[PATCH] md: allow md intent bitmap to be stored near the superblock.
[linux-2.6/cjktty.git] / drivers / md / md.c
blobfde8acfac32037cd9dcec3ee20743adb84e4cc2e
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/devfs_fs_kernel.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/suspend.h>
45 #include <linux/init.h>
47 #include <linux/file.h>
49 #ifdef CONFIG_KMOD
50 #include <linux/kmod.h>
51 #endif
53 #include <asm/unaligned.h>
55 #define MAJOR_NR MD_MAJOR
56 #define MD_DRIVER
58 /* 63 partitions with the alternate major number (mdp) */
59 #define MdpMinorShift 6
61 #define DEBUG 0
62 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65 #ifndef MODULE
66 static void autostart_arrays (int part);
67 #endif
69 static mdk_personality_t *pers[MAX_PERSONALITY];
70 static DEFINE_SPINLOCK(pers_lock);
73 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
74 * is 1000 KB/sec, so the extra system load does not show up that much.
75 * Increase it if you want to have more _guaranteed_ speed. Note that
76 * the RAID driver will use the maximum available bandwith if the IO
77 * subsystem is idle. There is also an 'absolute maximum' reconstruction
78 * speed limit - in case reconstruction slows down your system despite
79 * idle IO detection.
81 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
84 static int sysctl_speed_limit_min = 1000;
85 static int sysctl_speed_limit_max = 200000;
87 static struct ctl_table_header *raid_table_header;
89 static ctl_table raid_table[] = {
91 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
92 .procname = "speed_limit_min",
93 .data = &sysctl_speed_limit_min,
94 .maxlen = sizeof(int),
95 .mode = 0644,
96 .proc_handler = &proc_dointvec,
99 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
100 .procname = "speed_limit_max",
101 .data = &sysctl_speed_limit_max,
102 .maxlen = sizeof(int),
103 .mode = 0644,
104 .proc_handler = &proc_dointvec,
106 { .ctl_name = 0 }
109 static ctl_table raid_dir_table[] = {
111 .ctl_name = DEV_RAID,
112 .procname = "raid",
113 .maxlen = 0,
114 .mode = 0555,
115 .child = raid_table,
117 { .ctl_name = 0 }
120 static ctl_table raid_root_table[] = {
122 .ctl_name = CTL_DEV,
123 .procname = "dev",
124 .maxlen = 0,
125 .mode = 0555,
126 .child = raid_dir_table,
128 { .ctl_name = 0 }
131 static struct block_device_operations md_fops;
134 * Enables to iterate over all existing md arrays
135 * all_mddevs_lock protects this list.
137 static LIST_HEAD(all_mddevs);
138 static DEFINE_SPINLOCK(all_mddevs_lock);
142 * iterates through all used mddevs in the system.
143 * We take care to grab the all_mddevs_lock whenever navigating
144 * the list, and to always hold a refcount when unlocked.
145 * Any code which breaks out of this loop while own
146 * a reference to the current mddev and must mddev_put it.
148 #define ITERATE_MDDEV(mddev,tmp) \
150 for (({ spin_lock(&all_mddevs_lock); \
151 tmp = all_mddevs.next; \
152 mddev = NULL;}); \
153 ({ if (tmp != &all_mddevs) \
154 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
155 spin_unlock(&all_mddevs_lock); \
156 if (mddev) mddev_put(mddev); \
157 mddev = list_entry(tmp, mddev_t, all_mddevs); \
158 tmp != &all_mddevs;}); \
159 ({ spin_lock(&all_mddevs_lock); \
160 tmp = tmp->next;}) \
164 static int md_fail_request (request_queue_t *q, struct bio *bio)
166 bio_io_error(bio, bio->bi_size);
167 return 0;
170 static inline mddev_t *mddev_get(mddev_t *mddev)
172 atomic_inc(&mddev->active);
173 return mddev;
176 static void mddev_put(mddev_t *mddev)
178 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
179 return;
180 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
181 list_del(&mddev->all_mddevs);
182 blk_put_queue(mddev->queue);
183 kfree(mddev);
185 spin_unlock(&all_mddevs_lock);
188 static mddev_t * mddev_find(dev_t unit)
190 mddev_t *mddev, *new = NULL;
192 retry:
193 spin_lock(&all_mddevs_lock);
194 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
195 if (mddev->unit == unit) {
196 mddev_get(mddev);
197 spin_unlock(&all_mddevs_lock);
198 if (new)
199 kfree(new);
200 return mddev;
203 if (new) {
204 list_add(&new->all_mddevs, &all_mddevs);
205 spin_unlock(&all_mddevs_lock);
206 return new;
208 spin_unlock(&all_mddevs_lock);
210 new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
211 if (!new)
212 return NULL;
214 memset(new, 0, sizeof(*new));
216 new->unit = unit;
217 if (MAJOR(unit) == MD_MAJOR)
218 new->md_minor = MINOR(unit);
219 else
220 new->md_minor = MINOR(unit) >> MdpMinorShift;
222 init_MUTEX(&new->reconfig_sem);
223 INIT_LIST_HEAD(&new->disks);
224 INIT_LIST_HEAD(&new->all_mddevs);
225 init_timer(&new->safemode_timer);
226 atomic_set(&new->active, 1);
227 spin_lock_init(&new->write_lock);
228 init_waitqueue_head(&new->sb_wait);
230 new->queue = blk_alloc_queue(GFP_KERNEL);
231 if (!new->queue) {
232 kfree(new);
233 return NULL;
236 blk_queue_make_request(new->queue, md_fail_request);
238 goto retry;
241 static inline int mddev_lock(mddev_t * mddev)
243 return down_interruptible(&mddev->reconfig_sem);
246 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
248 down(&mddev->reconfig_sem);
251 static inline int mddev_trylock(mddev_t * mddev)
253 return down_trylock(&mddev->reconfig_sem);
256 static inline void mddev_unlock(mddev_t * mddev)
258 up(&mddev->reconfig_sem);
260 if (mddev->thread)
261 md_wakeup_thread(mddev->thread);
264 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
266 mdk_rdev_t * rdev;
267 struct list_head *tmp;
269 ITERATE_RDEV(mddev,rdev,tmp) {
270 if (rdev->desc_nr == nr)
271 return rdev;
273 return NULL;
276 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
278 struct list_head *tmp;
279 mdk_rdev_t *rdev;
281 ITERATE_RDEV(mddev,rdev,tmp) {
282 if (rdev->bdev->bd_dev == dev)
283 return rdev;
285 return NULL;
288 inline static sector_t calc_dev_sboffset(struct block_device *bdev)
290 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
291 return MD_NEW_SIZE_BLOCKS(size);
294 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
296 sector_t size;
298 size = rdev->sb_offset;
300 if (chunk_size)
301 size &= ~((sector_t)chunk_size/1024 - 1);
302 return size;
305 static int alloc_disk_sb(mdk_rdev_t * rdev)
307 if (rdev->sb_page)
308 MD_BUG();
310 rdev->sb_page = alloc_page(GFP_KERNEL);
311 if (!rdev->sb_page) {
312 printk(KERN_ALERT "md: out of memory.\n");
313 return -EINVAL;
316 return 0;
319 static void free_disk_sb(mdk_rdev_t * rdev)
321 if (rdev->sb_page) {
322 page_cache_release(rdev->sb_page);
323 rdev->sb_loaded = 0;
324 rdev->sb_page = NULL;
325 rdev->sb_offset = 0;
326 rdev->size = 0;
331 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
333 if (bio->bi_size)
334 return 1;
336 complete((struct completion*)bio->bi_private);
337 return 0;
340 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
341 struct page *page, int rw)
343 struct bio *bio = bio_alloc(GFP_NOIO, 1);
344 struct completion event;
345 int ret;
347 rw |= (1 << BIO_RW_SYNC);
349 bio->bi_bdev = bdev;
350 bio->bi_sector = sector;
351 bio_add_page(bio, page, size, 0);
352 init_completion(&event);
353 bio->bi_private = &event;
354 bio->bi_end_io = bi_complete;
355 submit_bio(rw, bio);
356 wait_for_completion(&event);
358 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
359 bio_put(bio);
360 return ret;
363 static int read_disk_sb(mdk_rdev_t * rdev)
365 char b[BDEVNAME_SIZE];
366 if (!rdev->sb_page) {
367 MD_BUG();
368 return -EINVAL;
370 if (rdev->sb_loaded)
371 return 0;
374 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
375 goto fail;
376 rdev->sb_loaded = 1;
377 return 0;
379 fail:
380 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
381 bdevname(rdev->bdev,b));
382 return -EINVAL;
385 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
387 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
388 (sb1->set_uuid1 == sb2->set_uuid1) &&
389 (sb1->set_uuid2 == sb2->set_uuid2) &&
390 (sb1->set_uuid3 == sb2->set_uuid3))
392 return 1;
394 return 0;
398 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
400 int ret;
401 mdp_super_t *tmp1, *tmp2;
403 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
404 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
406 if (!tmp1 || !tmp2) {
407 ret = 0;
408 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
409 goto abort;
412 *tmp1 = *sb1;
413 *tmp2 = *sb2;
416 * nr_disks is not constant
418 tmp1->nr_disks = 0;
419 tmp2->nr_disks = 0;
421 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
422 ret = 0;
423 else
424 ret = 1;
426 abort:
427 if (tmp1)
428 kfree(tmp1);
429 if (tmp2)
430 kfree(tmp2);
432 return ret;
435 static unsigned int calc_sb_csum(mdp_super_t * sb)
437 unsigned int disk_csum, csum;
439 disk_csum = sb->sb_csum;
440 sb->sb_csum = 0;
441 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
442 sb->sb_csum = disk_csum;
443 return csum;
448 * Handle superblock details.
449 * We want to be able to handle multiple superblock formats
450 * so we have a common interface to them all, and an array of
451 * different handlers.
452 * We rely on user-space to write the initial superblock, and support
453 * reading and updating of superblocks.
454 * Interface methods are:
455 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
456 * loads and validates a superblock on dev.
457 * if refdev != NULL, compare superblocks on both devices
458 * Return:
459 * 0 - dev has a superblock that is compatible with refdev
460 * 1 - dev has a superblock that is compatible and newer than refdev
461 * so dev should be used as the refdev in future
462 * -EINVAL superblock incompatible or invalid
463 * -othererror e.g. -EIO
465 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
466 * Verify that dev is acceptable into mddev.
467 * The first time, mddev->raid_disks will be 0, and data from
468 * dev should be merged in. Subsequent calls check that dev
469 * is new enough. Return 0 or -EINVAL
471 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
472 * Update the superblock for rdev with data in mddev
473 * This does not write to disc.
477 struct super_type {
478 char *name;
479 struct module *owner;
480 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
481 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
482 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
486 * load_super for 0.90.0
488 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
490 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
491 mdp_super_t *sb;
492 int ret;
493 sector_t sb_offset;
496 * Calculate the position of the superblock,
497 * it's at the end of the disk.
499 * It also happens to be a multiple of 4Kb.
501 sb_offset = calc_dev_sboffset(rdev->bdev);
502 rdev->sb_offset = sb_offset;
504 ret = read_disk_sb(rdev);
505 if (ret) return ret;
507 ret = -EINVAL;
509 bdevname(rdev->bdev, b);
510 sb = (mdp_super_t*)page_address(rdev->sb_page);
512 if (sb->md_magic != MD_SB_MAGIC) {
513 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
515 goto abort;
518 if (sb->major_version != 0 ||
519 sb->minor_version != 90) {
520 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
521 sb->major_version, sb->minor_version,
523 goto abort;
526 if (sb->raid_disks <= 0)
527 goto abort;
529 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
530 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
532 goto abort;
535 rdev->preferred_minor = sb->md_minor;
536 rdev->data_offset = 0;
538 if (sb->level == LEVEL_MULTIPATH)
539 rdev->desc_nr = -1;
540 else
541 rdev->desc_nr = sb->this_disk.number;
543 if (refdev == 0)
544 ret = 1;
545 else {
546 __u64 ev1, ev2;
547 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
548 if (!uuid_equal(refsb, sb)) {
549 printk(KERN_WARNING "md: %s has different UUID to %s\n",
550 b, bdevname(refdev->bdev,b2));
551 goto abort;
553 if (!sb_equal(refsb, sb)) {
554 printk(KERN_WARNING "md: %s has same UUID"
555 " but different superblock to %s\n",
556 b, bdevname(refdev->bdev, b2));
557 goto abort;
559 ev1 = md_event(sb);
560 ev2 = md_event(refsb);
561 if (ev1 > ev2)
562 ret = 1;
563 else
564 ret = 0;
566 rdev->size = calc_dev_size(rdev, sb->chunk_size);
568 abort:
569 return ret;
573 * validate_super for 0.90.0
575 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
577 mdp_disk_t *desc;
578 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
580 rdev->raid_disk = -1;
581 rdev->in_sync = 0;
582 if (mddev->raid_disks == 0) {
583 mddev->major_version = 0;
584 mddev->minor_version = sb->minor_version;
585 mddev->patch_version = sb->patch_version;
586 mddev->persistent = ! sb->not_persistent;
587 mddev->chunk_size = sb->chunk_size;
588 mddev->ctime = sb->ctime;
589 mddev->utime = sb->utime;
590 mddev->level = sb->level;
591 mddev->layout = sb->layout;
592 mddev->raid_disks = sb->raid_disks;
593 mddev->size = sb->size;
594 mddev->events = md_event(sb);
596 if (sb->state & (1<<MD_SB_CLEAN))
597 mddev->recovery_cp = MaxSector;
598 else {
599 if (sb->events_hi == sb->cp_events_hi &&
600 sb->events_lo == sb->cp_events_lo) {
601 mddev->recovery_cp = sb->recovery_cp;
602 } else
603 mddev->recovery_cp = 0;
606 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
607 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
608 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
609 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
611 mddev->max_disks = MD_SB_DISKS;
613 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
614 mddev->bitmap_file == NULL) {
615 if (mddev->level != 1) {
616 /* FIXME use a better test */
617 printk(KERN_WARNING "md: bitmaps only support for raid1\n");
618 return -EINVAL;
620 mddev->bitmap_offset = (MD_SB_BYTES >> 9);
623 } else if (mddev->pers == NULL) {
624 /* Insist on good event counter while assembling */
625 __u64 ev1 = md_event(sb);
626 ++ev1;
627 if (ev1 < mddev->events)
628 return -EINVAL;
629 } else if (mddev->bitmap) {
630 /* if adding to array with a bitmap, then we can accept an
631 * older device ... but not too old.
