * @adapter: board private structure
543 * @staterr: descriptor extended error and status field as written by hardware
544 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
545 * @skb: pointer to sk_buff to be indicated to stack
547 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
548 struct net_device
*netdev
, struct sk_buff
*skb
,
549 u32 staterr
, __le16 vlan
)
551 u16 tag
= le16_to_cpu(vlan
);
553 e1000e_rx_hwtstamp(adapter
, staterr
, skb
);
555 skb
->protocol
= eth_type_trans(skb
, netdev
);
557 if (staterr
& E1000_RXD_STAT_VP
)
558 __vlan_hwaccel_put_tag(skb
, tag
);
560 napi_gro_receive(&adapter
->napi
, skb
);
564 * e1000_rx_checksum - Receive Checksum Offload
565 * @adapter: board private structure
566 * @status_err: receive descriptor status and error fields
567 * @csum: receive descriptor csum field
568 * @sk_buff: socket buffer with received data
570 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
573 u16 status
= (u16
)status_err
;
574 u8 errors
= (u8
)(status_err
>> 24);
576 skb_checksum_none_assert(skb
);
578 /* Rx checksum disabled */
579 if (!(adapter
->netdev
->features
& NETIF_F_RXCSUM
))
582 /* Ignore Checksum bit is set */
583 if (status
& E1000_RXD_STAT_IXSM
)
586 /* TCP/UDP checksum error bit or IP checksum error bit is set */
587 if (errors
& (E1000_RXD_ERR_TCPE
| E1000_RXD_ERR_IPE
)) {
588 /* let the stack verify checksum errors */
589 adapter
->hw_csum_err
++;
593 /* TCP/UDP Checksum has not been calculated */
594 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
597 /* It must be a TCP or UDP packet with a valid checksum */
598 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
599 adapter
->hw_csum_good
++;
602 static void e1000e_update_rdt_wa(struct e1000_ring
*rx_ring
, unsigned int i
)
604 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
605 struct e1000_hw
*hw
= &adapter
->hw
;
606 s32 ret_val
= __ew32_prepare(hw
);
608 writel(i
, rx_ring
->tail
);
610 if (unlikely(!ret_val
&& (i
!= readl(rx_ring
->tail
)))) {
611 u32 rctl
= er32(RCTL
);
612 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
613 e_err("ME firmware caused invalid RDT - resetting\n");
614 schedule_work(&adapter
->reset_task
);
618 static void e1000e_update_tdt_wa(struct e1000_ring
*tx_ring
, unsigned int i
)
620 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
621 struct e1000_hw
*hw
= &adapter
->hw
;
622 s32 ret_val
= __ew32_prepare(hw
);
624 writel(i
, tx_ring
->tail
);
626 if (unlikely(!ret_val
&& (i
!= readl(tx_ring
->tail
)))) {
627 u32 tctl
= er32(TCTL
);
628 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
629 e_err("ME firmware caused invalid TDT - resetting\n");
630 schedule_work(&adapter
->reset_task
);
635 * e1000_alloc_rx_buffers - Replace used receive buffers
636 * @rx_ring: Rx descriptor ring
638 static void e1000_alloc_rx_buffers(struct e1000_ring
*rx_ring
,
639 int cleaned_count
, gfp_t gfp
)
641 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
642 struct net_device
*netdev
= adapter
->netdev
;
643 struct pci_dev
*pdev
= adapter
->pdev
;
644 union e1000_rx_desc_extended
*rx_desc
;
645 struct e1000_buffer
*buffer_info
;
648 unsigned int bufsz
= adapter
->rx_buffer_len
;
650 i
= rx_ring
->next_to_use
;
651 buffer_info
= &rx_ring
->buffer_info
[i
];
653 while (cleaned_count
--) {
654 skb
= buffer_info
->skb
;
660 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
662 /* Better luck next round */
663 adapter
->alloc_rx_buff_failed
++;
667 buffer_info
->skb
= skb
;
669 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
670 adapter
->rx_buffer_len
,
672 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
673 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
674 adapter
->rx_dma_failed
++;
678 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
679 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
681 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
682 /* Force memory writes to complete before letting h/w
683 * know there are new descriptors to fetch. (Only
684 * applicable for weak-ordered memory model archs,
688 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
689 e1000e_update_rdt_wa(rx_ring
, i
);
691 writel(i
, rx_ring
->tail
);
694 if (i
== rx_ring
->count
)
696 buffer_info
= &rx_ring
->buffer_info
[i
];
699 rx_ring
->next_to_use
= i
;
703 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
704 * @rx_ring: Rx descriptor ring
706 static void e1000_alloc_rx_buffers_ps(struct e1000_ring
*rx_ring
,
707 int cleaned_count
, gfp_t gfp
)
709 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
710 struct net_device
*netdev
= adapter
->netdev
;
711 struct pci_dev
*pdev
= adapter
->pdev
;
712 union e1000_rx_desc_packet_split
*rx_desc
;
713 struct e1000_buffer
*buffer_info
;
714 struct e1000_ps_page
*ps_page
;
718 i
= rx_ring
->next_to_use
;
719 buffer_info
= &rx_ring
->buffer_info
[i
];
721 while (cleaned_count
--) {
722 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
724 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
725 ps_page
= &buffer_info
->ps_pages
[j
];
726 if (j
>= adapter
->rx_ps_pages
) {
727 /* all unused desc entries get hw null ptr */
728 rx_desc
->read
.buffer_addr
[j
+ 1] =
732 if (!ps_page
->page
) {
733 ps_page
->page
= alloc_page(gfp
);
734 if (!ps_page
->page
) {
735 adapter
->alloc_rx_buff_failed
++;
738 ps_page
->dma
= dma_map_page(&pdev
->dev
,
742 if (dma_mapping_error(&pdev
->dev
,
744 dev_err(&adapter
->pdev
->dev
,
745 "Rx DMA page map failed\n");
746 adapter
->rx_dma_failed
++;
750 /* Refresh the desc even if buffer_addrs
751 * didn't change because each write-back
754 rx_desc
->read
.buffer_addr
[j
+ 1] =
755 cpu_to_le64(ps_page
->dma
);
758 skb
= __netdev_alloc_skb_ip_align(netdev
,
759 adapter
->rx_ps_bsize0
,
763 adapter
->alloc_rx_buff_failed
++;
767 buffer_info
->skb
= skb
;
768 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
769 adapter
->rx_ps_bsize0
,
771 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
772 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
773 adapter
->rx_dma_failed
++;
775 dev_kfree_skb_any(skb
);
776 buffer_info
->skb
= NULL
;
780 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
782 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
783 /* Force memory writes to complete before letting h/w
784 * know there are new descriptors to fetch. (Only
785 * applicable for weak-ordered memory model archs,
789 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
790 e1000e_update_rdt_wa(rx_ring
, i
<< 1);
792 writel(i
<< 1, rx_ring
->tail
);
796 if (i
== rx_ring
->count
)
798 buffer_info
= &rx_ring
->buffer_info
[i
];
802 rx_ring
->next_to_use
= i
;
806 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
807 * @rx_ring: Rx descriptor ring
808 * @cleaned_count: number of buffers to allocate this pass
811 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring
*rx_ring
,
812 int cleaned_count
, gfp_t gfp
)
814 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
815 struct net_device
*netdev
= adapter
->netdev
;
816 struct pci_dev
*pdev
= adapter
->pdev
;
817 union e1000_rx_desc_extended
*rx_desc
;
818 struct e1000_buffer
*buffer_info
;
821 unsigned int bufsz
= 256 - 16; /* for skb_reserve */
823 i
= rx_ring
->next_to_use
;
824 buffer_info
= &rx_ring
->buffer_info
[i
];
826 while (cleaned_count
--) {
827 skb
= buffer_info
->skb
;
833 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
834 if (unlikely(!skb
)) {
835 /* Better luck next round */
836 adapter
->alloc_rx_buff_failed
++;
840 buffer_info
->skb
= skb
;
842 /* allocate a new page if necessary */
843 if (!buffer_info
->page
) {
844 buffer_info
->page
= alloc_page(gfp
);
845 if (unlikely(!buffer_info
->page
)) {
846 adapter
->alloc_rx_buff_failed
++;
851 if (!buffer_info
->dma
)
852 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
853 buffer_info
->page
, 0,
857 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
858 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
860 if (unlikely(++i
== rx_ring
->count
))
862 buffer_info
= &rx_ring
->buffer_info
[i
];
865 if (likely(rx_ring
->next_to_use
!= i
)) {
866 rx_ring
->next_to_use
= i
;
867 if (unlikely(i
-- == 0))
868 i
= (rx_ring
->count
- 1);
870 /* Force memory writes to complete before letting h/w
871 * know there are new descriptors to fetch. (Only
872 * applicable for weak-ordered memory model archs,
876 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
877 e1000e_update_rdt_wa(rx_ring
, i
);
879 writel(i
, rx_ring
->tail
);
883 static inline void e1000_rx_hash(struct net_device
*netdev
, __le32 rss
,
886 if (netdev
->features
& NETIF_F_RXHASH
)
887 skb
->rxhash
= le32_to_cpu(rss
);
891 * e1000_clean_rx_irq - Send received data up the network stack
892 * @rx_ring: Rx descriptor ring
894 * the return value indicates whether actual cleaning was done, there
895 * is no guarantee that everything was cleaned
897 static bool e1000_clean_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
900 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
901 struct net_device
*netdev
= adapter
->netdev
;
902 struct pci_dev
*pdev
= adapter
->pdev
;
903 struct e1000_hw
*hw
= &adapter
->hw
;
904 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
905 struct e1000_buffer
*buffer_info
, *next_buffer
;
908 int cleaned_count
= 0;
909 bool cleaned
= false;
910 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
912 i
= rx_ring
->next_to_clean
;
913 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
914 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
915 buffer_info
= &rx_ring
->buffer_info
[i
];
917 while (staterr
& E1000_RXD_STAT_DD
) {
920 if (*work_done
>= work_to_do
)
923 rmb(); /* read descriptor and rx_buffer_info after status DD */
925 skb
= buffer_info
->skb
;
926 buffer_info
->skb
= NULL
;
928 prefetch(skb
->data
- NET_IP_ALIGN
);
931 if (i
== rx_ring
->count
)
933 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
936 next_buffer
= &rx_ring
->buffer_info
[i
];
940 dma_unmap_single(&pdev
->dev
,
942 adapter
->rx_buffer_len
,
944 buffer_info
->dma
= 0;
946 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
948 /* !EOP means multiple descriptors were used to store a single
949 * packet, if that's the case we need to toss it. In fact, we
950 * need to toss every packet with the EOP bit clear and the
951 * next frame that _does_ have the EOP bit set, as it is by
952 * definition only a frame fragment
954 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
)))
955 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
957 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
958 /* All receives must fit into a single buffer */
959 e_dbg("Receive packet consumed multiple buffers\n");
961 buffer_info
->skb
= skb
;
962 if (staterr
& E1000_RXD_STAT_EOP
)
963 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
967 if (unlikely((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
968 !(netdev
->features
& NETIF_F_RXALL
))) {
970 buffer_info
->skb
= skb
;
974 /* adjust length to remove Ethernet CRC */
975 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
976 /* If configured to store CRC, don't subtract FCS,
977 * but keep the FCS bytes out of the total_rx_bytes
980 if (netdev
->features
& NETIF_F_RXFCS
)
986 total_rx_bytes
+= length
;
989 /* code added for copybreak, this should improve
990 * performance for small packets with large amounts
991 * of reassembly being done in the stack
993 if (length
< copybreak
) {
994 struct sk_buff
*new_skb
=
995 netdev_alloc_skb_ip_align(netdev
, length
);
997 skb_copy_to_linear_data_offset(new_skb
,
1003 /* save the skb in buffer_info as good */
1004 buffer_info
->skb
= skb
;
1007 /* else just continue with the old one */
1009 /* end copybreak code */
1010 skb_put(skb
, length
);
1012 /* Receive Checksum Offload */
1013 e1000_rx_checksum(adapter
, staterr
, skb
);
1015 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1017 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1018 rx_desc
->wb
.upper
.vlan
);
1021 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1023 /* return some buffers to hardware, one at a time is too slow */
1024 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1025 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1030 /* use prefetched values */
1032 buffer_info
= next_buffer
;
1034 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1036 rx_ring
->next_to_clean
= i
;
1038 cleaned_count
= e1000_desc_unused(rx_ring
);
1040 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1042 adapter
->total_rx_bytes
+= total_rx_bytes
;
1043 adapter
->total_rx_packets
+= total_rx_packets
;
1047 static void e1000_put_txbuf(struct e1000_ring
*tx_ring
,
1048 struct e1000_buffer
*buffer_info
)
1050 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1052 if (buffer_info
->dma
) {
1053 if (buffer_info
->mapped_as_page
)
1054 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1055 buffer_info
->length
, DMA_TO_DEVICE
);
1057 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1058 buffer_info
->length
, DMA_TO_DEVICE
);
1059 buffer_info
->dma
= 0;
1061 if (buffer_info
->skb
) {
1062 dev_kfree_skb_any(buffer_info
->skb
);
1063 buffer_info
->skb
= NULL
;
1065 buffer_info
->time_stamp
= 0;
1068 static void e1000_print_hw_hang(struct work_struct
*work
)
1070 struct e1000_adapter
*adapter
= container_of(work
,
1071 struct e1000_adapter
,
1073 struct net_device
*netdev
= adapter
->netdev
;
1074 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1075 unsigned int i
= tx_ring
->next_to_clean
;
1076 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1077 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1078 struct e1000_hw
*hw
= &adapter
->hw
;
1079 u16 phy_status
, phy_1000t_status
, phy_ext_status
;
1082 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1085 if (!adapter
->tx_hang_recheck
&&
1086 (adapter
->flags2
& FLAG2_DMA_BURST
)) {
1087 /* May be block on write-back, flush and detect again
1088 * flush pending descriptor writebacks to memory
1090 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
1091 /* execute the writes immediately */
1093 /* Due to rare timing issues, write to TIDV again to ensure
1094 * the write is successful
1096 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
1097 /* execute the writes immediately */
1099 adapter
->tx_hang_recheck
= true;
1102 /* Real hang detected */
1103 adapter
->tx_hang_recheck
= false;
1104 netif_stop_queue(netdev
);
1106 e1e_rphy(hw
, MII_BMSR
, &phy_status
);
1107 e1e_rphy(hw
, MII_STAT1000
, &phy_1000t_status
);
1108 e1e_rphy(hw
, MII_ESTATUS
, &phy_ext_status
);
1110 pci_read_config_word(adapter
->pdev
, PCI_STATUS
, &pci_status
);
1112 /* detected Hardware unit hang */
1113 e_err("Detected Hardware Unit Hang:\n"
1116 " next_to_use <%x>\n"
1117 " next_to_clean <%x>\n"
1118 "buffer_info[next_to_clean]:\n"
1119 " time_stamp <%lx>\n"
1120 " next_to_watch <%x>\n"
1122 " next_to_watch.status <%x>\n"
1125 "PHY 1000BASE-T Status <%x>\n"
1126 "PHY Extended Status <%x>\n"
1127 "PCI Status <%x>\n",
1128 readl(tx_ring
->head
),
1129 readl(tx_ring
->tail
),
1130 tx_ring
->next_to_use
,
1131 tx_ring
->next_to_clean
,
1132 tx_ring
->buffer_info
[eop
].time_stamp
,
1135 eop_desc
->upper
.fields
.status
,
1142 /* Suggest workaround for known h/w issue */
1143 if ((hw
->mac
.type
== e1000_pchlan
) && (er32(CTRL
) & E1000_CTRL_TFCE
))
1144 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1148 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1149 * @work: pointer to work struct
1151 * This work function polls the TSYNCTXCTL valid bit to determine when a
1152 * timestamp has been taken for the current stored skb. The timestamp must
1153 * be for this skb because only one such packet is allowed in the queue.
1155 static void e1000e_tx_hwtstamp_work(struct work_struct
*work
)
1157 struct e1000_adapter
*adapter
= container_of(work
, struct e1000_adapter
,
1159 struct e1000_hw
*hw
= &adapter
->hw
;
1161 if (!adapter
->tx_hwtstamp_skb
)
1164 if (er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_VALID
) {
1165 struct skb_shared_hwtstamps shhwtstamps
;
1168 txstmp
= er32(TXSTMPL
);
1169 txstmp
|= (u64
)er32(TXSTMPH
) << 32;
1171 e1000e_systim_to_hwtstamp(adapter
, &shhwtstamps
, txstmp
);
1173 skb_tstamp_tx(adapter
->tx_hwtstamp_skb
, &shhwtstamps
);
1174 dev_kfree_skb_any(adapter
->tx_hwtstamp_skb
);
1175 adapter
->tx_hwtstamp_skb
= NULL
;
1177 /* reschedule to check later */
1178 schedule_work(&adapter
->tx_hwtstamp_work
);
1183 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1184 * @tx_ring: Tx descriptor ring
1186 * the return value indicates whether actual cleaning was done, there
1187 * is no guarantee that everything was cleaned
1189 static bool e1000_clean_tx_irq(struct e1000_ring
*tx_ring
)
1191 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
1192 struct net_device
*netdev
= adapter
->netdev
;
1193 struct e1000_hw
*hw
= &adapter
->hw
;
1194 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
1195 struct e1000_buffer
*buffer_info
;
1196 unsigned int i
, eop
;
1197 unsigned int count
= 0;
1198 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
1199 unsigned int bytes_compl
= 0, pkts_compl
= 0;
1201 i
= tx_ring
->next_to_clean
;
1202 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1203 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1205 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
1206 (count
< tx_ring
->count
)) {
1207 bool cleaned
= false;
1208 rmb(); /* read buffer_info after eop_desc */
1209 for (; !cleaned
; count
++) {
1210 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1211 buffer_info
= &tx_ring
->buffer_info
[i
];
1212 cleaned
= (i
== eop
);
1215 total_tx_packets
+= buffer_info
->segs
;
1216 total_tx_bytes
+= buffer_info
->bytecount
;
1217 if (buffer_info
->skb
) {
1218 bytes_compl
+= buffer_info
->skb
->len
;
1223 e1000_put_txbuf(tx_ring
, buffer_info
);
1224 tx_desc
->upper
.data
= 0;
1227 if (i
== tx_ring
->count
)
1231 if (i
== tx_ring
->next_to_use
)
1233 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1234 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1237 tx_ring
->next_to_clean
= i
;
1239 netdev_completed_queue(netdev
, pkts_compl
, bytes_compl
);
1241 #define TX_WAKE_THRESHOLD 32
1242 if (count
&& netif_carrier_ok(netdev
) &&
1243 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
1244 /* Make sure that anybody stopping the queue after this
1245 * sees the new next_to_clean.
