2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
52 #include "xfs_filestream.h"
53 #include "xfs_vnodeops.h"
55 kmem_zone_t
*xfs_ifork_zone
;
56 kmem_zone_t
*xfs_inode_zone
;
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
62 #define XFS_ITRUNC_MAX_EXTENTS 2
64 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
65 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
66 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
67 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
71 * Make sure that the extents in the given memory buffer
81 xfs_bmbt_rec_host_t rec
;
84 for (i
= 0; i
< nrecs
; i
++) {
85 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
86 rec
.l0
= get_unaligned(&ep
->l0
);
87 rec
.l1
= get_unaligned(&ep
->l1
);
88 xfs_bmbt_get_all(&rec
, &irec
);
89 if (fmt
== XFS_EXTFMT_NOSTATE
)
90 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
94 #define xfs_validate_extents(ifp, nrecs, fmt)
98 * Check that none of the inode's in the buffer have a next
99 * unlinked field of 0.
111 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
113 for (i
= 0; i
< j
; i
++) {
114 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
115 i
* mp
->m_sb
.sb_inodesize
);
116 if (!dip
->di_next_unlinked
) {
117 xfs_fs_cmn_err(CE_ALERT
, mp
,
118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
120 ASSERT(dip
->di_next_unlinked
);
127 * Find the buffer associated with the given inode map
128 * We do basic validation checks on the buffer once it has been
129 * retrieved from disk.
135 struct xfs_imap
*imap
,
145 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
->im_blkno
,
146 (int)imap
->im_len
, buf_flags
, &bp
);
148 if (error
!= EAGAIN
) {
150 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
151 "an error %d on %s. Returning error.",
152 error
, mp
->m_fsname
);
154 ASSERT(buf_flags
& XFS_BUF_TRYLOCK
);
160 * Validate the magic number and version of every inode in the buffer
161 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
164 ni
= BBTOB(imap
->im_len
) >> mp
->m_sb
.sb_inodelog
;
165 #else /* usual case */
169 for (i
= 0; i
< ni
; i
++) {
173 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
174 (i
<< mp
->m_sb
.sb_inodelog
));
175 di_ok
= be16_to_cpu(dip
->di_magic
) == XFS_DINODE_MAGIC
&&
176 XFS_DINODE_GOOD_VERSION(dip
->di_version
);
177 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
178 XFS_ERRTAG_ITOBP_INOTOBP
,
179 XFS_RANDOM_ITOBP_INOTOBP
))) {
180 if (iget_flags
& XFS_IGET_BULKSTAT
) {
181 xfs_trans_brelse(tp
, bp
);
182 return XFS_ERROR(EINVAL
);
184 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
185 XFS_ERRLEVEL_HIGH
, mp
, dip
);
188 "Device %s - bad inode magic/vsn "
189 "daddr %lld #%d (magic=%x)",
190 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
191 (unsigned long long)imap
->im_blkno
, i
,
192 be16_to_cpu(dip
->di_magic
));
194 xfs_trans_brelse(tp
, bp
);
195 return XFS_ERROR(EFSCORRUPTED
);
199 xfs_inobp_check(mp
, bp
);
202 * Mark the buffer as an inode buffer now that it looks good
204 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
211 * This routine is called to map an inode number within a file
212 * system to the buffer containing the on-disk version of the
213 * inode. It returns a pointer to the buffer containing the
214 * on-disk inode in the bpp parameter, and in the dip parameter
215 * it returns a pointer to the on-disk inode within that buffer.
217 * If a non-zero error is returned, then the contents of bpp and
218 * dipp are undefined.
220 * Use xfs_imap() to determine the size and location of the
221 * buffer to read from disk.
233 struct xfs_imap imap
;
238 error
= xfs_imap(mp
, tp
, ino
, &imap
, imap_flags
);
242 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &bp
, XFS_BUF_LOCK
, imap_flags
);
246 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
248 *offset
= imap
.im_boffset
;
254 * This routine is called to map an inode to the buffer containing
255 * the on-disk version of the inode. It returns a pointer to the
256 * buffer containing the on-disk inode in the bpp parameter, and in
257 * the dip parameter it returns a pointer to the on-disk inode within
260 * If a non-zero error is returned, then the contents of bpp and
261 * dipp are undefined.
263 * The inode is expected to already been mapped to its buffer and read
264 * in once, thus we can use the mapping information stored in the inode
265 * rather than calling xfs_imap(). This allows us to avoid the overhead
266 * of looking at the inode btree for small block file systems
281 ASSERT(ip
->i_imap
.im_blkno
!= 0);
283 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
, buf_flags
, 0);
288 ASSERT(buf_flags
& XFS_BUF_TRYLOCK
);
294 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
300 * Move inode type and inode format specific information from the
301 * on-disk inode to the in-core inode. For fifos, devs, and sockets
302 * this means set if_rdev to the proper value. For files, directories,
303 * and symlinks this means to bring in the in-line data or extent
304 * pointers. For a file in B-tree format, only the root is immediately
305 * brought in-core. The rest will be in-lined in if_extents when it
306 * is first referenced (see xfs_iread_extents()).
313 xfs_attr_shortform_t
*atp
;
317 ip
->i_df
.if_ext_max
=
318 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
321 if (unlikely(be32_to_cpu(dip
->di_nextents
) +
322 be16_to_cpu(dip
->di_anextents
) >
323 be64_to_cpu(dip
->di_nblocks
))) {
324 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
325 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
326 (unsigned long long)ip
->i_ino
,
327 (int)(be32_to_cpu(dip
->di_nextents
) +
328 be16_to_cpu(dip
->di_anextents
)),
330 be64_to_cpu(dip
->di_nblocks
));
331 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
333 return XFS_ERROR(EFSCORRUPTED
);
336 if (unlikely(dip
->di_forkoff
> ip
->i_mount
->m_sb
.sb_inodesize
)) {
337 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
338 "corrupt dinode %Lu, forkoff = 0x%x.",
339 (unsigned long long)ip
->i_ino
,
341 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
343 return XFS_ERROR(EFSCORRUPTED
);
346 switch (ip
->i_d
.di_mode
& S_IFMT
) {
351 if (unlikely(dip
->di_format
!= XFS_DINODE_FMT_DEV
)) {
352 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
354 return XFS_ERROR(EFSCORRUPTED
);
358 ip
->i_df
.if_u2
.if_rdev
= xfs_dinode_get_rdev(dip
);
364 switch (dip
->di_format
) {
365 case XFS_DINODE_FMT_LOCAL
:
367 * no local regular files yet
369 if (unlikely((be16_to_cpu(dip
->di_mode
) & S_IFMT
) == S_IFREG
)) {
370 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
372 "(local format for regular file).",
373 (unsigned long long) ip
->i_ino
);
374 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
377 return XFS_ERROR(EFSCORRUPTED
);
380 di_size
= be64_to_cpu(dip
->di_size
);
381 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
382 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
384 "(bad size %Ld for local inode).",
385 (unsigned long long) ip
->i_ino
,
386 (long long) di_size
);
387 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
390 return XFS_ERROR(EFSCORRUPTED
);
394 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
396 case XFS_DINODE_FMT_EXTENTS
:
397 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
399 case XFS_DINODE_FMT_BTREE
:
400 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
403 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
405 return XFS_ERROR(EFSCORRUPTED
);
410 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
411 return XFS_ERROR(EFSCORRUPTED
);
416 if (!XFS_DFORK_Q(dip
))
418 ASSERT(ip
->i_afp
== NULL
);
419 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
);
420 ip
->i_afp
->if_ext_max
=
421 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
422 switch (dip
->di_aformat
) {
423 case XFS_DINODE_FMT_LOCAL
:
424 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
425 size
= be16_to_cpu(atp
->hdr
.totsize
);
427 if (unlikely(size
< sizeof(struct xfs_attr_sf_hdr
))) {
428 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
430 "(bad attr fork size %Ld).",
431 (unsigned long long) ip
->i_ino
,
433 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
436 return XFS_ERROR(EFSCORRUPTED
);
439 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
441 case XFS_DINODE_FMT_EXTENTS
:
442 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
444 case XFS_DINODE_FMT_BTREE
:
445 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
448 error
= XFS_ERROR(EFSCORRUPTED
);
452 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
454 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
460 * The file is in-lined in the on-disk inode.
461 * If it fits into if_inline_data, then copy
462 * it there, otherwise allocate a buffer for it
463 * and copy the data there. Either way, set
464 * if_data to point at the data.
465 * If we allocate a buffer for the data, make
466 * sure that its size is a multiple of 4 and
467 * record the real size in i_real_bytes.
480 * If the size is unreasonable, then something
481 * is wrong and we just bail out rather than crash in
482 * kmem_alloc() or memcpy() below.
484 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
485 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
487 "(bad size %d for local fork, size = %d).",
488 (unsigned long long) ip
->i_ino
, size
,
489 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
490 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
492 return XFS_ERROR(EFSCORRUPTED
);
494 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
497 ifp
->if_u1
.if_data
= NULL
;
498 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
499 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
501 real_size
= roundup(size
, 4);
502 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
504 ifp
->if_bytes
= size
;
505 ifp
->if_real_bytes
= real_size
;
507 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
508 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
509 ifp
->if_flags
|= XFS_IFINLINE
;
514 * The file consists of a set of extents all
515 * of which fit into the on-disk inode.
516 * If there are few enough extents to fit into
517 * the if_inline_ext, then copy them there.
518 * Otherwise allocate a buffer for them and copy
519 * them into it. Either way, set if_extents
520 * to point at the extents.
534 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
535 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
536 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
539 * If the number of extents is unreasonable, then something
540 * is wrong and we just bail out rather than crash in
541 * kmem_alloc() or memcpy() below.
543 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
544 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
545 "corrupt inode %Lu ((a)extents = %d).",
546 (unsigned long long) ip
->i_ino
, nex
);
547 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
549 return XFS_ERROR(EFSCORRUPTED
);
552 ifp
->if_real_bytes
= 0;
554 ifp
->if_u1
.if_extents
= NULL
;
555 else if (nex
<= XFS_INLINE_EXTS
)
556 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
558 xfs_iext_add(ifp
, 0, nex
);
560 ifp
->if_bytes
= size
;
562 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
563 xfs_validate_extents(ifp
, nex
, XFS_EXTFMT_INODE(ip
));
564 for (i
= 0; i
< nex
; i
++, dp
++) {
565 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
566 ep
->l0
= get_unaligned_be64(&dp
->l0
);
567 ep
->l1
= get_unaligned_be64(&dp
->l1
);
569 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
570 if (whichfork
!= XFS_DATA_FORK
||
571 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
572 if (unlikely(xfs_check_nostate_extents(
574 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
577 return XFS_ERROR(EFSCORRUPTED
);
580 ifp
->if_flags
|= XFS_IFEXTENTS
;
585 * The file has too many extents to fit into
586 * the inode, so they are in B-tree format.