633 __u64 ev1 = md_event(sb);
634 if (ev1 < mddev->bitmap->events_cleared)
635 return 0;
636 } else /* just a hot-add of a new device, leave raid_disk at -1 */
637 return 0;
639 if (mddev->level != LEVEL_MULTIPATH) {
640 rdev->faulty = 0;
641 desc = sb->disks + rdev->desc_nr;
643 if (desc->state & (1<<MD_DISK_FAULTY))
644 rdev->faulty = 1;
645 else if (desc->state & (1<<MD_DISK_SYNC) &&
646 desc->raid_disk < mddev->raid_disks) {
647 rdev->in_sync = 1;
648 rdev->raid_disk = desc->raid_disk;
650 } else /* MULTIPATH are always insync */
651 rdev->in_sync = 1;
652 return 0;
656 * sync_super for 0.90.0
658 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
660 mdp_super_t *sb;
661 struct list_head *tmp;
662 mdk_rdev_t *rdev2;
663 int next_spare = mddev->raid_disks;
665 /* make rdev->sb match mddev data..
667 * 1/ zero out disks
668 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
669 * 3/ any empty disks < next_spare become removed
671 * disks[0] gets initialised to REMOVED because
672 * we cannot be sure from other fields if it has
673 * been initialised or not.
675 int i;
676 int active=0, working=0,failed=0,spare=0,nr_disks=0;
678 sb = (mdp_super_t*)page_address(rdev->sb_page);
680 memset(sb, 0, sizeof(*sb));
682 sb->md_magic = MD_SB_MAGIC;
683 sb->major_version = mddev->major_version;
684 sb->minor_version = mddev->minor_version;
685 sb->patch_version = mddev->patch_version;
686 sb->gvalid_words = 0; /* ignored */
687 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
688 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
689 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
690 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
692 sb->ctime = mddev->ctime;
693 sb->level = mddev->level;
694 sb->size = mddev->size;
695 sb->raid_disks = mddev->raid_disks;
696 sb->md_minor = mddev->md_minor;
697 sb->not_persistent = !mddev->persistent;
698 sb->utime = mddev->utime;
699 sb->state = 0;
700 sb->events_hi = (mddev->events>>32);
701 sb->events_lo = (u32)mddev->events;
703 if (mddev->in_sync)
705 sb->recovery_cp = mddev->recovery_cp;
706 sb->cp_events_hi = (mddev->events>>32);
707 sb->cp_events_lo = (u32)mddev->events;
708 if (mddev->recovery_cp == MaxSector)
709 sb->state = (1<< MD_SB_CLEAN);
710 } else
711 sb->recovery_cp = 0;
713 sb->layout = mddev->layout;
714 sb->chunk_size = mddev->chunk_size;
716 if (mddev->bitmap && mddev->bitmap_file == NULL)
717 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
719 sb->disks[0].state = (1<<MD_DISK_REMOVED);
720 ITERATE_RDEV(mddev,rdev2,tmp) {
721 mdp_disk_t *d;
722 if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
723 rdev2->desc_nr = rdev2->raid_disk;
724 else
725 rdev2->desc_nr = next_spare++;
726 d = &sb->disks[rdev2->desc_nr];
727 nr_disks++;
728 d->number = rdev2->desc_nr;
729 d->major = MAJOR(rdev2->bdev->bd_dev);
730 d->minor = MINOR(rdev2->bdev->bd_dev);
731 if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
732 d->raid_disk = rdev2->raid_disk;
733 else
734 d->raid_disk = rdev2->desc_nr; /* compatibility */
735 if (rdev2->faulty) {
736 d->state = (1<<MD_DISK_FAULTY);
737 failed++;
738 } else if (rdev2->in_sync) {
739 d->state = (1<<MD_DISK_ACTIVE);
740 d->state |= (1<<MD_DISK_SYNC);
741 active++;
742 working++;
743 } else {
744 d->state = 0;
745 spare++;
746 working++;
750 /* now set the "removed" and "faulty" bits on any missing devices */
751 for (i=0 ; i < mddev->raid_disks ; i++) {
752 mdp_disk_t *d = &sb->disks[i];
753 if (d->state == 0 && d->number == 0) {
754 d->number = i;
755 d->raid_disk = i;
756 d->state = (1<<MD_DISK_REMOVED);
757 d->state |= (1<<MD_DISK_FAULTY);
758 failed++;
761 sb->nr_disks = nr_disks;
762 sb->active_disks = active;
763 sb->working_disks = working;
764 sb->failed_disks = failed;
765 sb->spare_disks = spare;
767 sb->this_disk = sb->disks[rdev->desc_nr];
768 sb->sb_csum = calc_sb_csum(sb);
772 * version 1 superblock
775 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
777 unsigned int disk_csum, csum;
778 unsigned long long newcsum;
779 int size = 256 + le32_to_cpu(sb->max_dev)*2;
780 unsigned int *isuper = (unsigned int*)sb;
781 int i;
783 disk_csum = sb->sb_csum;
784 sb->sb_csum = 0;
785 newcsum = 0;
786 for (i=0; size>=4; size -= 4 )
787 newcsum += le32_to_cpu(*isuper++);
789 if (size == 2)
790 newcsum += le16_to_cpu(*(unsigned short*) isuper);
792 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
793 sb->sb_csum = disk_csum;
794 return cpu_to_le32(csum);
797 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
799 struct mdp_superblock_1 *sb;
800 int ret;
801 sector_t sb_offset;
802 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
805 * Calculate the position of the superblock.
806 * It is always aligned to a 4K boundary and
807 * depeding on minor_version, it can be:
808 * 0: At least 8K, but less than 12K, from end of device
809 * 1: At start of device
810 * 2: 4K from start of device.
812 switch(minor_version) {
813 case 0:
814 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
815 sb_offset -= 8*2;
816 sb_offset &= ~(4*2-1);
817 /* convert from sectors to K */
818 sb_offset /= 2;
819 break;
820 case 1:
821 sb_offset = 0;
822 break;
823 case 2:
824 sb_offset = 4;
825 break;
826 default:
827 return -EINVAL;
829 rdev->sb_offset = sb_offset;
831 ret = read_disk_sb(rdev);
832 if (ret) return ret;
835 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
837 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
838 sb->major_version != cpu_to_le32(1) ||
839 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
840 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
841 sb->feature_map != 0)
842 return -EINVAL;
844 if (calc_sb_1_csum(sb) != sb->sb_csum) {
845 printk("md: invalid superblock checksum on %s\n",
846 bdevname(rdev->bdev,b));
847 return -EINVAL;
849 if (le64_to_cpu(sb->data_size) < 10) {
850 printk("md: data_size too small on %s\n",
851 bdevname(rdev->bdev,b));
852 return -EINVAL;
854 rdev->preferred_minor = 0xffff;
855 rdev->data_offset = le64_to_cpu(sb->data_offset);
857 if (refdev == 0)
858 return 1;
859 else {
860 __u64 ev1, ev2;
861 struct mdp_superblock_1 *refsb =
862 (struct mdp_superblock_1*)page_address(refdev->sb_page);
864 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
865 sb->level != refsb->level ||
866 sb->layout != refsb->layout ||
867 sb->chunksize != refsb->chunksize) {
868 printk(KERN_WARNING "md: %s has strangely different"
869 " superblock to %s\n",
870 bdevname(rdev->bdev,b),
871 bdevname(refdev->bdev,b2));
872 return -EINVAL;
874 ev1 = le64_to_cpu(sb->events);
875 ev2 = le64_to_cpu(refsb->events);
877 if (ev1 > ev2)
878 return 1;
880 if (minor_version)
881 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
882 else
883 rdev->size = rdev->sb_offset;
884 if (rdev->size < le64_to_cpu(sb->data_size)/2)
885 return -EINVAL;
886 rdev->size = le64_to_cpu(sb->data_size)/2;
887 if (le32_to_cpu(sb->chunksize))
888 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
889 return 0;
892 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
894 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
896 rdev->raid_disk = -1;
897 rdev->in_sync = 0;
898 if (mddev->raid_disks == 0) {
899 mddev->major_version = 1;
900 mddev->patch_version = 0;
901 mddev->persistent = 1;
902 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
903 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
904 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
905 mddev->level = le32_to_cpu(sb->level);
906 mddev->layout = le32_to_cpu(sb->layout);
907 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
908 mddev->size = le64_to_cpu(sb->size)/2;
909 mddev->events = le64_to_cpu(sb->events);
911 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
912 memcpy(mddev->uuid, sb->set_uuid, 16);
914 mddev->max_disks = (4096-256)/2;
916 if ((le32_to_cpu(sb->feature_map) & 1) &&
917 mddev->bitmap_file == NULL ) {
918 if (mddev->level != 1) {
919 printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
920 return -EINVAL;
922 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
924 } else if (mddev->pers == NULL) {
925 /* Insist of good event counter while assembling */
926 __u64 ev1 = le64_to_cpu(sb->events);
927 ++ev1;
928 if (ev1 < mddev->events)
929 return -EINVAL;
930 } else if (mddev->bitmap) {
931 /* If adding to array with a bitmap, then we can accept an
932 * older device, but not too old.
934 __u64 ev1 = le64_to_cpu(sb->events);
935 if (ev1 < mddev->bitmap->events_cleared)
936 return 0;
937 } else /* just a hot-add of a new device, leave raid_disk at -1 */
938 return 0;
940 if (mddev->level != LEVEL_MULTIPATH) {
941 int role;
942 rdev->desc_nr = le32_to_cpu(sb->dev_number);
943 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
944 switch(role) {
945 case 0xffff: /* spare */
946 rdev->faulty = 0;
947 break;
948 case 0xfffe: /* faulty */
949 rdev->faulty = 1;
950 break;
951 default:
952 rdev->in_sync = 1;
953 rdev->faulty = 0;
954 rdev->raid_disk = role;
955 break;
957 } else /* MULTIPATH are always insync */
958 rdev->in_sync = 1;
960 return 0;
963 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
965 struct mdp_superblock_1 *sb;
966 struct list_head *tmp;
967 mdk_rdev_t *rdev2;
968 int max_dev, i;
969 /* make rdev->sb match mddev and rdev data. */
971 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
973 sb->feature_map = 0;
974 sb->pad0 = 0;
975 memset(sb->pad1, 0, sizeof(sb->pad1));
976 memset(sb->pad2, 0, sizeof(sb->pad2));
977 memset(sb->pad3, 0, sizeof(sb->pad3));
979 sb->utime = cpu_to_le64((__u64)mddev->utime);
980 sb->events = cpu_to_le64(mddev->events);
981 if (mddev->in_sync)
982 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
983 else
984 sb->resync_offset = cpu_to_le64(0);
986 if (mddev->bitmap && mddev->bitmap_file == NULL) {
987 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
988 sb->feature_map = cpu_to_le32(1);
991 max_dev = 0;
992 ITERATE_RDEV(mddev,rdev2,tmp)
993 if (rdev2->desc_nr+1 > max_dev)
994 max_dev = rdev2->desc_nr+1;
996 sb->max_dev = cpu_to_le32(max_dev);
997 for (i=0; i<max_dev;i++)
998 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1000 ITERATE_RDEV(mddev,rdev2,tmp) {
1001 i = rdev2->desc_nr;
1002 if (rdev2->faulty)
1003 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1004 else if (rdev2->in_sync)
1005 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1006 else
1007 sb->dev_roles[i] = cpu_to_le16(0xffff);
1010 sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1011 sb->sb_csum = calc_sb_1_csum(sb);
1015 static struct super_type super_types[] = {
1016 [0] = {
1017 .name = "0.90.0",
1018 .owner = THIS_MODULE,
1019 .load_super = super_90_load,
1020 .validate_super = super_90_validate,
1021 .sync_super = super_90_sync,
1023 [1] = {
1024 .name = "md-1",
1025 .owner = THIS_MODULE,
1026 .load_super = super_1_load,
1027 .validate_super = super_1_validate,
1028 .sync_super = super_1_sync,
1032 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1034 struct list_head *tmp;
1035 mdk_rdev_t *rdev;
1037 ITERATE_RDEV(mddev,rdev,tmp)
1038 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1039 return rdev;
1041 return NULL;
1044 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1046 struct list_head *tmp;
1047 mdk_rdev_t *rdev;
1049 ITERATE_RDEV(mddev1,rdev,tmp)
1050 if (match_dev_unit(mddev2, rdev))
1051 return 1;
1053 return 0;
1056 static LIST_HEAD(pending_raid_disks);
1058 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1060 mdk_rdev_t *same_pdev;
1061 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1063 if (rdev->mddev) {
1064 MD_BUG();
1065 return -EINVAL;
1067 same_pdev = match_dev_unit(mddev, rdev);
1068 if (same_pdev)
1069 printk(KERN_WARNING
1070 "%s: WARNING: %s appears to be on the same physical"
1071 " disk as %s. True\n protection against single-disk"
1072 " failure might be compromised.\n",
1073 mdname(mddev), bdevname(rdev->bdev,b),
1074 bdevname(same_pdev->bdev,b2));
1076 /* Verify rdev->desc_nr is unique.