1249 if (netif_queue_stopped(netdev
) &&
1250 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
1251 netif_wake_queue(netdev
);
1252 ++adapter
->restart_queue
;
1256 if (adapter
->detect_tx_hung
) {
1257 /* Detect a transmit hang in hardware, this serializes the
1258 * check with the clearing of time_stamp and movement of i
1260 adapter
->detect_tx_hung
= false;
1261 if (tx_ring
->buffer_info
[i
].time_stamp
&&
1262 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
1263 + (adapter
->tx_timeout_factor
* HZ
)) &&
1264 !(er32(STATUS
) & E1000_STATUS_TXOFF
))
1265 schedule_work(&adapter
->print_hang_task
);
1267 adapter
->tx_hang_recheck
= false;
1269 adapter
->total_tx_bytes
+= total_tx_bytes
;
1270 adapter
->total_tx_packets
+= total_tx_packets
;
1271 return count
< tx_ring
->count
;
1275 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1276 * @rx_ring: Rx descriptor ring
1278 * the return value indicates whether actual cleaning was done, there
1279 * is no guarantee that everything was cleaned
1281 static bool e1000_clean_rx_irq_ps(struct e1000_ring
*rx_ring
, int *work_done
,
1284 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1285 struct e1000_hw
*hw
= &adapter
->hw
;
1286 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
1287 struct net_device
*netdev
= adapter
->netdev
;
1288 struct pci_dev
*pdev
= adapter
->pdev
;
1289 struct e1000_buffer
*buffer_info
, *next_buffer
;
1290 struct e1000_ps_page
*ps_page
;
1291 struct sk_buff
*skb
;
1293 u32 length
, staterr
;
1294 int cleaned_count
= 0;
1295 bool cleaned
= false;
1296 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1298 i
= rx_ring
->next_to_clean
;
1299 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
1300 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1301 buffer_info
= &rx_ring
->buffer_info
[i
];
1303 while (staterr
& E1000_RXD_STAT_DD
) {
1304 if (*work_done
>= work_to_do
)
1307 skb
= buffer_info
->skb
;
1308 rmb(); /* read descriptor and rx_buffer_info after status DD */
1310 /* in the packet split case this is header only */
1311 prefetch(skb
->data
- NET_IP_ALIGN
);
1314 if (i
== rx_ring
->count
)
1316 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
1319 next_buffer
= &rx_ring
->buffer_info
[i
];
1323 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1324 adapter
->rx_ps_bsize0
, DMA_FROM_DEVICE
);
1325 buffer_info
->dma
= 0;
1327 /* see !EOP comment in other Rx routine */
1328 if (!(staterr
& E1000_RXD_STAT_EOP
))
1329 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
1331 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
1332 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1333 dev_kfree_skb_irq(skb
);
1334 if (staterr
& E1000_RXD_STAT_EOP
)
1335 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1339 if (unlikely((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
1340 !(netdev
->features
& NETIF_F_RXALL
))) {
1341 dev_kfree_skb_irq(skb
);
1345 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
1348 e_dbg("Last part of the packet spanning multiple descriptors\n");
1349 dev_kfree_skb_irq(skb
);
1354 skb_put(skb
, length
);
1357 /* this looks ugly, but it seems compiler issues make
1358 * it more efficient than reusing j
1360 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
1362 /* page alloc/put takes too long and effects small
1363 * packet throughput, so unsplit small packets and
1364 * save the alloc/put only valid in softirq (napi)
1365 * context to call kmap_*
1367 if (l1
&& (l1
<= copybreak
) &&
1368 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
1371 ps_page
= &buffer_info
->ps_pages
[0];
1373 /* there is no documentation about how to call
1374 * kmap_atomic, so we can't hold the mapping
1377 dma_sync_single_for_cpu(&pdev
->dev
,
1381 vaddr
= kmap_atomic(ps_page
->page
);
1382 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
1383 kunmap_atomic(vaddr
);
1384 dma_sync_single_for_device(&pdev
->dev
,
1389 /* remove the CRC */
1390 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1391 if (!(netdev
->features
& NETIF_F_RXFCS
))
1400 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1401 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
1405 ps_page
= &buffer_info
->ps_pages
[j
];
1406 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1409 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
1410 ps_page
->page
= NULL
;
1412 skb
->data_len
+= length
;
1413 skb
->truesize
+= PAGE_SIZE
;
1416 /* strip the ethernet crc, problem is we're using pages now so
1417 * this whole operation can get a little cpu intensive
1419 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
)) {
1420 if (!(netdev
->features
& NETIF_F_RXFCS
))
1421 pskb_trim(skb
, skb
->len
- 4);
1425 total_rx_bytes
+= skb
->len
;
1428 e1000_rx_checksum(adapter
, staterr
, skb
);
1430 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1432 if (rx_desc
->wb
.upper
.header_status
&
1433 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
1434 adapter
->rx_hdr_split
++;
1436 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1437 rx_desc
->wb
.middle
.vlan
);
1440 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
1441 buffer_info
->skb
= NULL
;
1443 /* return some buffers to hardware, one at a time is too slow */
1444 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1445 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1450 /* use prefetched values */
1452 buffer_info
= next_buffer
;
1454 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1456 rx_ring
->next_to_clean
= i
;
1458 cleaned_count
= e1000_desc_unused(rx_ring
);
1460 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1462 adapter
->total_rx_bytes
+= total_rx_bytes
;
1463 adapter
->total_rx_packets
+= total_rx_packets
;
1468 * e1000_consume_page - helper function
1470 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
1475 skb
->data_len
+= length
;
1476 skb
->truesize
+= PAGE_SIZE
;
1480 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1481 * @adapter: board private structure
1483 * the return value indicates whether actual cleaning was done, there
1484 * is no guarantee that everything was cleaned
1486 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring
*rx_ring
, int *work_done
,
1489 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1490 struct net_device
*netdev
= adapter
->netdev
;
1491 struct pci_dev
*pdev
= adapter
->pdev
;
1492 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
1493 struct e1000_buffer
*buffer_info
, *next_buffer
;
1494 u32 length
, staterr
;
1496 int cleaned_count
= 0;
1497 bool cleaned
= false;
1498 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
1500 i
= rx_ring
->next_to_clean
;
1501 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1502 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1503 buffer_info
= &rx_ring
->buffer_info
[i
];
1505 while (staterr
& E1000_RXD_STAT_DD
) {
1506 struct sk_buff
*skb
;
1508 if (*work_done
>= work_to_do
)
1511 rmb(); /* read descriptor and rx_buffer_info after status DD */
1513 skb
= buffer_info
->skb
;
1514 buffer_info
->skb
= NULL
;
1517 if (i
== rx_ring
->count
)
1519 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1522 next_buffer
= &rx_ring
->buffer_info
[i
];
1526 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
, PAGE_SIZE
,
1528 buffer_info
->dma
= 0;
1530 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
1532 /* errors is only valid for DD + EOP descriptors */
1533 if (unlikely((staterr
& E1000_RXD_STAT_EOP
) &&
1534 ((staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) &&
1535 !(netdev
->features
& NETIF_F_RXALL
)))) {
1536 /* recycle both page and skb */
1537 buffer_info
->skb
= skb
;
1538 /* an error means any chain goes out the window too */
1539 if (rx_ring
->rx_skb_top
)
1540 dev_kfree_skb_irq(rx_ring
->rx_skb_top
);
1541 rx_ring
->rx_skb_top
= NULL
;
1545 #define rxtop (rx_ring->rx_skb_top)
1546 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
1547 /* this descriptor is only the beginning (or middle) */
1549 /* this is the beginning of a chain */
1551 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
1554 /* this is the middle of a chain */
1555 skb_fill_page_desc(rxtop
,
1556 skb_shinfo(rxtop
)->nr_frags
,
1557 buffer_info
->page
, 0, length
);
1558 /* re-use the skb, only consumed the page */
1559 buffer_info
->skb
= skb
;
1561 e1000_consume_page(buffer_info
, rxtop
, length
);
1565 /* end of the chain */
1566 skb_fill_page_desc(rxtop
,
1567 skb_shinfo(rxtop
)->nr_frags
,
1568 buffer_info
->page
, 0, length
);
1569 /* re-use the current skb, we only consumed the
1572 buffer_info
->skb
= skb
;
1575 e1000_consume_page(buffer_info
, skb
, length
);
1577 /* no chain, got EOP, this buf is the packet
1578 * copybreak to save the put_page/alloc_page
1580 if (length
<= copybreak
&&
1581 skb_tailroom(skb
) >= length
) {
1583 vaddr
= kmap_atomic(buffer_info
->page
);
1584 memcpy(skb_tail_pointer(skb
), vaddr
,
1586 kunmap_atomic(vaddr
);
1587 /* re-use the page, so don't erase
1590 skb_put(skb
, length
);
1592 skb_fill_page_desc(skb
, 0,
1593 buffer_info
->page
, 0,
1595 e1000_consume_page(buffer_info
, skb
,
1601 /* Receive Checksum Offload */
1602 e1000_rx_checksum(adapter
, staterr
, skb
);
1604 e1000_rx_hash(netdev
, rx_desc
->wb
.lower
.hi_dword
.rss
, skb
);
1606 /* probably a little skewed due to removing CRC */
1607 total_rx_bytes
+= skb
->len
;
1610 /* eth type trans needs skb->data to point to something */
1611 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1612 e_err("pskb_may_pull failed.\n");
1613 dev_kfree_skb_irq(skb
);
1617 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1618 rx_desc
->wb
.upper
.vlan
);
1621 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1623 /* return some buffers to hardware, one at a time is too slow */
1624 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1625 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
,
1630 /* use prefetched values */
1632 buffer_info
= next_buffer
;
1634 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1636 rx_ring
->next_to_clean
= i
;
1638 cleaned_count
= e1000_desc_unused(rx_ring
);
1640 adapter
->alloc_rx_buf(rx_ring
, cleaned_count
, GFP_ATOMIC
);
1642 adapter
->total_rx_bytes
+= total_rx_bytes
;
1643 adapter
->total_rx_packets
+= total_rx_packets
;
1648 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1649 * @rx_ring: Rx descriptor ring
1651 static void e1000_clean_rx_ring(struct e1000_ring
*rx_ring
)
1653 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
1654 struct e1000_buffer
*buffer_info
;
1655 struct e1000_ps_page
*ps_page
;
1656 struct pci_dev
*pdev
= adapter
->pdev
;
1659 /* Free all the Rx ring sk_buffs */
1660 for (i
= 0; i
< rx_ring
->count
; i
++) {
1661 buffer_info
= &rx_ring
->buffer_info
[i
];
1662 if (buffer_info
->dma
) {
1663 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1664 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1665 adapter
->rx_buffer_len
,
1667 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1668 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
1671 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1672 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1673 adapter
->rx_ps_bsize0
,
1675 buffer_info
->dma
= 0;
1678 if (buffer_info
->page
) {
1679 put_page(buffer_info
->page
);
1680 buffer_info
->page
= NULL
;
1683 if (buffer_info
->skb
) {
1684 dev_kfree_skb(buffer_info
->skb
);
1685 buffer_info
->skb
= NULL
;
1688 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1689 ps_page
= &buffer_info
->ps_pages
[j
];
1692 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1695 put_page(ps_page
->page
);
1696 ps_page
->page
= NULL
;
1700 /* there also may be some cached data from a chained receive */
1701 if (rx_ring
->rx_skb_top
) {
1702 dev_kfree_skb(rx_ring
->rx_skb_top
);
1703 rx_ring
->rx_skb_top
= NULL
;
1706 /* Zero out the descriptor ring */
1707 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1709 rx_ring
->next_to_clean
= 0;
1710 rx_ring
->next_to_use
= 0;
1711 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1713 writel(0, rx_ring
->head
);
1714 if (rx_ring
->adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
1715 e1000e_update_rdt_wa(rx_ring
, 0);
1717 writel(0, rx_ring
->tail
);
1720 static void e1000e_downshift_workaround(struct work_struct
*work
)
1722 struct e1000_adapter
*adapter
= container_of(work
,
1723 struct e1000_adapter
, downshift_task
);
1725 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1728 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1732 * e1000_intr_msi - Interrupt Handler
1733 * @irq: interrupt number
1734 * @data: pointer to a network interface device structure
1736 static irqreturn_t
e1000_intr_msi(int __always_unused irq
, void *data
)
1738 struct net_device
*netdev
= data
;
1739 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1740 struct e1000_hw
*hw
= &adapter
->hw
;
1741 u32 icr
= er32(ICR
);
1743 /* read ICR disables interrupts using IAM */
1744 if (icr
& E1000_ICR_LSC
) {
1745 hw
->mac
.get_link_status
= true;
1746 /* ICH8 workaround-- Call gig speed drop workaround on cable
1747 * disconnect (LSC) before accessing any PHY registers
1749 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1750 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1751 schedule_work(&adapter
->downshift_task
);
1753 /* 80003ES2LAN workaround-- For packet buffer work-around on
1754 * link down event; disable receives here in the ISR and reset
1755 * adapter in watchdog
1757 if (netif_carrier_ok(netdev
) &&
1758 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1759 /* disable receives */
1760 u32 rctl
= er32(RCTL
);
1761 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1762 adapter
->flags
|= FLAG_RESTART_NOW
;
1764 /* guard against interrupt when we're going down */
1765 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1766 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1769 /* Reset on uncorrectable ECC error */
1770 if ((icr
& E1000_ICR_ECCER
) && (hw
->mac
.type
== e1000_pch_lpt
)) {
1771 u32 pbeccsts
= er32(PBECCSTS
);
1773 adapter
->corr_errors
+=
1774 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
1775 adapter
->uncorr_errors
+=
1776 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
1777 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
1779 /* Do the reset outside of interrupt context */
1780 schedule_work(&adapter
->reset_task
);
1782 /* return immediately since reset is imminent */
1786 if (napi_schedule_prep(&adapter
->napi
)) {
1787 adapter
->total_tx_bytes
= 0;
1788 adapter
->total_tx_packets
= 0;
1789 adapter
->total_rx_bytes
= 0;
1790 adapter
->total_rx_packets
= 0;
1791 __napi_schedule(&adapter
->napi
);
1798 * e1000_intr - Interrupt Handler
1799 * @irq: interrupt number
1800 * @data: pointer to a network interface device structure
1802 static irqreturn_t
e1000_intr(int __always_unused irq
, void *data
)
1804 struct net_device
*netdev
= data
;
1805 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1806 struct e1000_hw
*hw
= &adapter
->hw
;
1807 u32 rctl
, icr
= er32(ICR
);
1809 if (!icr
|| test_bit(__E1000_DOWN
, &adapter
->state
))
1810 return IRQ_NONE
; /* Not our interrupt */
1812 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1813 * not set, then the adapter didn't send an interrupt
1815 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1818 /* Interrupt Auto-Mask...upon reading ICR,
1819 * interrupts are masked. No need for the
1823 if (icr
& E1000_ICR_LSC
) {
1824 hw
->mac
.get_link_status
= true;
1825 /* ICH8 workaround-- Call gig speed drop workaround on cable
1826 * disconnect (LSC) before accessing any PHY registers
1828 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1829 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1830 schedule_work(&adapter
->downshift_task
);
1832 /* 80003ES2LAN workaround--
1833 * For packet buffer work-around on link down event;
1834 * disable receives here in the ISR and
1835 * reset adapter in watchdog
1837 if (netif_carrier_ok(netdev
) &&
1838 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1839 /* disable receives */
1841 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1842 adapter
->flags
|= FLAG_RESTART_NOW
;
1844 /* guard against interrupt when we're going down */
1845 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1846 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1849 /* Reset on uncorrectable ECC error */
1850 if ((icr
& E1000_ICR_ECCER
) && (hw
->mac
.type
== e1000_pch_lpt
)) {
1851 u32 pbeccsts
= er32(PBECCSTS
);
1853 adapter
->corr_errors
+=
1854 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
1855 adapter
->uncorr_errors
+=
1856 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
1857 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
1859 /* Do the reset outside of interrupt context */
1860 schedule_work(&adapter
->reset_task
);
1862 /* return immediately since reset is imminent */
1866 if (napi_schedule_prep(&adapter
->napi
)) {
1867 adapter
->total_tx_bytes
= 0;
1868 adapter
->total_tx_packets
= 0;
1869 adapter
->total_rx_bytes
= 0;
1870 adapter
->total_rx_packets
= 0;
1871 __napi_schedule(&adapter
->napi
);
1877 static irqreturn_t
e1000_msix_other(int __always_unused irq
, void *data
)
1879 struct net_device
*netdev
= data
;
1880 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1881 struct e1000_hw
*hw
= &adapter
->hw
;
1882 u32 icr
= er32(ICR
);
1884 if (!(icr
& E1000_ICR_INT_ASSERTED
)) {
1885 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1886 ew32(IMS
, E1000_IMS_OTHER
);
1890 if (icr
& adapter
->eiac_mask
)
1891 ew32(ICS
, (icr
& adapter
->eiac_mask
));
1893 if (icr
& E1000_ICR_OTHER
) {
1894 if (!(icr
& E1000_ICR_LSC
))
1895 goto no_link_interrupt
;
1896 hw
->mac
.get_link_status
= true;
1897 /* guard against interrupt when we're going down */
1898 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1899 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1903 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1904 ew32(IMS
, E1000_IMS_LSC
| E1000_IMS_OTHER
);
1909 static irqreturn_t
e1000_intr_msix_tx(int __always_unused irq
, void *data
)
1911 struct net_device
*netdev
= data
;
1912 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1913 struct e1000_hw
*hw
= &adapter
->hw
;
1914 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1917 adapter
->total_tx_bytes
= 0;
1918 adapter
->total_tx_packets
= 0;
1920 if (!e1000_clean_tx_irq(tx_ring
))
1921 /* Ring was not completely cleaned, so fire another interrupt */
1922 ew32(ICS
, tx_ring
->ims_val
);
1927 static irqreturn_t
e1000_intr_msix_rx(int __always_unused irq
, void *data
)
1929 struct net_device
*netdev
= data
;
1930 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1931 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1933 /* Write the ITR value calculated at the end of the
1934 * previous interrupt.
1936 if (rx_ring
->set_itr
) {
1937 writel(1000000000 / (rx_ring
->itr_val
* 256),
1938 rx_ring
->itr_register
);
1939 rx_ring
->set_itr
= 0;
1942 if (napi_schedule_prep(&adapter
->napi
)) {
1943 adapter
->total_rx_bytes
= 0;
1944 adapter
->total_rx_packets
= 0;
1945 __napi_schedule(&adapter
->napi
);
1951 * e1000_configure_msix - Configure MSI-X hardware
1953 * e1000_configure_msix sets up the hardware to properly
1954 * generate MSI-X interrupts.
1956 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1958 struct e1000_hw
*hw
= &adapter
->hw
;
1959 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1960 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1962 u32 ctrl_ext
, ivar
= 0;
1964 adapter
->eiac_mask
= 0;
1966 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1967 if (hw
->mac
.type
== e1000_82574
) {
1968 u32 rfctl
= er32(RFCTL
);
1969 rfctl
|= E1000_RFCTL_ACK_DIS
;
1973 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1974 /* Configure Rx vector */
1975 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
1976 adapter
->eiac_mask
|= rx_ring
->ims_val
;
1977 if (rx_ring
->itr_val
)
1978 writel(1000000000 / (rx_ring
->itr_val
* 256),
1979 rx_ring
->itr_register
);
1981 writel(1, rx_ring
->itr_register
);
1982 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
1984 /* Configure Tx vector */
1985 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
1987 if (tx_ring
->itr_val
)
1988 writel(1000000000 / (tx_ring
->itr_val
* 256),
1989 tx_ring
->itr_register
);
1991 writel(1, tx_ring
->itr_register
);
1992 adapter
->eiac_mask
|= tx_ring
->ims_val
;
1993 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
1995 /* set vector for Other Causes, e.g. link changes */
1997 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
1998 if (rx_ring
->itr_val
)
1999 writel(1000000000 / (rx_ring
->itr_val
* 256),
2000 hw
->hw_addr
+ E1000_EITR_82574(vector
));
2002 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
2004 /* Cause Tx interrupts on every write back */
2009 /* enable MSI-X PBA support */
2010 ctrl_ext
= er32(CTRL_EXT
);
2011 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
;
2013 /* Auto-Mask Other interrupts upon ICR read */
2014 ew32(IAM
, ~E1000_EIAC_MASK_82574
| E1000_IMS_OTHER
);
2015 ctrl_ext
|= E1000_CTRL_EXT_EIAME
;
2016 ew32(CTRL_EXT
, ctrl_ext
);
2020 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
2022 if (adapter
->msix_entries
) {
2023 pci_disable_msix(adapter
->pdev
);
2024 kfree(adapter
->msix_entries
);
2025 adapter
->msix_entries
= NULL
;
2026 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2027 pci_disable_msi(adapter
->pdev
);
2028 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
2033 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2035 * Attempt to configure interrupts using the best available
2036 * capabilities of the hardware and kernel.
2038 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
2043 switch (adapter
->int_mode
) {
2044 case E1000E_INT_MODE_MSIX
:
2045 if (adapter
->flags
& FLAG_HAS_MSIX
) {
2046 adapter
->num_vectors
= 3; /* RxQ0, TxQ0 and other */
2047 adapter
->msix_entries
= kcalloc(adapter
->num_vectors
,
2048 sizeof(struct msix_entry
),
2050 if (adapter
->msix_entries
) {
2051 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2052 adapter
->msix_entries
[i
].entry
= i
;
2054 err
= pci_enable_msix(adapter
->pdev
,
2055 adapter
->msix_entries
,
2056 adapter
->num_vectors
);
2060 /* MSI-X failed, so fall through and try MSI */
2061 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2062 e1000e_reset_interrupt_capability(adapter
);
2064 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2066 case E1000E_INT_MODE_MSI
:
2067 if (!pci_enable_msi(adapter
->pdev
)) {
2068 adapter
->flags
|= FLAG_MSI_ENABLED
;
2070 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2071 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2074 case E1000E_INT_MODE_LEGACY
:
2075 /* Don't do anything; this is the system default */
2079 /* store the number of vectors being used */
2080 adapter
->num_vectors
= 1;
2084 * e1000_request_msix - Initialize MSI-X interrupts
2086 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2089 static int e1000_request_msix(struct e1000_adapter
*adapter
)
2091 struct net_device
*netdev
= adapter
->netdev
;
2092 int err
= 0, vector
= 0;
2094 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
2095 snprintf(adapter
->rx_ring
->name
,
2096 sizeof(adapter
->rx_ring
->name
) - 1,
2097 "%s-rx-0", netdev
->name
);
2099 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
2100 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2101 e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
2105 adapter
->rx_ring
->itr_register
= adapter
->hw
.hw_addr
+
2106 E1000_EITR_82574(vector
);
2107 adapter
->rx_ring
->itr_val
= adapter
->itr
;
2110 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
2111 snprintf(adapter
->tx_ring
->name
,
2112 sizeof(adapter
->tx_ring
->name
) - 1,
2113 "%s-tx-0", netdev
->name
);
2115 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
2116 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2117 e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
2121 adapter
->tx_ring
->itr_register
= adapter
->hw
.hw_addr
+
2122 E1000_EITR_82574(vector
);
2123 adapter
->tx_ring
->itr_val
= adapter
->itr
;
2126 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
2127 e1000_msix_other
, 0, netdev
->name
, netdev
);
2131 e1000_configure_msix(adapter
);
2137 * e1000_request_irq - initialize interrupts
2139 * Attempts to configure interrupts using the best available
2140 * capabilities of the hardware and kernel.
2142 static int e1000_request_irq(struct e1000_adapter
*adapter
)
2144 struct net_device
*netdev
= adapter
->netdev
;
2147 if (adapter
->msix_entries
) {
2148 err
= e1000_request_msix(adapter
);
2151 /* fall back to MSI */
2152 e1000e_reset_interrupt_capability(adapter
);
2153 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2154 e1000e_set_interrupt_capability(adapter
);
2156 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2157 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi
, 0,
2158 netdev
->name
, netdev
);
2162 /* fall back to legacy interrupt */
2163 e1000e_reset_interrupt_capability(adapter
);
2164 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2167 err
= request_irq(adapter
->pdev
->irq
, e1000_intr
, IRQF_SHARED
,
2168 netdev
->name
, netdev
);
2170 e_err("Unable to allocate interrupt, Error: %d\n", err
);
2175 static void e1000_free_irq(struct e1000_adapter
*adapter
)
2177 struct net_device
*netdev
= adapter
->netdev
;
2179 if (adapter
->msix_entries
) {
2182 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2185 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2188 /* Other Causes interrupt vector */
2189 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2193 free_irq(adapter
->pdev
->irq
, netdev
);
2197 * e1000_irq_disable - Mask off interrupt generation on the NIC
2199 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
2201 struct e1000_hw
*hw
= &adapter
->hw
;
2204 if (adapter
->msix_entries
)
2205 ew32(EIAC_82574
, 0);
2208 if (adapter
->msix_entries
) {
2210 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2211 synchronize_irq(adapter
->msix_entries
[i
].vector
);
2213 synchronize_irq(adapter
->pdev
->irq
);
2218 * e1000_irq_enable - Enable default interrupt generation settings
2220 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
2222 struct e1000_hw
*hw
= &adapter
->hw
;
2224 if (adapter
->msix_entries
) {
2225 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
2226 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_OTHER
| E1000_IMS_LSC
);
2227 } else if (hw
->mac
.type
== e1000_pch_lpt
) {
2228 ew32(IMS
, IMS_ENABLE_MASK
| E1000_IMS_ECCER
);
2230 ew32(IMS
, IMS_ENABLE_MASK
);
2236 * e1000e_get_hw_control - get control of the h/w from f/w
2237 * @adapter: address of board private structure
2239 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2240 * For ASF and Pass Through versions of f/w this means that
2241 * the driver is loaded. For AMT version (only with 82573)
2242 * of the f/w this means that the network i/f is open.
