igb: Simplify how we populate the RSS key
[linux-2.6/cjktty.git] / include / linux / jiffies.h
blob05e3c2c7a8cf81e2184f49a531a8158fa45639b4
1 #ifndef _LINUX_JIFFIES_H
2 #define _LINUX_JIFFIES_H
4 #include <linux/math64.h>
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/time.h>
8 #include <linux/timex.h>
9 #include <asm/param.h> /* for HZ */
12 * The following defines establish the engineering parameters of the PLL
13 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
14 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
15 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
16 * nearest power of two in order to avoid hardware multiply operations.
18 #if HZ >= 12 && HZ < 24
19 # define SHIFT_HZ 4
20 #elif HZ >= 24 && HZ < 48
21 # define SHIFT_HZ 5
22 #elif HZ >= 48 && HZ < 96
23 # define SHIFT_HZ 6
24 #elif HZ >= 96 && HZ < 192
25 # define SHIFT_HZ 7
26 #elif HZ >= 192 && HZ < 384
27 # define SHIFT_HZ 8
28 #elif HZ >= 384 && HZ < 768
29 # define SHIFT_HZ 9
30 #elif HZ >= 768 && HZ < 1536
31 # define SHIFT_HZ 10
32 #elif HZ >= 1536 && HZ < 3072
33 # define SHIFT_HZ 11
34 #elif HZ >= 3072 && HZ < 6144
35 # define SHIFT_HZ 12
36 #elif HZ >= 6144 && HZ < 12288
37 # define SHIFT_HZ 13
38 #else
39 # error Invalid value of HZ.
40 #endif
42 /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
43 * improve accuracy by shifting LSH bits, hence calculating:
44 * (NOM << LSH) / DEN
45 * This however means trouble for large NOM, because (NOM << LSH) may no
46 * longer fit in 32 bits. The following way of calculating this gives us
47 * some slack, under the following conditions:
48 * - (NOM / DEN) fits in (32 - LSH) bits.
49 * - (NOM % DEN) fits in (32 - LSH) bits.
51 #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \
52 + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
54 #ifdef CLOCK_TICK_RATE
55 /* LATCH is used in the interval timer and ftape setup. */
56 # define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
59 * HZ is the requested value. However the CLOCK_TICK_RATE may not allow
60 * for exactly HZ. So SHIFTED_HZ is high res HZ ("<< 8" is for accuracy)
62 # define SHIFTED_HZ (SH_DIV(CLOCK_TICK_RATE, LATCH, 8))
63 #else
64 # define SHIFTED_HZ (HZ << 8)
65 #endif
67 /* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
68 #define TICK_NSEC (SH_DIV(1000000UL * 1000, SHIFTED_HZ, 8))
70 /* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
71 #define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
74 * TICK_USEC_TO_NSEC is the time between ticks in nsec assuming SHIFTED_HZ and
75 * a value TUSEC for TICK_USEC (can be set bij adjtimex)
77 #define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV(TUSEC * USER_HZ * 1000, SHIFTED_HZ, 8))
79 /* some arch's have a small-data section that can be accessed register-relative
80 * but that can only take up to, say, 4-byte variables. jiffies being part of
81 * an 8-byte variable may not be correctly accessed unless we force the issue
83 #define __jiffy_data __attribute__((section(".data")))
86 * The 64-bit value is not atomic - you MUST NOT read it
87 * without sampling the sequence number in xtime_lock.
88 * get_jiffies_64() will do this for you as appropriate.
90 extern u64 __jiffy_data jiffies_64;
91 extern unsigned long volatile __jiffy_data jiffies;
93 #if (BITS_PER_LONG < 64)
94 u64 get_jiffies_64(void);
95 #else
96 static inline u64 get_jiffies_64(void)
98 return (u64)jiffies;
100 #endif
103 * These inlines deal with timer wrapping correctly. You are
104 * strongly encouraged to use them
105 * 1. Because people otherwise forget
106 * 2. Because if the timer wrap changes in future you won't have to
107 * alter your driver code.