587 * Allocate a buffer for the root of the B-tree
588 * and copy the root into it. The i_extents
589 * field will remain NULL until all of the
590 * extents are read in (when they are needed).
598 xfs_bmdr_block_t
*dfp
;
604 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
605 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
606 size
= XFS_BMAP_BROOT_SPACE(dfp
);
607 nrecs
= be16_to_cpu(dfp
->bb_numrecs
);
610 * blow out if -- fork has less extents than can fit in
611 * fork (fork shouldn't be a btree format), root btree
612 * block has more records than can fit into the fork,
613 * or the number of extents is greater than the number of
616 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
617 || XFS_BMDR_SPACE_CALC(nrecs
) >
618 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
619 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
620 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
621 "corrupt inode %Lu (btree).",
622 (unsigned long long) ip
->i_ino
);
623 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
625 return XFS_ERROR(EFSCORRUPTED
);
628 ifp
->if_broot_bytes
= size
;
629 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
);
630 ASSERT(ifp
->if_broot
!= NULL
);
632 * Copy and convert from the on-disk structure
633 * to the in-memory structure.
635 xfs_bmdr_to_bmbt(ip
->i_mount
, dfp
,
636 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
637 ifp
->if_broot
, size
);
638 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
639 ifp
->if_flags
|= XFS_IFBROOT
;
645 xfs_dinode_from_disk(
649 to
->di_magic
= be16_to_cpu(from
->di_magic
);
650 to
->di_mode
= be16_to_cpu(from
->di_mode
);
651 to
->di_version
= from
->di_version
;
652 to
->di_format
= from
->di_format
;
653 to
->di_onlink
= be16_to_cpu(from
->di_onlink
);
654 to
->di_uid
= be32_to_cpu(from
->di_uid
);
655 to
->di_gid
= be32_to_cpu(from
->di_gid
);
656 to
->di_nlink
= be32_to_cpu(from
->di_nlink
);
657 to
->di_projid
= be16_to_cpu(from
->di_projid
);
658 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
659 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
660 to
->di_atime
.t_sec
= be32_to_cpu(from
->di_atime
.t_sec
);
661 to
->di_atime
.t_nsec
= be32_to_cpu(from
->di_atime
.t_nsec
);
662 to
->di_mtime
.t_sec
= be32_to_cpu(from
->di_mtime
.t_sec
);
663 to
->di_mtime
.t_nsec
= be32_to_cpu(from
->di_mtime
.t_nsec
);
664 to
->di_ctime
.t_sec
= be32_to_cpu(from
->di_ctime
.t_sec
);
665 to
->di_ctime
.t_nsec
= be32_to_cpu(from
->di_ctime
.t_nsec
);
666 to
->di_size
= be64_to_cpu(from
->di_size
);
667 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
668 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
669 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
670 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
671 to
->di_forkoff
= from
->di_forkoff
;
672 to
->di_aformat
= from
->di_aformat
;
673 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
674 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
675 to
->di_flags
= be16_to_cpu(from
->di_flags
);
676 to
->di_gen
= be32_to_cpu(from
->di_gen
);
682 xfs_icdinode_t
*from
)
684 to
->di_magic
= cpu_to_be16(from
->di_magic
);
685 to
->di_mode
= cpu_to_be16(from
->di_mode
);
686 to
->di_version
= from
->di_version
;
687 to
->di_format
= from
->di_format
;
688 to
->di_onlink
= cpu_to_be16(from
->di_onlink
);
689 to
->di_uid
= cpu_to_be32(from
->di_uid
);
690 to
->di_gid
= cpu_to_be32(from
->di_gid
);
691 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
692 to
->di_projid
= cpu_to_be16(from
->di_projid
);
693 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
694 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
695 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
696 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
697 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
698 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
699 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
700 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
701 to
->di_size
= cpu_to_be64(from
->di_size
);
702 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
703 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
704 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
705 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
706 to
->di_forkoff
= from
->di_forkoff
;
707 to
->di_aformat
= from
->di_aformat
;
708 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
709 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
710 to
->di_flags
= cpu_to_be16(from
->di_flags
);
711 to
->di_gen
= cpu_to_be32(from
->di_gen
);
720 if (di_flags
& XFS_DIFLAG_ANY
) {
721 if (di_flags
& XFS_DIFLAG_REALTIME
)
722 flags
|= XFS_XFLAG_REALTIME
;
723 if (di_flags
& XFS_DIFLAG_PREALLOC
)
724 flags
|= XFS_XFLAG_PREALLOC
;
725 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
726 flags
|= XFS_XFLAG_IMMUTABLE
;
727 if (di_flags
& XFS_DIFLAG_APPEND
)
728 flags
|= XFS_XFLAG_APPEND
;
729 if (di_flags
& XFS_DIFLAG_SYNC
)
730 flags
|= XFS_XFLAG_SYNC
;
731 if (di_flags
& XFS_DIFLAG_NOATIME
)
732 flags
|= XFS_XFLAG_NOATIME
;
733 if (di_flags
& XFS_DIFLAG_NODUMP
)
734 flags
|= XFS_XFLAG_NODUMP
;
735 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
736 flags
|= XFS_XFLAG_RTINHERIT
;
737 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
738 flags
|= XFS_XFLAG_PROJINHERIT
;
739 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
740 flags
|= XFS_XFLAG_NOSYMLINKS
;
741 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
742 flags
|= XFS_XFLAG_EXTSIZE
;
743 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
744 flags
|= XFS_XFLAG_EXTSZINHERIT
;
745 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
746 flags
|= XFS_XFLAG_NODEFRAG
;
747 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
748 flags
|= XFS_XFLAG_FILESTREAM
;
758 xfs_icdinode_t
*dic
= &ip
->i_d
;
760 return _xfs_dic2xflags(dic
->di_flags
) |
761 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
768 return _xfs_dic2xflags(be16_to_cpu(dip
->di_flags
)) |
769 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
773 * Read the disk inode attributes into the in-core inode structure.
788 * Fill in the location information in the in-core inode.
790 ip
->i_imap
.im_blkno
= bno
;
791 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &ip
->i_imap
, iget_flags
);
794 ASSERT(bno
== 0 || bno
== ip
->i_imap
.im_blkno
);
797 * Get pointers to the on-disk inode and the buffer containing it.
799 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
,
800 XFS_BUF_LOCK
, iget_flags
);
803 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
806 * If we got something that isn't an inode it means someone
807 * (nfs or dmi) has a stale handle.
809 if (be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
) {
811 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
812 "dip->di_magic (0x%x) != "
813 "XFS_DINODE_MAGIC (0x%x)",
814 be16_to_cpu(dip
->di_magic
),
817 error
= XFS_ERROR(EINVAL
);
822 * If the on-disk inode is already linked to a directory
823 * entry, copy all of the inode into the in-core inode.
824 * xfs_iformat() handles copying in the inode format
825 * specific information.
826 * Otherwise, just get the truly permanent information.
829 xfs_dinode_from_disk(&ip
->i_d
, dip
);
830 error
= xfs_iformat(ip
, dip
);
833 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
834 "xfs_iformat() returned error %d",
840 ip
->i_d
.di_magic
= be16_to_cpu(dip
->di_magic
);
841 ip
->i_d
.di_version
= dip
->di_version
;
842 ip
->i_d
.di_gen
= be32_to_cpu(dip
->di_gen
);
843 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_flushiter
);
845 * Make sure to pull in the mode here as well in
846 * case the inode is released without being used.
847 * This ensures that xfs_inactive() will see that
848 * the inode is already free and not try to mess
849 * with the uninitialized part of it.
853 * Initialize the per-fork minima and maxima for a new
854 * inode here. xfs_iformat will do it for old inodes.
856 ip
->i_df
.if_ext_max
=
857 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
861 * The inode format changed when we moved the link count and
862 * made it 32 bits long. If this is an old format inode,
863 * convert it in memory to look like a new one. If it gets
864 * flushed to disk we will convert back before flushing or
865 * logging it. We zero out the new projid field and the old link
866 * count field. We'll handle clearing the pad field (the remains
867 * of the old uuid field) when we actually convert the inode to
868 * the new format. We don't change the version number so that we
869 * can distinguish this from a real new format inode.
871 if (ip
->i_d
.di_version
== 1) {
872 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
873 ip
->i_d
.di_onlink
= 0;
874 ip
->i_d
.di_projid
= 0;
877 ip
->i_delayed_blks
= 0;
878 ip
->i_size
= ip
->i_d
.di_size
;
881 * Mark the buffer containing the inode as something to keep
882 * around for a while. This helps to keep recently accessed
883 * meta-data in-core longer.
885 XFS_BUF_SET_REF(bp
, XFS_INO_REF
);
888 * Use xfs_trans_brelse() to release the buffer containing the
889 * on-disk inode, because it was acquired with xfs_trans_read_buf()
890 * in xfs_itobp() above. If tp is NULL, this is just a normal
891 * brelse(). If we're within a transaction, then xfs_trans_brelse()
892 * will only release the buffer if it is not dirty within the
893 * transaction. It will be OK to release the buffer in this case,
894 * because inodes on disk are never destroyed and we will be
895 * locking the new in-core inode before putting it in the hash
896 * table where other processes can find it. Thus we don't have
897 * to worry about the inode being changed just because we released
901 xfs_trans_brelse(tp
, bp
);
906 * Read in extents from a btree-format inode.
907 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
917 xfs_extnum_t nextents
;
920 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
921 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
923 return XFS_ERROR(EFSCORRUPTED
);
925 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
926 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
927 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
930 * We know that the size is valid (it's checked in iformat_btree)
932 ifp
->if_lastex
= NULLEXTNUM
;
933 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
934 ifp
->if_flags
|= XFS_IFEXTENTS
;
935 xfs_iext_add(ifp
, 0, nextents
);
936 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
938 xfs_iext_destroy(ifp
);
939 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
942 xfs_validate_extents(ifp
, nextents
, XFS_EXTFMT_INODE(ip
));
947 * Allocate an inode on disk and return a copy of its in-core version.