2244 void e1000e_get_hw_control(struct e1000_adapter
*adapter
)
2246 struct e1000_hw
*hw
= &adapter
->hw
;
2250 /* Let firmware know the driver has taken over */
2251 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2253 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
2254 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2255 ctrl_ext
= er32(CTRL_EXT
);
2256 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
2261 * e1000e_release_hw_control - release control of the h/w to f/w
2262 * @adapter: address of board private structure
2264 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2265 * For ASF and Pass Through versions of f/w this means that the
2266 * driver is no longer loaded. For AMT version (only with 82573) i
2267 * of the f/w this means that the network i/f is closed.
2270 void e1000e_release_hw_control(struct e1000_adapter
*adapter
)
2272 struct e1000_hw
*hw
= &adapter
->hw
;
2276 /* Let firmware taken over control of h/w */
2277 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2279 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
2280 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2281 ctrl_ext
= er32(CTRL_EXT
);
2282 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
2287 * e1000_alloc_ring_dma - allocate memory for a ring structure
2289 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
2290 struct e1000_ring
*ring
)
2292 struct pci_dev
*pdev
= adapter
->pdev
;
2294 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
2303 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2304 * @tx_ring: Tx descriptor ring
2306 * Return 0 on success, negative on failure
2308 int e1000e_setup_tx_resources(struct e1000_ring
*tx_ring
)
2310 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2311 int err
= -ENOMEM
, size
;
2313 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2314 tx_ring
->buffer_info
= vzalloc(size
);
2315 if (!tx_ring
->buffer_info
)
2318 /* round up to nearest 4K */
2319 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2320 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
2322 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
2326 tx_ring
->next_to_use
= 0;
2327 tx_ring
->next_to_clean
= 0;
2331 vfree(tx_ring
->buffer_info
);
2332 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2337 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2338 * @rx_ring: Rx descriptor ring
2340 * Returns 0 on success, negative on failure
2342 int e1000e_setup_rx_resources(struct e1000_ring
*rx_ring
)
2344 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2345 struct e1000_buffer
*buffer_info
;
2346 int i
, size
, desc_len
, err
= -ENOMEM
;
2348 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2349 rx_ring
->buffer_info
= vzalloc(size
);
2350 if (!rx_ring
->buffer_info
)
2353 for (i
= 0; i
< rx_ring
->count
; i
++) {
2354 buffer_info
= &rx_ring
->buffer_info
[i
];
2355 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
2356 sizeof(struct e1000_ps_page
),
2358 if (!buffer_info
->ps_pages
)
2362 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
2364 /* Round up to nearest 4K */
2365 rx_ring
->size
= rx_ring
->count
* desc_len
;
2366 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2368 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
2372 rx_ring
->next_to_clean
= 0;
2373 rx_ring
->next_to_use
= 0;
2374 rx_ring
->rx_skb_top
= NULL
;
2379 for (i
= 0; i
< rx_ring
->count
; i
++) {
2380 buffer_info
= &rx_ring
->buffer_info
[i
];
2381 kfree(buffer_info
->ps_pages
);
2384 vfree(rx_ring
->buffer_info
);
2385 e_err("Unable to allocate memory for the receive descriptor ring\n");
2390 * e1000_clean_tx_ring - Free Tx Buffers
2391 * @tx_ring: Tx descriptor ring
2393 static void e1000_clean_tx_ring(struct e1000_ring
*tx_ring
)
2395 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2396 struct e1000_buffer
*buffer_info
;
2400 for (i
= 0; i
< tx_ring
->count
; i
++) {
2401 buffer_info
= &tx_ring
->buffer_info
[i
];
2402 e1000_put_txbuf(tx_ring
, buffer_info
);
2405 netdev_reset_queue(adapter
->netdev
);
2406 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2407 memset(tx_ring
->buffer_info
, 0, size
);
2409 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2411 tx_ring
->next_to_use
= 0;
2412 tx_ring
->next_to_clean
= 0;
2414 writel(0, tx_ring
->head
);
2415 if (tx_ring
->adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
2416 e1000e_update_tdt_wa(tx_ring
, 0);
2418 writel(0, tx_ring
->tail
);
2422 * e1000e_free_tx_resources - Free Tx Resources per Queue
2423 * @tx_ring: Tx descriptor ring
2425 * Free all transmit software resources
2427 void e1000e_free_tx_resources(struct e1000_ring
*tx_ring
)
2429 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
2430 struct pci_dev
*pdev
= adapter
->pdev
;
2432 e1000_clean_tx_ring(tx_ring
);
2434 vfree(tx_ring
->buffer_info
);
2435 tx_ring
->buffer_info
= NULL
;
2437 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
2439 tx_ring
->desc
= NULL
;
2443 * e1000e_free_rx_resources - Free Rx Resources
2444 * @rx_ring: Rx descriptor ring
2446 * Free all receive software resources
2448 void e1000e_free_rx_resources(struct e1000_ring
*rx_ring
)
2450 struct e1000_adapter
*adapter
= rx_ring
->adapter
;
2451 struct pci_dev
*pdev
= adapter
->pdev
;
2454 e1000_clean_rx_ring(rx_ring
);
2456 for (i
= 0; i
< rx_ring
->count
; i
++)
2457 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
2459 vfree(rx_ring
->buffer_info
);
2460 rx_ring
->buffer_info
= NULL
;
2462 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2464 rx_ring
->desc
= NULL
;
2468 * e1000_update_itr - update the dynamic ITR value based on statistics
2469 * @adapter: pointer to adapter
2470 * @itr_setting: current adapter->itr
2471 * @packets: the number of packets during this measurement interval
2472 * @bytes: the number of bytes during this measurement interval
2474 * Stores a new ITR value based on packets and byte
2475 * counts during the last interrupt. The advantage of per interrupt
2476 * computation is faster updates and more accurate ITR for the current
2477 * traffic pattern. Constants in this function were computed
2478 * based on theoretical maximum wire speed and thresholds were set based
2479 * on testing data as well as attempting to minimize response time
2480 * while increasing bulk throughput. This functionality is controlled
2481 * by the InterruptThrottleRate module parameter.
2483 static unsigned int e1000_update_itr(u16 itr_setting
, int packets
, int bytes
)
2485 unsigned int retval
= itr_setting
;
2490 switch (itr_setting
) {
2491 case lowest_latency
:
2492 /* handle TSO and jumbo frames */
2493 if (bytes
/packets
> 8000)
2494 retval
= bulk_latency
;
2495 else if ((packets
< 5) && (bytes
> 512))
2496 retval
= low_latency
;
2498 case low_latency
: /* 50 usec aka 20000 ints/s */
2499 if (bytes
> 10000) {
2500 /* this if handles the TSO accounting */
2501 if (bytes
/packets
> 8000)
2502 retval
= bulk_latency
;
2503 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2504 retval
= bulk_latency
;
2505 else if ((packets
> 35))
2506 retval
= lowest_latency
;
2507 } else if (bytes
/packets
> 2000) {
2508 retval
= bulk_latency
;
2509 } else if (packets
<= 2 && bytes
< 512) {
2510 retval
= lowest_latency
;
2513 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2514 if (bytes
> 25000) {
2516 retval
= low_latency
;
2517 } else if (bytes
< 6000) {
2518 retval
= low_latency
;
2526 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2529 u32 new_itr
= adapter
->itr
;
2531 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2532 if (adapter
->link_speed
!= SPEED_1000
) {
2538 if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
2543 adapter
->tx_itr
= e1000_update_itr(adapter
->tx_itr
,
2544 adapter
->total_tx_packets
,
2545 adapter
->total_tx_bytes
);
2546 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2547 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2548 adapter
->tx_itr
= low_latency
;
2550 adapter
->rx_itr
= e1000_update_itr(adapter
->rx_itr
,
2551 adapter
->total_rx_packets
,
2552 adapter
->total_rx_bytes
);
2553 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2554 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2555 adapter
->rx_itr
= low_latency
;
2557 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2559 switch (current_itr
) {
2560 /* counts and packets in update_itr are dependent on these numbers */
2561 case lowest_latency
:
2565 new_itr
= 20000; /* aka hwitr = ~200 */
2575 if (new_itr
!= adapter
->itr
) {
2576 /* this attempts to bias the interrupt rate towards Bulk
2577 * by adding intermediate steps when interrupt rate is
2580 new_itr
= new_itr
> adapter
->itr
?
2581 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2583 adapter
->itr
= new_itr
;
2584 adapter
->rx_ring
->itr_val
= new_itr
;
2585 if (adapter
->msix_entries
)
2586 adapter
->rx_ring
->set_itr
= 1;
2588 e1000e_write_itr(adapter
, new_itr
);
2593 * e1000e_write_itr - write the ITR value to the appropriate registers
2594 * @adapter: address of board private structure
2595 * @itr: new ITR value to program
2597 * e1000e_write_itr determines if the adapter is in MSI-X mode
2598 * and, if so, writes the EITR registers with the ITR value.
2599 * Otherwise, it writes the ITR value into the ITR register.
2601 void e1000e_write_itr(struct e1000_adapter
*adapter
, u32 itr
)
2603 struct e1000_hw
*hw
= &adapter
->hw
;
2604 u32 new_itr
= itr
? 1000000000 / (itr
* 256) : 0;
2606 if (adapter
->msix_entries
) {
2609 for (vector
= 0; vector
< adapter
->num_vectors
; vector
++)
2610 writel(new_itr
, hw
->hw_addr
+ E1000_EITR_82574(vector
));
2617 * e1000_alloc_queues - Allocate memory for all rings
2618 * @adapter: board private structure to initialize
2620 static int e1000_alloc_queues(struct e1000_adapter
*adapter
)
2622 int size
= sizeof(struct e1000_ring
);
2624 adapter
->tx_ring
= kzalloc(size
, GFP_KERNEL
);
2625 if (!adapter
->tx_ring
)
2627 adapter
->tx_ring
->count
= adapter
->tx_ring_count
;
2628 adapter
->tx_ring
->adapter
= adapter
;
2630 adapter
->rx_ring
= kzalloc(size
, GFP_KERNEL
);
2631 if (!adapter
->rx_ring
)
2633 adapter
->rx_ring
->count
= adapter
->rx_ring_count
;
2634 adapter
->rx_ring
->adapter
= adapter
;
2638 e_err("Unable to allocate memory for queues\n");
2639 kfree(adapter
->rx_ring
);
2640 kfree(adapter
->tx_ring
);
2645 * e1000e_poll - NAPI Rx polling callback
2646 * @napi: struct associated with this polling callback
2647 * @weight: number of packets driver is allowed to process this poll
2649 static int e1000e_poll(struct napi_struct
*napi
, int weight
)
2651 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
,
2653 struct e1000_hw
*hw
= &adapter
->hw
;
2654 struct net_device
*poll_dev
= adapter
->netdev
;
2655 int tx_cleaned
= 1, work_done
= 0;
2657 adapter
= netdev_priv(poll_dev
);
2659 if (!adapter
->msix_entries
||
2660 (adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2661 tx_cleaned
= e1000_clean_tx_irq(adapter
->tx_ring
);
2663 adapter
->clean_rx(adapter
->rx_ring
, &work_done
, weight
);
2668 /* If weight not fully consumed, exit the polling mode */
2669 if (work_done
< weight
) {
2670 if (adapter
->itr_setting
& 3)
2671 e1000_set_itr(adapter
);
2672 napi_complete(napi
);
2673 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2674 if (adapter
->msix_entries
)
2675 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2677 e1000_irq_enable(adapter
);
2684 static int e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
2686 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2687 struct e1000_hw
*hw
= &adapter
->hw
;
2690 /* don't update vlan cookie if already programmed */
2691 if ((adapter
->hw
.mng_cookie
.status
&
2692 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2693 (vid
== adapter
->mng_vlan_id
))
2696 /* add VID to filter table */
2697 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2698 index
= (vid
>> 5) & 0x7F;
2699 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2700 vfta
|= (1 << (vid
& 0x1F));
2701 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2704 set_bit(vid
, adapter
->active_vlans
);
2709 static int e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
2711 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2712 struct e1000_hw
*hw
= &adapter
->hw
;
2715 if ((adapter
->hw
.mng_cookie
.status
&
2716 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2717 (vid
== adapter
->mng_vlan_id
)) {
2718 /* release control to f/w */
2719 e1000e_release_hw_control(adapter
);
2723 /* remove VID from filter table */
2724 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2725 index
= (vid
>> 5) & 0x7F;
2726 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2727 vfta
&= ~(1 << (vid
& 0x1F));
2728 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2731 clear_bit(vid
, adapter
->active_vlans
);
2737 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2738 * @adapter: board private structure to initialize
2740 static void e1000e_vlan_filter_disable(struct e1000_adapter
*adapter
)
2742 struct net_device
*netdev
= adapter
->netdev
;
2743 struct e1000_hw
*hw
= &adapter
->hw
;
2746 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2747 /* disable VLAN receive filtering */
2749 rctl
&= ~(E1000_RCTL_VFE
| E1000_RCTL_CFIEN
);
2752 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
2753 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
2754 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2760 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2761 * @adapter: board private structure to initialize
2763 static void e1000e_vlan_filter_enable(struct e1000_adapter
*adapter
)
2765 struct e1000_hw
*hw
= &adapter
->hw
;
2768 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2769 /* enable VLAN receive filtering */
2771 rctl
|= E1000_RCTL_VFE
;
2772 rctl
&= ~E1000_RCTL_CFIEN
;
2778 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2779 * @adapter: board private structure to initialize
2781 static void e1000e_vlan_strip_disable(struct e1000_adapter
*adapter
)
2783 struct e1000_hw
*hw
= &adapter
->hw
;
2786 /* disable VLAN tag insert/strip */
2788 ctrl
&= ~E1000_CTRL_VME
;
2793 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2794 * @adapter: board private structure to initialize
2796 static void e1000e_vlan_strip_enable(struct e1000_adapter
*adapter
)
2798 struct e1000_hw
*hw
= &adapter
->hw
;
2801 /* enable VLAN tag insert/strip */
2803 ctrl
|= E1000_CTRL_VME
;
2807 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2809 struct net_device
*netdev
= adapter
->netdev
;
2810 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2811 u16 old_vid
= adapter
->mng_vlan_id
;
2813 if (adapter
->hw
.mng_cookie
.status
&
2814 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2815 e1000_vlan_rx_add_vid(netdev
, vid
);
2816 adapter
->mng_vlan_id
= vid
;
2819 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) && (vid
!= old_vid
))
2820 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
2823 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2827 e1000_vlan_rx_add_vid(adapter
->netdev
, 0);
2829 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
2830 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
2833 static void e1000_init_manageability_pt(struct e1000_adapter
*adapter
)
2835 struct e1000_hw
*hw
= &adapter
->hw
;
2836 u32 manc
, manc2h
, mdef
, i
, j
;
2838 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2843 /* enable receiving management packets to the host. this will probably
2844 * generate destination unreachable messages from the host OS, but
2845 * the packets will be handled on SMBUS
2847 manc
|= E1000_MANC_EN_MNG2HOST
;
2848 manc2h
= er32(MANC2H
);
2850 switch (hw
->mac
.type
) {
2852 manc2h
|= (E1000_MANC2H_PORT_623
| E1000_MANC2H_PORT_664
);
2856 /* Check if IPMI pass-through decision filter already exists;
2859 for (i
= 0, j
= 0; i
< 8; i
++) {
2860 mdef
= er32(MDEF(i
));
2862 /* Ignore filters with anything other than IPMI ports */
2863 if (mdef
& ~(E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2866 /* Enable this decision filter in MANC2H */
2873 if (j
== (E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2876 /* Create new decision filter in an empty filter */
2877 for (i
= 0, j
= 0; i
< 8; i
++)
2878 if (er32(MDEF(i
)) == 0) {
2879 ew32(MDEF(i
), (E1000_MDEF_PORT_623
|
2880 E1000_MDEF_PORT_664
));
2887 e_warn("Unable to create IPMI pass-through filter\n");
2891 ew32(MANC2H
, manc2h
);
2896 * e1000_configure_tx - Configure Transmit Unit after Reset
2897 * @adapter: board private structure
2899 * Configure the Tx unit of the MAC after a reset.
2901 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2903 struct e1000_hw
*hw
= &adapter
->hw
;
2904 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2908 /* Setup the HW Tx Head and Tail descriptor pointers */
2909 tdba
= tx_ring
->dma
;
2910 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2911 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
2912 ew32(TDBAH(0), (tdba
>> 32));
2913 ew32(TDLEN(0), tdlen
);
2916 tx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_TDH(0);
2917 tx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_TDT(0);
2919 /* Set the Tx Interrupt Delay register */
2920 ew32(TIDV
, adapter
->tx_int_delay
);
2921 /* Tx irq moderation */
2922 ew32(TADV
, adapter
->tx_abs_int_delay
);
2924 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2925 u32 txdctl
= er32(TXDCTL(0));
2926 txdctl
&= ~(E1000_TXDCTL_PTHRESH
| E1000_TXDCTL_HTHRESH
|
2927 E1000_TXDCTL_WTHRESH
);
2928 /* set up some performance related parameters to encourage the
2929 * hardware to use the bus more efficiently in bursts, depends
2930 * on the tx_int_delay to be enabled,
2931 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2932 * hthresh = 1 ==> prefetch when one or more available
2933 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2934 * BEWARE: this seems to work but should be considered first if
2935 * there are Tx hangs or other Tx related bugs
2937 txdctl
|= E1000_TXDCTL_DMA_BURST_ENABLE
;
2938 ew32(TXDCTL(0), txdctl
);
2940 /* erratum work around: set txdctl the same for both queues */
2941 ew32(TXDCTL(1), er32(TXDCTL(0)));
2943 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2944 tarc
= er32(TARC(0));
2945 /* set the speed mode bit, we'll clear it if we're not at
2946 * gigabit link later
2948 #define SPEED_MODE_BIT (1 << 21)
2949 tarc
|= SPEED_MODE_BIT
;
2950 ew32(TARC(0), tarc
);
2953 /* errata: program both queues to unweighted RR */
2954 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2955 tarc
= er32(TARC(0));
2957 ew32(TARC(0), tarc
);
2958 tarc
= er32(TARC(1));
2960 ew32(TARC(1), tarc
);
2963 /* Setup Transmit Descriptor Settings for eop descriptor */
2964 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
2966 /* only set IDE if we are delaying interrupts using the timers */
2967 if (adapter
->tx_int_delay
)
2968 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
2970 /* enable Report Status bit */
2971 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
2973 hw
->mac
.ops
.config_collision_dist(hw
);
2977 * e1000_setup_rctl - configure the receive control registers
2978 * @adapter: Board private structure
2980 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2981 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2982 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
2984 struct e1000_hw
*hw
= &adapter
->hw
;
2988 /* Workaround Si errata on PCHx - configure jumbo frame flow */
2989 if (hw
->mac
.type
>= e1000_pch2lan
) {
2992 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
)
2993 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, true);
2995 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, false);
2998 e_dbg("failed to enable jumbo frame workaround mode\n");
3001 /* Program MC offset vector base */
3003 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
3004 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
3005 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
3006 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
3008 /* Do not Store bad packets */
3009 rctl
&= ~E1000_RCTL_SBP
;
3011 /* Enable Long Packet receive */
3012 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
3013 rctl
&= ~E1000_RCTL_LPE
;
3015 rctl
|= E1000_RCTL_LPE
;
3017 /* Some systems expect that the CRC is included in SMBUS traffic. The
3018 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3019 * host memory when this is enabled
3021 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
3022 rctl
|= E1000_RCTL_SECRC
;
3024 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3025 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
3028 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
3030 phy_data
|= (1 << 2);
3031 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
3033 e1e_rphy(hw
, 22, &phy_data
);
3035 phy_data
|= (1 << 14);
3036 e1e_wphy(hw
, 0x10, 0x2823);
3037 e1e_wphy(hw
, 0x11, 0x0003);
3038 e1e_wphy(hw
, 22, phy_data
);
3041 /* Setup buffer sizes */
3042 rctl
&= ~E1000_RCTL_SZ_4096
;
3043 rctl
|= E1000_RCTL_BSEX
;
3044 switch (adapter
->rx_buffer_len
) {
3047 rctl
|= E1000_RCTL_SZ_2048
;
3048 rctl
&= ~E1000_RCTL_BSEX
;
3051 rctl
|= E1000_RCTL_SZ_4096
;
3054 rctl
|= E1000_RCTL_SZ_8192
;
3057 rctl
|= E1000_RCTL_SZ_16384
;
3061 /* Enable Extended Status in all Receive Descriptors */
3062 rfctl
= er32(RFCTL
);
3063 rfctl
|= E1000_RFCTL_EXTEN
;
3066 /* 82571 and greater support packet-split where the protocol
3067 * header is placed in skb->data and the packet data is
3068 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3069 * In the case of a non-split, skb->data is linearly filled,
3070 * followed by the page buffers. Therefore, skb->data is
3071 * sized to hold the largest protocol header.
3073 * allocations using alloc_page take too long for regular MTU
3074 * so only enable packet split for jumbo frames
3076 * Using pages when the page size is greater than 16k wastes
3077 * a lot of memory, since we allocate 3 pages at all times
3080 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
3081 if ((pages
<= 3) && (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
3082 adapter
->rx_ps_pages
= pages
;
3084 adapter
->rx_ps_pages
= 0;
3086 if (adapter
->rx_ps_pages
) {
3089 /* Enable Packet split descriptors */
3090 rctl
|= E1000_RCTL_DTYP_PS
;
3092 psrctl
|= adapter
->rx_ps_bsize0
>>
3093 E1000_PSRCTL_BSIZE0_SHIFT
;
3095 switch (adapter
->rx_ps_pages
) {
3097 psrctl
|= PAGE_SIZE
<<
3098 E1000_PSRCTL_BSIZE3_SHIFT
;
3100 psrctl
|= PAGE_SIZE
<<
3101 E1000_PSRCTL_BSIZE2_SHIFT
;
3103 psrctl
|= PAGE_SIZE
>>
3104 E1000_PSRCTL_BSIZE1_SHIFT
;
3108 ew32(PSRCTL
, psrctl
);
3111 /* This is useful for sniffing bad packets. */
3112 if (adapter
->netdev
->features
& NETIF_F_RXALL
) {
3113 /* UPE and MPE will be handled by normal PROMISC logic
3114 * in e1000e_set_rx_mode
3116 rctl
|= (E1000_RCTL_SBP
| /* Receive bad packets */
3117 E1000_RCTL_BAM
| /* RX All Bcast Pkts */
3118 E1000_RCTL_PMCF
); /* RX All MAC Ctrl Pkts */
3120 rctl
&= ~(E1000_RCTL_VFE
| /* Disable VLAN filter */
3121 E1000_RCTL_DPF
| /* Allow filtered pause */
3122 E1000_RCTL_CFIEN
); /* Dis VLAN CFIEN Filter */
3123 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3124 * and that breaks VLANs.