1077 * If it is -1, assign a free number, else
1078 * check number is not in use
1080 if (rdev->desc_nr < 0) {
1081 int choice = 0;
1082 if (mddev->pers) choice = mddev->raid_disks;
1083 while (find_rdev_nr(mddev, choice))
1084 choice++;
1085 rdev->desc_nr = choice;
1086 } else {
1087 if (find_rdev_nr(mddev, rdev->desc_nr))
1088 return -EBUSY;
1091 list_add(&rdev->same_set, &mddev->disks);
1092 rdev->mddev = mddev;
1093 printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1094 return 0;
1097 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1099 char b[BDEVNAME_SIZE];
1100 if (!rdev->mddev) {
1101 MD_BUG();
1102 return;
1104 list_del_init(&rdev->same_set);
1105 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1106 rdev->mddev = NULL;
1110 * prevent the device from being mounted, repartitioned or
1111 * otherwise reused by a RAID array (or any other kernel
1112 * subsystem), by bd_claiming the device.
1114 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1116 int err = 0;
1117 struct block_device *bdev;
1118 char b[BDEVNAME_SIZE];
1120 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1121 if (IS_ERR(bdev)) {
1122 printk(KERN_ERR "md: could not open %s.\n",
1123 __bdevname(dev, b));
1124 return PTR_ERR(bdev);
1126 err = bd_claim(bdev, rdev);
1127 if (err) {
1128 printk(KERN_ERR "md: could not bd_claim %s.\n",
1129 bdevname(bdev, b));
1130 blkdev_put(bdev);
1131 return err;
1133 rdev->bdev = bdev;
1134 return err;
1137 static void unlock_rdev(mdk_rdev_t *rdev)
1139 struct block_device *bdev = rdev->bdev;
1140 rdev->bdev = NULL;
1141 if (!bdev)
1142 MD_BUG();
1143 bd_release(bdev);
1144 blkdev_put(bdev);
1147 void md_autodetect_dev(dev_t dev);
1149 static void export_rdev(mdk_rdev_t * rdev)
1151 char b[BDEVNAME_SIZE];
1152 printk(KERN_INFO "md: export_rdev(%s)\n",
1153 bdevname(rdev->bdev,b));
1154 if (rdev->mddev)
1155 MD_BUG();
1156 free_disk_sb(rdev);
1157 list_del_init(&rdev->same_set);
1158 #ifndef MODULE
1159 md_autodetect_dev(rdev->bdev->bd_dev);
1160 #endif
1161 unlock_rdev(rdev);
1162 kfree(rdev);
1165 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1167 unbind_rdev_from_array(rdev);
1168 export_rdev(rdev);
1171 static void export_array(mddev_t *mddev)
1173 struct list_head *tmp;
1174 mdk_rdev_t *rdev;
1176 ITERATE_RDEV(mddev,rdev,tmp) {
1177 if (!rdev->mddev) {
1178 MD_BUG();
1179 continue;
1181 kick_rdev_from_array(rdev);
1183 if (!list_empty(&mddev->disks))
1184 MD_BUG();
1185 mddev->raid_disks = 0;
1186 mddev->major_version = 0;
1189 static void print_desc(mdp_disk_t *desc)
1191 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1192 desc->major,desc->minor,desc->raid_disk,desc->state);
1195 static void print_sb(mdp_super_t *sb)
1197 int i;
1199 printk(KERN_INFO
1200 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1201 sb->major_version, sb->minor_version, sb->patch_version,
1202 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1203 sb->ctime);
1204 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1205 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1206 sb->md_minor, sb->layout, sb->chunk_size);
1207 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1208 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1209 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1210 sb->failed_disks, sb->spare_disks,
1211 sb->sb_csum, (unsigned long)sb->events_lo);
1213 printk(KERN_INFO);
1214 for (i = 0; i < MD_SB_DISKS; i++) {
1215 mdp_disk_t *desc;
1217 desc = sb->disks + i;
1218 if (desc->number || desc->major || desc->minor ||
1219 desc->raid_disk || (desc->state && (desc->state != 4))) {
1220 printk(" D %2d: ", i);
1221 print_desc(desc);
1224 printk(KERN_INFO "md: THIS: ");
1225 print_desc(&sb->this_disk);
1229 static void print_rdev(mdk_rdev_t *rdev)
1231 char b[BDEVNAME_SIZE];
1232 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1233 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1234 rdev->faulty, rdev->in_sync, rdev->desc_nr);
1235 if (rdev->sb_loaded) {
1236 printk(KERN_INFO "md: rdev superblock:\n");
1237 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1238 } else
1239 printk(KERN_INFO "md: no rdev superblock!\n");
1242 void md_print_devices(void)
1244 struct list_head *tmp, *tmp2;
1245 mdk_rdev_t *rdev;
1246 mddev_t *mddev;
1247 char b[BDEVNAME_SIZE];
1249 printk("\n");
1250 printk("md: **********************************\n");
1251 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1252 printk("md: **********************************\n");
1253 ITERATE_MDDEV(mddev,tmp) {
1255 if (mddev->bitmap)
1256 bitmap_print_sb(mddev->bitmap);
1257 else
1258 printk("%s: ", mdname(mddev));
1259 ITERATE_RDEV(mddev,rdev,tmp2)
1260 printk("<%s>", bdevname(rdev->bdev,b));
1261 printk("\n");
1263 ITERATE_RDEV(mddev,rdev,tmp2)
1264 print_rdev(rdev);
1266 printk("md: **********************************\n");
1267 printk("\n");
1271 static int write_disk_sb(mdk_rdev_t * rdev)
1273 char b[BDEVNAME_SIZE];
1274 if (!rdev->sb_loaded) {
1275 MD_BUG();
1276 return 1;
1278 if (rdev->faulty) {
1279 MD_BUG();
1280 return 1;
1283 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1284 bdevname(rdev->bdev,b),
1285 (unsigned long long)rdev->sb_offset);
1287 if (sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, WRITE))
1288 return 0;
1290 printk("md: write_disk_sb failed for device %s\n",
1291 bdevname(rdev->bdev,b));
1292 return 1;
1295 static void sync_sbs(mddev_t * mddev)
1297 mdk_rdev_t *rdev;
1298 struct list_head *tmp;
1300 ITERATE_RDEV(mddev,rdev,tmp) {
1301 super_types[mddev->major_version].
1302 sync_super(mddev, rdev);
1303 rdev->sb_loaded = 1;
1307 static void md_update_sb(mddev_t * mddev)
1309 int err, count = 100;
1310 struct list_head *tmp;
1311 mdk_rdev_t *rdev;
1312 int sync_req;
1314 repeat:
1315 spin_lock(&mddev->write_lock);
1316 sync_req = mddev->in_sync;
1317 mddev->utime = get_seconds();
1318 mddev->events ++;
1320 if (!mddev->events) {
1322 * oops, this 64-bit counter should never wrap.
1323 * Either we are in around ~1 trillion A.C., assuming
1324 * 1 reboot per second, or we have a bug:
1326 MD_BUG();
1327 mddev->events --;
1329 sync_sbs(mddev);
1332 * do not write anything to disk if using
1333 * nonpersistent superblocks
1335 if (!mddev->persistent) {
1336 mddev->sb_dirty = 0;
1337 spin_unlock(&mddev->write_lock);
1338 wake_up(&mddev->sb_wait);
1339 return;
1341 spin_unlock(&mddev->write_lock);
1343 dprintk(KERN_INFO
1344 "md: updating %s RAID superblock on device (in sync %d)\n",
1345 mdname(mddev),mddev->in_sync);
1347 err = bitmap_update_sb(mddev->bitmap);
1348 ITERATE_RDEV(mddev,rdev,tmp) {
1349 char b[BDEVNAME_SIZE];
1350 dprintk(KERN_INFO "md: ");
1351 if (rdev->faulty)
1352 dprintk("(skipping faulty ");
1354 dprintk("%s ", bdevname(rdev->bdev,b));
1355 if (!rdev->faulty) {
1356 err += write_disk_sb(rdev);
1357 } else
1358 dprintk(")\n");
1359 if (!err && mddev->level == LEVEL_MULTIPATH)
1360 /* only need to write one superblock... */
1361 break;
1363 if (err) {
1364 if (--count) {
1365 printk(KERN_ERR "md: errors occurred during superblock"
1366 " update, repeating\n");
1367 goto repeat;
1369 printk(KERN_ERR \
1370 "md: excessive errors occurred during superblock update, exiting\n");
1372 spin_lock(&mddev->write_lock);
1373 if (mddev->in_sync != sync_req) {
1374 /* have to write it out again */
1375 spin_unlock(&mddev->write_lock);
1376 goto repeat;
1378 mddev->sb_dirty = 0;
1379 spin_unlock(&mddev->write_lock);
1380 wake_up(&mddev->sb_wait);
1385 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1387 * mark the device faulty if:
1389 * - the device is nonexistent (zero size)
1390 * - the device has no valid superblock
1392 * a faulty rdev _never_ has rdev->sb set.
1394 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1396 char b[BDEVNAME_SIZE];
1397 int err;
1398 mdk_rdev_t *rdev;
1399 sector_t size;
1401 rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1402 if (!rdev) {
1403 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1404 return ERR_PTR(-ENOMEM);
1406 memset(rdev, 0, sizeof(*rdev));
1408 if ((err = alloc_disk_sb(rdev)))
1409 goto abort_free;
1411 err = lock_rdev(rdev, newdev);
1412 if (err)
1413 goto abort_free;
1415 rdev->desc_nr = -1;
1416 rdev->faulty = 0;
1417 rdev->in_sync = 0;
1418 rdev->data_offset = 0;
1419 atomic_set(&rdev->nr_pending, 0);
1421 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1422 if (!size) {
1423 printk(KERN_WARNING
1424 "md: %s has zero or unknown size, marking faulty!\n",
1425 bdevname(rdev->bdev,b));
1426 err = -EINVAL;
1427 goto abort_free;
1430 if (super_format >= 0) {
1431 err = super_types[super_format].
1432 load_super(rdev, NULL, super_minor);
1433 if (err == -EINVAL) {
1434 printk(KERN_WARNING
1435 "md: %s has invalid sb, not importing!\n",
1436 bdevname(rdev->bdev,b));
1437 goto abort_free;
1439 if (err < 0) {
1440 printk(KERN_WARNING
1441 "md: could not read %s's sb, not importing!\n",
1442 bdevname(rdev->bdev,b));
1443 goto abort_free;
1446 INIT_LIST_HEAD(&rdev->same_set);
1448 return rdev;
1450 abort_free:
1451 if (rdev->sb_page) {
1452 if (rdev->bdev)
1453 unlock_rdev(rdev);
1454 free_disk_sb(rdev);
1456 kfree(rdev);
1457 return ERR_PTR(err);
1461 * Check a full RAID array for plausibility
1465 static void analyze_sbs(mddev_t * mddev)
1467 int i;
1468 struct list_head *tmp;
1469 mdk_rdev_t *rdev, *freshest;
1470 char b[BDEVNAME_SIZE];
1472 freshest = NULL;
1473 ITERATE_RDEV(mddev,rdev,tmp)
1474 switch (super_types[mddev->major_version].
1475 load_super(rdev, freshest, mddev->minor_version)) {
1476 case 1:
1477 freshest = rdev;
1478 break;
1479 case 0:
1480 break;
1481 default:
1482 printk( KERN_ERR \
1483 "md: fatal superblock inconsistency in %s"
1484 " -- removing from array\n",
1485 bdevname(rdev->bdev,b));
1486 kick_rdev_from_array(rdev);
1490 super_types[mddev->major_version].
1491 validate_super(mddev, freshest);
1493 i = 0;
1494 ITERATE_RDEV(mddev,rdev,tmp) {
1495 if (rdev != freshest)
1496 if (super_types[mddev->major_version].
1497 validate_super(mddev, rdev)) {
1498 printk(KERN_WARNING "md: kicking non-fresh %s"
1499 " from array!\n",
1500 bdevname(rdev->bdev,b));
1501 kick_rdev_from_array(rdev);
1502 continue;
1504 if (mddev->level == LEVEL_MULTIPATH) {
1505 rdev->desc_nr = i++;
1506 rdev->raid_disk = rdev->desc_nr;
1507 rdev->in_sync = 1;
1513 if (mddev->recovery_cp != MaxSector &&
1514 mddev->level >= 1)
1515 printk(KERN_ERR "md: %s: raid array is not clean"
1516 " -- starting background reconstruction\n",
1517 mdname(mddev));
1521 int mdp_major = 0;
1523 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1525 static DECLARE_MUTEX(disks_sem);
1526 mddev_t *mddev = mddev_find(dev);
1527 struct gendisk *disk;
1528 int partitioned = (MAJOR(dev) != MD_MAJOR);
1529 int shift = partitioned ? MdpMinorShift : 0;
1530 int unit = MINOR(dev) >> shift;
1532 if (!mddev)
1533 return NULL;
1535 down(&disks_sem);
1536 if (mddev->gendisk) {
1537 up(&disks_sem);
1538 mddev_put(mddev);
1539 return NULL;
1541 disk = alloc_disk(1 << shift);
1542 if (!disk) {
1543 up(&disks_sem);
1544 mddev_put(mddev);
1545 return NULL;
1547 disk->major = MAJOR(dev);
1548 disk->first_minor = unit << shift;
1549 if (partitioned) {
1550 sprintf(disk->disk_name, "md_d%d", unit);
1551 sprintf(disk->devfs_name, "md/d%d", unit);
1552 } else {
1553 sprintf(disk->disk_name, "md%d", unit);
1554 sprintf(disk->devfs_name, "md/%d", unit);
1556 disk->fops = &md_fops;
1557 disk->private_data = mddev;
1558 disk->queue = mddev->queue;
1559 add_disk(disk);
1560 mddev->gendisk = disk;
1561 up(&disks_sem);
1562 return NULL;
1565 void md_wakeup_thread(mdk_thread_t *thread);
1567 static void md_safemode_timeout(unsigned long data)
1569 mddev_t *mddev = (mddev_t *) data;
1571 mddev->safemode = 1;
1572 md_wakeup_thread(mddev->thread);
1576 static int do_md_run(mddev_t * mddev)
1578 int pnum, err;
1579 int chunk_size;
1580 struct list_head *tmp;
1581 mdk_rdev_t *rdev;
1582 struct gendisk *disk;
1583 char b[BDEVNAME_SIZE];
1585 if (list_empty(&mddev->disks))
1586 /* cannot run an array with no devices.. */
1587 return -EINVAL;
1589 if (mddev->pers)
1590 return -EBUSY;
1593 * Analyze all RAID superblock(s)
1595 if (!mddev->raid_disks)
1596 analyze_sbs(mddev);
1598 chunk_size = mddev->chunk_size;
1599 pnum = level_to_pers(mddev->level);
1601 if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1602 if (!chunk_size) {
1604 * 'default chunksize' in the old md code used to
1605 * be PAGE_SIZE, baaad.