948 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
949 * appropriately within the inode. The uid and gid for the inode are
950 * set according to the contents of the given cred structure.
952 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
953 * has a free inode available, call xfs_iget()
954 * to obtain the in-core version of the allocated inode. Finally,
955 * fill in the inode and log its initial contents. In this case,
956 * ialloc_context would be set to NULL and call_again set to false.
958 * If xfs_dialloc() does not have an available inode,
959 * it will replenish its supply by doing an allocation. Since we can
960 * only do one allocation within a transaction without deadlocks, we
961 * must commit the current transaction before returning the inode itself.
962 * In this case, therefore, we will set call_again to true and return.
963 * The caller should then commit the current transaction, start a new
964 * transaction, and call xfs_ialloc() again to actually get the inode.
966 * To ensure that some other process does not grab the inode that
967 * was allocated during the first call to xfs_ialloc(), this routine
968 * also returns the [locked] bp pointing to the head of the freelist
969 * as ialloc_context. The caller should hold this buffer across
970 * the commit and pass it back into this routine on the second call.
972 * If we are allocating quota inodes, we do not have a parent inode
973 * to attach to or associate with (i.e. pip == NULL) because they
974 * are not linked into the directory structure - they are attached
975 * directly to the superblock - and so have no parent.
987 xfs_buf_t
**ialloc_context
,
988 boolean_t
*call_again
,
999 * Call the space management code to pick
1000 * the on-disk inode to be allocated.
1002 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
1003 ialloc_context
, call_again
, &ino
);
1006 if (*call_again
|| ino
== NULLFSINO
) {
1010 ASSERT(*ialloc_context
== NULL
);
1013 * Get the in-core inode with the lock held exclusively.
1014 * This is because we're setting fields here we need
1015 * to prevent others from looking at until we're done.
1017 error
= xfs_trans_iget(tp
->t_mountp
, tp
, ino
,
1018 XFS_IGET_CREATE
, XFS_ILOCK_EXCL
, &ip
);
1023 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1024 ip
->i_d
.di_onlink
= 0;
1025 ip
->i_d
.di_nlink
= nlink
;
1026 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1027 ip
->i_d
.di_uid
= current_fsuid();
1028 ip
->i_d
.di_gid
= current_fsgid();
1029 ip
->i_d
.di_projid
= prid
;
1030 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1033 * If the superblock version is up to where we support new format
1034 * inodes and this is currently an old format inode, then change
1035 * the inode version number now. This way we only do the conversion
1036 * here rather than here and in the flush/logging code.
1038 if (xfs_sb_version_hasnlink(&tp
->t_mountp
->m_sb
) &&
1039 ip
->i_d
.di_version
== 1) {
1040 ip
->i_d
.di_version
= 2;
1042 * We've already zeroed the old link count, the projid field,
1043 * and the pad field.
1048 * Project ids won't be stored on disk if we are using a version 1 inode.
1050 if ((prid
!= 0) && (ip
->i_d
.di_version
== 1))
1051 xfs_bump_ino_vers2(tp
, ip
);
1053 if (pip
&& XFS_INHERIT_GID(pip
)) {
1054 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1055 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1056 ip
->i_d
.di_mode
|= S_ISGID
;
1061 * If the group ID of the new file does not match the effective group
1062 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1063 * (and only if the irix_sgid_inherit compatibility variable is set).
1065 if ((irix_sgid_inherit
) &&
1066 (ip
->i_d
.di_mode
& S_ISGID
) &&
1067 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1068 ip
->i_d
.di_mode
&= ~S_ISGID
;
1071 ip
->i_d
.di_size
= 0;
1073 ip
->i_d
.di_nextents
= 0;
1074 ASSERT(ip
->i_d
.di_nblocks
== 0);
1077 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
1078 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
1079 ip
->i_d
.di_atime
= ip
->i_d
.di_mtime
;
1080 ip
->i_d
.di_ctime
= ip
->i_d
.di_mtime
;
1083 * di_gen will have been taken care of in xfs_iread.
1085 ip
->i_d
.di_extsize
= 0;
1086 ip
->i_d
.di_dmevmask
= 0;
1087 ip
->i_d
.di_dmstate
= 0;
1088 ip
->i_d
.di_flags
= 0;
1089 flags
= XFS_ILOG_CORE
;
1090 switch (mode
& S_IFMT
) {
1095 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1096 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1097 ip
->i_df
.if_flags
= 0;
1098 flags
|= XFS_ILOG_DEV
;
1102 * we can't set up filestreams until after the VFS inode
1103 * is set up properly.
1105 if (pip
&& xfs_inode_is_filestream(pip
))
1109 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1112 if ((mode
& S_IFMT
) == S_IFDIR
) {
1113 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1114 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1115 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1116 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1117 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1119 } else if ((mode
& S_IFMT
) == S_IFREG
) {
1120 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1121 di_flags
|= XFS_DIFLAG_REALTIME
;
1122 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1123 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1124 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1127 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1128 xfs_inherit_noatime
)
1129 di_flags
|= XFS_DIFLAG_NOATIME
;
1130 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1132 di_flags
|= XFS_DIFLAG_NODUMP
;
1133 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1135 di_flags
|= XFS_DIFLAG_SYNC
;
1136 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1137 xfs_inherit_nosymlinks
)
1138 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1139 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1140 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1141 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1142 xfs_inherit_nodefrag
)
1143 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1144 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1145 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1146 ip
->i_d
.di_flags
|= di_flags
;
1150 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1151 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1152 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1153 ip
->i_df
.if_u1
.if_extents
= NULL
;
1159 * Attribute fork settings for new inode.
1161 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1162 ip
->i_d
.di_anextents
= 0;
1165 * Log the new values stuffed into the inode.
1167 xfs_trans_log_inode(tp
, ip
, flags
);
1169 /* now that we have an i_mode we can setup inode ops and unlock */
1170 xfs_setup_inode(ip
);
1172 /* now we have set up the vfs inode we can associate the filestream */
1174 error
= xfs_filestream_associate(pip
, ip
);
1178 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1186 * Check to make sure that there are no blocks allocated to the
1187 * file beyond the size of the file. We don't check this for
1188 * files with fixed size extents or real time extents, but we
1189 * at least do it for regular files.
1198 xfs_fileoff_t map_first
;
1200 xfs_bmbt_irec_t imaps
[2];
1202 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1205 if (XFS_IS_REALTIME_INODE(ip
))
1208 if (ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
)
1212 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1214 * The filesystem could be shutting down, so bmapi may return
1217 if (xfs_bmapi(NULL
, ip
, map_first
,
1219 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1221 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1224 ASSERT(nimaps
== 1);
1225 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1230 * Calculate the last possible buffered byte in a file. This must
1231 * include data that was buffered beyond the EOF by the write code.
1232 * This also needs to deal with overflowing the xfs_fsize_t type
1233 * which can happen for sizes near the limit.
1235 * We also need to take into account any blocks beyond the EOF. It
1236 * may be the case that they were buffered by a write which failed.
1237 * In that case the pages will still be in memory, but the inode size
1238 * will never have been updated.
1245 xfs_fsize_t last_byte
;
1246 xfs_fileoff_t last_block
;
1247 xfs_fileoff_t size_last_block
;
1250 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
));
1254 * Only check for blocks beyond the EOF if the extents have
1255 * been read in. This eliminates the need for the inode lock,
1256 * and it also saves us from looking when it really isn't
1259 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1260 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
1261 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1263 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
1270 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_size
);
1271 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1273 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1274 if (last_byte
< 0) {
1275 return XFS_MAXIOFFSET(mp
);
1277 last_byte
+= (1 << mp
->m_writeio_log
);
1278 if (last_byte
< 0) {
1279 return XFS_MAXIOFFSET(mp
);
1284 #if defined(XFS_RW_TRACE)
1290 xfs_fsize_t new_size
,
1291 xfs_off_t toss_start
,
1292 xfs_off_t toss_finish
)
1294 if (ip
->i_rwtrace
== NULL
) {
1298 ktrace_enter(ip
->i_rwtrace
,
1301 (void*)(unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff),
1302 (void*)(unsigned long)(ip
->i_d
.di_size
& 0xffffffff),
1303 (void*)((long)flag
),
1304 (void*)(unsigned long)((new_size
>> 32) & 0xffffffff),
1305 (void*)(unsigned long)(new_size
& 0xffffffff),
1306 (void*)(unsigned long)((toss_start
>> 32) & 0xffffffff),
1307 (void*)(unsigned long)(toss_start
& 0xffffffff),
1308 (void*)(unsigned long)((toss_finish
>> 32) & 0xffffffff),
1309 (void*)(unsigned long)(toss_finish
& 0xffffffff),
1310 (void*)(unsigned long)current_cpu(),
1311 (void*)(unsigned long)current_pid(),
1317 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1321 * Start the truncation of the file to new_size. The new size
1322 * must be smaller than the current size. This routine will
1323 * clear the buffer and page caches of file data in the removed
1324 * range, and xfs_itruncate_finish() will remove the underlying
1327 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1328 * must NOT have the inode lock held at all. This is because we're
1329 * calling into the buffer/page cache code and we can't hold the
1330 * inode lock when we do so.
1332 * We need to wait for any direct I/Os in flight to complete before we
1333 * proceed with the truncate. This is needed to prevent the extents
1334 * being read or written by the direct I/Os from being removed while the
1335 * I/O is in flight as there is no other method of synchronising
1336 * direct I/O with the truncate operation. Also, because we hold
1337 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1338 * started until the truncate completes and drops the lock. Essentially,
1339 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1340 * ordering between direct I/Os and the truncate operation.
1342 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1343 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1344 * in the case that the caller is locking things out of order and
1345 * may not be able to call xfs_itruncate_finish() with the inode lock
1346 * held without dropping the I/O lock. If the caller must drop the
1347 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1348 * must be called again with all the same restrictions as the initial
1352 xfs_itruncate_start(
1355 xfs_fsize_t new_size
)
1357 xfs_fsize_t last_byte
;
1358 xfs_off_t toss_start
;
1362 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1363 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1364 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1365 (flags
== XFS_ITRUNC_MAYBE
));
1369 /* wait for the completion of any pending DIOs */
1370 if (new_size
== 0 || new_size
< ip
->i_size
)
1374 * Call toss_pages or flushinval_pages to get rid of pages
1375 * overlapping the region being removed. We have to use
1376 * the less efficient flushinval_pages in the case that the
1377 * caller may not be able to finish the truncate without
1378 * dropping the inode's I/O lock. Make sure
1379 * to catch any pages brought in by buffers overlapping
1380 * the EOF by searching out beyond the isize by our
1381 * block size. We round new_size up to a block boundary
1382 * so that we don't toss things on the same block as
1383 * new_size but before it.