3129 /* just started the receive unit, no need to restart */
3130 adapter
->flags
&= ~FLAG_RESTART_NOW
;
3134 * e1000_configure_rx - Configure Receive Unit after Reset
3135 * @adapter: board private structure
3137 * Configure the Rx unit of the MAC after a reset.
3139 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
3141 struct e1000_hw
*hw
= &adapter
->hw
;
3142 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3144 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
3146 if (adapter
->rx_ps_pages
) {
3147 /* this is a 32 byte descriptor */
3148 rdlen
= rx_ring
->count
*
3149 sizeof(union e1000_rx_desc_packet_split
);
3150 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
3151 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
3152 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3153 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3154 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
3155 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
3157 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3158 adapter
->clean_rx
= e1000_clean_rx_irq
;
3159 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
3162 /* disable receives while setting up the descriptors */
3164 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
3165 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3167 usleep_range(10000, 20000);
3169 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
3170 /* set the writeback threshold (only takes effect if the RDTR
3171 * is set). set GRAN=1 and write back up to 0x4 worth, and
3172 * enable prefetching of 0x20 Rx descriptors
3178 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE
);
3179 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE
);
3181 /* override the delay timers for enabling bursting, only if
3182 * the value was not set by the user via module options
3184 if (adapter
->rx_int_delay
== DEFAULT_RDTR
)
3185 adapter
->rx_int_delay
= BURST_RDTR
;
3186 if (adapter
->rx_abs_int_delay
== DEFAULT_RADV
)
3187 adapter
->rx_abs_int_delay
= BURST_RADV
;
3190 /* set the Receive Delay Timer Register */
3191 ew32(RDTR
, adapter
->rx_int_delay
);
3193 /* irq moderation */
3194 ew32(RADV
, adapter
->rx_abs_int_delay
);
3195 if ((adapter
->itr_setting
!= 0) && (adapter
->itr
!= 0))
3196 e1000e_write_itr(adapter
, adapter
->itr
);
3198 ctrl_ext
= er32(CTRL_EXT
);
3199 /* Auto-Mask interrupts upon ICR access */
3200 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
3201 ew32(IAM
, 0xffffffff);
3202 ew32(CTRL_EXT
, ctrl_ext
);
3205 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3206 * the Base and Length of the Rx Descriptor Ring
3208 rdba
= rx_ring
->dma
;
3209 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
3210 ew32(RDBAH(0), (rdba
>> 32));
3211 ew32(RDLEN(0), rdlen
);
3214 rx_ring
->head
= adapter
->hw
.hw_addr
+ E1000_RDH(0);
3215 rx_ring
->tail
= adapter
->hw
.hw_addr
+ E1000_RDT(0);
3217 /* Enable Receive Checksum Offload for TCP and UDP */
3218 rxcsum
= er32(RXCSUM
);
3219 if (adapter
->netdev
->features
& NETIF_F_RXCSUM
)
3220 rxcsum
|= E1000_RXCSUM_TUOFL
;
3222 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
3223 ew32(RXCSUM
, rxcsum
);
3225 /* With jumbo frames, excessive C-state transition latencies result
3226 * in dropped transactions.
3228 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3230 ((er32(PBA
) & E1000_PBA_RXA_MASK
) * 1024 -
3231 adapter
->max_frame_size
) * 8 / 1000;
3233 if (adapter
->flags
& FLAG_IS_ICH
) {
3234 u32 rxdctl
= er32(RXDCTL(0));
3235 ew32(RXDCTL(0), rxdctl
| 0x3);
3238 pm_qos_update_request(&adapter
->netdev
->pm_qos_req
, lat
);
3240 pm_qos_update_request(&adapter
->netdev
->pm_qos_req
,
3241 PM_QOS_DEFAULT_VALUE
);
3244 /* Enable Receives */
3249 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3250 * @netdev: network interface device structure
3252 * Writes multicast address list to the MTA hash table.
3253 * Returns: -ENOMEM on failure
3254 * 0 on no addresses written
3255 * X on writing X addresses to MTA
3257 static int e1000e_write_mc_addr_list(struct net_device
*netdev
)
3259 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3260 struct e1000_hw
*hw
= &adapter
->hw
;
3261 struct netdev_hw_addr
*ha
;
3265 if (netdev_mc_empty(netdev
)) {
3266 /* nothing to program, so clear mc list */
3267 hw
->mac
.ops
.update_mc_addr_list(hw
, NULL
, 0);
3271 mta_list
= kzalloc(netdev_mc_count(netdev
) * ETH_ALEN
, GFP_ATOMIC
);
3275 /* update_mc_addr_list expects a packed array of only addresses. */
3277 netdev_for_each_mc_addr(ha
, netdev
)
3278 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
3280 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
);
3283 return netdev_mc_count(netdev
);
3287 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3288 * @netdev: network interface device structure
3290 * Writes unicast address list to the RAR table.
3291 * Returns: -ENOMEM on failure/insufficient address space
3292 * 0 on no addresses written
3293 * X on writing X addresses to the RAR table
3295 static int e1000e_write_uc_addr_list(struct net_device
*netdev
)
3297 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3298 struct e1000_hw
*hw
= &adapter
->hw
;
3299 unsigned int rar_entries
= hw
->mac
.rar_entry_count
;
3302 /* save a rar entry for our hardware address */
3305 /* save a rar entry for the LAA workaround */
3306 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
)
3309 /* return ENOMEM indicating insufficient memory for addresses */
3310 if (netdev_uc_count(netdev
) > rar_entries
)
3313 if (!netdev_uc_empty(netdev
) && rar_entries
) {
3314 struct netdev_hw_addr
*ha
;
3316 /* write the addresses in reverse order to avoid write
3319 netdev_for_each_uc_addr(ha
, netdev
) {
3322 hw
->mac
.ops
.rar_set(hw
, ha
->addr
, rar_entries
--);
3327 /* zero out the remaining RAR entries not used above */
3328 for (; rar_entries
> 0; rar_entries
--) {
3329 ew32(RAH(rar_entries
), 0);
3330 ew32(RAL(rar_entries
), 0);
3338 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3339 * @netdev: network interface device structure
3341 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3342 * address list or the network interface flags are updated. This routine is
3343 * responsible for configuring the hardware for proper unicast, multicast,
3344 * promiscuous mode, and all-multi behavior.
3346 static void e1000e_set_rx_mode(struct net_device
*netdev
)
3348 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3349 struct e1000_hw
*hw
= &adapter
->hw
;
3352 /* Check for Promiscuous and All Multicast modes */
3355 /* clear the affected bits */
3356 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3358 if (netdev
->flags
& IFF_PROMISC
) {
3359 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3360 /* Do not hardware filter VLANs in promisc mode */
3361 e1000e_vlan_filter_disable(adapter
);
3365 if (netdev
->flags
& IFF_ALLMULTI
) {
3366 rctl
|= E1000_RCTL_MPE
;
3368 /* Write addresses to the MTA, if the attempt fails
3369 * then we should just turn on promiscuous mode so
3370 * that we can at least receive multicast traffic
3372 count
= e1000e_write_mc_addr_list(netdev
);
3374 rctl
|= E1000_RCTL_MPE
;
3376 e1000e_vlan_filter_enable(adapter
);
3377 /* Write addresses to available RAR registers, if there is not
3378 * sufficient space to store all the addresses then enable
3379 * unicast promiscuous mode
3381 count
= e1000e_write_uc_addr_list(netdev
);
3383 rctl
|= E1000_RCTL_UPE
;
3388 if (netdev
->features
& NETIF_F_HW_VLAN_RX
)
3389 e1000e_vlan_strip_enable(adapter
);
3391 e1000e_vlan_strip_disable(adapter
);
3394 static void e1000e_setup_rss_hash(struct e1000_adapter
*adapter
)
3396 struct e1000_hw
*hw
= &adapter
->hw
;
3399 static const u32 rsskey
[10] = {
3400 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3401 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3404 /* Fill out hash function seed */
3405 for (i
= 0; i
< 10; i
++)
3406 ew32(RSSRK(i
), rsskey
[i
]);
3408 /* Direct all traffic to queue 0 */
3409 for (i
= 0; i
< 32; i
++)
3412 /* Disable raw packet checksumming so that RSS hash is placed in
3413 * descriptor on writeback.
3415 rxcsum
= er32(RXCSUM
);
3416 rxcsum
|= E1000_RXCSUM_PCSD
;
3418 ew32(RXCSUM
, rxcsum
);
3420 mrqc
= (E1000_MRQC_RSS_FIELD_IPV4
|
3421 E1000_MRQC_RSS_FIELD_IPV4_TCP
|
3422 E1000_MRQC_RSS_FIELD_IPV6
|
3423 E1000_MRQC_RSS_FIELD_IPV6_TCP
|
3424 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
3430 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3431 * @adapter: board private structure
3432 * @timinca: pointer to returned time increment attributes
3434 * Get attributes for incrementing the System Time Register SYSTIML/H at
3435 * the default base frequency, and set the cyclecounter shift value.
3437 s32
e1000e_get_base_timinca(struct e1000_adapter
*adapter
, u32
*timinca
)
3439 struct e1000_hw
*hw
= &adapter
->hw
;
3440 u32 incvalue
, incperiod
, shift
;
3442 /* Make sure clock is enabled on I217 before checking the frequency */
3443 if ((hw
->mac
.type
== e1000_pch_lpt
) &&
3444 !(er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_ENABLED
) &&
3445 !(er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_ENABLED
)) {
3446 u32 fextnvm7
= er32(FEXTNVM7
);
3448 if (!(fextnvm7
& (1 << 0))) {
3449 ew32(FEXTNVM7
, fextnvm7
| (1 << 0));
3454 switch (hw
->mac
.type
) {
3457 /* On I217, the clock frequency is 25MHz or 96MHz as
3458 * indicated by the System Clock Frequency Indication
3460 if ((hw
->mac
.type
!= e1000_pch_lpt
) ||
3461 (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_SYSCFI
)) {
3462 /* Stable 96MHz frequency */
3463 incperiod
= INCPERIOD_96MHz
;
3464 incvalue
= INCVALUE_96MHz
;
3465 shift
= INCVALUE_SHIFT_96MHz
;
3466 adapter
->cc
.shift
= shift
+ INCPERIOD_SHIFT_96MHz
;
3472 /* Stable 25MHz frequency */
3473 incperiod
= INCPERIOD_25MHz
;
3474 incvalue
= INCVALUE_25MHz
;
3475 shift
= INCVALUE_SHIFT_25MHz
;
3476 adapter
->cc
.shift
= shift
;
3482 *timinca
= ((incperiod
<< E1000_TIMINCA_INCPERIOD_SHIFT
) |
3483 ((incvalue
<< shift
) & E1000_TIMINCA_INCVALUE_MASK
));
3489 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3490 * @adapter: board private structure
3492 * Outgoing time stamping can be enabled and disabled. Play nice and
3493 * disable it when requested, although it shouldn't cause any overhead
3494 * when no packet needs it. At most one packet in the queue may be
3495 * marked for time stamping, otherwise it would be impossible to tell
3496 * for sure to which packet the hardware time stamp belongs.
3498 * Incoming time stamping has to be configured via the hardware filters.
3499 * Not all combinations are supported, in particular event type has to be
3500 * specified. Matching the kind of event packet is not supported, with the
3501 * exception of "all V2 events regardless of level 2 or 4".
3503 static int e1000e_config_hwtstamp(struct e1000_adapter
*adapter
)
3505 struct e1000_hw
*hw
= &adapter
->hw
;
3506 struct hwtstamp_config
*config
= &adapter
->hwtstamp_config
;
3507 u32 tsync_tx_ctl
= E1000_TSYNCTXCTL_ENABLED
;
3508 u32 tsync_rx_ctl
= E1000_TSYNCRXCTL_ENABLED
;
3516 if (!(adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
))
3519 /* flags reserved for future extensions - must be zero */
3523 switch (config
->tx_type
) {
3524 case HWTSTAMP_TX_OFF
:
3527 case HWTSTAMP_TX_ON
:
3533 switch (config
->rx_filter
) {
3534 case HWTSTAMP_FILTER_NONE
:
3537 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC
:
3538 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
3539 rxmtrl
= E1000_RXMTRL_PTP_V1_SYNC_MESSAGE
;
3542 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ
:
3543 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L4_V1
;
3544 rxmtrl
= E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE
;
3547 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
3548 /* Also time stamps V2 L2 Path Delay Request/Response */
3549 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_V2
;
3550 rxmtrl
= E1000_RXMTRL_PTP_V2_SYNC_MESSAGE
;
3553 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
3554 /* Also time stamps V2 L2 Path Delay Request/Response. */
3555 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_V2
;
3556 rxmtrl
= E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE
;
3559 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
3560 /* Hardware cannot filter just V2 L4 Sync messages;
3561 * fall-through to V2 (both L2 and L4) Sync.
3563 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
3564 /* Also time stamps V2 Path Delay Request/Response. */
3565 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
3566 rxmtrl
= E1000_RXMTRL_PTP_V2_SYNC_MESSAGE
;
3570 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
3571 /* Hardware cannot filter just V2 L4 Delay Request messages;
3572 * fall-through to V2 (both L2 and L4) Delay Request.
3574 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
3575 /* Also time stamps V2 Path Delay Request/Response. */
3576 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_L2_L4_V2
;
3577 rxmtrl
= E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE
;
3581 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT
:
3582 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT
:
3583 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3584 * fall-through to all V2 (both L2 and L4) Events.
3586 case HWTSTAMP_FILTER_PTP_V2_EVENT
:
3587 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_EVENT_V2
;
3588 config
->rx_filter
= HWTSTAMP_FILTER_PTP_V2_EVENT
;
3592 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT
:
3593 /* For V1, the hardware can only filter Sync messages or
3594 * Delay Request messages but not both so fall-through to
3595 * time stamp all packets.
3597 case HWTSTAMP_FILTER_ALL
:
3600 tsync_rx_ctl
|= E1000_TSYNCRXCTL_TYPE_ALL
;
3601 config
->rx_filter
= HWTSTAMP_FILTER_ALL
;
3607 /* enable/disable Tx h/w time stamping */
3608 regval
= er32(TSYNCTXCTL
);
3609 regval
&= ~E1000_TSYNCTXCTL_ENABLED
;
3610 regval
|= tsync_tx_ctl
;
3611 ew32(TSYNCTXCTL
, regval
);
3612 if ((er32(TSYNCTXCTL
) & E1000_TSYNCTXCTL_ENABLED
) !=
3613 (regval
& E1000_TSYNCTXCTL_ENABLED
)) {
3614 e_err("Timesync Tx Control register not set as expected\n");
3618 /* enable/disable Rx h/w time stamping */
3619 regval
= er32(TSYNCRXCTL
);
3620 regval
&= ~(E1000_TSYNCRXCTL_ENABLED
| E1000_TSYNCRXCTL_TYPE_MASK
);
3621 regval
|= tsync_rx_ctl
;
3622 ew32(TSYNCRXCTL
, regval
);
3623 if ((er32(TSYNCRXCTL
) & (E1000_TSYNCRXCTL_ENABLED
|
3624 E1000_TSYNCRXCTL_TYPE_MASK
)) !=
3625 (regval
& (E1000_TSYNCRXCTL_ENABLED
|
3626 E1000_TSYNCRXCTL_TYPE_MASK
))) {
3627 e_err("Timesync Rx Control register not set as expected\n");
3631 /* L2: define ethertype filter for time stamped packets */
3633 rxmtrl
|= ETH_P_1588
;
3635 /* define which PTP packets get time stamped */
3636 ew32(RXMTRL
, rxmtrl
);
3638 /* Filter by destination port */
3640 rxudp
= PTP_EV_PORT
;
3641 cpu_to_be16s(&rxudp
);
3647 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3651 /* Get and set the System Time Register SYSTIM base frequency */
3652 ret_val
= e1000e_get_base_timinca(adapter
, ®val
);
3655 ew32(TIMINCA
, regval
);
3657 /* reset the ns time counter */
3658 timecounter_init(&adapter
->tc
, &adapter
->cc
,
3659 ktime_to_ns(ktime_get_real()));
3665 * e1000_configure - configure the hardware for Rx and Tx
3666 * @adapter: private board structure
3668 static void e1000_configure(struct e1000_adapter
*adapter
)
3670 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
3672 e1000e_set_rx_mode(adapter
->netdev
);
3674 e1000_restore_vlan(adapter
);
3675 e1000_init_manageability_pt(adapter
);
3677 e1000_configure_tx(adapter
);
3679 if (adapter
->netdev
->features
& NETIF_F_RXHASH
)
3680 e1000e_setup_rss_hash(adapter
);
3681 e1000_setup_rctl(adapter
);
3682 e1000_configure_rx(adapter
);
3683 adapter
->alloc_rx_buf(rx_ring
, e1000_desc_unused(rx_ring
), GFP_KERNEL
);
3687 * e1000e_power_up_phy - restore link in case the phy was powered down
3688 * @adapter: address of board private structure
3690 * The phy may be powered down to save power and turn off link when the
3691 * driver is unloaded and wake on lan is not enabled (among others)
3692 * *** this routine MUST be followed by a call to e1000e_reset ***
3694 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
3696 if (adapter
->hw
.phy
.ops
.power_up
)
3697 adapter
->hw
.phy
.ops
.power_up(&adapter
->hw
);
3699 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
3703 * e1000_power_down_phy - Power down the PHY
3705 * Power down the PHY so no link is implied when interface is down.
3706 * The PHY cannot be powered down if management or WoL is active.
3708 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
3710 /* WoL is enabled */
3714 if (adapter
->hw
.phy
.ops
.power_down
)
3715 adapter
->hw
.phy
.ops
.power_down(&adapter
->hw
);
3719 * e1000e_reset - bring the hardware into a known good state
3721 * This function boots the hardware and enables some settings that
3722 * require a configuration cycle of the hardware - those cannot be
3723 * set/changed during runtime. After reset the device needs to be
3724 * properly configured for Rx, Tx etc.
3726 void e1000e_reset(struct e1000_adapter
*adapter
)
3728 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3729 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
3730 struct e1000_hw
*hw
= &adapter
->hw
;
3731 u32 tx_space
, min_tx_space
, min_rx_space
;
3732 u32 pba
= adapter
->pba
;
3735 /* reset Packet Buffer Allocation to default */
3738 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3739 /* To maintain wire speed transmits, the Tx FIFO should be
3740 * large enough to accommodate two full transmit packets,
3741 * rounded up to the next 1KB and expressed in KB. Likewise,
3742 * the Rx FIFO should be large enough to accommodate at least
3743 * one full receive packet and is similarly rounded up and
3747 /* upper 16 bits has Tx packet buffer allocation size in KB */
3748 tx_space
= pba
>> 16;
3749 /* lower 16 bits has Rx packet buffer allocation size in KB */
3751 /* the Tx fifo also stores 16 bytes of information about the Tx
3752 * but don't include ethernet FCS because hardware appends it
3754 min_tx_space
= (adapter
->max_frame_size
+
3755 sizeof(struct e1000_tx_desc
) -
3757 min_tx_space
= ALIGN(min_tx_space
, 1024);
3758 min_tx_space
>>= 10;
3759 /* software strips receive CRC, so leave room for it */
3760 min_rx_space
= adapter
->max_frame_size
;
3761 min_rx_space
= ALIGN(min_rx_space
, 1024);
3762 min_rx_space
>>= 10;
3764 /* If current Tx allocation is less than the min Tx FIFO size,
3765 * and the min Tx FIFO size is less than the current Rx FIFO
3766 * allocation, take space away from current Rx allocation
3768 if ((tx_space
< min_tx_space
) &&
3769 ((min_tx_space
- tx_space
) < pba
)) {
3770 pba
-= min_tx_space
- tx_space
;
3772 /* if short on Rx space, Rx wins and must trump Tx
3775 if (pba
< min_rx_space
)
3782 /* flow control settings
3784 * The high water mark must be low enough to fit one full frame
3785 * (or the size used for early receive) above it in the Rx FIFO.
3786 * Set it to the lower of:
3787 * - 90% of the Rx FIFO size, and
3788 * - the full Rx FIFO size minus one full frame
3790 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
3791 fc
->pause_time
= 0xFFFF;
3793 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
3794 fc
->send_xon
= true;
3795 fc
->current_mode
= fc
->requested_mode
;
3797 switch (hw
->mac
.type
) {
3799 case e1000_ich10lan
:
3800 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3803 fc
->high_water
= 0x2800;
3804 fc
->low_water
= fc
->high_water
- 8;
3809 hwm
= min(((pba
<< 10) * 9 / 10),
3810 ((pba
<< 10) - adapter
->max_frame_size
));
3812 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
3813 fc
->low_water
= fc
->high_water
- 8;
3816 /* Workaround PCH LOM adapter hangs with certain network
3817 * loads. If hangs persist, try disabling Tx flow control.
3819 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3820 fc
->high_water
= 0x3500;
3821 fc
->low_water
= 0x1500;
3823 fc
->high_water
= 0x5000;
3824 fc
->low_water
= 0x3000;
3826 fc
->refresh_time
= 0x1000;
3830 fc
->refresh_time
= 0x0400;
3832 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
) {
3833 fc
->high_water
= 0x05C20;
3834 fc
->low_water
= 0x05048;
3835 fc
->pause_time
= 0x0650;
3839 fc
->high_water
= ((pba
<< 10) * 9 / 10) & E1000_FCRTH_RTH
;
3840 fc
->low_water
= ((pba
<< 10) * 8 / 10) & E1000_FCRTL_RTL
;
3844 /* Alignment of Tx data is on an arbitrary byte boundary with the
3845 * maximum size per Tx descriptor limited only to the transmit
3846 * allocation of the packet buffer minus 96 bytes with an upper
3847 * limit of 24KB due to receive synchronization limitations.