1606 * we abort here to be on the safe side. We don't
1607 * want to continue the bad practice.
1609 printk(KERN_ERR
1610 "no chunksize specified, see 'man raidtab'\n");
1611 return -EINVAL;
1613 if (chunk_size > MAX_CHUNK_SIZE) {
1614 printk(KERN_ERR "too big chunk_size: %d > %d\n",
1615 chunk_size, MAX_CHUNK_SIZE);
1616 return -EINVAL;
1619 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1621 if ( (1 << ffz(~chunk_size)) != chunk_size) {
1622 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1623 return -EINVAL;
1625 if (chunk_size < PAGE_SIZE) {
1626 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1627 chunk_size, PAGE_SIZE);
1628 return -EINVAL;
1631 /* devices must have minimum size of one chunk */
1632 ITERATE_RDEV(mddev,rdev,tmp) {
1633 if (rdev->faulty)
1634 continue;
1635 if (rdev->size < chunk_size / 1024) {
1636 printk(KERN_WARNING
1637 "md: Dev %s smaller than chunk_size:"
1638 " %lluk < %dk\n",
1639 bdevname(rdev->bdev,b),
1640 (unsigned long long)rdev->size,
1641 chunk_size / 1024);
1642 return -EINVAL;
1647 #ifdef CONFIG_KMOD
1648 if (!pers[pnum])
1650 request_module("md-personality-%d", pnum);
1652 #endif
1655 * Drop all container device buffers, from now on
1656 * the only valid external interface is through the md
1657 * device.
1658 * Also find largest hardsector size
1660 ITERATE_RDEV(mddev,rdev,tmp) {
1661 if (rdev->faulty)
1662 continue;
1663 sync_blockdev(rdev->bdev);
1664 invalidate_bdev(rdev->bdev, 0);
1667 md_probe(mddev->unit, NULL, NULL);
1668 disk = mddev->gendisk;
1669 if (!disk)
1670 return -ENOMEM;
1672 spin_lock(&pers_lock);
1673 if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1674 spin_unlock(&pers_lock);
1675 printk(KERN_WARNING "md: personality %d is not loaded!\n",
1676 pnum);
1677 return -EINVAL;
1680 mddev->pers = pers[pnum];
1681 spin_unlock(&pers_lock);
1683 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1685 /* before we start the array running, initialise the bitmap */
1686 err = bitmap_create(mddev);
1687 if (err)
1688 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
1689 mdname(mddev), err);
1690 else
1691 err = mddev->pers->run(mddev);
1692 if (err) {
1693 printk(KERN_ERR "md: pers->run() failed ...\n");
1694 module_put(mddev->pers->owner);
1695 mddev->pers = NULL;
1696 bitmap_destroy(mddev);
1697 return err;
1699 atomic_set(&mddev->writes_pending,0);
1700 mddev->safemode = 0;
1701 mddev->safemode_timer.function = md_safemode_timeout;
1702 mddev->safemode_timer.data = (unsigned long) mddev;
1703 mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1704 mddev->in_sync = 1;
1706 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1708 if (mddev->sb_dirty)
1709 md_update_sb(mddev);
1711 set_capacity(disk, mddev->array_size<<1);
1713 /* If we call blk_queue_make_request here, it will
1714 * re-initialise max_sectors etc which may have been
1715 * refined inside -> run. So just set the bits we need to set.
1716 * Most initialisation happended when we called
1717 * blk_queue_make_request(..., md_fail_request)
1718 * earlier.
1720 mddev->queue->queuedata = mddev;
1721 mddev->queue->make_request_fn = mddev->pers->make_request;
1723 mddev->changed = 1;
1724 return 0;
1727 static int restart_array(mddev_t *mddev)
1729 struct gendisk *disk = mddev->gendisk;
1730 int err;
1733 * Complain if it has no devices
1735 err = -ENXIO;
1736 if (list_empty(&mddev->disks))
1737 goto out;
1739 if (mddev->pers) {
1740 err = -EBUSY;
1741 if (!mddev->ro)
1742 goto out;
1744 mddev->safemode = 0;
1745 mddev->ro = 0;
1746 set_disk_ro(disk, 0);
1748 printk(KERN_INFO "md: %s switched to read-write mode.\n",
1749 mdname(mddev));
1751 * Kick recovery or resync if necessary
1753 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1754 md_wakeup_thread(mddev->thread);
1755 err = 0;
1756 } else {
1757 printk(KERN_ERR "md: %s has no personality assigned.\n",
1758 mdname(mddev));
1759 err = -EINVAL;
1762 out:
1763 return err;
1766 static int do_md_stop(mddev_t * mddev, int ro)
1768 int err = 0;
1769 struct gendisk *disk = mddev->gendisk;
1771 if (mddev->pers) {
1772 if (atomic_read(&mddev->active)>2) {
1773 printk("md: %s still in use.\n",mdname(mddev));
1774 return -EBUSY;
1777 if (mddev->sync_thread) {
1778 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1779 md_unregister_thread(mddev->sync_thread);
1780 mddev->sync_thread = NULL;
1783 del_timer_sync(&mddev->safemode_timer);
1785 invalidate_partition(disk, 0);
1787 if (ro) {
1788 err = -ENXIO;
1789 if (mddev->ro)
1790 goto out;
1791 mddev->ro = 1;
1792 } else {
1793 if (mddev->ro)
1794 set_disk_ro(disk, 0);
1795 blk_queue_make_request(mddev->queue, md_fail_request);
1796 mddev->pers->stop(mddev);
1797 module_put(mddev->pers->owner);
1798 mddev->pers = NULL;
1799 if (mddev->ro)
1800 mddev->ro = 0;
1802 if (!mddev->in_sync) {
1803 /* mark array as shutdown cleanly */
1804 mddev->in_sync = 1;
1805 md_update_sb(mddev);
1807 if (ro)
1808 set_disk_ro(disk, 1);
1811 bitmap_destroy(mddev);
1812 if (mddev->bitmap_file) {
1813 atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
1814 fput(mddev->bitmap_file);
1815 mddev->bitmap_file = NULL;
1819 * Free resources if final stop
1821 if (!ro) {
1822 struct gendisk *disk;
1823 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
1825 export_array(mddev);
1827 mddev->array_size = 0;
1828 disk = mddev->gendisk;
1829 if (disk)
1830 set_capacity(disk, 0);
1831 mddev->changed = 1;
1832 } else
1833 printk(KERN_INFO "md: %s switched to read-only mode.\n",
1834 mdname(mddev));
1835 err = 0;
1836 out:
1837 return err;
1840 static void autorun_array(mddev_t *mddev)
1842 mdk_rdev_t *rdev;
1843 struct list_head *tmp;
1844 int err;
1846 if (list_empty(&mddev->disks))
1847 return;
1849 printk(KERN_INFO "md: running: ");
1851 ITERATE_RDEV(mddev,rdev,tmp) {
1852 char b[BDEVNAME_SIZE];
1853 printk("<%s>", bdevname(rdev->bdev,b));
1855 printk("\n");
1857 err = do_md_run (mddev);
1858 if (err) {
1859 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
1860 do_md_stop (mddev, 0);
1865 * lets try to run arrays based on all disks that have arrived
1866 * until now. (those are in pending_raid_disks)
1868 * the method: pick the first pending disk, collect all disks with
1869 * the same UUID, remove all from the pending list and put them into
1870 * the 'same_array' list. Then order this list based on superblock
1871 * update time (freshest comes first), kick out 'old' disks and
1872 * compare superblocks. If everything's fine then run it.
1874 * If "unit" is allocated, then bump its reference count
1876 static void autorun_devices(int part)
1878 struct list_head candidates;
1879 struct list_head *tmp;
1880 mdk_rdev_t *rdev0, *rdev;
1881 mddev_t *mddev;
1882 char b[BDEVNAME_SIZE];
1884 printk(KERN_INFO "md: autorun ...\n");
1885 while (!list_empty(&pending_raid_disks)) {
1886 dev_t dev;
1887 rdev0 = list_entry(pending_raid_disks.next,
1888 mdk_rdev_t, same_set);
1890 printk(KERN_INFO "md: considering %s ...\n",
1891 bdevname(rdev0->bdev,b));
1892 INIT_LIST_HEAD(&candidates);
1893 ITERATE_RDEV_PENDING(rdev,tmp)
1894 if (super_90_load(rdev, rdev0, 0) >= 0) {
1895 printk(KERN_INFO "md: adding %s ...\n",
1896 bdevname(rdev->bdev,b));
1897 list_move(&rdev->same_set, &candidates);
1900 * now we have a set of devices, with all of them having
1901 * mostly sane superblocks. It's time to allocate the
1902 * mddev.
1904 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
1905 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
1906 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
1907 break;
1909 if (part)
1910 dev = MKDEV(mdp_major,
1911 rdev0->preferred_minor << MdpMinorShift);
1912 else
1913 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
1915 md_probe(dev, NULL, NULL);
1916 mddev = mddev_find(dev);
1917 if (!mddev) {
1918 printk(KERN_ERR
1919 "md: cannot allocate memory for md drive.\n");
1920 break;
1922 if (mddev_lock(mddev))
1923 printk(KERN_WARNING "md: %s locked, cannot run\n",
1924 mdname(mddev));
1925 else if (mddev->raid_disks || mddev->major_version
1926 || !list_empty(&mddev->disks)) {
1927 printk(KERN_WARNING
1928 "md: %s already running, cannot run %s\n",
1929 mdname(mddev), bdevname(rdev0->bdev,b));
1930 mddev_unlock(mddev);
1931 } else {
1932 printk(KERN_INFO "md: created %s\n", mdname(mddev));
1933 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1934 list_del_init(&rdev->same_set);
1935 if (bind_rdev_to_array(rdev, mddev))
1936 export_rdev(rdev);
1938 autorun_array(mddev);
1939 mddev_unlock(mddev);
1941 /* on success, candidates will be empty, on error
1942 * it won't...
1944 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1945 export_rdev(rdev);
1946 mddev_put(mddev);
1948 printk(KERN_INFO "md: ... autorun DONE.\n");
1952 * import RAID devices based on one partition
1953 * if possible, the array gets run as well.