1385 * Before calling toss_page or flushinval_pages, make sure to
1386 * call remapf() over the same region if the file is mapped.
1387 * This frees up mapped file references to the pages in the
1388 * given range and for the flushinval_pages case it ensures
1389 * that we get the latest mapped changes flushed out.
1391 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1392 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1393 if (toss_start
< 0) {
1395 * The place to start tossing is beyond our maximum
1396 * file size, so there is no way that the data extended
1401 last_byte
= xfs_file_last_byte(ip
);
1402 xfs_itrunc_trace(XFS_ITRUNC_START
, ip
, flags
, new_size
, toss_start
,
1404 if (last_byte
> toss_start
) {
1405 if (flags
& XFS_ITRUNC_DEFINITE
) {
1406 xfs_tosspages(ip
, toss_start
,
1407 -1, FI_REMAPF_LOCKED
);
1409 error
= xfs_flushinval_pages(ip
, toss_start
,
1410 -1, FI_REMAPF_LOCKED
);
1415 if (new_size
== 0) {
1416 ASSERT(VN_CACHED(VFS_I(ip
)) == 0);
1423 * Shrink the file to the given new_size. The new size must be smaller than
1424 * the current size. This will free up the underlying blocks in the removed
1425 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1427 * The transaction passed to this routine must have made a permanent log
1428 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1429 * given transaction and start new ones, so make sure everything involved in
1430 * the transaction is tidy before calling here. Some transaction will be
1431 * returned to the caller to be committed. The incoming transaction must
1432 * already include the inode, and both inode locks must be held exclusively.
1433 * The inode must also be "held" within the transaction. On return the inode
1434 * will be "held" within the returned transaction. This routine does NOT
1435 * require any disk space to be reserved for it within the transaction.
1437 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1438 * indicates the fork which is to be truncated. For the attribute fork we only
1439 * support truncation to size 0.
1441 * We use the sync parameter to indicate whether or not the first transaction
1442 * we perform might have to be synchronous. For the attr fork, it needs to be
1443 * so if the unlink of the inode is not yet known to be permanent in the log.
1444 * This keeps us from freeing and reusing the blocks of the attribute fork
1445 * before the unlink of the inode becomes permanent.
1447 * For the data fork, we normally have to run synchronously if we're being
1448 * called out of the inactive path or we're being called out of the create path
1449 * where we're truncating an existing file. Either way, the truncate needs to
1450 * be sync so blocks don't reappear in the file with altered data in case of a
1451 * crash. wsync filesystems can run the first case async because anything that
1452 * shrinks the inode has to run sync so by the time we're called here from
1453 * inactive, the inode size is permanently set to 0.
1455 * Calls from the truncate path always need to be sync unless we're in a wsync
1456 * filesystem and the file has already been unlinked.
1458 * The caller is responsible for correctly setting the sync parameter. It gets
1459 * too hard for us to guess here which path we're being called out of just
1460 * based on inode state.
1462 * If we get an error, we must return with the inode locked and linked into the
1463 * current transaction. This keeps things simple for the higher level code,
1464 * because it always knows that the inode is locked and held in the transaction
1465 * that returns to it whether errors occur or not. We don't mark the inode
1466 * dirty on error so that transactions can be easily aborted if possible.
1469 xfs_itruncate_finish(
1472 xfs_fsize_t new_size
,
1476 xfs_fsblock_t first_block
;
1477 xfs_fileoff_t first_unmap_block
;
1478 xfs_fileoff_t last_block
;
1479 xfs_filblks_t unmap_len
=0;
1484 xfs_bmap_free_t free_list
;
1487 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
1488 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1489 ASSERT(*tp
!= NULL
);
1490 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1491 ASSERT(ip
->i_transp
== *tp
);
1492 ASSERT(ip
->i_itemp
!= NULL
);
1493 ASSERT(ip
->i_itemp
->ili_flags
& XFS_ILI_HOLD
);
1497 mp
= (ntp
)->t_mountp
;
1498 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1501 * We only support truncating the entire attribute fork.
1503 if (fork
== XFS_ATTR_FORK
) {
1506 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1507 xfs_itrunc_trace(XFS_ITRUNC_FINISH1
, ip
, 0, new_size
, 0, 0);
1509 * The first thing we do is set the size to new_size permanently
1510 * on disk. This way we don't have to worry about anyone ever
1511 * being able to look at the data being freed even in the face
1512 * of a crash. What we're getting around here is the case where
1513 * we free a block, it is allocated to another file, it is written
1514 * to, and then we crash. If the new data gets written to the
1515 * file but the log buffers containing the free and reallocation
1516 * don't, then we'd end up with garbage in the blocks being freed.
1517 * As long as we make the new_size permanent before actually
1518 * freeing any blocks it doesn't matter if they get writtten to.
1520 * The callers must signal into us whether or not the size
1521 * setting here must be synchronous. There are a few cases
1522 * where it doesn't have to be synchronous. Those cases
1523 * occur if the file is unlinked and we know the unlink is
1524 * permanent or if the blocks being truncated are guaranteed
1525 * to be beyond the inode eof (regardless of the link count)
1526 * and the eof value is permanent. Both of these cases occur
1527 * only on wsync-mounted filesystems. In those cases, we're
1528 * guaranteed that no user will ever see the data in the blocks
1529 * that are being truncated so the truncate can run async.
1530 * In the free beyond eof case, the file may wind up with
1531 * more blocks allocated to it than it needs if we crash
1532 * and that won't get fixed until the next time the file
1533 * is re-opened and closed but that's ok as that shouldn't
1534 * be too many blocks.
1536 * However, we can't just make all wsync xactions run async
1537 * because there's one call out of the create path that needs
1538 * to run sync where it's truncating an existing file to size
1539 * 0 whose size is > 0.
1541 * It's probably possible to come up with a test in this
1542 * routine that would correctly distinguish all the above
1543 * cases from the values of the function parameters and the
1544 * inode state but for sanity's sake, I've decided to let the
1545 * layers above just tell us. It's simpler to correctly figure
1546 * out in the layer above exactly under what conditions we
1547 * can run async and I think it's easier for others read and
1548 * follow the logic in case something has to be changed.
1549 * cscope is your friend -- rcc.
1551 * The attribute fork is much simpler.
1553 * For the attribute fork we allow the caller to tell us whether
1554 * the unlink of the inode that led to this call is yet permanent
1555 * in the on disk log. If it is not and we will be freeing extents
1556 * in this inode then we make the first transaction synchronous
1557 * to make sure that the unlink is permanent by the time we free
1560 if (fork
== XFS_DATA_FORK
) {
1561 if (ip
->i_d
.di_nextents
> 0) {
1563 * If we are not changing the file size then do
1564 * not update the on-disk file size - we may be
1565 * called from xfs_inactive_free_eofblocks(). If we
1566 * update the on-disk file size and then the system
1567 * crashes before the contents of the file are
1568 * flushed to disk then the files may be full of
1569 * holes (ie NULL files bug).
1571 if (ip
->i_size
!= new_size
) {
1572 ip
->i_d
.di_size
= new_size
;
1573 ip
->i_size
= new_size
;
1574 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1578 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1579 if (ip
->i_d
.di_anextents
> 0)
1580 xfs_trans_set_sync(ntp
);
1582 ASSERT(fork
== XFS_DATA_FORK
||
1583 (fork
== XFS_ATTR_FORK
&&
1584 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1585 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1588 * Since it is possible for space to become allocated beyond
1589 * the end of the file (in a crash where the space is allocated
1590 * but the inode size is not yet updated), simply remove any
1591 * blocks which show up between the new EOF and the maximum
1592 * possible file size. If the first block to be removed is
1593 * beyond the maximum file size (ie it is the same as last_block),
1594 * then there is nothing to do.
1596 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1597 ASSERT(first_unmap_block
<= last_block
);
1599 if (last_block
== first_unmap_block
) {
1602 unmap_len
= last_block
- first_unmap_block
+ 1;
1606 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1607 * will tell us whether it freed the entire range or
1608 * not. If this is a synchronous mount (wsync),
1609 * then we can tell bunmapi to keep all the
1610 * transactions asynchronous since the unlink
1611 * transaction that made this inode inactive has
1612 * already hit the disk. There's no danger of
1613 * the freed blocks being reused, there being a
1614 * crash, and the reused blocks suddenly reappearing
1615 * in this file with garbage in them once recovery
1618 xfs_bmap_init(&free_list
, &first_block
);
1619 error
= xfs_bunmapi(ntp
, ip
,
1620 first_unmap_block
, unmap_len
,
1621 xfs_bmapi_aflag(fork
) |
1622 (sync
? 0 : XFS_BMAPI_ASYNC
),
1623 XFS_ITRUNC_MAX_EXTENTS
,
1624 &first_block
, &free_list
,
1628 * If the bunmapi call encounters an error,
1629 * return to the caller where the transaction
1630 * can be properly aborted. We just need to
1631 * make sure we're not holding any resources
1632 * that we were not when we came in.
1634 xfs_bmap_cancel(&free_list
);
1639 * Duplicate the transaction that has the permanent
1640 * reservation and commit the old transaction.
1642 error
= xfs_bmap_finish(tp
, &free_list
, &committed
);
1645 /* link the inode into the next xact in the chain */
1646 xfs_trans_ijoin(ntp
, ip
,
1647 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1648 xfs_trans_ihold(ntp
, ip
);
1653 * If the bmap finish call encounters an error, return
1654 * to the caller where the transaction can be properly
1655 * aborted. We just need to make sure we're not
1656 * holding any resources that we were not when we came
1659 * Aborting from this point might lose some blocks in
1660 * the file system, but oh well.
1662 xfs_bmap_cancel(&free_list
);
1668 * Mark the inode dirty so it will be logged and
1669 * moved forward in the log as part of every commit.
1671 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1674 ntp
= xfs_trans_dup(ntp
);
1675 error
= xfs_trans_commit(*tp
, 0);
1678 /* link the inode into the next transaction in the chain */
1679 xfs_trans_ijoin(ntp
, ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1680 xfs_trans_ihold(ntp
, ip
);
1685 * transaction commit worked ok so we can drop the extra ticket
1686 * reference that we gained in xfs_trans_dup()
1688 xfs_log_ticket_put(ntp
->t_ticket
);
1689 error
= xfs_trans_reserve(ntp
, 0,
1690 XFS_ITRUNCATE_LOG_RES(mp
), 0,
1691 XFS_TRANS_PERM_LOG_RES
,
1692 XFS_ITRUNCATE_LOG_COUNT
);
1697 * Only update the size in the case of the data fork, but
1698 * always re-log the inode so that our permanent transaction
1699 * can keep on rolling it forward in the log.