3849 adapter
->tx_fifo_limit
= min_t(u32
, ((er32(PBA
) >> 16) << 10) - 96,
3852 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3853 * fit in receive buffer.
3855 if (adapter
->itr_setting
& 0x3) {
3856 if ((adapter
->max_frame_size
* 2) > (pba
<< 10)) {
3857 if (!(adapter
->flags2
& FLAG2_DISABLE_AIM
)) {
3858 dev_info(&adapter
->pdev
->dev
,
3859 "Interrupt Throttle Rate turned off\n");
3860 adapter
->flags2
|= FLAG2_DISABLE_AIM
;
3861 e1000e_write_itr(adapter
, 0);
3863 } else if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
3864 dev_info(&adapter
->pdev
->dev
,
3865 "Interrupt Throttle Rate turned on\n");
3866 adapter
->flags2
&= ~FLAG2_DISABLE_AIM
;
3867 adapter
->itr
= 20000;
3868 e1000e_write_itr(adapter
, adapter
->itr
);
3872 /* Allow time for pending master requests to run */
3873 mac
->ops
.reset_hw(hw
);
3875 /* For parts with AMT enabled, let the firmware know
3876 * that the network interface is in control
3878 if (adapter
->flags
& FLAG_HAS_AMT
)
3879 e1000e_get_hw_control(adapter
);
3883 if (mac
->ops
.init_hw(hw
))
3884 e_err("Hardware Error\n");
3886 e1000_update_mng_vlan(adapter
);
3888 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3889 ew32(VET
, ETH_P_8021Q
);
3891 e1000e_reset_adaptive(hw
);
3893 /* initialize systim and reset the ns time counter */
3894 e1000e_config_hwtstamp(adapter
);
3896 if (!netif_running(adapter
->netdev
) &&
3897 !test_bit(__E1000_TESTING
, &adapter
->state
)) {
3898 e1000_power_down_phy(adapter
);
3902 e1000_get_phy_info(hw
);
3904 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
3905 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
3907 /* speed up time to link by disabling smart power down, ignore
3908 * the return value of this function because there is nothing
3909 * different we would do if it failed
3911 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
3912 phy_data
&= ~IGP02E1000_PM_SPD
;
3913 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
3917 int e1000e_up(struct e1000_adapter
*adapter
)
3919 struct e1000_hw
*hw
= &adapter
->hw
;
3921 /* hardware has been reset, we need to reload some things */
3922 e1000_configure(adapter
);
3924 clear_bit(__E1000_DOWN
, &adapter
->state
);
3926 if (adapter
->msix_entries
)
3927 e1000_configure_msix(adapter
);
3928 e1000_irq_enable(adapter
);
3930 netif_start_queue(adapter
->netdev
);
3932 /* fire a link change interrupt to start the watchdog */
3933 if (adapter
->msix_entries
)
3934 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
3936 ew32(ICS
, E1000_ICS_LSC
);
3941 static void e1000e_flush_descriptors(struct e1000_adapter
*adapter
)
3943 struct e1000_hw
*hw
= &adapter
->hw
;
3945 if (!(adapter
->flags2
& FLAG2_DMA_BURST
))
3948 /* flush pending descriptor writebacks to memory */
3949 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
3950 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
3952 /* execute the writes immediately */
3955 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
3956 * write is successful
3958 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
3959 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
3961 /* execute the writes immediately */
3965 static void e1000e_update_stats(struct e1000_adapter
*adapter
);
3967 void e1000e_down(struct e1000_adapter
*adapter
)
3969 struct net_device
*netdev
= adapter
->netdev
;
3970 struct e1000_hw
*hw
= &adapter
->hw
;
3973 /* signal that we're down so the interrupt handler does not
3974 * reschedule our watchdog timer
3976 set_bit(__E1000_DOWN
, &adapter
->state
);
3978 /* disable receives in the hardware */
3980 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
3981 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3982 /* flush and sleep below */
3984 netif_stop_queue(netdev
);
3986 /* disable transmits in the hardware */
3988 tctl
&= ~E1000_TCTL_EN
;
3991 /* flush both disables and wait for them to finish */
3993 usleep_range(10000, 20000);
3995 e1000_irq_disable(adapter
);
3997 del_timer_sync(&adapter
->watchdog_timer
);
3998 del_timer_sync(&adapter
->phy_info_timer
);
4000 netif_carrier_off(netdev
);
4002 spin_lock(&adapter
->stats64_lock
);
4003 e1000e_update_stats(adapter
);
4004 spin_unlock(&adapter
->stats64_lock
);
4006 e1000e_flush_descriptors(adapter
);
4007 e1000_clean_tx_ring(adapter
->tx_ring
);
4008 e1000_clean_rx_ring(adapter
->rx_ring
);
4010 adapter
->link_speed
= 0;
4011 adapter
->link_duplex
= 0;
4013 if (!pci_channel_offline(adapter
->pdev
))
4014 e1000e_reset(adapter
);
4016 /* TODO: for power management, we could drop the link and
4017 * pci_disable_device here.
4021 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
4024 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
4025 usleep_range(1000, 2000);
4026 e1000e_down(adapter
);
4028 clear_bit(__E1000_RESETTING
, &adapter
->state
);
4032 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4033 * @cc: cyclecounter structure
4035 static cycle_t
e1000e_cyclecounter_read(const struct cyclecounter
*cc
)
4037 struct e1000_adapter
*adapter
= container_of(cc
, struct e1000_adapter
,
4039 struct e1000_hw
*hw
= &adapter
->hw
;
4042 /* latch SYSTIMH on read of SYSTIML */
4043 systim
= (cycle_t
)er32(SYSTIML
);
4044 systim
|= (cycle_t
)er32(SYSTIMH
) << 32;
4050 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4051 * @adapter: board private structure to initialize
4053 * e1000_sw_init initializes the Adapter private data structure.
4054 * Fields are initialized based on PCI device information and
4055 * OS network device settings (MTU size).
4057 static int e1000_sw_init(struct e1000_adapter
*adapter
)
4059 struct net_device
*netdev
= adapter
->netdev
;
4061 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
4062 adapter
->rx_ps_bsize0
= 128;
4063 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4064 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
4065 adapter
->tx_ring_count
= E1000_DEFAULT_TXD
;
4066 adapter
->rx_ring_count
= E1000_DEFAULT_RXD
;
4068 spin_lock_init(&adapter
->stats64_lock
);
4070 e1000e_set_interrupt_capability(adapter
);
4072 if (e1000_alloc_queues(adapter
))
4075 /* Setup hardware time stamping cyclecounter */
4076 if (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) {
4077 adapter
->cc
.read
= e1000e_cyclecounter_read
;
4078 adapter
->cc
.mask
= CLOCKSOURCE_MASK(64);
4079 adapter
->cc
.mult
= 1;
4080 /* cc.shift set in e1000e_get_base_tininca() */
4082 spin_lock_init(&adapter
->systim_lock
);
4083 INIT_WORK(&adapter
->tx_hwtstamp_work
, e1000e_tx_hwtstamp_work
);
4086 /* Explicitly disable IRQ since the NIC can be in any state. */
4087 e1000_irq_disable(adapter
);
4089 set_bit(__E1000_DOWN
, &adapter
->state
);
4094 * e1000_intr_msi_test - Interrupt Handler
4095 * @irq: interrupt number
4096 * @data: pointer to a network interface device structure
4098 static irqreturn_t
e1000_intr_msi_test(int __always_unused irq
, void *data
)
4100 struct net_device
*netdev
= data
;
4101 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4102 struct e1000_hw
*hw
= &adapter
->hw
;
4103 u32 icr
= er32(ICR
);
4105 e_dbg("icr is %08X\n", icr
);
4106 if (icr
& E1000_ICR_RXSEQ
) {
4107 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
4108 /* Force memory writes to complete before acknowledging the
4109 * interrupt is handled.
4118 * e1000_test_msi_interrupt - Returns 0 for successful test
4119 * @adapter: board private struct
4121 * code flow taken from tg3.c
4123 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
4125 struct net_device
*netdev
= adapter
->netdev
;
4126 struct e1000_hw
*hw
= &adapter
->hw
;
4129 /* poll_enable hasn't been called yet, so don't need disable */
4130 /* clear any pending events */
4133 /* free the real vector and request a test handler */
4134 e1000_free_irq(adapter
);
4135 e1000e_reset_interrupt_capability(adapter
);
4137 /* Assume that the test fails, if it succeeds then the test
4138 * MSI irq handler will unset this flag
4140 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
4142 err
= pci_enable_msi(adapter
->pdev
);
4144 goto msi_test_failed
;
4146 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi_test
, 0,
4147 netdev
->name
, netdev
);
4149 pci_disable_msi(adapter
->pdev
);
4150 goto msi_test_failed
;
4153 /* Force memory writes to complete before enabling and firing an
4158 e1000_irq_enable(adapter
);
4160 /* fire an unusual interrupt on the test handler */
4161 ew32(ICS
, E1000_ICS_RXSEQ
);
4165 e1000_irq_disable(adapter
);
4167 rmb(); /* read flags after interrupt has been fired */
4169 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
4170 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
4171 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4173 e_dbg("MSI interrupt test succeeded!\n");
4176 free_irq(adapter
->pdev
->irq
, netdev
);
4177 pci_disable_msi(adapter
->pdev
);
4180 e1000e_set_interrupt_capability(adapter
);
4181 return e1000_request_irq(adapter
);
4185 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4186 * @adapter: board private struct
4188 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4190 static int e1000_test_msi(struct e1000_adapter
*adapter
)
4195 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
4198 /* disable SERR in case the MSI write causes a master abort */
4199 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
4200 if (pci_cmd
& PCI_COMMAND_SERR
)
4201 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
4202 pci_cmd
& ~PCI_COMMAND_SERR
);
4204 err
= e1000_test_msi_interrupt(adapter
);
4206 /* re-enable SERR */
4207 if (pci_cmd
& PCI_COMMAND_SERR
) {
4208 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
4209 pci_cmd
|= PCI_COMMAND_SERR
;
4210 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
4217 * e1000_open - Called when a network interface is made active
4218 * @netdev: network interface device structure
4220 * Returns 0 on success, negative value on failure
4222 * The open entry point is called when a network interface is made
4223 * active by the system (IFF_UP). At this point all resources needed
4224 * for transmit and receive operations are allocated, the interrupt
4225 * handler is registered with the OS, the watchdog timer is started,
4226 * and the stack is notified that the interface is ready.
4228 static int e1000_open(struct net_device
*netdev
)
4230 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4231 struct e1000_hw
*hw
= &adapter
->hw
;
4232 struct pci_dev
*pdev
= adapter
->pdev
;
4235 /* disallow open during test */
4236 if (test_bit(__E1000_TESTING
, &adapter
->state
))
4239 pm_runtime_get_sync(&pdev
->dev
);
4241 netif_carrier_off(netdev
);
4243 /* allocate transmit descriptors */
4244 err
= e1000e_setup_tx_resources(adapter
->tx_ring
);
4248 /* allocate receive descriptors */
4249 err
= e1000e_setup_rx_resources(adapter
->rx_ring
);
4253 /* If AMT is enabled, let the firmware know that the network
4254 * interface is now open and reset the part to a known state.
4256 if (adapter
->flags
& FLAG_HAS_AMT
) {
4257 e1000e_get_hw_control(adapter
);
4258 e1000e_reset(adapter
);
4261 e1000e_power_up_phy(adapter
);
4263 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4264 if ((adapter
->hw
.mng_cookie
.status
&
4265 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
4266 e1000_update_mng_vlan(adapter
);
4268 /* DMA latency requirement to workaround jumbo issue */
4269 pm_qos_add_request(&adapter
->netdev
->pm_qos_req
, PM_QOS_CPU_DMA_LATENCY
,
4270 PM_QOS_DEFAULT_VALUE
);
4272 /* before we allocate an interrupt, we must be ready to handle it.
4273 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4274 * as soon as we call pci_request_irq, so we have to setup our
4275 * clean_rx handler before we do so.
4277 e1000_configure(adapter
);
4279 err
= e1000_request_irq(adapter
);
4283 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4284 * ignore e1000e MSI messages, which means we need to test our MSI
4287 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
4288 err
= e1000_test_msi(adapter
);
4290 e_err("Interrupt allocation failed\n");
4295 /* From here on the code is the same as e1000e_up() */
4296 clear_bit(__E1000_DOWN
, &adapter
->state
);
4298 napi_enable(&adapter
->napi
);
4300 e1000_irq_enable(adapter
);
4302 adapter
->tx_hang_recheck
= false;
4303 netif_start_queue(netdev
);
4305 adapter
->idle_check
= true;
4306 pm_runtime_put(&pdev
->dev
);
4308 /* fire a link status change interrupt to start the watchdog */
4309 if (adapter
->msix_entries
)
4310 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
4312 ew32(ICS
, E1000_ICS_LSC
);
4317 e1000e_release_hw_control(adapter
);
4318 e1000_power_down_phy(adapter
);
4319 e1000e_free_rx_resources(adapter
->rx_ring
);
4321 e1000e_free_tx_resources(adapter
->tx_ring
);
4323 e1000e_reset(adapter
);
4324 pm_runtime_put_sync(&pdev
->dev
);
4330 * e1000_close - Disables a network interface
4331 * @netdev: network interface device structure
4333 * Returns 0, this is not allowed to fail
4335 * The close entry point is called when an interface is de-activated
4336 * by the OS. The hardware is still under the drivers control, but
4337 * needs to be disabled. A global MAC reset is issued to stop the
4338 * hardware, and all transmit and receive resources are freed.
4340 static int e1000_close(struct net_device
*netdev
)
4342 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4343 struct pci_dev
*pdev
= adapter
->pdev
;
4344 int count
= E1000_CHECK_RESET_COUNT
;
4346 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
4347 usleep_range(10000, 20000);
4349 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
4351 pm_runtime_get_sync(&pdev
->dev
);
4353 napi_disable(&adapter
->napi
);
4355 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
4356 e1000e_down(adapter
);
4357 e1000_free_irq(adapter
);
4359 e1000_power_down_phy(adapter
);
4361 e1000e_free_tx_resources(adapter
->tx_ring
);
4362 e1000e_free_rx_resources(adapter
->rx_ring
);
4364 /* kill manageability vlan ID if supported, but not if a vlan with
4365 * the same ID is registered on the host OS (let 8021q kill it)
4367 if (adapter
->hw
.mng_cookie
.status
&
4368 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)
4369 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
4371 /* If AMT is enabled, let the firmware know that the network
4372 * interface is now closed
4374 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
4375 !test_bit(__E1000_TESTING
, &adapter
->state
))
4376 e1000e_release_hw_control(adapter
);
4378 pm_qos_remove_request(&adapter
->netdev
->pm_qos_req
);
4380 pm_runtime_put_sync(&pdev
->dev
);
4385 * e1000_set_mac - Change the Ethernet Address of the NIC
4386 * @netdev: network interface device structure
4387 * @p: pointer to an address structure
4389 * Returns 0 on success, negative on failure
4391 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
4393 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4394 struct e1000_hw
*hw
= &adapter
->hw
;
4395 struct sockaddr
*addr
= p
;
4397 if (!is_valid_ether_addr(addr
->sa_data
))
4398 return -EADDRNOTAVAIL
;
4400 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
4401 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
4403 hw
->mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
4405 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
4406 /* activate the work around */
4407 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
4409 /* Hold a copy of the LAA in RAR[14] This is done so that
4410 * between the time RAR[0] gets clobbered and the time it
4411 * gets fixed (in e1000_watchdog), the actual LAA is in one
4412 * of the RARs and no incoming packets directed to this port
4413 * are dropped. Eventually the LAA will be in RAR[0] and
4416 hw
->mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
,
4417 adapter
->hw
.mac
.rar_entry_count
- 1);
4424 * e1000e_update_phy_task - work thread to update phy
4425 * @work: pointer to our work struct
4427 * this worker thread exists because we must acquire a
4428 * semaphore to read the phy, which we could msleep while
4429 * waiting for it, and we can't msleep in a timer.
4431 static void e1000e_update_phy_task(struct work_struct
*work
)
4433 struct e1000_adapter
*adapter
= container_of(work
,
4434 struct e1000_adapter
, update_phy_task
);
4436 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4439 e1000_get_phy_info(&adapter
->hw
);
4443 * e1000_update_phy_info - timre call-back to update PHY info
4444 * @data: pointer to adapter cast into an unsigned long
4446 * Need to wait a few seconds after link up to get diagnostic information from
4449 static void e1000_update_phy_info(unsigned long data
)
4451 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
4453 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4456 schedule_work(&adapter
->update_phy_task
);
4460 * e1000e_update_phy_stats - Update the PHY statistics counters
4461 * @adapter: board private structure
4463 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4465 static void e1000e_update_phy_stats(struct e1000_adapter
*adapter
)
4467 struct e1000_hw
*hw
= &adapter
->hw
;
4471 ret_val
= hw
->phy
.ops
.acquire(hw
);
4475 /* A page set is expensive so check if already on desired page.
4476 * If not, set to the page with the PHY status registers.
4479 ret_val
= e1000e_read_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
4483 if (phy_data
!= (HV_STATS_PAGE
<< IGP_PAGE_SHIFT
)) {
4484 ret_val
= hw
->phy
.ops
.set_page(hw
,
4485 HV_STATS_PAGE
<< IGP_PAGE_SHIFT
);
4490 /* Single Collision Count */
4491 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_UPPER
, &phy_data
);
4492 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_LOWER
, &phy_data
);
4494 adapter
->stats
.scc
+= phy_data
;
4496 /* Excessive Collision Count */
4497 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_UPPER
, &phy_data
);
4498 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_LOWER
, &phy_data
);
4500 adapter
->stats
.ecol
+= phy_data
;
4502 /* Multiple Collision Count */
4503 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_UPPER
, &phy_data
);
4504 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_LOWER
, &phy_data
);
4506 adapter
->stats
.mcc
+= phy_data
;
4508 /* Late Collision Count */
4509 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_UPPER
, &phy_data
);
4510 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_LOWER
, &phy_data
);
4512 adapter
->stats
.latecol
+= phy_data
;
4514 /* Collision Count - also used for adaptive IFS */
4515 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_UPPER
, &phy_data
);
4516 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_LOWER
, &phy_data
);
4518 hw
->mac
.collision_delta
= phy_data
;
4521 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_UPPER
, &phy_data
);
4522 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_DC_LOWER
, &phy_data
);
4524 adapter
->stats
.dc
+= phy_data
;
4526 /* Transmit with no CRS */
4527 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_UPPER
, &phy_data
);
4528 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_LOWER
, &phy_data
);
4530 adapter
->stats
.tncrs
+= phy_data
;
4533 hw
->phy
.ops
.release(hw
);
4537 * e1000e_update_stats - Update the board statistics counters
4538 * @adapter: board private structure
4540 static void e1000e_update_stats(struct e1000_adapter
*adapter
)
4542 struct net_device
*netdev
= adapter
->netdev
;
4543 struct e1000_hw
*hw
= &adapter
->hw
;
4544 struct pci_dev
*pdev
= adapter
->pdev
;
4546 /* Prevent stats update while adapter is being reset, or if the pci
4547 * connection is down.