109 * time_after(a,b) returns true if the time a is after time b.
111 * Do this with "<0" and ">=0" to only test the sign of the result. A
112 * good compiler would generate better code (and a really good compiler
113 * wouldn't care). Gcc is currently neither.
115 #define time_after(a,b) \
116 (typecheck(unsigned long, a) && \
117 typecheck(unsigned long, b) && \
118 ((long)(b) - (long)(a) < 0))
119 #define time_before(a,b) time_after(b,a)
121 #define time_after_eq(a,b) \
122 (typecheck(unsigned long, a) && \
123 typecheck(unsigned long, b) && \
124 ((long)(a) - (long)(b) >= 0))
125 #define time_before_eq(a,b) time_after_eq(b,a)
128 * Calculate whether a is in the range of [b, c].
130 #define time_in_range(a,b,c) \
131 (time_after_eq(a,b) && \
132 time_before_eq(a,c))
135 * Calculate whether a is in the range of [b, c).
137 #define time_in_range_open(a,b,c) \
138 (time_after_eq(a,b) && \
139 time_before(a,c))
141 /* Same as above, but does so with platform independent 64bit types.
142 * These must be used when utilizing jiffies_64 (i.e. return value of
143 * get_jiffies_64() */
144 #define time_after64(a,b) \
145 (typecheck(__u64, a) && \
146 typecheck(__u64, b) && \
147 ((__s64)(b) - (__s64)(a) < 0))
148 #define time_before64(a,b) time_after64(b,a)
150 #define time_after_eq64(a,b) \
151 (typecheck(__u64, a) && \
152 typecheck(__u64, b) && \
153 ((__s64)(a) - (__s64)(b) >= 0))
154 #define time_before_eq64(a,b) time_after_eq64(b,a)
157 * These four macros compare jiffies and 'a' for convenience.
160 /* time_is_before_jiffies(a) return true if a is before jiffies */
161 #define time_is_before_jiffies(a) time_after(jiffies, a)
163 /* time_is_after_jiffies(a) return true if a is after jiffies */
164 #define time_is_after_jiffies(a) time_before(jiffies, a)
166 /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
167 #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
169 /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
170 #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
173 * Have the 32 bit jiffies value wrap 5 minutes after boot
174 * so jiffies wrap bugs show up earlier.
176 #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
179 * Change timeval to jiffies, trying to avoid the
180 * most obvious overflows..
182 * And some not so obvious.
184 * Note that we don't want to return LONG_MAX, because
185 * for various timeout reasons we often end up having
186 * to wait "jiffies+1" in order to guarantee that we wait
187 * at _least_ "jiffies" - so "jiffies+1" had better still
188 * be positive.
190 #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
192 extern unsigned long preset_lpj;
195 * We want to do realistic conversions of time so we need to use the same
196 * values the update wall clock code uses as the jiffies size. This value
197 * is: TICK_NSEC (which is defined in timex.h). This
198 * is a constant and is in nanoseconds. We will use scaled math
199 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
200 * NSEC_JIFFIE_SC. Note that these defines contain nothing but
201 * constants and so are computed at compile time. SHIFT_HZ (computed in
202 * timex.h) adjusts the scaling for different HZ values.
204 * Scaled math??? What is that?
206 * Scaled math is a way to do integer math on values that would,
207 * otherwise, either overflow, underflow, or cause undesired div
208 * instructions to appear in the execution path. In short, we "scale"
209 * up the operands so they take more bits (more precision, less
210 * underflow), do the desired operation and then "scale" the result back
211 * by the same amount. If we do the scaling by shifting we avoid the
212 * costly mpy and the dastardly div instructions.
214 * Suppose, for example, we want to convert from seconds to jiffies
215 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
216 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
217 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
218 * might calculate at compile time, however, the result will only have
219 * about 3-4 bits of precision (less for smaller values of HZ).