1701 if (fork
== XFS_DATA_FORK
) {
1702 xfs_isize_check(mp
, ip
, new_size
);
1704 * If we are not changing the file size then do
1705 * not update the on-disk file size - we may be
1706 * called from xfs_inactive_free_eofblocks(). If we
1707 * update the on-disk file size and then the system
1708 * crashes before the contents of the file are
1709 * flushed to disk then the files may be full of
1710 * holes (ie NULL files bug).
1712 if (ip
->i_size
!= new_size
) {
1713 ip
->i_d
.di_size
= new_size
;
1714 ip
->i_size
= new_size
;
1717 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1718 ASSERT((new_size
!= 0) ||
1719 (fork
== XFS_ATTR_FORK
) ||
1720 (ip
->i_delayed_blks
== 0));
1721 ASSERT((new_size
!= 0) ||
1722 (fork
== XFS_ATTR_FORK
) ||
1723 (ip
->i_d
.di_nextents
== 0));
1724 xfs_itrunc_trace(XFS_ITRUNC_FINISH2
, ip
, 0, new_size
, 0, 0);
1729 * This is called when the inode's link count goes to 0.
1730 * We place the on-disk inode on a list in the AGI. It
1731 * will be pulled from this list when the inode is freed.
1748 ASSERT(ip
->i_d
.di_nlink
== 0);
1749 ASSERT(ip
->i_d
.di_mode
!= 0);
1750 ASSERT(ip
->i_transp
== tp
);
1755 * Get the agi buffer first. It ensures lock ordering
1758 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1761 agi
= XFS_BUF_TO_AGI(agibp
);
1764 * Get the index into the agi hash table for the
1765 * list this inode will go on.
1767 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1769 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1770 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1771 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1773 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1775 * There is already another inode in the bucket we need
1776 * to add ourselves to. Add us at the front of the list.
1777 * Here we put the head pointer into our next pointer,
1778 * and then we fall through to point the head at us.
1780 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
1784 ASSERT(be32_to_cpu(dip
->di_next_unlinked
) == NULLAGINO
);
1785 /* both on-disk, don't endian flip twice */
1786 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1787 offset
= ip
->i_imap
.im_boffset
+
1788 offsetof(xfs_dinode_t
, di_next_unlinked
);
1789 xfs_trans_inode_buf(tp
, ibp
);
1790 xfs_trans_log_buf(tp
, ibp
, offset
,
1791 (offset
+ sizeof(xfs_agino_t
) - 1));
1792 xfs_inobp_check(mp
, ibp
);
1796 * Point the bucket head pointer at the inode being inserted.
1799 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1800 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1801 (sizeof(xfs_agino_t
) * bucket_index
);
1802 xfs_trans_log_buf(tp
, agibp
, offset
,
1803 (offset
+ sizeof(xfs_agino_t
) - 1));
1808 * Pull the on-disk inode from the AGI unlinked list.
1821 xfs_agnumber_t agno
;
1823 xfs_agino_t next_agino
;
1824 xfs_buf_t
*last_ibp
;
1825 xfs_dinode_t
*last_dip
= NULL
;
1827 int offset
, last_offset
= 0;
1831 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1834 * Get the agi buffer first. It ensures lock ordering
1837 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
1841 agi
= XFS_BUF_TO_AGI(agibp
);
1844 * Get the index into the agi hash table for the
1845 * list this inode will go on.
1847 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1849 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1850 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
1851 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1853 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
1855 * We're at the head of the list. Get the inode's
1856 * on-disk buffer to see if there is anyone after us
1857 * on the list. Only modify our next pointer if it
1858 * is not already NULLAGINO. This saves us the overhead
1859 * of dealing with the buffer when there is no need to
1862 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
1865 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1866 error
, mp
->m_fsname
);
1869 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1870 ASSERT(next_agino
!= 0);
1871 if (next_agino
!= NULLAGINO
) {
1872 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1873 offset
= ip
->i_imap
.im_boffset
+
1874 offsetof(xfs_dinode_t
, di_next_unlinked
);
1875 xfs_trans_inode_buf(tp
, ibp
);
1876 xfs_trans_log_buf(tp
, ibp
, offset
,
1877 (offset
+ sizeof(xfs_agino_t
) - 1));
1878 xfs_inobp_check(mp
, ibp
);
1880 xfs_trans_brelse(tp
, ibp
);
1883 * Point the bucket head pointer at the next inode.
1885 ASSERT(next_agino
!= 0);
1886 ASSERT(next_agino
!= agino
);
1887 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
1888 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1889 (sizeof(xfs_agino_t
) * bucket_index
);
1890 xfs_trans_log_buf(tp
, agibp
, offset
,
1891 (offset
+ sizeof(xfs_agino_t
) - 1));
1894 * We need to search the list for the inode being freed.
1896 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
1898 while (next_agino
!= agino
) {
1900 * If the last inode wasn't the one pointing to
1901 * us, then release its buffer since we're not
1902 * going to do anything with it.
1904 if (last_ibp
!= NULL
) {
1905 xfs_trans_brelse(tp
, last_ibp
);
1907 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
1908 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
1909 &last_ibp
, &last_offset
, 0);
1912 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1913 error
, mp
->m_fsname
);
1916 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
1917 ASSERT(next_agino
!= NULLAGINO
);
1918 ASSERT(next_agino
!= 0);
1921 * Now last_ibp points to the buffer previous to us on
1922 * the unlinked list. Pull us from the list.
1924 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
1927 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1928 error
, mp
->m_fsname
);
1931 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1932 ASSERT(next_agino
!= 0);
1933 ASSERT(next_agino
!= agino
);
1934 if (next_agino
!= NULLAGINO
) {
1935 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1936 offset
= ip
->i_imap
.im_boffset
+
1937 offsetof(xfs_dinode_t
, di_next_unlinked
);
1938 xfs_trans_inode_buf(tp
, ibp
);
1939 xfs_trans_log_buf(tp
, ibp
, offset
,
1940 (offset
+ sizeof(xfs_agino_t
) - 1));
1941 xfs_inobp_check(mp
, ibp
);
1943 xfs_trans_brelse(tp
, ibp
);
1946 * Point the previous inode on the list to the next inode.
1948 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
1949 ASSERT(next_agino
!= 0);
1950 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
1951 xfs_trans_inode_buf(tp
, last_ibp
);
1952 xfs_trans_log_buf(tp
, last_ibp
, offset
,
1953 (offset
+ sizeof(xfs_agino_t
) - 1));
1954 xfs_inobp_check(mp
, last_ibp
);
1961 xfs_inode_t
*free_ip
,
1965 xfs_mount_t
*mp
= free_ip
->i_mount
;
1966 int blks_per_cluster
;
1969 int i
, j
, found
, pre_flushed
;
1972 xfs_inode_t
*ip
, **ip_found
;
1973 xfs_inode_log_item_t
*iip
;
1974 xfs_log_item_t
*lip
;
1975 xfs_perag_t
*pag
= xfs_get_perag(mp
, inum
);
1977 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
1978 blks_per_cluster
= 1;
1979 ninodes
= mp
->m_sb
.sb_inopblock
;
1980 nbufs
= XFS_IALLOC_BLOCKS(mp
);
1982 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
1983 mp
->m_sb
.sb_blocksize
;
1984 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
1985 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
1988 ip_found
= kmem_alloc(ninodes
* sizeof(xfs_inode_t
*), KM_NOFS
);
1990 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
1991 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
1992 XFS_INO_TO_AGBNO(mp
, inum
));
1996 * Look for each inode in memory and attempt to lock it,
1997 * we can be racing with flush and tail pushing here.
1998 * any inode we get the locks on, add to an array of
1999 * inode items to process later.
2001 * The get the buffer lock, we could beat a flush
2002 * or tail pushing thread to the lock here, in which
2003 * case they will go looking for the inode buffer
2004 * and fail, we need some other form of interlock
2008 for (i
= 0; i
< ninodes
; i
++) {
2009 read_lock(&pag
->pag_ici_lock
);
2010 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
2011 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2013 /* Inode not in memory or we found it already,
2016 if (!ip
|| xfs_iflags_test(ip
, XFS_ISTALE
)) {
2017 read_unlock(&pag
->pag_ici_lock
);
2021 if (xfs_inode_clean(ip
)) {
2022 read_unlock(&pag
->pag_ici_lock
);
2026 /* If we can get the locks then add it to the
2027 * list, otherwise by the time we get the bp lock
2028 * below it will already be attached to the
2032 /* This inode will already be locked - by us, lets
2036 if (ip
== free_ip
) {
2037 if (xfs_iflock_nowait(ip
)) {
2038 xfs_iflags_set(ip
, XFS_ISTALE
);
2039 if (xfs_inode_clean(ip
)) {
2042 ip_found
[found
++] = ip
;
2045 read_unlock(&pag
->pag_ici_lock
);
2049 if (xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2050 if (xfs_iflock_nowait(ip
)) {
2051 xfs_iflags_set(ip
, XFS_ISTALE
);
2053 if (xfs_inode_clean(ip
)) {
2055 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2057 ip_found
[found
++] = ip
;
2060 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2063 read_unlock(&pag
->pag_ici_lock
);
2066 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2067 mp
->m_bsize
* blks_per_cluster
,
2071 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
2073 if (lip
->li_type
== XFS_LI_INODE
) {
2074 iip
= (xfs_inode_log_item_t
*)lip
;
2075 ASSERT(iip
->ili_logged
== 1);
2076 lip
->li_cb
= (void(*)(xfs_buf_t
*,xfs_log_item_t
*)) xfs_istale_done
;
2077 xfs_trans_ail_copy_lsn(mp
->m_ail
,
2078 &iip
->ili_flush_lsn
,
2079 &iip
->ili_item
.li_lsn
);
2080 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2083 lip
= lip
->li_bio_list
;
2086 for (i
= 0; i
< found
; i
++) {
2091 ip
->i_update_core
= 0;
2093 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2097 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2098 iip
->ili_format
.ilf_fields
= 0;
2099 iip
->ili_logged
= 1;
2100 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2101 &iip
->ili_item
.li_lsn
);
2103 xfs_buf_attach_iodone(bp
,
2104 (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
2105 xfs_istale_done
, (xfs_log_item_t
*)iip
);
2106 if (ip
!= free_ip
) {
2107 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2111 if (found
|| pre_flushed
)
2112 xfs_trans_stale_inode_buf(tp
, bp
);
2113 xfs_trans_binval(tp
, bp
);
2116 kmem_free(ip_found
);
2117 xfs_put_perag(mp
, pag
);
2121 * This is called to return an inode to the inode free list.