4549 if (adapter
->link_speed
== 0)
4551 if (pci_channel_offline(pdev
))
4554 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
4555 adapter
->stats
.gprc
+= er32(GPRC
);
4556 adapter
->stats
.gorc
+= er32(GORCL
);
4557 er32(GORCH
); /* Clear gorc */
4558 adapter
->stats
.bprc
+= er32(BPRC
);
4559 adapter
->stats
.mprc
+= er32(MPRC
);
4560 adapter
->stats
.roc
+= er32(ROC
);
4562 adapter
->stats
.mpc
+= er32(MPC
);
4564 /* Half-duplex statistics */
4565 if (adapter
->link_duplex
== HALF_DUPLEX
) {
4566 if (adapter
->flags2
& FLAG2_HAS_PHY_STATS
) {
4567 e1000e_update_phy_stats(adapter
);
4569 adapter
->stats
.scc
+= er32(SCC
);
4570 adapter
->stats
.ecol
+= er32(ECOL
);
4571 adapter
->stats
.mcc
+= er32(MCC
);
4572 adapter
->stats
.latecol
+= er32(LATECOL
);
4573 adapter
->stats
.dc
+= er32(DC
);
4575 hw
->mac
.collision_delta
= er32(COLC
);
4577 if ((hw
->mac
.type
!= e1000_82574
) &&
4578 (hw
->mac
.type
!= e1000_82583
))
4579 adapter
->stats
.tncrs
+= er32(TNCRS
);
4581 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
4584 adapter
->stats
.xonrxc
+= er32(XONRXC
);
4585 adapter
->stats
.xontxc
+= er32(XONTXC
);
4586 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
4587 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
4588 adapter
->stats
.gptc
+= er32(GPTC
);
4589 adapter
->stats
.gotc
+= er32(GOTCL
);
4590 er32(GOTCH
); /* Clear gotc */
4591 adapter
->stats
.rnbc
+= er32(RNBC
);
4592 adapter
->stats
.ruc
+= er32(RUC
);
4594 adapter
->stats
.mptc
+= er32(MPTC
);
4595 adapter
->stats
.bptc
+= er32(BPTC
);
4597 /* used for adaptive IFS */
4599 hw
->mac
.tx_packet_delta
= er32(TPT
);
4600 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
4602 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
4603 adapter
->stats
.rxerrc
+= er32(RXERRC
);
4604 adapter
->stats
.cexterr
+= er32(CEXTERR
);
4605 adapter
->stats
.tsctc
+= er32(TSCTC
);
4606 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
4608 /* Fill out the OS statistics structure */
4609 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
4610 netdev
->stats
.collisions
= adapter
->stats
.colc
;
4614 /* RLEC on some newer hardware can be incorrect so build
4615 * our own version based on RUC and ROC
4617 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
4618 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
4619 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
4620 adapter
->stats
.cexterr
;
4621 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
4623 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
4624 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
4625 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
4628 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+
4629 adapter
->stats
.latecol
;
4630 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
4631 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
4632 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
4634 /* Tx Dropped needs to be maintained elsewhere */
4636 /* Management Stats */
4637 adapter
->stats
.mgptc
+= er32(MGTPTC
);
4638 adapter
->stats
.mgprc
+= er32(MGTPRC
);
4639 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
4641 /* Correctable ECC Errors */
4642 if (hw
->mac
.type
== e1000_pch_lpt
) {
4643 u32 pbeccsts
= er32(PBECCSTS
);
4644 adapter
->corr_errors
+=
4645 pbeccsts
& E1000_PBECCSTS_CORR_ERR_CNT_MASK
;
4646 adapter
->uncorr_errors
+=
4647 (pbeccsts
& E1000_PBECCSTS_UNCORR_ERR_CNT_MASK
) >>
4648 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT
;
4653 * e1000_phy_read_status - Update the PHY register status snapshot
4654 * @adapter: board private structure
4656 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
4658 struct e1000_hw
*hw
= &adapter
->hw
;
4659 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
4661 if ((er32(STATUS
) & E1000_STATUS_LU
) &&
4662 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
4665 ret_val
= e1e_rphy(hw
, MII_BMCR
, &phy
->bmcr
);
4666 ret_val
|= e1e_rphy(hw
, MII_BMSR
, &phy
->bmsr
);
4667 ret_val
|= e1e_rphy(hw
, MII_ADVERTISE
, &phy
->advertise
);
4668 ret_val
|= e1e_rphy(hw
, MII_LPA
, &phy
->lpa
);
4669 ret_val
|= e1e_rphy(hw
, MII_EXPANSION
, &phy
->expansion
);
4670 ret_val
|= e1e_rphy(hw
, MII_CTRL1000
, &phy
->ctrl1000
);
4671 ret_val
|= e1e_rphy(hw
, MII_STAT1000
, &phy
->stat1000
);
4672 ret_val
|= e1e_rphy(hw
, MII_ESTATUS
, &phy
->estatus
);
4674 e_warn("Error reading PHY register\n");
4676 /* Do not read PHY registers if link is not up
4677 * Set values to typical power-on defaults
4679 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
4680 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
4681 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
4683 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
4684 ADVERTISE_ALL
| ADVERTISE_CSMA
);
4686 phy
->expansion
= EXPANSION_ENABLENPAGE
;
4687 phy
->ctrl1000
= ADVERTISE_1000FULL
;
4689 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
4693 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
4695 struct e1000_hw
*hw
= &adapter
->hw
;
4696 u32 ctrl
= er32(CTRL
);
4698 /* Link status message must follow this format for user tools */
4699 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4700 adapter
->netdev
->name
, adapter
->link_speed
,
4701 adapter
->link_duplex
== FULL_DUPLEX
? "Full" : "Half",
4702 (ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
) ? "Rx/Tx" :
4703 (ctrl
& E1000_CTRL_RFCE
) ? "Rx" :
4704 (ctrl
& E1000_CTRL_TFCE
) ? "Tx" : "None");
4707 static bool e1000e_has_link(struct e1000_adapter
*adapter
)
4709 struct e1000_hw
*hw
= &adapter
->hw
;
4710 bool link_active
= false;
4713 /* get_link_status is set on LSC (link status) interrupt or
4714 * Rx sequence error interrupt. get_link_status will stay
4715 * false until the check_for_link establishes link
4716 * for copper adapters ONLY
4718 switch (hw
->phy
.media_type
) {
4719 case e1000_media_type_copper
:
4720 if (hw
->mac
.get_link_status
) {
4721 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4722 link_active
= !hw
->mac
.get_link_status
;
4727 case e1000_media_type_fiber
:
4728 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4729 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
4731 case e1000_media_type_internal_serdes
:
4732 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4733 link_active
= adapter
->hw
.mac
.serdes_has_link
;
4736 case e1000_media_type_unknown
:
4740 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
4741 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
4742 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4743 e_info("Gigabit has been disabled, downgrading speed\n");
4749 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
4751 /* make sure the receive unit is started */
4752 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
4753 (adapter
->flags
& FLAG_RESTART_NOW
)) {
4754 struct e1000_hw
*hw
= &adapter
->hw
;
4755 u32 rctl
= er32(RCTL
);
4756 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
4757 adapter
->flags
&= ~FLAG_RESTART_NOW
;
4761 static void e1000e_check_82574_phy_workaround(struct e1000_adapter
*adapter
)
4763 struct e1000_hw
*hw
= &adapter
->hw
;
4765 /* With 82574 controllers, PHY needs to be checked periodically
4766 * for hung state and reset, if two calls return true
4768 if (e1000_check_phy_82574(hw
))
4769 adapter
->phy_hang_count
++;
4771 adapter
->phy_hang_count
= 0;
4773 if (adapter
->phy_hang_count
> 1) {
4774 adapter
->phy_hang_count
= 0;
4775 schedule_work(&adapter
->reset_task
);
4780 * e1000_watchdog - Timer Call-back
4781 * @data: pointer to adapter cast into an unsigned long
4783 static void e1000_watchdog(unsigned long data
)
4785 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
4787 /* Do the rest outside of interrupt context */
4788 schedule_work(&adapter
->watchdog_task
);
4790 /* TODO: make this use queue_delayed_work() */
4793 static void e1000_watchdog_task(struct work_struct
*work
)
4795 struct e1000_adapter
*adapter
= container_of(work
,
4796 struct e1000_adapter
, watchdog_task
);
4797 struct net_device
*netdev
= adapter
->netdev
;
4798 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
4799 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
4800 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4801 struct e1000_hw
*hw
= &adapter
->hw
;
4804 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4807 link
= e1000e_has_link(adapter
);
4808 if ((netif_carrier_ok(netdev
)) && link
) {
4809 /* Cancel scheduled suspend requests. */
4810 pm_runtime_resume(netdev
->dev
.parent
);
4812 e1000e_enable_receives(adapter
);
4816 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
4817 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
4818 e1000_update_mng_vlan(adapter
);
4821 if (!netif_carrier_ok(netdev
)) {
4824 /* Cancel scheduled suspend requests. */
4825 pm_runtime_resume(netdev
->dev
.parent
);
4827 /* update snapshot of PHY registers on LSC */
4828 e1000_phy_read_status(adapter
);
4829 mac
->ops
.get_link_up_info(&adapter
->hw
,
4830 &adapter
->link_speed
,
4831 &adapter
->link_duplex
);
4832 e1000_print_link_info(adapter
);
4833 /* On supported PHYs, check for duplex mismatch only
4834 * if link has autonegotiated at 10/100 half
4836 if ((hw
->phy
.type
== e1000_phy_igp_3
||
4837 hw
->phy
.type
== e1000_phy_bm
) &&
4838 (hw
->mac
.autoneg
== true) &&
4839 (adapter
->link_speed
== SPEED_10
||
4840 adapter
->link_speed
== SPEED_100
) &&
4841 (adapter
->link_duplex
== HALF_DUPLEX
)) {
4844 e1e_rphy(hw
, MII_EXPANSION
, &autoneg_exp
);
4846 if (!(autoneg_exp
& EXPANSION_NWAY
))
4847 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
4850 /* adjust timeout factor according to speed/duplex */
4851 adapter
->tx_timeout_factor
= 1;
4852 switch (adapter
->link_speed
) {
4855 adapter
->tx_timeout_factor
= 16;
4859 adapter
->tx_timeout_factor
= 10;
4863 /* workaround: re-program speed mode bit after
4866 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
4869 tarc0
= er32(TARC(0));
4870 tarc0
&= ~SPEED_MODE_BIT
;
4871 ew32(TARC(0), tarc0
);
4874 /* disable TSO for pcie and 10/100 speeds, to avoid
4875 * some hardware issues
4877 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
4878 switch (adapter
->link_speed
) {
4881 e_info("10/100 speed: disabling TSO\n");
4882 netdev
->features
&= ~NETIF_F_TSO
;
4883 netdev
->features
&= ~NETIF_F_TSO6
;
4886 netdev
->features
|= NETIF_F_TSO
;
4887 netdev
->features
|= NETIF_F_TSO6
;
4895 /* enable transmits in the hardware, need to do this
4896 * after setting TARC(0)
4899 tctl
|= E1000_TCTL_EN
;
4902 /* Perform any post-link-up configuration before
4903 * reporting link up.
4905 if (phy
->ops
.cfg_on_link_up
)
4906 phy
->ops
.cfg_on_link_up(hw
);
4908 netif_carrier_on(netdev
);
4910 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4911 mod_timer(&adapter
->phy_info_timer
,
4912 round_jiffies(jiffies
+ 2 * HZ
));
4915 if (netif_carrier_ok(netdev
)) {
4916 adapter
->link_speed
= 0;
4917 adapter
->link_duplex
= 0;
4918 /* Link status message must follow this format */
4919 pr_info("%s NIC Link is Down\n", adapter
->netdev
->name
);
4920 netif_carrier_off(netdev
);
4921 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4922 mod_timer(&adapter
->phy_info_timer
,
4923 round_jiffies(jiffies
+ 2 * HZ
));
4925 /* The link is lost so the controller stops DMA.
4926 * If there is queued Tx work that cannot be done
4927 * or if on an 8000ES2LAN which requires a Rx packet
4928 * buffer work-around on link down event, reset the
4929 * controller to flush the Tx/Rx packet buffers.
4930 * (Do the reset outside of interrupt context).
4932 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) ||
4933 (e1000_desc_unused(tx_ring
) + 1 < tx_ring
->count
))
4934 adapter
->flags
|= FLAG_RESTART_NOW
;
4936 pm_schedule_suspend(netdev
->dev
.parent
,
4942 spin_lock(&adapter
->stats64_lock
);
4943 e1000e_update_stats(adapter
);
4945 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
4946 adapter
->tpt_old
= adapter
->stats
.tpt
;
4947 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
4948 adapter
->colc_old
= adapter
->stats
.colc
;
4950 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
4951 adapter
->gorc_old
= adapter
->stats
.gorc
;
4952 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
4953 adapter
->gotc_old
= adapter
->stats
.gotc
;
4954 spin_unlock(&adapter
->stats64_lock
);
4956 if (adapter
->flags
& FLAG_RESTART_NOW
) {
4957 schedule_work(&adapter
->reset_task
);
4958 /* return immediately since reset is imminent */
4962 e1000e_update_adaptive(&adapter
->hw
);
4964 /* Simple mode for Interrupt Throttle Rate (ITR) */
4965 if (adapter
->itr_setting
== 4) {
4966 /* Symmetric Tx/Rx gets a reduced ITR=2000;
4967 * Total asymmetrical Tx or Rx gets ITR=8000;
4968 * everyone else is between 2000-8000.
4970 u32 goc
= (adapter
->gotc
+ adapter
->gorc
) / 10000;
4971 u32 dif
= (adapter
->gotc
> adapter
->gorc
?
4972 adapter
->gotc
- adapter
->gorc
:
4973 adapter
->gorc
- adapter
->gotc
) / 10000;
4974 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
4976 e1000e_write_itr(adapter
, itr
);
4979 /* Cause software interrupt to ensure Rx ring is cleaned */
4980 if (adapter
->msix_entries
)
4981 ew32(ICS
, adapter
->rx_ring
->ims_val
);
4983 ew32(ICS
, E1000_ICS_RXDMT0
);
4985 /* flush pending descriptors to memory before detecting Tx hang */
4986 e1000e_flush_descriptors(adapter
);
4988 /* Force detection of hung controller every watchdog period */
4989 adapter
->detect_tx_hung
= true;
4991 /* With 82571 controllers, LAA may be overwritten due to controller
4992 * reset from the other port. Set the appropriate LAA in RAR[0]
4994 if (e1000e_get_laa_state_82571(hw
))
4995 hw
->mac
.ops
.rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
4997 if (adapter
->flags2
& FLAG2_CHECK_PHY_HANG
)
4998 e1000e_check_82574_phy_workaround(adapter
);
5000 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5001 if (adapter
->hwtstamp_config
.rx_filter
!= HWTSTAMP_FILTER_NONE
) {
5002 if ((adapter
->flags2
& FLAG2_CHECK_RX_HWTSTAMP
) &&
5003 (er32(TSYNCRXCTL
) & E1000_TSYNCRXCTL_VALID
)) {
5005 adapter
->rx_hwtstamp_cleared
++;
5007 adapter
->flags2
|= FLAG2_CHECK_RX_HWTSTAMP
;
5011 /* Reset the timer */
5012 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
5013 mod_timer(&adapter
->watchdog_timer
,
5014 round_jiffies(jiffies
+ 2 * HZ
));
5017 #define E1000_TX_FLAGS_CSUM 0x00000001
5018 #define E1000_TX_FLAGS_VLAN 0x00000002
5019 #define E1000_TX_FLAGS_TSO 0x00000004
5020 #define E1000_TX_FLAGS_IPV4 0x00000008
5021 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5022 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5023 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5024 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5026 static int e1000_tso(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
)
5028 struct e1000_context_desc
*context_desc
;
5029 struct e1000_buffer
*buffer_info
;
5033 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
5035 if (!skb_is_gso(skb
))
5038 if (skb_header_cloned(skb
)) {
5039 int err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
5045 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
5046 mss
= skb_shinfo(skb
)->gso_size
;
5047 if (skb
->protocol
== htons(ETH_P_IP
)) {
5048 struct iphdr
*iph
= ip_hdr(skb
);
5051 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
5053 cmd_length
= E1000_TXD_CMD_IP
;
5054 ipcse
= skb_transport_offset(skb
) - 1;
5055 } else if (skb_is_gso_v6(skb
)) {
5056 ipv6_hdr(skb
)->payload_len
= 0;
5057 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
5058 &ipv6_hdr(skb
)->daddr
,
5062 ipcss
= skb_network_offset(skb
);
5063 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
5064 tucss
= skb_transport_offset(skb
);
5065 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
5067 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
5068 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
5070 i
= tx_ring
->next_to_use
;
5071 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
5072 buffer_info
= &tx_ring
->buffer_info
[i
];
5074 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
5075 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
5076 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
5077 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
5078 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
5079 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
5080 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
5081 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
5082 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
5084 buffer_info
->time_stamp
= jiffies
;
5085 buffer_info
->next_to_watch
= i
;
5088 if (i
== tx_ring
->count
)
5090 tx_ring
->next_to_use
= i
;
5095 static bool e1000_tx_csum(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
)
5097 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5098 struct e1000_context_desc
*context_desc
;
5099 struct e1000_buffer
*buffer_info
;
5102 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
5105 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
5108 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
))
5109 protocol
= vlan_eth_hdr(skb
)->h_vlan_encapsulated_proto
;
5111 protocol
= skb
->protocol
;
5114 case cpu_to_be16(ETH_P_IP
):
5115 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
5116 cmd_len
|= E1000_TXD_CMD_TCP
;
5118 case cpu_to_be16(ETH_P_IPV6
):
5119 /* XXX not handling all IPV6 headers */
5120 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
5121 cmd_len
|= E1000_TXD_CMD_TCP
;
5124 if (unlikely(net_ratelimit()))
5125 e_warn("checksum_partial proto=%x!\n",
5126 be16_to_cpu(protocol
));
5130 css
= skb_checksum_start_offset(skb
);
5132 i
= tx_ring
->next_to_use
;
5133 buffer_info
= &tx_ring
->buffer_info
[i
];
5134 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
5136 context_desc
->lower_setup
.ip_config
= 0;
5137 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
5138 context_desc
->upper_setup
.tcp_fields
.tucso
=
5139 css
+ skb
->csum_offset
;
5140 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
5141 context_desc
->tcp_seg_setup
.data
= 0;
5142 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
5144 buffer_info
->time_stamp
= jiffies
;
5145 buffer_info
->next_to_watch
= i
;
5148 if (i
== tx_ring
->count
)
5150 tx_ring
->next_to_use
= i
;
5155 static int e1000_tx_map(struct e1000_ring
*tx_ring
, struct sk_buff
*skb
,
5156 unsigned int first
, unsigned int max_per_txd
,
5157 unsigned int nr_frags
)
5159 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5160 struct pci_dev
*pdev
= adapter
->pdev
;
5161 struct e1000_buffer
*buffer_info
;
5162 unsigned int len
= skb_headlen(skb
);
5163 unsigned int offset
= 0, size
, count
= 0, i
;
5164 unsigned int f
, bytecount
, segs
;
5166 i
= tx_ring
->next_to_use
;
5169 buffer_info
= &tx_ring
->buffer_info
[i
];
5170 size
= min(len
, max_per_txd
);
5172 buffer_info
->length
= size
;
5173 buffer_info
->time_stamp
= jiffies
;
5174 buffer_info
->next_to_watch
= i
;
5175 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
5177 size
, DMA_TO_DEVICE
);
5178 buffer_info
->mapped_as_page
= false;
5179 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
5188 if (i
== tx_ring
->count
)
5193 for (f
= 0; f
< nr_frags
; f
++) {
5194 const struct skb_frag_struct
*frag
;
5196 frag
= &skb_shinfo(skb
)->frags
[f
];
5197 len
= skb_frag_size(frag
);
5202 if (i
== tx_ring
->count
)
5205 buffer_info
= &tx_ring
->buffer_info
[i
];
5206 size
= min(len
, max_per_txd
);
5208 buffer_info
->length
= size
;
5209 buffer_info
->time_stamp
= jiffies
;
5210 buffer_info
->next_to_watch
= i
;
5211 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
,
5212 offset
, size
, DMA_TO_DEVICE
);
5213 buffer_info
->mapped_as_page
= true;
5214 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
5223 segs
= skb_shinfo(skb
)->gso_segs
? : 1;
5224 /* multiply data chunks by size of headers */
5225 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
5227 tx_ring
->buffer_info
[i
].skb
= skb
;
5228 tx_ring
->buffer_info
[i
].segs
= segs
;
5229 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
5230 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
5235 dev_err(&pdev
->dev
, "Tx DMA map failed\n");
5236 buffer_info
->dma
= 0;
5242 i
+= tx_ring
->count
;
5244 buffer_info
= &tx_ring
->buffer_info
[i
];
5245 e1000_put_txbuf(tx_ring
, buffer_info
);
5251 static void e1000_tx_queue(struct e1000_ring
*tx_ring
, int tx_flags
, int count
)
5253 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5254 struct e1000_tx_desc
*tx_desc
= NULL
;
5255 struct e1000_buffer
*buffer_info
;
5256 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
5259 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
5260 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
5262 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
5264 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
5265 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
5268 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
5269 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
5270 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
5273 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
5274 txd_lower
|= E1000_TXD_CMD_VLE
;
5275 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
5278 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
5279 txd_lower
&= ~(E1000_TXD_CMD_IFCS
);
5281 if (unlikely(tx_flags
& E1000_TX_FLAGS_HWTSTAMP
)) {
5282 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
5283 txd_upper
|= E1000_TXD_EXTCMD_TSTAMP
;
5286 i
= tx_ring
->next_to_use
;
5289 buffer_info
= &tx_ring
->buffer_info
[i
];
5290 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
5291 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
5292 tx_desc
->lower
.data
=
5293 cpu_to_le32(txd_lower
| buffer_info
->length
);
5294 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
5297 if (i
== tx_ring
->count
)
5299 } while (--count
> 0);
5301 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
5303 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5304 if (unlikely(tx_flags
& E1000_TX_FLAGS_NO_FCS
))
5305 tx_desc
->lower
.data
&= ~(cpu_to_le32(E1000_TXD_CMD_IFCS
));
5307 /* Force memory writes to complete before letting h/w
5308 * know there are new descriptors to fetch. (Only
5309 * applicable for weak-ordered memory model archs,
5314 tx_ring
->next_to_use
= i
;
5316 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
5317 e1000e_update_tdt_wa(tx_ring
, i
);
5319 writel(i
, tx_ring
->tail
);
5321 /* we need this if more than one processor can write to our tail
5322 * at a time, it synchronizes IO on IA64/Altix systems
5327 #define MINIMUM_DHCP_PACKET_SIZE 282
5328 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
5329 struct sk_buff
*skb
)
5331 struct e1000_hw
*hw
= &adapter
->hw
;
5334 if (vlan_tx_tag_present(skb
) &&
5335 !((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
5336 (adapter
->hw
.mng_cookie
.status
&
5337 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
5340 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
5343 if (((struct ethhdr
*) skb
->data
)->h_proto
!= htons(ETH_P_IP
))
5347 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+14);
5350 if (ip
->protocol
!= IPPROTO_UDP
)
5353 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
5354 if (ntohs(udp
->dest
) != 67)
5357 offset
= (u8
*)udp
+ 8 - skb
->data
;
5358 length
= skb
->len
- offset
;
5359 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
5365 static int __e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
5367 struct e1000_adapter
*adapter
= tx_ring
->adapter
;
5369 netif_stop_queue(adapter
->netdev
);
5370 /* Herbert's original patch had:
5371 * smp_mb__after_netif_stop_queue();
5372 * but since that doesn't exist yet, just open code it.
5376 /* We need to check again in a case another CPU has just
5377 * made room available.
5379 if (e1000_desc_unused(tx_ring
) < size
)
5383 netif_start_queue(adapter
->netdev
);
5384 ++adapter
->restart_queue
;
5388 static int e1000_maybe_stop_tx(struct e1000_ring
*tx_ring
, int size
)
5390 BUG_ON(size
> tx_ring
->count
);
5392 if (e1000_desc_unused(tx_ring
) >= size
)
5394 return __e1000_maybe_stop_tx(tx_ring
, size
);
5397 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
5398 struct net_device
*netdev
)
5400 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5401 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
5403 unsigned int tx_flags
= 0;
5404 unsigned int len
= skb_headlen(skb
);
5405 unsigned int nr_frags
;
5411 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
5412 dev_kfree_skb_any(skb
);
5413 return NETDEV_TX_OK
;
5416 if (skb
->len
<= 0) {
5417 dev_kfree_skb_any(skb
);
5418 return NETDEV_TX_OK
;
5421 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5422 * pad skb in order to meet this minimum size requirement
5424 if (unlikely(skb
->len
< 17)) {
5425 if (skb_pad(skb
, 17 - skb
->len
))
5426 return NETDEV_TX_OK
;
5428 skb_set_tail_pointer(skb
, 17);
5431 mss
= skb_shinfo(skb
)->gso_size
;
5435 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5436 * points to just header, pull a few bytes of payload from
5437 * frags into skb->data
5439 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
5440 /* we do this workaround for ES2LAN, but it is un-necessary,
5441 * avoiding it could save a lot of cycles
5443 if (skb
->data_len
&& (hdr_len
== len
)) {
5444 unsigned int pull_size
;
5446 pull_size
= min_t(unsigned int, 4, skb
->data_len
);
5447 if (!__pskb_pull_tail(skb
, pull_size
)) {
5448 e_err("__pskb_pull_tail failed.\n");
5449 dev_kfree_skb_any(skb
);
5450 return NETDEV_TX_OK
;
5452 len
= skb_headlen(skb
);
5456 /* reserve a descriptor for the offload context */
5457 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
5461 count
+= DIV_ROUND_UP(len
, adapter
->tx_fifo_limit
);
5463 nr_frags
= skb_shinfo(skb
)->nr_frags
;
5464 for (f
= 0; f
< nr_frags
; f
++)
5465 count
+= DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb
)->frags
[f
]),
5466 adapter
->tx_fifo_limit
);
5468 if (adapter
->hw
.mac
.tx_pkt_filtering
)
5469 e1000_transfer_dhcp_info(adapter
, skb
);
5471 /* need: count + 2 desc gap to keep tail from touching
5472 * head, otherwise try next time
5474 if (e1000_maybe_stop_tx(tx_ring
, count
+ 2))
5475 return NETDEV_TX_BUSY
;
5477 if (vlan_tx_tag_present(skb
)) {
5478 tx_flags
|= E1000_TX_FLAGS_VLAN
;
5479 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
5482 first
= tx_ring
->next_to_use
;
5484 tso
= e1000_tso(tx_ring
, skb
);
5486 dev_kfree_skb_any(skb
);
5487 return NETDEV_TX_OK
;
5491 tx_flags
|= E1000_TX_FLAGS_TSO
;
5492 else if (e1000_tx_csum(tx_ring
, skb
))
5493 tx_flags
|= E1000_TX_FLAGS_CSUM
;
5495 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5496 * 82571 hardware supports TSO capabilities for IPv6 as well...
