igb: Simplify how we populate the RSS key
[linux-2.6/cjktty.git] / Documentation / networking / caif / spi_porting.txt
blob9efd0687dc4c8f290a6fc798da3c3437647daaeb
1 - CAIF SPI porting -
3 - CAIF SPI basics:
5 Running CAIF over SPI needs some extra setup, owing to the nature of SPI.
6 Two extra GPIOs have been added in order to negotiate the transfers
7  between the master and the slave. The minimum requirement for running
8 CAIF over SPI is a SPI slave chip and two GPIOs (more details below).
9 Please note that running as a slave implies that you need to keep up
10 with the master clock. An overrun or underrun event is fatal.
12 - CAIF SPI framework:
14 To make porting as easy as possible, the CAIF SPI has been divided in
15 two parts. The first part (called the interface part) deals with all
16 generic functionality such as length framing, SPI frame negotiation
17 and SPI frame delivery and transmission. The other part is the CAIF
18 SPI slave device part, which is the module that you have to write if
19 you want to run SPI CAIF on a new hardware. This part takes care of
20 the physical hardware, both with regard to SPI and to GPIOs.
22 - Implementing a CAIF SPI device:
24         - Functionality provided by the CAIF SPI slave device:
26         In order to implement a SPI device you will, as a minimum,
27         need to implement the following
28         functions:
30         int (*init_xfer) (struct cfspi_xfer * xfer, struct cfspi_dev *dev):
32         This function is called by the CAIF SPI interface to give
33         you a chance to set up your hardware to be ready to receive
34         a stream of data from the master. The xfer structure contains
35         both physical and logical addresses, as well as the total length
36         of the transfer in both directions.The dev parameter can be used
37         to map to different CAIF SPI slave devices.
39         void (*sig_xfer) (bool xfer, struct cfspi_dev *dev):
41         This function is called by the CAIF SPI interface when the output
42         (SPI_INT) GPIO needs to change state. The boolean value of the xfer
43         variable indicates whether the GPIO should be asserted (HIGH) or
44         deasserted (LOW). The dev parameter can be used to map to different CAIF
45         SPI slave devices.
47         - Functionality provided by the CAIF SPI interface:
49         void (*ss_cb) (bool assert, struct cfspi_ifc *ifc);
51         This function is called by the CAIF SPI slave device in order to
52         signal a change of state of the input GPIO (SS) to the interface.
53         Only active edges are mandatory to be reported.
54         This function can be called from IRQ context (recommended in order
55         not to introduce latency). The ifc parameter should be the pointer
56         returned from the platform probe function in the SPI device structure.
58         void (*xfer_done_cb) (struct cfspi_ifc *ifc);
60         This function is called by the CAIF SPI slave device in order to
61         report that a transfer is completed. This function should only be
62         called once both the transmission and the reception are completed.
63         This function can be called from IRQ context (recommended in order
64         not to introduce latency). The ifc parameter should be the pointer
65         returned from the platform probe function in the SPI device structure.
67         - Connecting the bits and pieces:
69                 - Filling in the SPI slave device structure:
71                 Connect the necessary callback functions.
72                 Indicate clock speed (used to calculate toggle delays).
73                 Chose a suitable name (helps debugging if you use several CAIF
74                 SPI slave devices).
75                 Assign your private data (can be used to map to your structure).
77                 - Filling in the SPI slave platform device structure:
78                 Add name of driver to connect to ("cfspi_sspi").
79                 Assign the SPI slave device structure as platform data.
81 - Padding:
83 In order to optimize throughput, a number of SPI padding options are provided.
84 Padding can be enabled independently for uplink and downlink transfers.
85 Padding can be enabled for the head, the tail and for the total frame size.
86 The padding needs to be correctly configured on both sides of the link.
87 The padding can be changed via module parameters in cfspi_sspi.c or via
88 the sysfs directory of the cfspi_sspi driver (before device registration).
90 - CAIF SPI device template:
93  *      Copyright (C) ST-Ericsson AB 2010
94  *      Author: Daniel Martensson / Daniel.Martensson@stericsson.com
95  *      License terms: GNU General Public License (GPL), version 2.
96  *
97  */
99 #include <linux/init.h>
100 #include <linux/module.h>
101 #include <linux/device.h>
102 #include <linux/wait.h>
103 #include <linux/interrupt.h>
104 #include <linux/dma-mapping.h>
105 #include <net/caif/caif_spi.h>
107 MODULE_LICENSE("GPL");
109 struct sspi_struct {
110         struct cfspi_dev sdev;
111         struct cfspi_xfer *xfer;
114 static struct sspi_struct slave;
115 static struct platform_device slave_device;
117 static irqreturn_t sspi_irq(int irq, void *arg)
119         /* You only need to trigger on an edge to the active state of the
120          * SS signal. Once a edge is detected, the ss_cb() function should be
121          * called with the parameter assert set to true. It is OK
122          * (and even advised) to call the ss_cb() function in IRQ context in
123          * order not to add any delay. */
125         return IRQ_HANDLED;
128 static void sspi_complete(void *context)
130         /* Normally the DMA or the SPI framework will call you back
131          * in something similar to this. The only thing you need to
132          * do is to call the xfer_done_cb() function, providing the pointer
133          * to the CAIF SPI interface. It is OK to call this function
134          * from IRQ context. */
137 static int sspi_init_xfer(struct cfspi_xfer *xfer, struct cfspi_dev *dev)
139         /* Store transfer info. For a normal implementation you should
140          * set up your DMA here and make sure that you are ready to
141          * receive the data from the master SPI. */
143         struct sspi_struct *sspi = (struct sspi_struct *)dev->priv;
145         sspi->xfer = xfer;
147         return 0;
150 void sspi_sig_xfer(bool xfer, struct cfspi_dev *dev)
152         /* If xfer is true then you should assert the SPI_INT to indicate to
153          * the master that you are ready to receive the data from the master
154          * SPI. If xfer is false then you should de-assert SPI_INT to indicate
155          * that the transfer is done.
156          */
158         struct sspi_struct *sspi = (struct sspi_struct *)dev->priv;
161 static void sspi_release(struct device *dev)
163         /*
164          * Here you should release your SPI device resources.
165          */
168 static int __init sspi_init(void)
170         /* Here you should initialize your SPI device by providing the
171          * necessary functions, clock speed, name and private data. Once
172          * done, you can register your device with the
173          * platform_device_register() function. This function will return
174          * with the CAIF SPI interface initialized. This is probably also
175          * the place where you should set up your GPIOs, interrupts and SPI
176          * resources. */
178         int res = 0;
180         /* Initialize slave device. */
181         slave.sdev.init_xfer = sspi_init_xfer;
182         slave.sdev.sig_xfer = sspi_sig_xfer;
183         slave.sdev.clk_mhz = 13;
184         slave.sdev.priv = &slave;
185         slave.sdev.name = "spi_sspi";
186         slave_device.dev.release = sspi_release;
188         /* Initialize platform device. */
189         slave_device.name = "cfspi_sspi";
190         slave_device.dev.platform_data = &slave.sdev;
192         /* Register platform device. */
193         res = platform_device_register(&slave_device);
194         if (res) {
195                 printk(KERN_WARNING "sspi_init: failed to register dev.\n");
196                 return -ENODEV;
197         }
199         return res;
202 static void __exit sspi_exit(void)
204         platform_device_del(&slave_device);
207 module_init(sspi_init);
208 module_exit(sspi_exit);