1956 static int autostart_array(dev_t startdev)
1958 char b[BDEVNAME_SIZE];
1959 int err = -EINVAL, i;
1960 mdp_super_t *sb = NULL;
1961 mdk_rdev_t *start_rdev = NULL, *rdev;
1963 start_rdev = md_import_device(startdev, 0, 0);
1964 if (IS_ERR(start_rdev))
1965 return err;
1968 /* NOTE: this can only work for 0.90.0 superblocks */
1969 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
1970 if (sb->major_version != 0 ||
1971 sb->minor_version != 90 ) {
1972 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
1973 export_rdev(start_rdev);
1974 return err;
1977 if (start_rdev->faulty) {
1978 printk(KERN_WARNING
1979 "md: can not autostart based on faulty %s!\n",
1980 bdevname(start_rdev->bdev,b));
1981 export_rdev(start_rdev);
1982 return err;
1984 list_add(&start_rdev->same_set, &pending_raid_disks);
1986 for (i = 0; i < MD_SB_DISKS; i++) {
1987 mdp_disk_t *desc = sb->disks + i;
1988 dev_t dev = MKDEV(desc->major, desc->minor);
1990 if (!dev)
1991 continue;
1992 if (dev == startdev)
1993 continue;
1994 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
1995 continue;
1996 rdev = md_import_device(dev, 0, 0);
1997 if (IS_ERR(rdev))
1998 continue;
2000 list_add(&rdev->same_set, &pending_raid_disks);
2004 * possibly return codes
2006 autorun_devices(0);
2007 return 0;
2012 static int get_version(void __user * arg)
2014 mdu_version_t ver;
2016 ver.major = MD_MAJOR_VERSION;
2017 ver.minor = MD_MINOR_VERSION;
2018 ver.patchlevel = MD_PATCHLEVEL_VERSION;
2020 if (copy_to_user(arg, &ver, sizeof(ver)))
2021 return -EFAULT;
2023 return 0;
2026 static int get_array_info(mddev_t * mddev, void __user * arg)
2028 mdu_array_info_t info;
2029 int nr,working,active,failed,spare;
2030 mdk_rdev_t *rdev;
2031 struct list_head *tmp;
2033 nr=working=active=failed=spare=0;
2034 ITERATE_RDEV(mddev,rdev,tmp) {
2035 nr++;
2036 if (rdev->faulty)
2037 failed++;
2038 else {
2039 working++;
2040 if (rdev->in_sync)
2041 active++;
2042 else
2043 spare++;
2047 info.major_version = mddev->major_version;
2048 info.minor_version = mddev->minor_version;
2049 info.patch_version = MD_PATCHLEVEL_VERSION;
2050 info.ctime = mddev->ctime;
2051 info.level = mddev->level;
2052 info.size = mddev->size;
2053 info.nr_disks = nr;
2054 info.raid_disks = mddev->raid_disks;
2055 info.md_minor = mddev->md_minor;
2056 info.not_persistent= !mddev->persistent;
2058 info.utime = mddev->utime;
2059 info.state = 0;
2060 if (mddev->in_sync)
2061 info.state = (1<<MD_SB_CLEAN);
2062 info.active_disks = active;
2063 info.working_disks = working;
2064 info.failed_disks = failed;
2065 info.spare_disks = spare;
2067 info.layout = mddev->layout;
2068 info.chunk_size = mddev->chunk_size;
2070 if (copy_to_user(arg, &info, sizeof(info)))
2071 return -EFAULT;
2073 return 0;
2076 static int get_bitmap_file(mddev_t * mddev, void * arg)
2078 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2079 char *ptr, *buf = NULL;
2080 int err = -ENOMEM;
2082 file = kmalloc(sizeof(*file), GFP_KERNEL);
2083 if (!file)
2084 goto out;
2086 /* bitmap disabled, zero the first byte and copy out */
2087 if (!mddev->bitmap || !mddev->bitmap->file) {
2088 file->pathname[0] = '\0';
2089 goto copy_out;
2092 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2093 if (!buf)
2094 goto out;
2096 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2097 if (!ptr)
2098 goto out;
2100 strcpy(file->pathname, ptr);
2102 copy_out:
2103 err = 0;
2104 if (copy_to_user(arg, file, sizeof(*file)))
2105 err = -EFAULT;
2106 out:
2107 kfree(buf);
2108 kfree(file);
2109 return err;
2112 static int get_disk_info(mddev_t * mddev, void __user * arg)
2114 mdu_disk_info_t info;
2115 unsigned int nr;
2116 mdk_rdev_t *rdev;
2118 if (copy_from_user(&info, arg, sizeof(info)))
2119 return -EFAULT;
2121 nr = info.number;
2123 rdev = find_rdev_nr(mddev, nr);
2124 if (rdev) {
2125 info.major = MAJOR(rdev->bdev->bd_dev);
2126 info.minor = MINOR(rdev->bdev->bd_dev);
2127 info.raid_disk = rdev->raid_disk;
2128 info.state = 0;
2129 if (rdev->faulty)
2130 info.state |= (1<<MD_DISK_FAULTY);
2131 else if (rdev->in_sync) {
2132 info.state |= (1<<MD_DISK_ACTIVE);
2133 info.state |= (1<<MD_DISK_SYNC);
2135 } else {
2136 info.major = info.minor = 0;
2137 info.raid_disk = -1;
2138 info.state = (1<<MD_DISK_REMOVED);
2141 if (copy_to_user(arg, &info, sizeof(info)))
2142 return -EFAULT;
2144 return 0;
2147 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2149 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2150 mdk_rdev_t *rdev;
2151 dev_t dev = MKDEV(info->major,info->minor);
2153 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2154 return -EOVERFLOW;
2156 if (!mddev->raid_disks) {
2157 int err;
2158 /* expecting a device which has a superblock */
2159 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2160 if (IS_ERR(rdev)) {
2161 printk(KERN_WARNING
2162 "md: md_import_device returned %ld\n",
2163 PTR_ERR(rdev));
2164 return PTR_ERR(rdev);
2166 if (!list_empty(&mddev->disks)) {
2167 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2168 mdk_rdev_t, same_set);
2169 int err = super_types[mddev->major_version]
2170 .load_super(rdev, rdev0, mddev->minor_version);
2171 if (err < 0) {
2172 printk(KERN_WARNING
2173 "md: %s has different UUID to %s\n",
2174 bdevname(rdev->bdev,b),
2175 bdevname(rdev0->bdev,b2));
2176 export_rdev(rdev);
2177 return -EINVAL;
2180 err = bind_rdev_to_array(rdev, mddev);
2181 if (err)
2182 export_rdev(rdev);
2183 return err;
2187 * add_new_disk can be used once the array is assembled
2188 * to add "hot spares". They must already have a superblock
2189 * written
2191 if (mddev->pers) {
2192 int err;
2193 if (!mddev->pers->hot_add_disk) {
2194 printk(KERN_WARNING
2195 "%s: personality does not support diskops!\n",
2196 mdname(mddev));
2197 return -EINVAL;
2199 rdev = md_import_device(dev, mddev->major_version,
2200 mddev->minor_version);
2201 if (IS_ERR(rdev)) {
2202 printk(KERN_WARNING
2203 "md: md_import_device returned %ld\n",
2204 PTR_ERR(rdev));
2205 return PTR_ERR(rdev);
2207 /* set save_raid_disk if appropriate */
2208 if (!mddev->persistent) {
2209 if (info->state & (1<<MD_DISK_SYNC) &&
2210 info->raid_disk < mddev->raid_disks)
2211 rdev->raid_disk = info->raid_disk;
2212 else
2213 rdev->raid_disk = -1;
2214 } else
2215 super_types[mddev->major_version].
2216 validate_super(mddev, rdev);
2217 rdev->saved_raid_disk = rdev->raid_disk;
2219 rdev->in_sync = 0; /* just to be sure */
2220 rdev->raid_disk = -1;
2221 err = bind_rdev_to_array(rdev, mddev);
2222 if (err)
2223 export_rdev(rdev);
2225 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2226 if (mddev->thread)
2227 md_wakeup_thread(mddev->thread);
2228 return err;
2231 /* otherwise, add_new_disk is only allowed
2232 * for major_version==0 superblocks
2234 if (mddev->major_version != 0) {
2235 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2236 mdname(mddev));
2237 return -EINVAL;
2240 if (!(info->state & (1<<MD_DISK_FAULTY))) {
2241 int err;
2242 rdev = md_import_device (dev, -1, 0);
2243 if (IS_ERR(rdev)) {
2244 printk(KERN_WARNING
2245 "md: error, md_import_device() returned %ld\n",
2246 PTR_ERR(rdev));
2247 return PTR_ERR(rdev);
2249 rdev->desc_nr = info->number;
2250 if (info->raid_disk < mddev->raid_disks)
2251 rdev->raid_disk = info->raid_disk;
2252 else
2253 rdev->raid_disk = -1;
2255 rdev->faulty = 0;
2256 if (rdev->raid_disk < mddev->raid_disks)
2257 rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2258 else
2259 rdev->in_sync = 0;
2261 err = bind_rdev_to_array(rdev, mddev);
2262 if (err) {
2263 export_rdev(rdev);
2264 return err;
2267 if (!mddev->persistent) {
2268 printk(KERN_INFO "md: nonpersistent superblock ...\n");
2269 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2270 } else
2271 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2272 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2274 if (!mddev->size || (mddev->size > rdev->size))
2275 mddev->size = rdev->size;
2278 return 0;
2281 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2283 char b[BDEVNAME_SIZE];
2284 mdk_rdev_t *rdev;
2286 if (!mddev->pers)
2287 return -ENODEV;
2289 rdev = find_rdev(mddev, dev);
2290 if (!rdev)
2291 return -ENXIO;
2293 if (rdev->raid_disk >= 0)
2294 goto busy;
2296 kick_rdev_from_array(rdev);
2297 md_update_sb(mddev);
2299 return 0;
2300 busy:
2301 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2302 bdevname(rdev->bdev,b), mdname(mddev));
2303 return -EBUSY;
2306 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2308 char b[BDEVNAME_SIZE];
2309 int err;
2310 unsigned int size;
2311 mdk_rdev_t *rdev;
2313 if (!mddev->pers)
2314 return -ENODEV;
2316 if (mddev->major_version != 0) {
2317 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2318 " version-0 superblocks.\n",
2319 mdname(mddev));
2320 return -EINVAL;
2322 if (!mddev->pers->hot_add_disk) {
2323 printk(KERN_WARNING
2324 "%s: personality does not support diskops!\n",
2325 mdname(mddev));
2326 return -EINVAL;
2329 rdev = md_import_device (dev, -1, 0);
2330 if (IS_ERR(rdev)) {
2331 printk(KERN_WARNING
2332 "md: error, md_import_device() returned %ld\n",
2333 PTR_ERR(rdev));
2334 return -EINVAL;
2337 if (mddev->persistent)
2338 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2339 else
2340 rdev->sb_offset =
2341 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2343 size = calc_dev_size(rdev, mddev->chunk_size);
2344 rdev->size = size;
2346 if (size < mddev->size) {
2347 printk(KERN_WARNING
2348 "%s: disk size %llu blocks < array size %llu\n",
2349 mdname(mddev), (unsigned long long)size,
2350 (unsigned long long)mddev->size);
2351 err = -ENOSPC;
2352 goto abort_export;
2355 if (rdev->faulty) {
2356 printk(KERN_WARNING
2357 "md: can not hot-add faulty %s disk to %s!\n",
2358 bdevname(rdev->bdev,b), mdname(mddev));
2359 err = -EINVAL;
2360 goto abort_export;
2362 rdev->in_sync = 0;
2363 rdev->desc_nr = -1;
2364 bind_rdev_to_array(rdev, mddev);
2367 * The rest should better be atomic, we can have disk failures
2368 * noticed in interrupt contexts ...
2371 if (rdev->desc_nr == mddev->max_disks) {
2372 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2373 mdname(mddev));
2374 err = -EBUSY;
2375 goto abort_unbind_export;
2378 rdev->raid_disk = -1;
2380 md_update_sb(mddev);
2383 * Kick recovery, maybe this spare has to be added to the
2384 * array immediately.
2386 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2387 md_wakeup_thread(mddev->thread);
2389 return 0;
2391 abort_unbind_export:
2392 unbind_rdev_from_array(rdev);
2394 abort_export:
2395 export_rdev(rdev);
2396 return err;
2399 /* similar to deny_write_access, but accounts for our holding a reference
2400 * to the file ourselves */
2401 static int deny_bitmap_write_access(struct file * file)
2403 struct inode *inode = file->f_mapping->host;
2405 spin_lock(&inode->i_lock);
2406 if (atomic_read(&inode->i_writecount) > 1) {
2407 spin_unlock(&inode->i_lock);
2408 return -ETXTBSY;
2410 atomic_set(&inode->i_writecount, -1);
2411 spin_unlock(&inode->i_lock);
2413 return 0;
2416 static int set_bitmap_file(mddev_t *mddev, int fd)
2418 int err;
2420 if (mddev->pers)
2421 return -EBUSY;
2423 mddev->bitmap_file = fget(fd);
2425 if (mddev->bitmap_file == NULL) {
2426 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2427 mdname(mddev));
2428 return -EBADF;
2431 err = deny_bitmap_write_access(mddev->bitmap_file);
2432 if (err) {
2433 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2434 mdname(mddev));
2435 fput(mddev->bitmap_file);
2436 mddev->bitmap_file = NULL;
2437 } else
2438 mddev->bitmap_offset = 0; /* file overrides offset */
2439 return err;
2443 * set_array_info is used two different ways
2444 * The original usage is when creating a new array.
2445 * In this usage, raid_disks is > 0 and it together with
2446 * level, size, not_persistent,layout,chunksize determine the
2447 * shape of the array.
2448 * This will always create an array with a type-0.90.0 superblock.
2449 * The newer usage is when assembling an array.
2450 * In this case raid_disks will be 0, and the major_version field is
2451 * use to determine which style super-blocks are to be found on the devices.
2452 * The minor and patch _version numbers are also kept incase the
2453 * super_block handler wishes to interpret them.
2455 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2458 if (info->raid_disks == 0) {
2459 /* just setting version number for superblock loading */
2460 if (info->major_version < 0 ||
2461 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2462 super_types[info->major_version].name == NULL) {
2463 /* maybe try to auto-load a module? */
2464 printk(KERN_INFO
2465 "md: superblock version %d not known\n",
2466 info->major_version);
2467 return -EINVAL;
2469 mddev->major_version = info->major_version;
2470 mddev->minor_version = info->minor_version;
2471 mddev->patch_version = info->patch_version;
2472 return 0;
2474 mddev->major_version = MD_MAJOR_VERSION;
2475 mddev->minor_version = MD_MINOR_VERSION;
2476 mddev->patch_version = MD_PATCHLEVEL_VERSION;
2477 mddev->ctime = get_seconds();
2479 mddev->level = info->level;
2480 mddev->size = info->size;
2481 mddev->raid_disks = info->raid_disks;
2482 /* don't set md_minor, it is determined by which /dev/md* was
2483 * openned
2485 if (info->state & (1<<MD_SB_CLEAN))
2486 mddev->recovery_cp = MaxSector;
2487 else
2488 mddev->recovery_cp = 0;
2489 mddev->persistent = ! info->not_persistent;
2491 mddev->layout = info->layout;
2492 mddev->chunk_size = info->chunk_size;
2494 mddev->max_disks = MD_SB_DISKS;
2496 mddev->sb_dirty = 1;
2499 * Generate a 128 bit UUID
2501 get_random_bytes(mddev->uuid, 16);
2503 return 0;
2507 * update_array_info is used to change the configuration of an
2508 * on-line array.
2509 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2510 * fields in the info are checked against the array.
2511 * Any differences that cannot be handled will cause an error.
2512 * Normally, only one change can be managed at a time.