5497 * no longer assume, we must.
5499 if (skb
->protocol
== htons(ETH_P_IP
))
5500 tx_flags
|= E1000_TX_FLAGS_IPV4
;
5502 if (unlikely(skb
->no_fcs
))
5503 tx_flags
|= E1000_TX_FLAGS_NO_FCS
;
5505 /* if count is 0 then mapping error has occurred */
5506 count
= e1000_tx_map(tx_ring
, skb
, first
, adapter
->tx_fifo_limit
,
5509 if (unlikely((skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
5510 !adapter
->tx_hwtstamp_skb
)) {
5511 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
5512 tx_flags
|= E1000_TX_FLAGS_HWTSTAMP
;
5513 adapter
->tx_hwtstamp_skb
= skb_get(skb
);
5514 schedule_work(&adapter
->tx_hwtstamp_work
);
5516 skb_tx_timestamp(skb
);
5519 netdev_sent_queue(netdev
, skb
->len
);
5520 e1000_tx_queue(tx_ring
, tx_flags
, count
);
5521 /* Make sure there is space in the ring for the next send. */
5522 e1000_maybe_stop_tx(tx_ring
,
5524 DIV_ROUND_UP(PAGE_SIZE
,
5525 adapter
->tx_fifo_limit
) + 2));
5527 dev_kfree_skb_any(skb
);
5528 tx_ring
->buffer_info
[first
].time_stamp
= 0;
5529 tx_ring
->next_to_use
= first
;
5532 return NETDEV_TX_OK
;
5536 * e1000_tx_timeout - Respond to a Tx Hang
5537 * @netdev: network interface device structure
5539 static void e1000_tx_timeout(struct net_device
*netdev
)
5541 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5543 /* Do the reset outside of interrupt context */
5544 adapter
->tx_timeout_count
++;
5545 schedule_work(&adapter
->reset_task
);
5548 static void e1000_reset_task(struct work_struct
*work
)
5550 struct e1000_adapter
*adapter
;
5551 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
5553 /* don't run the task if already down */
5554 if (test_bit(__E1000_DOWN
, &adapter
->state
))
5557 if (!(adapter
->flags
& FLAG_RESTART_NOW
)) {
5558 e1000e_dump(adapter
);
5559 e_err("Reset adapter unexpectedly\n");
5561 e1000e_reinit_locked(adapter
);
5565 * e1000_get_stats64 - Get System Network Statistics
5566 * @netdev: network interface device structure
5567 * @stats: rtnl_link_stats64 pointer
5569 * Returns the address of the device statistics structure.
5571 struct rtnl_link_stats64
*e1000e_get_stats64(struct net_device
*netdev
,
5572 struct rtnl_link_stats64
*stats
)
5574 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5576 memset(stats
, 0, sizeof(struct rtnl_link_stats64
));
5577 spin_lock(&adapter
->stats64_lock
);
5578 e1000e_update_stats(adapter
);
5579 /* Fill out the OS statistics structure */
5580 stats
->rx_bytes
= adapter
->stats
.gorc
;
5581 stats
->rx_packets
= adapter
->stats
.gprc
;
5582 stats
->tx_bytes
= adapter
->stats
.gotc
;
5583 stats
->tx_packets
= adapter
->stats
.gptc
;
5584 stats
->multicast
= adapter
->stats
.mprc
;
5585 stats
->collisions
= adapter
->stats
.colc
;
5589 /* RLEC on some newer hardware can be incorrect so build
5590 * our own version based on RUC and ROC
5592 stats
->rx_errors
= adapter
->stats
.rxerrc
+
5593 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
5594 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
5595 adapter
->stats
.cexterr
;
5596 stats
->rx_length_errors
= adapter
->stats
.ruc
+
5598 stats
->rx_crc_errors
= adapter
->stats
.crcerrs
;
5599 stats
->rx_frame_errors
= adapter
->stats
.algnerrc
;
5600 stats
->rx_missed_errors
= adapter
->stats
.mpc
;
5603 stats
->tx_errors
= adapter
->stats
.ecol
+
5604 adapter
->stats
.latecol
;
5605 stats
->tx_aborted_errors
= adapter
->stats
.ecol
;
5606 stats
->tx_window_errors
= adapter
->stats
.latecol
;
5607 stats
->tx_carrier_errors
= adapter
->stats
.tncrs
;
5609 /* Tx Dropped needs to be maintained elsewhere */
5611 spin_unlock(&adapter
->stats64_lock
);
5616 * e1000_change_mtu - Change the Maximum Transfer Unit
5617 * @netdev: network interface device structure
5618 * @new_mtu: new value for maximum frame size
5620 * Returns 0 on success, negative on failure
5622 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
5624 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5625 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
5627 /* Jumbo frame support */
5628 if ((max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
5629 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
5630 e_err("Jumbo Frames not supported.\n");
5634 /* Supported frame sizes */
5635 if ((new_mtu
< ETH_ZLEN
+ ETH_FCS_LEN
+ VLAN_HLEN
) ||
5636 (max_frame
> adapter
->max_hw_frame_size
)) {
5637 e_err("Unsupported MTU setting\n");
5641 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5642 if ((adapter
->hw
.mac
.type
>= e1000_pch2lan
) &&
5643 !(adapter
->flags2
& FLAG2_CRC_STRIPPING
) &&
5644 (new_mtu
> ETH_DATA_LEN
)) {
5645 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5649 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
5650 usleep_range(1000, 2000);
5651 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5652 adapter
->max_frame_size
= max_frame
;
5653 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
5654 netdev
->mtu
= new_mtu
;
5655 if (netif_running(netdev
))
5656 e1000e_down(adapter
);
5658 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5659 * means we reserve 2 more, this pushes us to allocate from the next
5661 * i.e. RXBUFFER_2048 --> size-4096 slab
5662 * However with the new *_jumbo_rx* routines, jumbo receives will use
5666 if (max_frame
<= 2048)
5667 adapter
->rx_buffer_len
= 2048;
5669 adapter
->rx_buffer_len
= 4096;
5671 /* adjust allocation if LPE protects us, and we aren't using SBP */
5672 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
5673 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
5674 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
5677 if (netif_running(netdev
))
5680 e1000e_reset(adapter
);
5682 clear_bit(__E1000_RESETTING
, &adapter
->state
);
5687 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
5690 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5691 struct mii_ioctl_data
*data
= if_mii(ifr
);
5693 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
5698 data
->phy_id
= adapter
->hw
.phy
.addr
;
5701 e1000_phy_read_status(adapter
);
5703 switch (data
->reg_num
& 0x1F) {
5705 data
->val_out
= adapter
->phy_regs
.bmcr
;
5708 data
->val_out
= adapter
->phy_regs
.bmsr
;
5711 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
5714 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
5717 data
->val_out
= adapter
->phy_regs
.advertise
;
5720 data
->val_out
= adapter
->phy_regs
.lpa
;
5723 data
->val_out
= adapter
->phy_regs
.expansion
;
5726 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
5729 data
->val_out
= adapter
->phy_regs
.stat1000
;
5732 data
->val_out
= adapter
->phy_regs
.estatus
;
5746 * e1000e_hwtstamp_ioctl - control hardware time stamping
5747 * @netdev: network interface device structure
5748 * @ifreq: interface request
5750 * Outgoing time stamping can be enabled and disabled. Play nice and
5751 * disable it when requested, although it shouldn't cause any overhead
5752 * when no packet needs it. At most one packet in the queue may be
5753 * marked for time stamping, otherwise it would be impossible to tell
5754 * for sure to which packet the hardware time stamp belongs.
5756 * Incoming time stamping has to be configured via the hardware filters.
5757 * Not all combinations are supported, in particular event type has to be
5758 * specified. Matching the kind of event packet is not supported, with the
5759 * exception of "all V2 events regardless of level 2 or 4".
5761 static int e1000e_hwtstamp_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
)
5763 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5764 struct hwtstamp_config config
;
5767 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
5770 adapter
->hwtstamp_config
= config
;
5772 ret_val
= e1000e_config_hwtstamp(adapter
);
5776 config
= adapter
->hwtstamp_config
;
5778 switch (config
.rx_filter
) {
5779 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC
:
5780 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC
:
5781 case HWTSTAMP_FILTER_PTP_V2_SYNC
:
5782 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ
:
5783 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ
:
5784 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ
:
5785 /* With V2 type filters which specify a Sync or Delay Request,
5786 * Path Delay Request/Response messages are also time stamped
5787 * by hardware so notify the caller the requested packets plus
5788 * some others are time stamped.
5790 config
.rx_filter
= HWTSTAMP_FILTER_SOME
;
5796 return copy_to_user(ifr
->ifr_data
, &config
,
5797 sizeof(config
)) ? -EFAULT
: 0;
5800 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
5806 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
5808 return e1000e_hwtstamp_ioctl(netdev
, ifr
);
5814 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
5816 struct e1000_hw
*hw
= &adapter
->hw
;
5818 u16 phy_reg
, wuc_enable
;
5821 /* copy MAC RARs to PHY RARs */
5822 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
5824 retval
= hw
->phy
.ops
.acquire(hw
);
5826 e_err("Could not acquire PHY\n");
5830 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5831 retval
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
5835 /* copy MAC MTA to PHY MTA - only needed for pchlan */
5836 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
5837 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
5838 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
),
5839 (u16
)(mac_reg
& 0xFFFF));
5840 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
) + 1,
5841 (u16
)((mac_reg
>> 16) & 0xFFFF));
5844 /* configure PHY Rx Control register */
5845 hw
->phy
.ops
.read_reg_page(&adapter
->hw
, BM_RCTL
, &phy_reg
);
5846 mac_reg
= er32(RCTL
);
5847 if (mac_reg
& E1000_RCTL_UPE
)
5848 phy_reg
|= BM_RCTL_UPE
;
5849 if (mac_reg
& E1000_RCTL_MPE
)
5850 phy_reg
|= BM_RCTL_MPE
;
5851 phy_reg
&= ~(BM_RCTL_MO_MASK
);
5852 if (mac_reg
& E1000_RCTL_MO_3
)
5853 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
5854 << BM_RCTL_MO_SHIFT
);
5855 if (mac_reg
& E1000_RCTL_BAM
)
5856 phy_reg
|= BM_RCTL_BAM
;
5857 if (mac_reg
& E1000_RCTL_PMCF
)
5858 phy_reg
|= BM_RCTL_PMCF
;
5859 mac_reg
= er32(CTRL
);
5860 if (mac_reg
& E1000_CTRL_RFCE
)
5861 phy_reg
|= BM_RCTL_RFCE
;
5862 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_RCTL
, phy_reg
);
5864 /* enable PHY wakeup in MAC register */
5866 ew32(WUC
, E1000_WUC_PHY_WAKE
| E1000_WUC_PME_EN
);
5868 /* configure and enable PHY wakeup in PHY registers */
5869 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUFC
, wufc
);
5870 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUC
, E1000_WUC_PME_EN
);
5872 /* activate PHY wakeup */
5873 wuc_enable
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
5874 retval
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
5876 e_err("Could not set PHY Host Wakeup bit\n");
5878 hw
->phy
.ops
.release(hw
);
5883 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
,
5886 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5887 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5888 struct e1000_hw
*hw
= &adapter
->hw
;
5889 u32 ctrl
, ctrl_ext
, rctl
, status
;
5890 /* Runtime suspend should only enable wakeup for link changes */
5891 u32 wufc
= runtime
? E1000_WUFC_LNKC
: adapter
->wol
;
5894 netif_device_detach(netdev
);
5896 if (netif_running(netdev
)) {
5897 int count
= E1000_CHECK_RESET_COUNT
;
5899 while (test_bit(__E1000_RESETTING
, &adapter
->state
) && count
--)
5900 usleep_range(10000, 20000);
5902 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
5903 e1000e_down(adapter
);
5904 e1000_free_irq(adapter
);
5906 e1000e_reset_interrupt_capability(adapter
);
5908 retval
= pci_save_state(pdev
);
5912 status
= er32(STATUS
);
5913 if (status
& E1000_STATUS_LU
)
5914 wufc
&= ~E1000_WUFC_LNKC
;
5917 e1000_setup_rctl(adapter
);
5918 e1000e_set_rx_mode(netdev
);
5920 /* turn on all-multi mode if wake on multicast is enabled */
5921 if (wufc
& E1000_WUFC_MC
) {
5923 rctl
|= E1000_RCTL_MPE
;
5928 /* advertise wake from D3Cold */
5929 #define E1000_CTRL_ADVD3WUC 0x00100000
5930 /* phy power management enable */
5931 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5932 ctrl
|= E1000_CTRL_ADVD3WUC
;
5933 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
5934 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
5937 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
5938 adapter
->hw
.phy
.media_type
==
5939 e1000_media_type_internal_serdes
) {
5940 /* keep the laser running in D3 */
5941 ctrl_ext
= er32(CTRL_EXT
);
5942 ctrl_ext
|= E1000_CTRL_EXT_SDP3_DATA
;
5943 ew32(CTRL_EXT
, ctrl_ext
);
5946 if (adapter
->flags
& FLAG_IS_ICH
)
5947 e1000_suspend_workarounds_ich8lan(&adapter
->hw
);
5949 /* Allow time for pending master requests to run */
5950 e1000e_disable_pcie_master(&adapter
->hw
);
5952 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
5953 /* enable wakeup by the PHY */
5954 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
5958 /* enable wakeup by the MAC */
5960 ew32(WUC
, E1000_WUC_PME_EN
);
5967 *enable_wake
= !!wufc
;
5969 /* make sure adapter isn't asleep if manageability is enabled */
5970 if ((adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
5971 (hw
->mac
.ops
.check_mng_mode(hw
)))
5972 *enable_wake
= true;
5974 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
5975 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
5977 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5978 * would have already happened in close and is redundant.
5980 e1000e_release_hw_control(adapter
);
5982 pci_disable_device(pdev
);
5987 static void e1000_power_off(struct pci_dev
*pdev
, bool sleep
, bool wake
)
5989 if (sleep
&& wake
) {
5990 pci_prepare_to_sleep(pdev
);
5994 pci_wake_from_d3(pdev
, wake
);
5995 pci_set_power_state(pdev
, PCI_D3hot
);
5998 static void e1000_complete_shutdown(struct pci_dev
*pdev
, bool sleep
,
6001 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6002 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6004 /* The pci-e switch on some quad port adapters will report a
6005 * correctable error when the MAC transitions from D0 to D3. To
6006 * prevent this we need to mask off the correctable errors on the
6007 * downstream port of the pci-e switch.
6009 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
6010 struct pci_dev
*us_dev
= pdev
->bus
->self
;
6013 pcie_capability_read_word(us_dev
, PCI_EXP_DEVCTL
, &devctl
);
6014 pcie_capability_write_word(us_dev
, PCI_EXP_DEVCTL
,
6015 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
6017 e1000_power_off(pdev
, sleep
, wake
);
6019 pcie_capability_write_word(us_dev
, PCI_EXP_DEVCTL
, devctl
);
6021 e1000_power_off(pdev
, sleep
, wake
);
6025 #ifdef CONFIG_PCIEASPM
6026 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
6028 pci_disable_link_state_locked(pdev
, state
);
6031 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
6035 if (state
& PCIE_LINK_STATE_L0S
)
6036 aspm_ctl
|= PCI_EXP_LNKCTL_ASPM_L0S
;
6037 if (state
& PCIE_LINK_STATE_L1
)
6038 aspm_ctl
|= PCI_EXP_LNKCTL_ASPM_L1
;
6040 /* Both device and parent should have the same ASPM setting.
6041 * Disable ASPM in downstream component first and then upstream.
6043 pcie_capability_clear_word(pdev
, PCI_EXP_LNKCTL
, aspm_ctl
);
6045 if (pdev
->bus
->self
)
6046 pcie_capability_clear_word(pdev
->bus
->self
, PCI_EXP_LNKCTL
,
6050 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
6052 dev_info(&pdev
->dev
, "Disabling ASPM %s %s\n",
6053 (state
& PCIE_LINK_STATE_L0S
) ? "L0s" : "",
6054 (state
& PCIE_LINK_STATE_L1
) ? "L1" : "");
6056 __e1000e_disable_aspm(pdev
, state
);
6060 static bool e1000e_pm_ready(struct e1000_adapter
*adapter
)
6062 return !!adapter
->tx_ring
->buffer_info
;
6065 static int __e1000_resume(struct pci_dev
*pdev
)
6067 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6068 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6069 struct e1000_hw
*hw
= &adapter
->hw
;
6070 u16 aspm_disable_flag
= 0;
6073 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6074 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6075 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6076 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6077 if (aspm_disable_flag
)
6078 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
6080 pci_set_power_state(pdev
, PCI_D0
);
6081 pci_restore_state(pdev
);
6082 pci_save_state(pdev
);
6084 e1000e_set_interrupt_capability(adapter
);
6085 if (netif_running(netdev
)) {
6086 err
= e1000_request_irq(adapter
);
6091 if (hw
->mac
.type
>= e1000_pch2lan
)
6092 e1000_resume_workarounds_pchlan(&adapter
->hw
);
6094 e1000e_power_up_phy(adapter
);
6096 /* report the system wakeup cause from S3/S4 */
6097 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
6100 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
6102 e_info("PHY Wakeup cause - %s\n",
6103 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
6104 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
6105 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
6106 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
6107 phy_data
& E1000_WUS_LNKC
?
6108 "Link Status Change" : "other");
6110 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
6112 u32 wus
= er32(WUS
);
6114 e_info("MAC Wakeup cause - %s\n",
6115 wus
& E1000_WUS_EX
? "Unicast Packet" :
6116 wus
& E1000_WUS_MC
? "Multicast Packet" :
6117 wus
& E1000_WUS_BC
? "Broadcast Packet" :
6118 wus
& E1000_WUS_MAG
? "Magic Packet" :
6119 wus
& E1000_WUS_LNKC
? "Link Status Change" :
6125 e1000e_reset(adapter
);
6127 e1000_init_manageability_pt(adapter
);
6129 if (netif_running(netdev
))
6132 netif_device_attach(netdev
);
6134 /* If the controller has AMT, do not set DRV_LOAD until the interface
6135 * is up. For all other cases, let the f/w know that the h/w is now
6136 * under the control of the driver.
6138 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6139 e1000e_get_hw_control(adapter
);
6144 #ifdef CONFIG_PM_SLEEP
6145 static int e1000_suspend(struct device
*dev
)
6147 struct pci_dev
*pdev
= to_pci_dev(dev
);
6151 retval
= __e1000_shutdown(pdev
, &wake
, false);
6153 e1000_complete_shutdown(pdev
, true, wake
);
6158 static int e1000_resume(struct device
*dev
)
6160 struct pci_dev
*pdev
= to_pci_dev(dev
);
6161 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6162 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6164 if (e1000e_pm_ready(adapter
))
6165 adapter
->idle_check
= true;
6167 return __e1000_resume(pdev
);
6169 #endif /* CONFIG_PM_SLEEP */
6171 #ifdef CONFIG_PM_RUNTIME
6172 static int e1000_runtime_suspend(struct device
*dev
)
6174 struct pci_dev
*pdev
= to_pci_dev(dev
);
6175 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6176 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6178 if (e1000e_pm_ready(adapter
)) {
6181 __e1000_shutdown(pdev
, &wake
, true);
6187 static int e1000_idle(struct device
*dev
)
6189 struct pci_dev
*pdev
= to_pci_dev(dev
);
6190 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6191 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6193 if (!e1000e_pm_ready(adapter
))
6196 if (adapter
->idle_check
) {
6197 adapter
->idle_check
= false;
6198 if (!e1000e_has_link(adapter
))
6199 pm_schedule_suspend(dev
, MSEC_PER_SEC
);
6205 static int e1000_runtime_resume(struct device
*dev
)
6207 struct pci_dev
*pdev
= to_pci_dev(dev
);
6208 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6209 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6211 if (!e1000e_pm_ready(adapter
))
6214 adapter
->idle_check
= !dev
->power
.runtime_auto
;
6215 return __e1000_resume(pdev
);
6217 #endif /* CONFIG_PM_RUNTIME */
6218 #endif /* CONFIG_PM */
6220 static void e1000_shutdown(struct pci_dev
*pdev
)
6224 __e1000_shutdown(pdev
, &wake
, false);
6226 if (system_state
== SYSTEM_POWER_OFF
)
6227 e1000_complete_shutdown(pdev
, false, wake
);
6230 #ifdef CONFIG_NET_POLL_CONTROLLER
6232 static irqreturn_t
e1000_intr_msix(int __always_unused irq
, void *data
)
6234 struct net_device
*netdev
= data
;
6235 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6237 if (adapter
->msix_entries
) {
6238 int vector
, msix_irq
;
6241 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6242 disable_irq(msix_irq
);
6243 e1000_intr_msix_rx(msix_irq
, netdev
);
6244 enable_irq(msix_irq
);
6247 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6248 disable_irq(msix_irq
);
6249 e1000_intr_msix_tx(msix_irq
, netdev
);
6250 enable_irq(msix_irq
);
6253 msix_irq
= adapter
->msix_entries
[vector
].vector
;
6254 disable_irq(msix_irq
);
6255 e1000_msix_other(msix_irq
, netdev
);
6256 enable_irq(msix_irq
);
6264 * @netdev: network interface device structure
6266 * Polling 'interrupt' - used by things like netconsole to send skbs
6267 * without having to re-enable interrupts. It's not called while
6268 * the interrupt routine is executing.