2122 * The inode should already be truncated to 0 length and have
2123 * no pages associated with it. This routine also assumes that
2124 * the inode is already a part of the transaction.
2126 * The on-disk copy of the inode will have been added to the list
2127 * of unlinked inodes in the AGI. We need to remove the inode from
2128 * that list atomically with respect to freeing it here.
2134 xfs_bmap_free_t
*flist
)
2138 xfs_ino_t first_ino
;
2142 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2143 ASSERT(ip
->i_transp
== tp
);
2144 ASSERT(ip
->i_d
.di_nlink
== 0);
2145 ASSERT(ip
->i_d
.di_nextents
== 0);
2146 ASSERT(ip
->i_d
.di_anextents
== 0);
2147 ASSERT((ip
->i_d
.di_size
== 0 && ip
->i_size
== 0) ||
2148 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2149 ASSERT(ip
->i_d
.di_nblocks
== 0);
2152 * Pull the on-disk inode from the AGI unlinked list.
2154 error
= xfs_iunlink_remove(tp
, ip
);
2159 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2163 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2164 ip
->i_d
.di_flags
= 0;
2165 ip
->i_d
.di_dmevmask
= 0;
2166 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2167 ip
->i_df
.if_ext_max
=
2168 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2169 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2170 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2172 * Bump the generation count so no one will be confused
2173 * by reincarnations of this inode.
2177 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2179 error
= xfs_itobp(ip
->i_mount
, tp
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
2184 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2185 * from picking up this inode when it is reclaimed (its incore state
2186 * initialzed but not flushed to disk yet). The in-core di_mode is
2187 * already cleared and a corresponding transaction logged.
2188 * The hack here just synchronizes the in-core to on-disk
2189 * di_mode value in advance before the actual inode sync to disk.
2190 * This is OK because the inode is already unlinked and would never
2191 * change its di_mode again for this inode generation.
2192 * This is a temporary hack that would require a proper fix
2198 xfs_ifree_cluster(ip
, tp
, first_ino
);
2205 * Reallocate the space for if_broot based on the number of records
2206 * being added or deleted as indicated in rec_diff. Move the records
2207 * and pointers in if_broot to fit the new size. When shrinking this
2208 * will eliminate holes between the records and pointers created by
2209 * the caller. When growing this will create holes to be filled in
2212 * The caller must not request to add more records than would fit in
2213 * the on-disk inode root. If the if_broot is currently NULL, then
2214 * if we adding records one will be allocated. The caller must also
2215 * not request that the number of records go below zero, although
2216 * it can go to zero.
2218 * ip -- the inode whose if_broot area is changing
2219 * ext_diff -- the change in the number of records, positive or negative,
2220 * requested for the if_broot array.
2228 struct xfs_mount
*mp
= ip
->i_mount
;
2231 struct xfs_btree_block
*new_broot
;
2238 * Handle the degenerate case quietly.
2240 if (rec_diff
== 0) {
2244 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2247 * If there wasn't any memory allocated before, just
2248 * allocate it now and get out.
2250 if (ifp
->if_broot_bytes
== 0) {
2251 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2252 ifp
->if_broot
= kmem_alloc(new_size
, KM_SLEEP
);
2253 ifp
->if_broot_bytes
= (int)new_size
;
2258 * If there is already an existing if_broot, then we need
2259 * to realloc() it and shift the pointers to their new
2260 * location. The records don't change location because
2261 * they are kept butted up against the btree block header.
2263 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2264 new_max
= cur_max
+ rec_diff
;
2265 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2266 ifp
->if_broot
= kmem_realloc(ifp
->if_broot
, new_size
,
2267 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2269 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2270 ifp
->if_broot_bytes
);
2271 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2273 ifp
->if_broot_bytes
= (int)new_size
;
2274 ASSERT(ifp
->if_broot_bytes
<=
2275 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2276 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2281 * rec_diff is less than 0. In this case, we are shrinking the
2282 * if_broot buffer. It must already exist. If we go to zero
2283 * records, just get rid of the root and clear the status bit.
2285 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2286 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2287 new_max
= cur_max
+ rec_diff
;
2288 ASSERT(new_max
>= 0);
2290 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2294 new_broot
= kmem_alloc(new_size
, KM_SLEEP
);
2296 * First copy over the btree block header.
2298 memcpy(new_broot
, ifp
->if_broot
, XFS_BTREE_LBLOCK_LEN
);
2301 ifp
->if_flags
&= ~XFS_IFBROOT
;
2305 * Only copy the records and pointers if there are any.
2309 * First copy the records.
2311 op
= (char *)XFS_BMBT_REC_ADDR(mp
, ifp
->if_broot
, 1);
2312 np
= (char *)XFS_BMBT_REC_ADDR(mp
, new_broot
, 1);
2313 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2316 * Then copy the pointers.
2318 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2319 ifp
->if_broot_bytes
);
2320 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, new_broot
, 1,
2322 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2324 kmem_free(ifp
->if_broot
);
2325 ifp
->if_broot
= new_broot
;
2326 ifp
->if_broot_bytes
= (int)new_size
;
2327 ASSERT(ifp
->if_broot_bytes
<=
2328 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2334 * This is called when the amount of space needed for if_data
2335 * is increased or decreased. The change in size is indicated by
2336 * the number of bytes that need to be added or deleted in the
2337 * byte_diff parameter.
2339 * If the amount of space needed has decreased below the size of the
2340 * inline buffer, then switch to using the inline buffer. Otherwise,
2341 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2342 * to what is needed.
2344 * ip -- the inode whose if_data area is changing
2345 * byte_diff -- the change in the number of bytes, positive or negative,
2346 * requested for the if_data array.
2358 if (byte_diff
== 0) {
2362 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2363 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2364 ASSERT(new_size
>= 0);
2366 if (new_size
== 0) {
2367 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2368 kmem_free(ifp
->if_u1
.if_data
);
2370 ifp
->if_u1
.if_data
= NULL
;
2372 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2374 * If the valid extents/data can fit in if_inline_ext/data,
2375 * copy them from the malloc'd vector and free it.
2377 if (ifp
->if_u1
.if_data
== NULL
) {
2378 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2379 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2380 ASSERT(ifp
->if_real_bytes
!= 0);
2381 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2383 kmem_free(ifp
->if_u1
.if_data
);
2384 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2389 * Stuck with malloc/realloc.
2390 * For inline data, the underlying buffer must be
2391 * a multiple of 4 bytes in size so that it can be
2392 * logged and stay on word boundaries. We enforce
2395 real_size
= roundup(new_size
, 4);
2396 if (ifp
->if_u1
.if_data
== NULL
) {
2397 ASSERT(ifp
->if_real_bytes
== 0);
2398 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2399 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2401 * Only do the realloc if the underlying size
2402 * is really changing.
2404 if (ifp
->if_real_bytes
!= real_size
) {
2405 ifp
->if_u1
.if_data
=
2406 kmem_realloc(ifp
->if_u1
.if_data
,
2412 ASSERT(ifp
->if_real_bytes
== 0);
2413 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2414 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2418 ifp
->if_real_bytes
= real_size
;
2419 ifp
->if_bytes
= new_size
;
2420 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2430 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2431 if (ifp
->if_broot
!= NULL
) {
2432 kmem_free(ifp
->if_broot
);
2433 ifp
->if_broot
= NULL
;
2437 * If the format is local, then we can't have an extents
2438 * array so just look for an inline data array. If we're
2439 * not local then we may or may not have an extents list,
2440 * so check and free it up if we do.
2442 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2443 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2444 (ifp
->if_u1
.if_data
!= NULL
)) {
2445 ASSERT(ifp
->if_real_bytes
!= 0);
2446 kmem_free(ifp
->if_u1
.if_data
);
2447 ifp
->if_u1
.if_data
= NULL
;
2448 ifp
->if_real_bytes
= 0;
2450 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2451 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2452 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2453 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2454 ASSERT(ifp
->if_real_bytes
!= 0);
2455 xfs_iext_destroy(ifp
);
2457 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2458 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2459 ASSERT(ifp
->if_real_bytes
== 0);
2460 if (whichfork
== XFS_ATTR_FORK
) {
2461 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2467 * Increment the pin count of the given buffer.
2468 * This value is protected by ipinlock spinlock in the mount structure.
2474 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2476 atomic_inc(&ip
->i_pincount
);
2480 * Decrement the pin count of the given inode, and wake up
2481 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2482 * inode must have been previously pinned with a call to xfs_ipin().
2488 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
2490 if (atomic_dec_and_test(&ip
->i_pincount
))
2491 wake_up(&ip
->i_ipin_wait
);
2495 * This is called to unpin an inode. It can be directed to wait or to return
2496 * immediately without waiting for the inode to be unpinned. The caller must
2497 * have the inode locked in at least shared mode so that the buffer cannot be
2498 * subsequently pinned once someone is waiting for it to be unpinned.
2505 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
2507 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2508 if (atomic_read(&ip
->i_pincount
) == 0)
2511 /* Give the log a push to start the unpinning I/O */
2512 xfs_log_force(ip
->i_mount
, (iip
&& iip
->ili_last_lsn
) ?
2513 iip
->ili_last_lsn
: 0, XFS_LOG_FORCE
);
2515 wait_event(ip
->i_ipin_wait
, (atomic_read(&ip
->i_pincount
) == 0));
2522 __xfs_iunpin_wait(ip
, 1);
2529 __xfs_iunpin_wait(ip
, 0);
2534 * xfs_iextents_copy()
2536 * This is called to copy the REAL extents (as opposed to the delayed
2537 * allocation extents) from the inode into the given buffer. It
2538 * returns the number of bytes copied into the buffer.
2540 * If there are no delayed allocation extents, then we can just
2541 * memcpy() the extents into the buffer. Otherwise, we need to
2542 * examine each extent in turn and skip those which are delayed.