221 * So, we scale as follows:
222 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
223 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
224 * Then we make SCALE a power of two so:
225 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
226 * Now we define:
227 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
228 * jiff = (sec * SEC_CONV) >> SCALE;
230 * Often the math we use will expand beyond 32-bits so we tell C how to
231 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
232 * which should take the result back to 32-bits. We want this expansion
233 * to capture as much precision as possible. At the same time we don't
234 * want to overflow so we pick the SCALE to avoid this. In this file,
235 * that means using a different scale for each range of HZ values (as
236 * defined in timex.h).
238 * For those who want to know, gcc will give a 64-bit result from a "*"
239 * operator if the result is a long long AND at least one of the
240 * operands is cast to long long (usually just prior to the "*" so as
241 * not to confuse it into thinking it really has a 64-bit operand,
242 * which, buy the way, it can do, but it takes more code and at least 2
243 * mpys).
245 * We also need to be aware that one second in nanoseconds is only a
246 * couple of bits away from overflowing a 32-bit word, so we MUST use
247 * 64-bits to get the full range time in nanoseconds.
252 * Here are the scales we will use. One for seconds, nanoseconds and
253 * microseconds.
255 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
256 * check if the sign bit is set. If not, we bump the shift count by 1.
257 * (Gets an extra bit of precision where we can use it.)
258 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
259 * Haven't tested others.
261 * Limits of cpp (for #if expressions) only long (no long long), but
262 * then we only need the most signicant bit.
265 #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
266 #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
267 #undef SEC_JIFFIE_SC
268 #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
269 #endif
270 #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
271 #define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19)
272 #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
273 TICK_NSEC -1) / (u64)TICK_NSEC))
275 #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
276 TICK_NSEC -1) / (u64)TICK_NSEC))
277 #define USEC_CONVERSION \
278 ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\
279 TICK_NSEC -1) / (u64)TICK_NSEC))
281 * USEC_ROUND is used in the timeval to jiffie conversion. See there
282 * for more details. It is the scaled resolution rounding value. Note
283 * that it is a 64-bit value. Since, when it is applied, we are already
284 * in jiffies (albit scaled), it is nothing but the bits we will shift
285 * off.
287 #define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1)
289 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that
290 * into seconds. The 64-bit case will overflow if we are not careful,
291 * so use the messy SH_DIV macro to do it. Still all constants.
293 #if BITS_PER_LONG < 64
294 # define MAX_SEC_IN_JIFFIES \
295 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
296 #else /* take care of overflow on 64 bits machines */
297 # define MAX_SEC_IN_JIFFIES \
298 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
300 #endif
303 * Convert various time units to each other:
305 extern unsigned int jiffies_to_msecs(const unsigned long j);
306 extern unsigned int jiffies_to_usecs(const unsigned long j);
307 extern unsigned long msecs_to_jiffies(const unsigned int m);
308 extern unsigned long usecs_to_jiffies(const unsigned int u);
309 extern unsigned long timespec_to_jiffies(const struct timespec *value);
310 extern void jiffies_to_timespec(const unsigned long jiffies,
311 struct timespec *value);
312 extern unsigned long timeval_to_jiffies(const struct timeval *value);
313 extern void jiffies_to_timeval(const unsigned long jiffies,
314 struct timeval *value);
316 extern clock_t jiffies_to_clock_t(unsigned long x);
317 static inline clock_t jiffies_delta_to_clock_t(long delta)
319 return jiffies_to_clock_t(max(0L, delta));
322 extern unsigned long clock_t_to_jiffies(unsigned long x);
323 extern u64 jiffies_64_to_clock_t(u64 x);
324 extern u64 nsec_to_clock_t(u64 x);
325 extern u64 nsecs_to_jiffies64(u64 n);
326 extern unsigned long nsecs_to_jiffies(u64 n);
328 #define TIMESTAMP_SIZE 30
330 #endif