2514 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2516 int rv = 0;
2517 int cnt = 0;
2519 if (mddev->major_version != info->major_version ||
2520 mddev->minor_version != info->minor_version ||
2521 /* mddev->patch_version != info->patch_version || */
2522 mddev->ctime != info->ctime ||
2523 mddev->level != info->level ||
2524 /* mddev->layout != info->layout || */
2525 !mddev->persistent != info->not_persistent||
2526 mddev->chunk_size != info->chunk_size )
2527 return -EINVAL;
2528 /* Check there is only one change */
2529 if (mddev->size != info->size) cnt++;
2530 if (mddev->raid_disks != info->raid_disks) cnt++;
2531 if (mddev->layout != info->layout) cnt++;
2532 if (cnt == 0) return 0;
2533 if (cnt > 1) return -EINVAL;
2535 if (mddev->layout != info->layout) {
2536 /* Change layout
2537 * we don't need to do anything at the md level, the
2538 * personality will take care of it all.
2540 if (mddev->pers->reconfig == NULL)
2541 return -EINVAL;
2542 else
2543 return mddev->pers->reconfig(mddev, info->layout, -1);
2545 if (mddev->size != info->size) {
2546 mdk_rdev_t * rdev;
2547 struct list_head *tmp;
2548 if (mddev->pers->resize == NULL)
2549 return -EINVAL;
2550 /* The "size" is the amount of each device that is used.
2551 * This can only make sense for arrays with redundancy.
2552 * linear and raid0 always use whatever space is available
2553 * We can only consider changing the size if no resync
2554 * or reconstruction is happening, and if the new size
2555 * is acceptable. It must fit before the sb_offset or,
2556 * if that is <data_offset, it must fit before the
2557 * size of each device.
2558 * If size is zero, we find the largest size that fits.
2560 if (mddev->sync_thread)
2561 return -EBUSY;
2562 ITERATE_RDEV(mddev,rdev,tmp) {
2563 sector_t avail;
2564 int fit = (info->size == 0);
2565 if (rdev->sb_offset > rdev->data_offset)
2566 avail = (rdev->sb_offset*2) - rdev->data_offset;
2567 else
2568 avail = get_capacity(rdev->bdev->bd_disk)
2569 - rdev->data_offset;
2570 if (fit && (info->size == 0 || info->size > avail/2))
2571 info->size = avail/2;
2572 if (avail < ((sector_t)info->size << 1))
2573 return -ENOSPC;
2575 rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2576 if (!rv) {
2577 struct block_device *bdev;
2579 bdev = bdget_disk(mddev->gendisk, 0);
2580 if (bdev) {
2581 down(&bdev->bd_inode->i_sem);
2582 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2583 up(&bdev->bd_inode->i_sem);
2584 bdput(bdev);
2588 if (mddev->raid_disks != info->raid_disks) {
2589 /* change the number of raid disks */
2590 if (mddev->pers->reshape == NULL)
2591 return -EINVAL;
2592 if (info->raid_disks <= 0 ||
2593 info->raid_disks >= mddev->max_disks)
2594 return -EINVAL;
2595 if (mddev->sync_thread)
2596 return -EBUSY;
2597 rv = mddev->pers->reshape(mddev, info->raid_disks);
2598 if (!rv) {
2599 struct block_device *bdev;
2601 bdev = bdget_disk(mddev->gendisk, 0);
2602 if (bdev) {
2603 down(&bdev->bd_inode->i_sem);
2604 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2605 up(&bdev->bd_inode->i_sem);
2606 bdput(bdev);
2610 md_update_sb(mddev);
2611 return rv;
2614 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2616 mdk_rdev_t *rdev;
2618 if (mddev->pers == NULL)
2619 return -ENODEV;
2621 rdev = find_rdev(mddev, dev);
2622 if (!rdev)
2623 return -ENODEV;
2625 md_error(mddev, rdev);
2626 return 0;
2629 static int md_ioctl(struct inode *inode, struct file *file,
2630 unsigned int cmd, unsigned long arg)
2632 int err = 0;
2633 void __user *argp = (void __user *)arg;
2634 struct hd_geometry __user *loc = argp;
2635 mddev_t *mddev = NULL;
2637 if (!capable(CAP_SYS_ADMIN))
2638 return -EACCES;
2641 * Commands dealing with the RAID driver but not any
2642 * particular array:
2644 switch (cmd)
2646 case RAID_VERSION:
2647 err = get_version(argp);
2648 goto done;
2650 case PRINT_RAID_DEBUG:
2651 err = 0;
2652 md_print_devices();
2653 goto done;
2655 #ifndef MODULE
2656 case RAID_AUTORUN:
2657 err = 0;
2658 autostart_arrays(arg);
2659 goto done;
2660 #endif
2661 default:;
2665 * Commands creating/starting a new array:
2668 mddev = inode->i_bdev->bd_disk->private_data;
2670 if (!mddev) {
2671 BUG();
2672 goto abort;
2676 if (cmd == START_ARRAY) {
2677 /* START_ARRAY doesn't need to lock the array as autostart_array
2678 * does the locking, and it could even be a different array
2680 static int cnt = 3;
2681 if (cnt > 0 ) {
2682 printk(KERN_WARNING
2683 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2684 "This will not be supported beyond 2.6\n",
2685 current->comm, current->pid);
2686 cnt--;
2688 err = autostart_array(new_decode_dev(arg));
2689 if (err) {
2690 printk(KERN_WARNING "md: autostart failed!\n");
2691 goto abort;
2693 goto done;
2696 err = mddev_lock(mddev);
2697 if (err) {
2698 printk(KERN_INFO
2699 "md: ioctl lock interrupted, reason %d, cmd %d\n",
2700 err, cmd);
2701 goto abort;
2704 switch (cmd)
2706 case SET_ARRAY_INFO:
2708 mdu_array_info_t info;
2709 if (!arg)
2710 memset(&info, 0, sizeof(info));
2711 else if (copy_from_user(&info, argp, sizeof(info))) {
2712 err = -EFAULT;
2713 goto abort_unlock;
2715 if (mddev->pers) {
2716 err = update_array_info(mddev, &info);
2717 if (err) {
2718 printk(KERN_WARNING "md: couldn't update"
2719 " array info. %d\n", err);
2720 goto abort_unlock;
2722 goto done_unlock;
2724 if (!list_empty(&mddev->disks)) {
2725 printk(KERN_WARNING
2726 "md: array %s already has disks!\n",
2727 mdname(mddev));
2728 err = -EBUSY;
2729 goto abort_unlock;
2731 if (mddev->raid_disks) {
2732 printk(KERN_WARNING
2733 "md: array %s already initialised!\n",
2734 mdname(mddev));
2735 err = -EBUSY;
2736 goto abort_unlock;
2738 err = set_array_info(mddev, &info);
2739 if (err) {
2740 printk(KERN_WARNING "md: couldn't set"
2741 " array info. %d\n", err);
2742 goto abort_unlock;
2745 goto done_unlock;
2747 default:;
2751 * Commands querying/configuring an existing array:
2753 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
2754 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
2755 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
2756 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
2757 err = -ENODEV;
2758 goto abort_unlock;
2762 * Commands even a read-only array can execute:
2764 switch (cmd)
2766 case GET_ARRAY_INFO:
2767 err = get_array_info(mddev, argp);
2768 goto done_unlock;
2770 case GET_BITMAP_FILE:
2771 err = get_bitmap_file(mddev, (void *)arg);
2772 goto done_unlock;
2774 case GET_DISK_INFO:
2775 err = get_disk_info(mddev, argp);
2776 goto done_unlock;
2778 case RESTART_ARRAY_RW:
2779 err = restart_array(mddev);
2780 goto done_unlock;
2782 case STOP_ARRAY:
2783 err = do_md_stop (mddev, 0);
2784 goto done_unlock;
2786 case STOP_ARRAY_RO:
2787 err = do_md_stop (mddev, 1);
2788 goto done_unlock;
2791 * We have a problem here : there is no easy way to give a CHS
2792 * virtual geometry. We currently pretend that we have a 2 heads
2793 * 4 sectors (with a BIG number of cylinders...). This drives
2794 * dosfs just mad... ;-)
2796 case HDIO_GETGEO:
2797 if (!loc) {
2798 err = -EINVAL;
2799 goto abort_unlock;
2801 err = put_user (2, (char __user *) &loc->heads);
2802 if (err)
2803 goto abort_unlock;
2804 err = put_user (4, (char __user *) &loc->sectors);
2805 if (err)
2806 goto abort_unlock;
2807 err = put_user(get_capacity(mddev->gendisk)/8,
2808 (short __user *) &loc->cylinders);
2809 if (err)
2810 goto abort_unlock;
2811 err = put_user (get_start_sect(inode->i_bdev),
2812 (long __user *) &loc->start);
2813 goto done_unlock;
2817 * The remaining ioctls are changing the state of the
2818 * superblock, so we do not allow read-only arrays
2819 * here:
2821 if (mddev->ro) {
2822 err = -EROFS;
2823 goto abort_unlock;
2826 switch (cmd)
2828 case ADD_NEW_DISK:
2830 mdu_disk_info_t info;
2831 if (copy_from_user(&info, argp, sizeof(info)))
2832 err = -EFAULT;
2833 else
2834 err = add_new_disk(mddev, &info);
2835 goto done_unlock;
2838 case HOT_REMOVE_DISK:
2839 err = hot_remove_disk(mddev, new_decode_dev(arg));
2840 goto done_unlock;
2842 case HOT_ADD_DISK:
2843 err = hot_add_disk(mddev, new_decode_dev(arg));
2844 goto done_unlock;
2846 case SET_DISK_FAULTY:
2847 err = set_disk_faulty(mddev, new_decode_dev(arg));
2848 goto done_unlock;
2850 case RUN_ARRAY:
2851 err = do_md_run (mddev);
2852 goto done_unlock;
2854 case SET_BITMAP_FILE:
2855 err = set_bitmap_file(mddev, (int)arg);
2856 goto done_unlock;
2858 default:
2859 if (_IOC_TYPE(cmd) == MD_MAJOR)
2860 printk(KERN_WARNING "md: %s(pid %d) used"
2861 " obsolete MD ioctl, upgrade your"
2862 " software to use new ictls.\n",
2863 current->comm, current->pid);
2864 err = -EINVAL;
2865 goto abort_unlock;
2868 done_unlock:
2869 abort_unlock:
2870 mddev_unlock(mddev);
2872 return err;
2873 done:
2874 if (err)
2875 MD_BUG();
2876 abort:
2877 return err;
2880 static int md_open(struct inode *inode, struct file *file)
2883 * Succeed if we can lock the mddev, which confirms that
2884 * it isn't being stopped right now.
2886 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2887 int err;
2889 if ((err = mddev_lock(mddev)))
2890 goto out;
2892 err = 0;
2893 mddev_get(mddev);
2894 mddev_unlock(mddev);
2896 check_disk_change(inode->i_bdev);
2897 out:
2898 return err;
2901 static int md_release(struct inode *inode, struct file * file)
2903 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2905 if (!mddev)
2906 BUG();
2907 mddev_put(mddev);
2909 return 0;
2912 static int md_media_changed(struct gendisk *disk)
2914 mddev_t *mddev = disk->private_data;
2916 return mddev->changed;
2919 static int md_revalidate(struct gendisk *disk)
2921 mddev_t *mddev = disk->private_data;
2923 mddev->changed = 0;
2924 return 0;
2926 static struct block_device_operations md_fops =
2928 .owner = THIS_MODULE,
2929 .open = md_open,
2930 .release = md_release,
2931 .ioctl = md_ioctl,
2932 .media_changed = md_media_changed,
2933 .revalidate_disk= md_revalidate,
2936 static int md_thread(void * arg)
2938 mdk_thread_t *thread = arg;
2940 lock_kernel();
2943 * Detach thread
2946 daemonize(thread->name, mdname(thread->mddev));
2948 current->exit_signal = SIGCHLD;
2949 allow_signal(SIGKILL);
2950 thread->tsk = current;
2953 * md_thread is a 'system-thread', it's priority should be very
2954 * high. We avoid resource deadlocks individually in each
2955 * raid personality. (RAID5 does preallocation) We also use RR and
2956 * the very same RT priority as kswapd, thus we will never get
2957 * into a priority inversion deadlock.
2959 * we definitely have to have equal or higher priority than
2960 * bdflush, otherwise bdflush will deadlock if there are too
2961 * many dirty RAID5 blocks.
2963 unlock_kernel();
2965 complete(thread->event);
2966 while (thread->run) {
2967 void (*run)(mddev_t *);
2969 wait_event_interruptible_timeout(thread->wqueue,
2970 test_bit(THREAD_WAKEUP, &thread->flags),
2971 thread->timeout);
2972 if (current->flags & PF_FREEZE)
2973 refrigerator(PF_FREEZE);
2975 clear_bit(THREAD_WAKEUP, &thread->flags);
2977 run = thread->run;
2978 if (run)
2979 run(thread->mddev);
2981 if (signal_pending(current))
2982 flush_signals(current);
2984 complete(thread->event);
2985 return 0;
2988 void md_wakeup_thread(mdk_thread_t *thread)
2990 if (thread) {
2991 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
2992 set_bit(THREAD_WAKEUP, &thread->flags);
2993 wake_up(&thread->wqueue);
2997 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
2998 const char *name)
3000 mdk_thread_t *thread;
3001 int ret;
3002 struct completion event;
3004 thread = (mdk_thread_t *) kmalloc
3005 (sizeof(mdk_thread_t), GFP_KERNEL);
3006 if (!thread)
3007 return NULL;
3009 memset(thread, 0, sizeof(mdk_thread_t));
3010 init_waitqueue_head(&thread->wqueue);
3012 init_completion(&event);
3013 thread->event = &event;
3014 thread->run = run;
3015 thread->mddev = mddev;
3016 thread->name = name;
3017 thread->timeout = MAX_SCHEDULE_TIMEOUT;
3018 ret = kernel_thread(md_thread, thread, 0);
3019 if (ret < 0) {
3020 kfree(thread);
3021 return NULL;
3023 wait_for_completion(&event);
3024 return thread;
3027 void md_unregister_thread(mdk_thread_t *thread)
3029 struct completion event;
3031 init_completion(&event);
3033 thread->event = &event;
3035 /* As soon as ->run is set to NULL, the task could disappear,
3036 * so we need to hold tasklist_lock until we have sent the signal
3038 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3039 read_lock(&tasklist_lock);
3040 thread->run = NULL;
3041 send_sig(SIGKILL, thread->tsk, 1);
3042 read_unlock(&tasklist_lock);
3043 wait_for_completion(&event);
3044 kfree(thread);
3047 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3049 if (!mddev) {
3050 MD_BUG();
3051 return;
3054 if (!rdev || rdev->faulty)
3055 return;
3057 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3058 mdname(mddev),
3059 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3060 __builtin_return_address(0),__builtin_return_address(1),
3061 __builtin_return_address(2),__builtin_return_address(3));
3063 if (!mddev->pers->error_handler)
3064 return;
3065 mddev->pers->error_handler(mddev,rdev);
3066 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3067 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3068 md_wakeup_thread(mddev->thread);
3071 /* seq_file implementation /proc/mdstat */
3073 static void status_unused(struct seq_file *seq)
3075 int i = 0;
3076 mdk_rdev_t *rdev;
3077 struct list_head *tmp;
3079 seq_printf(seq, "unused devices: ");
3081 ITERATE_RDEV_PENDING(rdev,tmp) {
3082 char b[BDEVNAME_SIZE];
3083 i++;
3084 seq_printf(seq, "%s ",
3085 bdevname(rdev->bdev,b));
3087 if (!i)
3088 seq_printf(seq, "<none>");
3090 seq_printf(seq, "\n");
3094 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3096 unsigned long max_blocks, resync, res, dt, db, rt;
3098 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3100 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3101 max_blocks = mddev->resync_max_sectors >> 1;
3102 else
3103 max_blocks = mddev->size;
3106 * Should not happen.