6270 static void e1000_netpoll(struct net_device
*netdev
)
6272 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6274 switch (adapter
->int_mode
) {
6275 case E1000E_INT_MODE_MSIX
:
6276 e1000_intr_msix(adapter
->pdev
->irq
, netdev
);
6278 case E1000E_INT_MODE_MSI
:
6279 disable_irq(adapter
->pdev
->irq
);
6280 e1000_intr_msi(adapter
->pdev
->irq
, netdev
);
6281 enable_irq(adapter
->pdev
->irq
);
6283 default: /* E1000E_INT_MODE_LEGACY */
6284 disable_irq(adapter
->pdev
->irq
);
6285 e1000_intr(adapter
->pdev
->irq
, netdev
);
6286 enable_irq(adapter
->pdev
->irq
);
6293 * e1000_io_error_detected - called when PCI error is detected
6294 * @pdev: Pointer to PCI device
6295 * @state: The current pci connection state
6297 * This function is called after a PCI bus error affecting
6298 * this device has been detected.
6300 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
6301 pci_channel_state_t state
)
6303 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6304 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6306 netif_device_detach(netdev
);
6308 if (state
== pci_channel_io_perm_failure
)
6309 return PCI_ERS_RESULT_DISCONNECT
;
6311 if (netif_running(netdev
))
6312 e1000e_down(adapter
);
6313 pci_disable_device(pdev
);
6315 /* Request a slot slot reset. */
6316 return PCI_ERS_RESULT_NEED_RESET
;
6320 * e1000_io_slot_reset - called after the pci bus has been reset.
6321 * @pdev: Pointer to PCI device
6323 * Restart the card from scratch, as if from a cold-boot. Implementation
6324 * resembles the first-half of the e1000_resume routine.
6326 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
6328 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6329 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6330 struct e1000_hw
*hw
= &adapter
->hw
;
6331 u16 aspm_disable_flag
= 0;
6333 pci_ers_result_t result
;
6335 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6336 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6337 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6338 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6339 if (aspm_disable_flag
)
6340 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
6342 err
= pci_enable_device_mem(pdev
);
6345 "Cannot re-enable PCI device after reset.\n");
6346 result
= PCI_ERS_RESULT_DISCONNECT
;
6348 pci_set_master(pdev
);
6349 pdev
->state_saved
= true;
6350 pci_restore_state(pdev
);
6352 pci_enable_wake(pdev
, PCI_D3hot
, 0);
6353 pci_enable_wake(pdev
, PCI_D3cold
, 0);
6355 e1000e_reset(adapter
);
6357 result
= PCI_ERS_RESULT_RECOVERED
;
6360 pci_cleanup_aer_uncorrect_error_status(pdev
);
6366 * e1000_io_resume - called when traffic can start flowing again.
6367 * @pdev: Pointer to PCI device
6369 * This callback is called when the error recovery driver tells us that
6370 * its OK to resume normal operation. Implementation resembles the
6371 * second-half of the e1000_resume routine.
6373 static void e1000_io_resume(struct pci_dev
*pdev
)
6375 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6376 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6378 e1000_init_manageability_pt(adapter
);
6380 if (netif_running(netdev
)) {
6381 if (e1000e_up(adapter
)) {
6383 "can't bring device back up after reset\n");
6388 netif_device_attach(netdev
);
6390 /* If the controller has AMT, do not set DRV_LOAD until the interface
6391 * is up. For all other cases, let the f/w know that the h/w is now
6392 * under the control of the driver.
6394 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6395 e1000e_get_hw_control(adapter
);
6398 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
6400 struct e1000_hw
*hw
= &adapter
->hw
;
6401 struct net_device
*netdev
= adapter
->netdev
;
6403 u8 pba_str
[E1000_PBANUM_LENGTH
];
6405 /* print bus type/speed/width info */
6406 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6408 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
6412 e_info("Intel(R) PRO/%s Network Connection\n",
6413 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
6414 ret_val
= e1000_read_pba_string_generic(hw
, pba_str
,
6415 E1000_PBANUM_LENGTH
);
6417 strlcpy((char *)pba_str
, "Unknown", sizeof(pba_str
));
6418 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6419 hw
->mac
.type
, hw
->phy
.type
, pba_str
);
6422 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
6424 struct e1000_hw
*hw
= &adapter
->hw
;
6428 if (hw
->mac
.type
!= e1000_82573
)
6431 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
6433 if (!ret_val
&& (!(buf
& (1 << 0)))) {
6434 /* Deep Smart Power Down (DSPD) */
6435 dev_warn(&adapter
->pdev
->dev
,
6436 "Warning: detected DSPD enabled in EEPROM\n");
6440 static int e1000_set_features(struct net_device
*netdev
,
6441 netdev_features_t features
)
6443 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6444 netdev_features_t changed
= features
^ netdev
->features
;
6446 if (changed
& (NETIF_F_TSO
| NETIF_F_TSO6
))
6447 adapter
->flags
|= FLAG_TSO_FORCE
;
6449 if (!(changed
& (NETIF_F_HW_VLAN_RX
| NETIF_F_HW_VLAN_TX
|
6450 NETIF_F_RXCSUM
| NETIF_F_RXHASH
| NETIF_F_RXFCS
|
6454 if (changed
& NETIF_F_RXFCS
) {
6455 if (features
& NETIF_F_RXFCS
) {
6456 adapter
->flags2
&= ~FLAG2_CRC_STRIPPING
;
6458 /* We need to take it back to defaults, which might mean
6459 * stripping is still disabled at the adapter level.
6461 if (adapter
->flags2
& FLAG2_DFLT_CRC_STRIPPING
)
6462 adapter
->flags2
|= FLAG2_CRC_STRIPPING
;
6464 adapter
->flags2
&= ~FLAG2_CRC_STRIPPING
;
6468 netdev
->features
= features
;
6470 if (netif_running(netdev
))
6471 e1000e_reinit_locked(adapter
);
6473 e1000e_reset(adapter
);
6478 static const struct net_device_ops e1000e_netdev_ops
= {
6479 .ndo_open
= e1000_open
,
6480 .ndo_stop
= e1000_close
,
6481 .ndo_start_xmit
= e1000_xmit_frame
,
6482 .ndo_get_stats64
= e1000e_get_stats64
,
6483 .ndo_set_rx_mode
= e1000e_set_rx_mode
,
6484 .ndo_set_mac_address
= e1000_set_mac
,
6485 .ndo_change_mtu
= e1000_change_mtu
,
6486 .ndo_do_ioctl
= e1000_ioctl
,
6487 .ndo_tx_timeout
= e1000_tx_timeout
,
6488 .ndo_validate_addr
= eth_validate_addr
,
6490 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
6491 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
6492 #ifdef CONFIG_NET_POLL_CONTROLLER
6493 .ndo_poll_controller
= e1000_netpoll
,
6495 .ndo_set_features
= e1000_set_features
,
6499 * e1000_probe - Device Initialization Routine
6500 * @pdev: PCI device information struct
6501 * @ent: entry in e1000_pci_tbl
6503 * Returns 0 on success, negative on failure
6505 * e1000_probe initializes an adapter identified by a pci_dev structure.
6506 * The OS initialization, configuring of the adapter private structure,
6507 * and a hardware reset occur.
6509 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
6511 struct net_device
*netdev
;
6512 struct e1000_adapter
*adapter
;
6513 struct e1000_hw
*hw
;
6514 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
6515 resource_size_t mmio_start
, mmio_len
;
6516 resource_size_t flash_start
, flash_len
;
6517 static int cards_found
;
6518 u16 aspm_disable_flag
= 0;
6519 int i
, err
, pci_using_dac
;
6520 u16 eeprom_data
= 0;
6521 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
6523 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
6524 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
6525 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L1
)
6526 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
6527 if (aspm_disable_flag
)
6528 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
6530 err
= pci_enable_device_mem(pdev
);
6535 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
6537 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
6541 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
6543 err
= dma_set_coherent_mask(&pdev
->dev
,
6546 dev_err(&pdev
->dev
, "No usable DMA configuration, aborting\n");
6552 err
= pci_request_selected_regions_exclusive(pdev
,
6553 pci_select_bars(pdev
, IORESOURCE_MEM
),
6554 e1000e_driver_name
);
6558 /* AER (Advanced Error Reporting) hooks */
6559 pci_enable_pcie_error_reporting(pdev
);
6561 pci_set_master(pdev
);
6562 /* PCI config space info */
6563 err
= pci_save_state(pdev
);
6565 goto err_alloc_etherdev
;
6568 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
6570 goto err_alloc_etherdev
;
6572 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
6574 netdev
->irq
= pdev
->irq
;
6576 pci_set_drvdata(pdev
, netdev
);
6577 adapter
= netdev_priv(netdev
);
6579 adapter
->netdev
= netdev
;
6580 adapter
->pdev
= pdev
;
6582 adapter
->pba
= ei
->pba
;
6583 adapter
->flags
= ei
->flags
;
6584 adapter
->flags2
= ei
->flags2
;
6585 adapter
->hw
.adapter
= adapter
;
6586 adapter
->hw
.mac
.type
= ei
->mac
;
6587 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
6588 adapter
->msg_enable
= netif_msg_init(debug
, DEFAULT_MSG_ENABLE
);
6590 mmio_start
= pci_resource_start(pdev
, 0);
6591 mmio_len
= pci_resource_len(pdev
, 0);
6594 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
6595 if (!adapter
->hw
.hw_addr
)
6598 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
6599 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
6600 flash_start
= pci_resource_start(pdev
, 1);
6601 flash_len
= pci_resource_len(pdev
, 1);
6602 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
6603 if (!adapter
->hw
.flash_address
)
6607 /* construct the net_device struct */
6608 netdev
->netdev_ops
= &e1000e_netdev_ops
;
6609 e1000e_set_ethtool_ops(netdev
);
6610 netdev
->watchdog_timeo
= 5 * HZ
;
6611 netif_napi_add(netdev
, &adapter
->napi
, e1000e_poll
, 64);
6612 strlcpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
));
6614 netdev
->mem_start
= mmio_start
;
6615 netdev
->mem_end
= mmio_start
+ mmio_len
;
6617 adapter
->bd_number
= cards_found
++;
6619 e1000e_check_options(adapter
);
6621 /* setup adapter struct */
6622 err
= e1000_sw_init(adapter
);
6626 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
6627 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
6628 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
6630 err
= ei
->get_variants(adapter
);
6634 if ((adapter
->flags
& FLAG_IS_ICH
) &&
6635 (adapter
->flags
& FLAG_READ_ONLY_NVM
))
6636 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
6638 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
6640 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
6642 /* Copper options */
6643 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
6644 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
6645 adapter
->hw
.phy
.disable_polarity_correction
= 0;
6646 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
6649 if (hw
->phy
.ops
.check_reset_block
&& hw
->phy
.ops
.check_reset_block(hw
))
6650 dev_info(&pdev
->dev
,
6651 "PHY reset is blocked due to SOL/IDER session.\n");
6653 /* Set initial default active device features */
6654 netdev
->features
= (NETIF_F_SG
|
6655 NETIF_F_HW_VLAN_RX
|
6656 NETIF_F_HW_VLAN_TX
|
6663 /* Set user-changeable features (subset of all device features) */
6664 netdev
->hw_features
= netdev
->features
;
6665 netdev
->hw_features
|= NETIF_F_RXFCS
;
6666 netdev
->priv_flags
|= IFF_SUPP_NOFCS
;
6667 netdev
->hw_features
|= NETIF_F_RXALL
;
6669 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
6670 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
6672 netdev
->vlan_features
|= (NETIF_F_SG
|
6677 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
6679 if (pci_using_dac
) {
6680 netdev
->features
|= NETIF_F_HIGHDMA
;
6681 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
6684 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
6685 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
6687 /* before reading the NVM, reset the controller to
6688 * put the device in a known good starting state
6690 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
6692 /* systems with ASPM and others may see the checksum fail on the first
6693 * attempt. Let's give it a few tries
6696 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
6699 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
6705 e1000_eeprom_checks(adapter
);
6707 /* copy the MAC address */
6708 if (e1000e_read_mac_addr(&adapter
->hw
))
6710 "NVM Read Error while reading MAC address\n");
6712 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
6714 if (!is_valid_ether_addr(netdev
->dev_addr
)) {
6715 dev_err(&pdev
->dev
, "Invalid MAC Address: %pM\n",
6721 init_timer(&adapter
->watchdog_timer
);
6722 adapter
->watchdog_timer
.function
= e1000_watchdog
;
6723 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
6725 init_timer(&adapter
->phy_info_timer
);
6726 adapter
->phy_info_timer
.function
= e1000_update_phy_info
;
6727 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
6729 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
6730 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
6731 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
6732 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
6733 INIT_WORK(&adapter
->print_hang_task
, e1000_print_hw_hang
);
6735 /* Initialize link parameters. User can change them with ethtool */
6736 adapter
->hw
.mac
.autoneg
= 1;
6737 adapter
->fc_autoneg
= true;
6738 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
6739 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
6740 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
6742 /* ring size defaults */
6743 adapter
->rx_ring
->count
= E1000_DEFAULT_RXD
;
6744 adapter
->tx_ring
->count
= E1000_DEFAULT_TXD
;
6746 /* Initial Wake on LAN setting - If APM wake is enabled in
6747 * the EEPROM, enable the ACPI Magic Packet filter
6749 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
6750 /* APME bit in EEPROM is mapped to WUC.APME */
6751 eeprom_data
= er32(WUC
);
6752 eeprom_apme_mask
= E1000_WUC_APME
;
6753 if ((hw
->mac
.type
> e1000_ich10lan
) &&
6754 (eeprom_data
& E1000_WUC_PHY_WAKE
))
6755 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
6756 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
6757 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
6758 (adapter
->hw
.bus
.func
== 1))
6759 e1000_read_nvm(&adapter
->hw
, NVM_INIT_CONTROL3_PORT_B
,
6762 e1000_read_nvm(&adapter
->hw
, NVM_INIT_CONTROL3_PORT_A
,
6766 /* fetch WoL from EEPROM */
6767 if (eeprom_data
& eeprom_apme_mask
)
6768 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
6770 /* now that we have the eeprom settings, apply the special cases
6771 * where the eeprom may be wrong or the board simply won't support
6772 * wake on lan on a particular port
6774 if (!(adapter
->flags
& FLAG_HAS_WOL
))
6775 adapter
->eeprom_wol
= 0;
6777 /* initialize the wol settings based on the eeprom settings */
6778 adapter
->wol
= adapter
->eeprom_wol
;
6779 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
6781 /* save off EEPROM version number */
6782 e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
6784 /* reset the hardware with the new settings */
6785 e1000e_reset(adapter
);
6787 /* If the controller has AMT, do not set DRV_LOAD until the interface
6788 * is up. For all other cases, let the f/w know that the h/w is now
6789 * under the control of the driver.
6791 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6792 e1000e_get_hw_control(adapter
);
6794 strlcpy(netdev
->name
, "eth%d", sizeof(netdev
->name
));
6795 err
= register_netdev(netdev
);
6799 /* carrier off reporting is important to ethtool even BEFORE open */
6800 netif_carrier_off(netdev
);
6802 /* init PTP hardware clock */
6803 e1000e_ptp_init(adapter
);
6805 e1000_print_device_info(adapter
);
6807 if (pci_dev_run_wake(pdev
))
6808 pm_runtime_put_noidle(&pdev
->dev
);
6813 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6814 e1000e_release_hw_control(adapter
);
6816 if (hw
->phy
.ops
.check_reset_block
&& !hw
->phy
.ops
.check_reset_block(hw
))
6817 e1000_phy_hw_reset(&adapter
->hw
);
6819 kfree(adapter
->tx_ring
);
6820 kfree(adapter
->rx_ring
);
6822 if (adapter
->hw
.flash_address
)
6823 iounmap(adapter
->hw
.flash_address
);
6824 e1000e_reset_interrupt_capability(adapter
);
6826 iounmap(adapter
->hw
.hw_addr
);
6828 free_netdev(netdev
);
6830 pci_release_selected_regions(pdev
,
6831 pci_select_bars(pdev
, IORESOURCE_MEM
));
6834 pci_disable_device(pdev
);
6839 * e1000_remove - Device Removal Routine
6840 * @pdev: PCI device information struct
6842 * e1000_remove is called by the PCI subsystem to alert the driver
6843 * that it should release a PCI device. The could be caused by a
6844 * Hot-Plug event, or because the driver is going to be removed from
6847 static void e1000_remove(struct pci_dev
*pdev
)
6849 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6850 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6851 bool down
= test_bit(__E1000_DOWN
, &adapter
->state
);
6853 e1000e_ptp_remove(adapter
);
6855 /* The timers may be rescheduled, so explicitly disable them
6856 * from being rescheduled.
6859 set_bit(__E1000_DOWN
, &adapter
->state
);
6860 del_timer_sync(&adapter
->watchdog_timer
);
6861 del_timer_sync(&adapter
->phy_info_timer
);
6863 cancel_work_sync(&adapter
->reset_task
);
6864 cancel_work_sync(&adapter
->watchdog_task
);
6865 cancel_work_sync(&adapter
->downshift_task
);
6866 cancel_work_sync(&adapter
->update_phy_task
);
6867 cancel_work_sync(&adapter
->print_hang_task
);
6869 if (adapter
->flags
& FLAG_HAS_HW_TIMESTAMP
) {
6870 cancel_work_sync(&adapter
->tx_hwtstamp_work
);
6871 if (adapter
->tx_hwtstamp_skb
) {
6872 dev_kfree_skb_any(adapter
->tx_hwtstamp_skb
);
6873 adapter
->tx_hwtstamp_skb
= NULL
;
6877 if (!(netdev
->flags
& IFF_UP
))
6878 e1000_power_down_phy(adapter
);
6880 /* Don't lie to e1000_close() down the road. */
6882 clear_bit(__E1000_DOWN
, &adapter
->state
);
6883 unregister_netdev(netdev
);
6885 if (pci_dev_run_wake(pdev
))
6886 pm_runtime_get_noresume(&pdev
->dev
);
6888 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6889 * would have already happened in close and is redundant.
6891 e1000e_release_hw_control(adapter
);
6893 e1000e_reset_interrupt_capability(adapter
);
6894 kfree(adapter
->tx_ring
);
6895 kfree(adapter
->rx_ring
);
6897 iounmap(adapter
->hw
.hw_addr
);
6898 if (adapter
->hw
.flash_address
)
6899 iounmap(adapter
->hw
.flash_address
);
6900 pci_release_selected_regions(pdev
,
6901 pci_select_bars(pdev
, IORESOURCE_MEM
));
6903 free_netdev(netdev
);
6906 pci_disable_pcie_error_reporting(pdev
);
6908 pci_disable_device(pdev
);
6911 /* PCI Error Recovery (ERS) */
6912 static const struct pci_error_handlers e1000_err_handler
= {
6913 .error_detected
= e1000_io_error_detected
,
6914 .slot_reset
= e1000_io_slot_reset
,
6915 .resume
= e1000_io_resume
,
6918 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
6919 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
6920 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
6921 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
6922 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
), board_82571
},
6923 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
6924 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
6925 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
6926 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
6927 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
6929 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
6930 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
6931 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
6932 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
6934 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
6935 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
6936 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
6938 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
6939 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
6940 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
6942 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
6943 board_80003es2lan
},
6944 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
6945 board_80003es2lan
},
6946 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
6947 board_80003es2lan
},
6948 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
6949 board_80003es2lan
},
6951 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
6952 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
6953 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
6954 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
6955 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
6956 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
6957 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
6958 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
6960 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
6961 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
6962 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
6963 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
6964 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
6965 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
6966 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
6967 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
6968 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
6970 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
6971 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
6972 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
6974 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
6975 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
6976 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_V
), board_ich10lan
},
6978 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
6979 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
6980 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
6981 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
6983 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_LM
), board_pch2lan
},
6984 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_V
), board_pch2lan
},
6986 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPT_I217_LM
), board_pch_lpt
},
6987 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPT_I217_V
), board_pch_lpt
},
6988 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPTLP_I218_LM
), board_pch_lpt
},
6989 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_LPTLP_I218_V
), board_pch_lpt
},
6991 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
6993 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
6996 static const struct dev_pm_ops e1000_pm_ops
= {
6997 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend
, e1000_resume
)
6998 SET_RUNTIME_PM_OPS(e1000_runtime_suspend
,
6999 e1000_runtime_resume
, e1000_idle
)
7003 /* PCI Device API Driver */
7004 static struct pci_driver e1000_driver
= {
7005 .name
= e1000e_driver_name
,
7006 .id_table
= e1000_pci_tbl
,
7007 .probe
= e1000_probe
,
7008 .remove
= e1000_remove
,
7011 .pm
= &e1000_pm_ops
,
7014 .shutdown
= e1000_shutdown
,
7015 .err_handler
= &e1000_err_handler
7019 * e1000_init_module - Driver Registration Routine
7021 * e1000_init_module is the first routine called when the driver is
7022 * loaded. All it does is register with the PCI subsystem.
7024 static int __init
e1000_init_module(void)
7027 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7028 e1000e_driver_version
);
7029 pr_info("Copyright(c) 1999 - 2013 Intel Corporation.\n");
7030 ret
= pci_register_driver(&e1000_driver
);
7034 module_init(e1000_init_module
);
7037 * e1000_exit_module - Driver Exit Cleanup Routine
7039 * e1000_exit_module is called just before the driver is removed
7042 static void __exit
e1000_exit_module(void)
7044 pci_unregister_driver(&e1000_driver
);
7046 module_exit(e1000_exit_module
);
7049 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7050 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7051 MODULE_LICENSE("GPL");
7052 MODULE_VERSION(DRV_VERSION
);