2554 xfs_fsblock_t start_block
;
2556 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2557 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2558 ASSERT(ifp
->if_bytes
> 0);
2560 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2561 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2565 * There are some delayed allocation extents in the
2566 * inode, so copy the extents one at a time and skip
2567 * the delayed ones. There must be at least one
2568 * non-delayed extent.
2571 for (i
= 0; i
< nrecs
; i
++) {
2572 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
2573 start_block
= xfs_bmbt_get_startblock(ep
);
2574 if (isnullstartblock(start_block
)) {
2576 * It's a delayed allocation extent, so skip it.
2581 /* Translate to on disk format */
2582 put_unaligned(cpu_to_be64(ep
->l0
), &dp
->l0
);
2583 put_unaligned(cpu_to_be64(ep
->l1
), &dp
->l1
);
2587 ASSERT(copied
!= 0);
2588 xfs_validate_extents(ifp
, copied
, XFS_EXTFMT_INODE(ip
));
2590 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2594 * Each of the following cases stores data into the same region
2595 * of the on-disk inode, so only one of them can be valid at
2596 * any given time. While it is possible to have conflicting formats
2597 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2598 * in EXTENTS format, this can only happen when the fork has
2599 * changed formats after being modified but before being flushed.
2600 * In these cases, the format always takes precedence, because the
2601 * format indicates the current state of the fork.
2608 xfs_inode_log_item_t
*iip
,
2615 #ifdef XFS_TRANS_DEBUG
2618 static const short brootflag
[2] =
2619 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2620 static const short dataflag
[2] =
2621 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2622 static const short extflag
[2] =
2623 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2627 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2629 * This can happen if we gave up in iformat in an error path,
2630 * for the attribute fork.
2633 ASSERT(whichfork
== XFS_ATTR_FORK
);
2636 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2638 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2639 case XFS_DINODE_FMT_LOCAL
:
2640 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2641 (ifp
->if_bytes
> 0)) {
2642 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2643 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2644 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2648 case XFS_DINODE_FMT_EXTENTS
:
2649 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2650 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2651 ASSERT((xfs_iext_get_ext(ifp
, 0) != NULL
) ||
2652 (ifp
->if_bytes
== 0));
2653 ASSERT((xfs_iext_get_ext(ifp
, 0) == NULL
) ||
2654 (ifp
->if_bytes
> 0));
2655 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
2656 (ifp
->if_bytes
> 0)) {
2657 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2658 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2663 case XFS_DINODE_FMT_BTREE
:
2664 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
2665 (ifp
->if_broot_bytes
> 0)) {
2666 ASSERT(ifp
->if_broot
!= NULL
);
2667 ASSERT(ifp
->if_broot_bytes
<=
2668 (XFS_IFORK_SIZE(ip
, whichfork
) +
2669 XFS_BROOT_SIZE_ADJ
));
2670 xfs_bmbt_to_bmdr(mp
, ifp
->if_broot
, ifp
->if_broot_bytes
,
2671 (xfs_bmdr_block_t
*)cp
,
2672 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2676 case XFS_DINODE_FMT_DEV
:
2677 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
2678 ASSERT(whichfork
== XFS_DATA_FORK
);
2679 xfs_dinode_put_rdev(dip
, ip
->i_df
.if_u2
.if_rdev
);
2683 case XFS_DINODE_FMT_UUID
:
2684 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
2685 ASSERT(whichfork
== XFS_DATA_FORK
);
2686 memcpy(XFS_DFORK_DPTR(dip
),
2687 &ip
->i_df
.if_u2
.if_uuid
,
2703 xfs_mount_t
*mp
= ip
->i_mount
;
2704 xfs_perag_t
*pag
= xfs_get_perag(mp
, ip
->i_ino
);
2705 unsigned long first_index
, mask
;
2706 unsigned long inodes_per_cluster
;
2708 xfs_inode_t
**ilist
;
2715 ASSERT(pag
->pagi_inodeok
);
2716 ASSERT(pag
->pag_ici_init
);
2718 inodes_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
;
2719 ilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
2720 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
|KM_NOFS
);
2724 mask
= ~(((XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
)) - 1);
2725 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
2726 read_lock(&pag
->pag_ici_lock
);
2727 /* really need a gang lookup range call here */
2728 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
2729 first_index
, inodes_per_cluster
);
2733 for (i
= 0; i
< nr_found
; i
++) {
2737 /* if the inode lies outside this cluster, we're done. */
2738 if ((XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
)
2741 * Do an un-protected check to see if the inode is dirty and
2742 * is a candidate for flushing. These checks will be repeated
2743 * later after the appropriate locks are acquired.
2745 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
2749 * Try to get locks. If any are unavailable or it is pinned,
2750 * then this inode cannot be flushed and is skipped.
2753 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
2755 if (!xfs_iflock_nowait(iq
)) {
2756 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2759 if (xfs_ipincount(iq
)) {
2761 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2766 * arriving here means that this inode can be flushed. First
2767 * re-check that it's dirty before flushing.
2769 if (!xfs_inode_clean(iq
)) {
2771 error
= xfs_iflush_int(iq
, bp
);
2773 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2774 goto cluster_corrupt_out
;
2780 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2784 XFS_STATS_INC(xs_icluster_flushcnt
);
2785 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
2789 read_unlock(&pag
->pag_ici_lock
);
2794 cluster_corrupt_out
:
2796 * Corruption detected in the clustering loop. Invalidate the
2797 * inode buffer and shut down the filesystem.
2799 read_unlock(&pag
->pag_ici_lock
);
2801 * Clean up the buffer. If it was B_DELWRI, just release it --
2802 * brelse can handle it with no problems. If not, shut down the
2803 * filesystem before releasing the buffer.
2805 bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
);
2809 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2811 if (!bufwasdelwri
) {
2813 * Just like incore_relse: if we have b_iodone functions,
2814 * mark the buffer as an error and call them. Otherwise
2815 * mark it as stale and brelse.
2817 if (XFS_BUF_IODONE_FUNC(bp
)) {
2818 XFS_BUF_CLR_BDSTRAT_FUNC(bp
);
2821 XFS_BUF_ERROR(bp
,EIO
);
2830 * Unlocks the flush lock
2832 xfs_iflush_abort(iq
);
2834 return XFS_ERROR(EFSCORRUPTED
);
2838 * xfs_iflush() will write a modified inode's changes out to the
2839 * inode's on disk home. The caller must have the inode lock held
2840 * in at least shared mode and the inode flush completion must be
2841 * active as well. The inode lock will still be held upon return from
2842 * the call and the caller is free to unlock it.
2843 * The inode flush will be completed when the inode reaches the disk.
2844 * The flags indicate how the inode's buffer should be written out.
2851 xfs_inode_log_item_t
*iip
;
2856 int noblock
= (flags
== XFS_IFLUSH_ASYNC_NOBLOCK
);
2857 enum { INT_DELWRI
= (1 << 0), INT_ASYNC
= (1 << 1) };
2859 XFS_STATS_INC(xs_iflush_count
);
2861 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2862 ASSERT(!completion_done(&ip
->i_flush
));
2863 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2864 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
2870 * If the inode isn't dirty, then just release the inode
2871 * flush lock and do nothing.
2873 if (xfs_inode_clean(ip
)) {
2879 * We can't flush the inode until it is unpinned, so wait for it if we
2880 * are allowed to block. We know noone new can pin it, because we are
2881 * holding the inode lock shared and you need to hold it exclusively to
2884 * If we are not allowed to block, force the log out asynchronously so
2885 * that when we come back the inode will be unpinned. If other inodes
2886 * in the same cluster are dirty, they will probably write the inode
2887 * out for us if they occur after the log force completes.
2889 if (noblock
&& xfs_ipincount(ip
)) {
2890 xfs_iunpin_nowait(ip
);
2894 xfs_iunpin_wait(ip
);
2897 * This may have been unpinned because the filesystem is shutting
2898 * down forcibly. If that's the case we must not write this inode
2899 * to disk, because the log record didn't make it to disk!
2901 if (XFS_FORCED_SHUTDOWN(mp
)) {
2902 ip
->i_update_core
= 0;
2904 iip
->ili_format
.ilf_fields
= 0;
2906 return XFS_ERROR(EIO
);
2910 * Decide how buffer will be flushed out. This is done before
2911 * the call to xfs_iflush_int because this field is zeroed by it.
2913 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
2915 * Flush out the inode buffer according to the directions
2916 * of the caller. In the cases where the caller has given
2917 * us a choice choose the non-delwri case. This is because
2918 * the inode is in the AIL and we need to get it out soon.
2921 case XFS_IFLUSH_SYNC
:
2922 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
2925 case XFS_IFLUSH_ASYNC_NOBLOCK
:
2926 case XFS_IFLUSH_ASYNC
:
2927 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
2930 case XFS_IFLUSH_DELWRI
:
2940 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
2941 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
2942 case XFS_IFLUSH_DELWRI
:
2945 case XFS_IFLUSH_ASYNC_NOBLOCK
:
2946 case XFS_IFLUSH_ASYNC
:
2949 case XFS_IFLUSH_SYNC
:
2960 * Get the buffer containing the on-disk inode.
2962 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
,
2963 noblock
? XFS_BUF_TRYLOCK
: XFS_BUF_LOCK
);
2970 * First flush out the inode that xfs_iflush was called with.
2972 error
= xfs_iflush_int(ip
, bp
);
2977 * If the buffer is pinned then push on the log now so we won't
2978 * get stuck waiting in the write for too long.
2980 if (XFS_BUF_ISPINNED(bp
))
2981 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
);
2985 * see if other inodes can be gathered into this write
2987 error
= xfs_iflush_cluster(ip
, bp
);
2989 goto cluster_corrupt_out
;
2991 if (flags
& INT_DELWRI
) {
2992 xfs_bdwrite(mp
, bp
);
2993 } else if (flags
& INT_ASYNC
) {
2994 error
= xfs_bawrite(mp
, bp
);
2996 error
= xfs_bwrite(mp
, bp
);
3002 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3003 cluster_corrupt_out
:
3005 * Unlocks the flush lock
3007 xfs_iflush_abort(ip
);
3008 return XFS_ERROR(EFSCORRUPTED
);
3017 xfs_inode_log_item_t
*iip
;
3020 #ifdef XFS_TRANS_DEBUG
3024 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3025 ASSERT(!completion_done(&ip
->i_flush
));
3026 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3027 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3034 * If the inode isn't dirty, then just release the inode
3035 * flush lock and do nothing.