3108 if (!max_blocks) {
3109 MD_BUG();
3110 return;
3112 res = (resync/1024)*1000/(max_blocks/1024 + 1);
3114 int i, x = res/50, y = 20-x;
3115 seq_printf(seq, "[");
3116 for (i = 0; i < x; i++)
3117 seq_printf(seq, "=");
3118 seq_printf(seq, ">");
3119 for (i = 0; i < y; i++)
3120 seq_printf(seq, ".");
3121 seq_printf(seq, "] ");
3123 seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3124 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3125 "resync" : "recovery"),
3126 res/10, res % 10, resync, max_blocks);
3129 * We do not want to overflow, so the order of operands and
3130 * the * 100 / 100 trick are important. We do a +1 to be
3131 * safe against division by zero. We only estimate anyway.
3133 * dt: time from mark until now
3134 * db: blocks written from mark until now
3135 * rt: remaining time
3137 dt = ((jiffies - mddev->resync_mark) / HZ);
3138 if (!dt) dt++;
3139 db = resync - (mddev->resync_mark_cnt/2);
3140 rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3142 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3144 seq_printf(seq, " speed=%ldK/sec", db/dt);
3147 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3149 struct list_head *tmp;
3150 loff_t l = *pos;
3151 mddev_t *mddev;
3153 if (l >= 0x10000)
3154 return NULL;
3155 if (!l--)
3156 /* header */
3157 return (void*)1;
3159 spin_lock(&all_mddevs_lock);
3160 list_for_each(tmp,&all_mddevs)
3161 if (!l--) {
3162 mddev = list_entry(tmp, mddev_t, all_mddevs);
3163 mddev_get(mddev);
3164 spin_unlock(&all_mddevs_lock);
3165 return mddev;
3167 spin_unlock(&all_mddevs_lock);
3168 if (!l--)
3169 return (void*)2;/* tail */
3170 return NULL;
3173 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3175 struct list_head *tmp;
3176 mddev_t *next_mddev, *mddev = v;
3178 ++*pos;
3179 if (v == (void*)2)
3180 return NULL;
3182 spin_lock(&all_mddevs_lock);
3183 if (v == (void*)1)
3184 tmp = all_mddevs.next;
3185 else
3186 tmp = mddev->all_mddevs.next;
3187 if (tmp != &all_mddevs)
3188 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3189 else {
3190 next_mddev = (void*)2;
3191 *pos = 0x10000;
3193 spin_unlock(&all_mddevs_lock);
3195 if (v != (void*)1)
3196 mddev_put(mddev);
3197 return next_mddev;
3201 static void md_seq_stop(struct seq_file *seq, void *v)
3203 mddev_t *mddev = v;
3205 if (mddev && v != (void*)1 && v != (void*)2)
3206 mddev_put(mddev);
3209 static int md_seq_show(struct seq_file *seq, void *v)
3211 mddev_t *mddev = v;
3212 sector_t size;
3213 struct list_head *tmp2;
3214 mdk_rdev_t *rdev;
3215 int i;
3216 struct bitmap *bitmap;
3218 if (v == (void*)1) {
3219 seq_printf(seq, "Personalities : ");
3220 spin_lock(&pers_lock);
3221 for (i = 0; i < MAX_PERSONALITY; i++)
3222 if (pers[i])
3223 seq_printf(seq, "[%s] ", pers[i]->name);
3225 spin_unlock(&pers_lock);
3226 seq_printf(seq, "\n");
3227 return 0;
3229 if (v == (void*)2) {
3230 status_unused(seq);
3231 return 0;
3234 if (mddev_lock(mddev)!=0)
3235 return -EINTR;
3236 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3237 seq_printf(seq, "%s : %sactive", mdname(mddev),
3238 mddev->pers ? "" : "in");
3239 if (mddev->pers) {
3240 if (mddev->ro)
3241 seq_printf(seq, " (read-only)");
3242 seq_printf(seq, " %s", mddev->pers->name);
3245 size = 0;
3246 ITERATE_RDEV(mddev,rdev,tmp2) {
3247 char b[BDEVNAME_SIZE];
3248 seq_printf(seq, " %s[%d]",
3249 bdevname(rdev->bdev,b), rdev->desc_nr);
3250 if (rdev->faulty) {
3251 seq_printf(seq, "(F)");
3252 continue;
3254 size += rdev->size;
3257 if (!list_empty(&mddev->disks)) {
3258 if (mddev->pers)
3259 seq_printf(seq, "\n %llu blocks",
3260 (unsigned long long)mddev->array_size);
3261 else
3262 seq_printf(seq, "\n %llu blocks",
3263 (unsigned long long)size);
3266 if (mddev->pers) {
3267 mddev->pers->status (seq, mddev);
3268 seq_printf(seq, "\n ");
3269 if (mddev->curr_resync > 2) {
3270 status_resync (seq, mddev);
3271 seq_printf(seq, "\n ");
3272 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3273 seq_printf(seq, " resync=DELAYED\n ");
3274 } else
3275 seq_printf(seq, "\n ");
3277 if ((bitmap = mddev->bitmap)) {
3278 unsigned long chunk_kb;
3279 unsigned long flags;
3280 spin_lock_irqsave(&bitmap->lock, flags);
3281 chunk_kb = bitmap->chunksize >> 10;
3282 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3283 "%lu%s chunk",
3284 bitmap->pages - bitmap->missing_pages,
3285 bitmap->pages,
3286 (bitmap->pages - bitmap->missing_pages)
3287 << (PAGE_SHIFT - 10),
3288 chunk_kb ? chunk_kb : bitmap->chunksize,
3289 chunk_kb ? "KB" : "B");
3290 if (bitmap->file) {
3291 seq_printf(seq, ", file: ");
3292 seq_path(seq, bitmap->file->f_vfsmnt,
3293 bitmap->file->f_dentry," \t\n");
3296 seq_printf(seq, "\n");
3297 spin_unlock_irqrestore(&bitmap->lock, flags);
3300 seq_printf(seq, "\n");
3302 mddev_unlock(mddev);
3304 return 0;
3307 static struct seq_operations md_seq_ops = {
3308 .start = md_seq_start,
3309 .next = md_seq_next,
3310 .stop = md_seq_stop,
3311 .show = md_seq_show,
3314 static int md_seq_open(struct inode *inode, struct file *file)
3316 int error;
3318 error = seq_open(file, &md_seq_ops);
3319 return error;
3322 static struct file_operations md_seq_fops = {
3323 .open = md_seq_open,
3324 .read = seq_read,
3325 .llseek = seq_lseek,
3326 .release = seq_release,
3329 int register_md_personality(int pnum, mdk_personality_t *p)
3331 if (pnum >= MAX_PERSONALITY) {
3332 printk(KERN_ERR
3333 "md: tried to install personality %s as nr %d, but max is %lu\n",
3334 p->name, pnum, MAX_PERSONALITY-1);
3335 return -EINVAL;
3338 spin_lock(&pers_lock);
3339 if (pers[pnum]) {
3340 spin_unlock(&pers_lock);
3341 return -EBUSY;
3344 pers[pnum] = p;
3345 printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3346 spin_unlock(&pers_lock);
3347 return 0;
3350 int unregister_md_personality(int pnum)
3352 if (pnum >= MAX_PERSONALITY)
3353 return -EINVAL;
3355 printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3356 spin_lock(&pers_lock);
3357 pers[pnum] = NULL;
3358 spin_unlock(&pers_lock);
3359 return 0;
3362 static int is_mddev_idle(mddev_t *mddev)
3364 mdk_rdev_t * rdev;
3365 struct list_head *tmp;
3366 int idle;
3367 unsigned long curr_events;
3369 idle = 1;
3370 ITERATE_RDEV(mddev,rdev,tmp) {
3371 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3372 curr_events = disk_stat_read(disk, read_sectors) +
3373 disk_stat_read(disk, write_sectors) -
3374 atomic_read(&disk->sync_io);
3375 /* Allow some slack between valud of curr_events and last_events,
3376 * as there are some uninteresting races.
3377 * Note: the following is an unsigned comparison.
3379 if ((curr_events - rdev->last_events + 32) > 64) {
3380 rdev->last_events = curr_events;
3381 idle = 0;
3384 return idle;
3387 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3389 /* another "blocks" (512byte) blocks have been synced */
3390 atomic_sub(blocks, &mddev->recovery_active);
3391 wake_up(&mddev->recovery_wait);
3392 if (!ok) {
3393 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3394 md_wakeup_thread(mddev->thread);
3395 // stop recovery, signal do_sync ....
3400 /* md_write_start(mddev, bi)
3401 * If we need to update some array metadata (e.g. 'active' flag
3402 * in superblock) before writing, schedule a superblock update
3403 * and wait for it to complete.
3405 void md_write_start(mddev_t *mddev, struct bio *bi)
3407 DEFINE_WAIT(w);
3408 if (bio_data_dir(bi) != WRITE)
3409 return;
3411 atomic_inc(&mddev->writes_pending);
3412 if (mddev->in_sync) {
3413 spin_lock(&mddev->write_lock);
3414 if (mddev->in_sync) {
3415 mddev->in_sync = 0;
3416 mddev->sb_dirty = 1;
3417 md_wakeup_thread(mddev->thread);
3419 spin_unlock(&mddev->write_lock);
3421 wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3424 void md_write_end(mddev_t *mddev)
3426 if (atomic_dec_and_test(&mddev->writes_pending)) {
3427 if (mddev->safemode == 2)
3428 md_wakeup_thread(mddev->thread);
3429 else
3430 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3434 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3436 #define SYNC_MARKS 10
3437 #define SYNC_MARK_STEP (3*HZ)
3438 static void md_do_sync(mddev_t *mddev)
3440 mddev_t *mddev2;
3441 unsigned int currspeed = 0,
3442 window;
3443 sector_t max_sectors,j, io_sectors;
3444 unsigned long mark[SYNC_MARKS];
3445 sector_t mark_cnt[SYNC_MARKS];
3446 int last_mark,m;
3447 struct list_head *tmp;
3448 sector_t last_check;
3449 int skipped = 0;
3451 /* just incase thread restarts... */
3452 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3453 return;
3455 /* we overload curr_resync somewhat here.
3456 * 0 == not engaged in resync at all
3457 * 2 == checking that there is no conflict with another sync
3458 * 1 == like 2, but have yielded to allow conflicting resync to
3459 * commense
3460 * other == active in resync - this many blocks
3462 * Before starting a resync we must have set curr_resync to
3463 * 2, and then checked that every "conflicting" array has curr_resync
3464 * less than ours. When we find one that is the same or higher
3465 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
3466 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3467 * This will mean we have to start checking from the beginning again.
3471 do {
3472 mddev->curr_resync = 2;
3474 try_again:
3475 if (signal_pending(current)) {
3476 flush_signals(current);
3477 goto skip;
3479 ITERATE_MDDEV(mddev2,tmp) {
3480 printk(".");
3481 if (mddev2 == mddev)
3482 continue;
3483 if (mddev2->curr_resync &&
3484 match_mddev_units(mddev,mddev2)) {
3485 DEFINE_WAIT(wq);
3486 if (mddev < mddev2 && mddev->curr_resync == 2) {
3487 /* arbitrarily yield */
3488 mddev->curr_resync = 1;
3489 wake_up(&resync_wait);
3491 if (mddev > mddev2 && mddev->curr_resync == 1)
3492 /* no need to wait here, we can wait the next
3493 * time 'round when curr_resync == 2
3495 continue;
3496 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3497 if (!signal_pending(current)
3498 && mddev2->curr_resync >= mddev->curr_resync) {
3499 printk(KERN_INFO "md: delaying resync of %s"
3500 " until %s has finished resync (they"
3501 " share one or more physical units)\n",
3502 mdname(mddev), mdname(mddev2));
3503 mddev_put(mddev2);
3504 schedule();
3505 finish_wait(&resync_wait, &wq);
3506 goto try_again;
3508 finish_wait(&resync_wait, &wq);
3511 } while (mddev->curr_resync < 2);
3513 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3514 /* resync follows the size requested by the personality,
3515 * which defaults to physical size, but can be virtual size
3517 max_sectors = mddev->resync_max_sectors;
3518 else
3519 /* recovery follows the physical size of devices */
3520 max_sectors = mddev->size << 1;
3522 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3523 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3524 " %d KB/sec/disc.\n", sysctl_speed_limit_min);
3525 printk(KERN_INFO "md: using maximum available idle IO bandwith "
3526 "(but not more than %d KB/sec) for reconstruction.\n",
3527 sysctl_speed_limit_max);
3529 is_mddev_idle(mddev); /* this also initializes IO event counters */
3530 /* we don't use the checkpoint if there's a bitmap */
3531 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
3532 j = mddev->recovery_cp;
3533 else
3534 j = 0;
3535 io_sectors = 0;
3536 for (m = 0; m < SYNC_MARKS; m++) {
3537 mark[m] = jiffies;
3538 mark_cnt[m] = io_sectors;
3540 last_mark = 0;
3541 mddev->resync_mark = mark[last_mark];
3542 mddev->resync_mark_cnt = mark_cnt[last_mark];
3545 * Tune reconstruction:
3547 window = 32*(PAGE_SIZE/512);
3548 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3549 window/2,(unsigned long long) max_sectors/2);
3551 atomic_set(&mddev->recovery_active, 0);
3552 init_waitqueue_head(&mddev->recovery_wait);
3553 last_check = 0;
3555 if (j>2) {
3556 printk(KERN_INFO
3557 "md: resuming recovery of %s from checkpoint.\n",
3558 mdname(mddev));
3559 mddev->curr_resync = j;
3562 while (j < max_sectors) {
3563 sector_t sectors;
3565 skipped = 0;
3566 sectors = mddev->pers->sync_request(mddev, j, &skipped,
3567 currspeed < sysctl_speed_limit_min);
3568 if (sectors == 0) {
3569 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3570 goto out;
3573 if (!skipped) { /* actual IO requested */
3574 io_sectors += sectors;
3575 atomic_add(sectors, &mddev->recovery_active);
3578 j += sectors;
3579 if (j>1) mddev->curr_resync = j;
3582 if (last_check + window > io_sectors || j == max_sectors)
3583 continue;
3585 last_check = io_sectors;
3587 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3588 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3589 break;
3591 repeat:
3592 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3593 /* step marks */
3594 int next = (last_mark+1) % SYNC_MARKS;
3596 mddev->resync_mark = mark[next];
3597 mddev->resync_mark_cnt = mark_cnt[next];
3598 mark[next] = jiffies;
3599 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
3600 last_mark = next;
3604 if (signal_pending(current)) {
3606 * got a signal, exit.
3608 printk(KERN_INFO
3609 "md: md_do_sync() got signal ... exiting\n");
3610 flush_signals(current);
3611 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3612 goto out;
3616 * this loop exits only if either when we are slower than
3617 * the 'hard' speed limit, or the system was IO-idle for
3618 * a jiffy.
3619 * the system might be non-idle CPU-wise, but we only care
3620 * about not overloading the IO subsystem. (things like an
3621 * e2fsck being done on the RAID array should execute fast)
3623 mddev->queue->unplug_fn(mddev->queue);
3624 cond_resched();
3626 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
3627 /((jiffies-mddev->resync_mark)/HZ +1) +1;
3629 if (currspeed > sysctl_speed_limit_min) {
3630 if ((currspeed > sysctl_speed_limit_max) ||
3631 !is_mddev_idle(mddev)) {
3632 msleep_interruptible(250);
3633 goto repeat;
3637 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
3639 * this also signals 'finished resyncing' to md_stop
3641 out:
3642 mddev->queue->unplug_fn(mddev->queue);
3644 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3646 /* tell personality that we are finished */
3647 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
3649 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3650 mddev->curr_resync > 2 &&
3651 mddev->curr_resync >= mddev->recovery_cp) {
3652 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3653 printk(KERN_INFO
3654 "md: checkpointing recovery of %s.\n",
3655 mdname(mddev));
3656 mddev->recovery_cp = mddev->curr_resync;
3657 } else
3658 mddev->recovery_cp = MaxSector;
3661 skip:
3662 mddev->curr_resync = 0;
3663 wake_up(&resync_wait);
3664 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3665 md_wakeup_thread(mddev->thread);
3670 * This routine is regularly called by all per-raid-array threads to
3671 * deal with generic issues like resync and super-block update.
3672 * Raid personalities that don't have a thread (linear/raid0) do not
3673 * need this as they never do any recovery or update the superblock.
3675 * It does not do any resync itself, but rather "forks" off other threads
3676 * to do that as needed.
3677 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3678 * "->recovery" and create a thread at ->sync_thread.
3679 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3680 * and wakeups up this thread which will reap the thread and finish up.
3681 * This thread also removes any faulty devices (with nr_pending == 0).
3683 * The overall approach is:
3684 * 1/ if the superblock needs updating, update it.
3685 * 2/ If a recovery thread is running, don't do anything else.
3686 * 3/ If recovery has finished, clean up, possibly marking spares active.
3687 * 4/ If there are any faulty devices, remove them.
3688 * 5/ If array is degraded, try to add spares devices
3689 * 6/ If array has spares or is not in-sync, start a resync thread.
3691 void md_check_recovery(mddev_t *mddev)
3693 mdk_rdev_t *rdev;
3694 struct list_head *rtmp;
3697 if (mddev->bitmap)
3698 bitmap_daemon_work(mddev->bitmap);
3700 if (mddev->ro)
3701 return;
3703 if (signal_pending(current)) {
3704 if (mddev->pers->sync_request) {
3705 printk(KERN_INFO "md: %s in immediate safe mode\n",
3706 mdname(mddev));
3707 mddev->safemode = 2;
3709 flush_signals(current);
3712 if ( ! (
3713 mddev->sb_dirty ||
3714 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
3715 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
3716 (mddev->safemode == 1) ||
3717 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
3718 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
3720 return;
3722 if (mddev_trylock(mddev)==0) {
3723 int spares =0;
3725 spin_lock(&mddev->write_lock);
3726 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
3727 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
3728 mddev->in_sync = 1;
3729 mddev->sb_dirty = 1;
3731 if (mddev->safemode == 1)
3732 mddev->safemode = 0;
3733 spin_unlock(&mddev->write_lock);
3735 if (mddev->sb_dirty)
3736 md_update_sb(mddev);
3739 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
3740 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
3741 /* resync/recovery still happening */
3742 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3743 goto unlock;
3745 if (mddev->sync_thread) {
3746 /* resync has finished, collect result */
3747 md_unregister_thread(mddev->sync_thread);
3748 mddev->sync_thread = NULL;
3749 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3750 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3751 /* success...*/
3752 /* activate any spares */
3753 mddev->pers->spare_active(mddev);
3755 md_update_sb(mddev);
3757 /* if array is no-longer degraded, then any saved_raid_disk
3758 * information must be scrapped
3760 if (!mddev->degraded)
3761 ITERATE_RDEV(mddev,rdev,rtmp)
3762 rdev->saved_raid_disk = -1;
3764 mddev->recovery = 0;
3765 /* flag recovery needed just to double check */
3766 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3767 goto unlock;
3769 if (mddev->recovery)
3770 /* probably just the RECOVERY_NEEDED flag */
3771 mddev->recovery = 0;
3773 /* no recovery is running.
3774 * remove any failed drives, then
3775 * add spares if possible.
3776 * Spare are also removed and re-added, to allow
3777 * the personality to fail the re-add.
3779 ITERATE_RDEV(mddev,rdev,rtmp)
3780 if (rdev->raid_disk >= 0 &&
3781 (rdev->faulty || ! rdev->in_sync) &&
3782 atomic_read(&rdev->nr_pending)==0) {
3783 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
3784 rdev->raid_disk = -1;
3787 if (mddev->degraded) {
3788 ITERATE_RDEV(mddev,rdev,rtmp)
3789 if (rdev->raid_disk < 0
3790 && !rdev->faulty) {
3791 if (mddev->pers->hot_add_disk(mddev,rdev))
3792 spares++;
3793 else
3794 break;
3798 if (!spares && (mddev->recovery_cp == MaxSector )) {
3799 /* nothing we can do ... */
3800 goto unlock;
3802 if (mddev->pers->sync_request) {
3803 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3804 if (!spares)
3805 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3806 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
3807 /* We are adding a device or devices to an array
3808 * which has the bitmap stored on all devices.
3809 * So make sure all bitmap pages get written
3811 bitmap_write_all(mddev->bitmap);
3813 mddev->sync_thread = md_register_thread(md_do_sync,
3814 mddev,
3815 "%s_resync");
3816 if (!mddev->sync_thread) {
3817 printk(KERN_ERR "%s: could not start resync"
3818 " thread...\n",
3819 mdname(mddev));
3820 /* leave the spares where they are, it shouldn't hurt */
3821 mddev->recovery = 0;
3822 } else {
3823 md_wakeup_thread(mddev->sync_thread);
3826 unlock:
3827 mddev_unlock(mddev);
3831 static int md_notify_reboot(struct notifier_block *this,
3832 unsigned long code, void *x)
3834 struct list_head *tmp;
3835 mddev_t *mddev;
3837 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
3839 printk(KERN_INFO "md: stopping all md devices.\n");
3841 ITERATE_MDDEV(mddev,tmp)
3842 if (mddev_trylock(mddev)==0)
3843 do_md_stop (mddev, 1);
3845 * certain more exotic SCSI devices are known to be
3846 * volatile wrt too early system reboots. While the
3847 * right place to handle this issue is the given
3848 * driver, we do want to have a safe RAID driver ...
3850 mdelay(1000*1);
3852 return NOTIFY_DONE;
3855 static struct notifier_block md_notifier = {
3856 .notifier_call = md_notify_reboot,
3857 .next = NULL,
3858 .priority = INT_MAX, /* before any real devices */
3861 static void md_geninit(void)
3863 struct proc_dir_entry *p;
3865 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
3867 p = create_proc_entry("mdstat", S_IRUGO, NULL);
3868 if (p)
3869 p->proc_fops = &md_seq_fops;
3872 static int __init md_init(void)
3874 int minor;
3876 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3877 " MD_SB_DISKS=%d\n",
3878 MD_MAJOR_VERSION, MD_MINOR_VERSION,
3879 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
3880 printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
3881 BITMAP_MINOR);
3883 if (register_blkdev(MAJOR_NR, "md"))
3884 return -1;
3885 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
3886 unregister_blkdev(MAJOR_NR, "md");
3887 return -1;
3889 devfs_mk_dir("md");
3890 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
3891 md_probe, NULL, NULL);
3892 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
3893 md_probe, NULL, NULL);
3895 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3896 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
3897 S_IFBLK|S_IRUSR|S_IWUSR,
3898 "md/%d", minor);
3900 for (minor=0; minor < MAX_MD_DEVS; ++minor)
3901 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
3902 S_IFBLK|S_IRUSR|S_IWUSR,
3903 "md/mdp%d", minor);
3906 register_reboot_notifier(&md_notifier);
3907 raid_table_header = register_sysctl_table(raid_root_table, 1);
3909 md_geninit();
3910 return (0);
3914 #ifndef MODULE
3917 * Searches all registered partitions for autorun RAID arrays
3918 * at boot time.
3920 static dev_t detected_devices[128];
3921 static int dev_cnt;
3923 void md_autodetect_dev(dev_t dev)
3925 if (dev_cnt >= 0 && dev_cnt < 127)
3926 detected_devices[dev_cnt++] = dev;
3930 static void autostart_arrays(int part)
3932 mdk_rdev_t *rdev;
3933 int i;
3935 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
3937 for (i = 0; i < dev_cnt; i++) {
3938 dev_t dev = detected_devices[i];
3940 rdev = md_import_device(dev,0, 0);
3941 if (IS_ERR(rdev))
3942 continue;
3944 if (rdev->faulty) {
3945 MD_BUG();
3946 continue;
3948 list_add(&rdev->same_set, &pending_raid_disks);
3950 dev_cnt = 0;
3952 autorun_devices(part);
3955 #endif
3957 static __exit void md_exit(void)
3959 mddev_t *mddev;
3960 struct list_head *tmp;
3961 int i;
3962 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
3963 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
3964 for (i=0; i < MAX_MD_DEVS; i++)
3965 devfs_remove("md/%d", i);
3966 for (i=0; i < MAX_MD_DEVS; i++)
3967 devfs_remove("md/d%d", i);
3969 devfs_remove("md");
3971 unregister_blkdev(MAJOR_NR,"md");
3972 unregister_blkdev(mdp_major, "mdp");
3973 unregister_reboot_notifier(&md_notifier);
3974 unregister_sysctl_table(raid_table_header);
3975 remove_proc_entry("mdstat", NULL);
3976 ITERATE_MDDEV(mddev,tmp) {
3977 struct gendisk *disk = mddev->gendisk;
3978 if (!disk)
3979 continue;
3980 export_array(mddev);
3981 del_gendisk(disk);
3982 put_disk(disk);
3983 mddev->gendisk = NULL;
3984 mddev_put(mddev);
3988 module_init(md_init)
3989 module_exit(md_exit)
3991 EXPORT_SYMBOL(register_md_personality);
3992 EXPORT_SYMBOL(unregister_md_personality);
3993 EXPORT_SYMBOL(md_error);
3994 EXPORT_SYMBOL(md_done_sync);
3995 EXPORT_SYMBOL(md_write_start);
3996 EXPORT_SYMBOL(md_write_end);
3997 EXPORT_SYMBOL(md_register_thread);
3998 EXPORT_SYMBOL(md_unregister_thread);
3999 EXPORT_SYMBOL(md_wakeup_thread);
4000 EXPORT_SYMBOL(md_print_devices);
4001 EXPORT_SYMBOL(md_check_recovery);
4002 MODULE_LICENSE("GPL");