3037 if (xfs_inode_clean(ip
)) {
3042 /* set *dip = inode's place in the buffer */
3043 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
3046 * Clear i_update_core before copying out the data.
3047 * This is for coordination with our timestamp updates
3048 * that don't hold the inode lock. They will always
3049 * update the timestamps BEFORE setting i_update_core,
3050 * so if we clear i_update_core after they set it we
3051 * are guaranteed to see their updates to the timestamps.
3052 * I believe that this depends on strongly ordered memory
3053 * semantics, but we have that. We use the SYNCHRONIZE
3054 * macro to make sure that the compiler does not reorder
3055 * the i_update_core access below the data copy below.
3057 ip
->i_update_core
= 0;
3061 * Make sure to get the latest atime from the Linux inode.
3063 xfs_synchronize_atime(ip
);
3065 if (XFS_TEST_ERROR(be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
,
3066 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3067 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3068 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3069 ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
3072 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
3073 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
3074 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3075 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3076 ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
3079 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
3081 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3082 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3083 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3084 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3085 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3089 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
3091 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3092 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3093 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3094 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3095 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3096 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3101 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3102 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3103 XFS_RANDOM_IFLUSH_5
)) {
3104 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3105 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3107 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3112 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3113 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3114 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3115 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3116 ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3120 * bump the flush iteration count, used to detect flushes which
3121 * postdate a log record during recovery.
3124 ip
->i_d
.di_flushiter
++;
3127 * Copy the dirty parts of the inode into the on-disk
3128 * inode. We always copy out the core of the inode,
3129 * because if the inode is dirty at all the core must
3132 xfs_dinode_to_disk(dip
, &ip
->i_d
);
3134 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3135 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3136 ip
->i_d
.di_flushiter
= 0;
3139 * If this is really an old format inode and the superblock version
3140 * has not been updated to support only new format inodes, then
3141 * convert back to the old inode format. If the superblock version
3142 * has been updated, then make the conversion permanent.
3144 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
3145 if (ip
->i_d
.di_version
== 1) {
3146 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
3150 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3151 dip
->di_onlink
= cpu_to_be16(ip
->i_d
.di_nlink
);
3154 * The superblock version has already been bumped,
3155 * so just make the conversion to the new inode
3158 ip
->i_d
.di_version
= 2;
3159 dip
->di_version
= 2;
3160 ip
->i_d
.di_onlink
= 0;
3162 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3163 memset(&(dip
->di_pad
[0]), 0,
3164 sizeof(dip
->di_pad
));
3165 ASSERT(ip
->i_d
.di_projid
== 0);
3169 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
);
3170 if (XFS_IFORK_Q(ip
))
3171 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3172 xfs_inobp_check(mp
, bp
);
3175 * We've recorded everything logged in the inode, so we'd
3176 * like to clear the ilf_fields bits so we don't log and
3177 * flush things unnecessarily. However, we can't stop
3178 * logging all this information until the data we've copied
3179 * into the disk buffer is written to disk. If we did we might
3180 * overwrite the copy of the inode in the log with all the
3181 * data after re-logging only part of it, and in the face of
3182 * a crash we wouldn't have all the data we need to recover.
3184 * What we do is move the bits to the ili_last_fields field.
3185 * When logging the inode, these bits are moved back to the
3186 * ilf_fields field. In the xfs_iflush_done() routine we
3187 * clear ili_last_fields, since we know that the information
3188 * those bits represent is permanently on disk. As long as
3189 * the flush completes before the inode is logged again, then
3190 * both ilf_fields and ili_last_fields will be cleared.
3192 * We can play with the ilf_fields bits here, because the inode
3193 * lock must be held exclusively in order to set bits there
3194 * and the flush lock protects the ili_last_fields bits.
3195 * Set ili_logged so the flush done
3196 * routine can tell whether or not to look in the AIL.
3197 * Also, store the current LSN of the inode so that we can tell
3198 * whether the item has moved in the AIL from xfs_iflush_done().
3199 * In order to read the lsn we need the AIL lock, because
3200 * it is a 64 bit value that cannot be read atomically.
3202 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3203 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3204 iip
->ili_format
.ilf_fields
= 0;
3205 iip
->ili_logged
= 1;
3207 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3208 &iip
->ili_item
.li_lsn
);
3211 * Attach the function xfs_iflush_done to the inode's
3212 * buffer. This will remove the inode from the AIL
3213 * and unlock the inode's flush lock when the inode is
3214 * completely written to disk.
3216 xfs_buf_attach_iodone(bp
, (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
3217 xfs_iflush_done
, (xfs_log_item_t
*)iip
);
3219 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3220 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3223 * We're flushing an inode which is not in the AIL and has
3224 * not been logged but has i_update_core set. For this
3225 * case we can use a B_DELWRI flush and immediately drop
3226 * the inode flush lock because we can avoid the whole
3227 * AIL state thing. It's OK to drop the flush lock now,
3228 * because we've already locked the buffer and to do anything
3229 * you really need both.
3232 ASSERT(iip
->ili_logged
== 0);
3233 ASSERT(iip
->ili_last_fields
== 0);
3234 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3242 return XFS_ERROR(EFSCORRUPTED
);
3247 #ifdef XFS_ILOCK_TRACE
3249 xfs_ilock_trace(xfs_inode_t
*ip
, int lock
, unsigned int lockflags
, inst_t
*ra
)
3251 ktrace_enter(ip
->i_lock_trace
,
3253 (void *)(unsigned long)lock
, /* 1 = LOCK, 3=UNLOCK, etc */
3254 (void *)(unsigned long)lockflags
, /* XFS_ILOCK_EXCL etc */
3255 (void *)ra
, /* caller of ilock */
3256 (void *)(unsigned long)current_cpu(),
3257 (void *)(unsigned long)current_pid(),
3258 NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
);
3263 * Return a pointer to the extent record at file index idx.
3265 xfs_bmbt_rec_host_t
*
3267 xfs_ifork_t
*ifp
, /* inode fork pointer */
3268 xfs_extnum_t idx
) /* index of target extent */
3271 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3272 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3273 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3274 xfs_ext_irec_t
*erp
; /* irec pointer */
3275 int erp_idx
= 0; /* irec index */
3276 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3278 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3279 return &erp
->er_extbuf
[page_idx
];
3280 } else if (ifp
->if_bytes
) {
3281 return &ifp
->if_u1
.if_extents
[idx
];
3288 * Insert new item(s) into the extent records for incore inode
3289 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3293 xfs_ifork_t
*ifp
, /* inode fork pointer */
3294 xfs_extnum_t idx
, /* starting index of new items */
3295 xfs_extnum_t count
, /* number of inserted items */
3296 xfs_bmbt_irec_t
*new) /* items to insert */
3298 xfs_extnum_t i
; /* extent record index */
3300 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3301 xfs_iext_add(ifp
, idx
, count
);
3302 for (i
= idx
; i
< idx
+ count
; i
++, new++)
3303 xfs_bmbt_set_all(xfs_iext_get_ext(ifp
, i
), new);
3307 * This is called when the amount of space required for incore file
3308 * extents needs to be increased. The ext_diff parameter stores the
3309 * number of new extents being added and the idx parameter contains
3310 * the extent index where the new extents will be added. If the new
3311 * extents are being appended, then we just need to (re)allocate and
3312 * initialize the space. Otherwise, if the new extents are being
3313 * inserted into the middle of the existing entries, a bit more work
3314 * is required to make room for the new extents to be inserted. The
3315 * caller is responsible for filling in the new extent entries upon
3320 xfs_ifork_t
*ifp
, /* inode fork pointer */
3321 xfs_extnum_t idx
, /* index to begin adding exts */
3322 int ext_diff
) /* number of extents to add */
3324 int byte_diff
; /* new bytes being added */
3325 int new_size
; /* size of extents after adding */
3326 xfs_extnum_t nextents
; /* number of extents in file */
3328 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3329 ASSERT((idx
>= 0) && (idx
<= nextents
));
3330 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3331 new_size
= ifp
->if_bytes
+ byte_diff
;
3333 * If the new number of extents (nextents + ext_diff)
3334 * fits inside the inode, then continue to use the inline
3337 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3338 if (idx
< nextents
) {
3339 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3340 &ifp
->if_u2
.if_inline_ext
[idx
],
3341 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3342 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3344 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3345 ifp
->if_real_bytes
= 0;
3346 ifp
->if_lastex
= nextents
+ ext_diff
;
3349 * Otherwise use a linear (direct) extent list.
3350 * If the extents are currently inside the inode,
3351 * xfs_iext_realloc_direct will switch us from
3352 * inline to direct extent allocation mode.
3354 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3355 xfs_iext_realloc_direct(ifp
, new_size
);
3356 if (idx
< nextents
) {
3357 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3358 &ifp
->if_u1
.if_extents
[idx
],
3359 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3360 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3363 /* Indirection array */
3365 xfs_ext_irec_t
*erp
;
3369 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3370 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3371 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3373 xfs_iext_irec_init(ifp
);
3374 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3375 erp
= ifp
->if_u1
.if_ext_irec
;
3377 /* Extents fit in target extent page */
3378 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3379 if (page_idx
< erp
->er_extcount
) {
3380 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3381 &erp
->er_extbuf
[page_idx
],
3382 (erp
->er_extcount
- page_idx
) *
3383 sizeof(xfs_bmbt_rec_t
));
3384 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3386 erp
->er_extcount
+= ext_diff
;
3387 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3389 /* Insert a new extent page */
3391 xfs_iext_add_indirect_multi(ifp
,
3392 erp_idx
, page_idx
, ext_diff
);
3395 * If extent(s) are being appended to the last page in
3396 * the indirection array and the new extent(s) don't fit
3397 * in the page, then erp is NULL and erp_idx is set to
3398 * the next index needed in the indirection array.
3401 int count
= ext_diff
;
3404 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3405 erp
->er_extcount
= count
;
3406 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3413 ifp
->if_bytes
= new_size
;
3417 * This is called when incore extents are being added to the indirection
3418 * array and the new extents do not fit in the target extent list. The
3419 * erp_idx parameter contains the irec index for the target extent list
3420 * in the indirection array, and the idx parameter contains the extent
3421 * index within the list. The number of extents being added is stored
3422 * in the count parameter.
3424 * |-------| |-------|
3425 * | | | | idx - number of extents before idx
3427 * | | | | count - number of extents being inserted at idx
3428 * |-------| |-------|
3429 * | count | | nex2 | nex2 - number of extents after idx + count
3430 * |-------| |-------|
3433 xfs_iext_add_indirect_multi(
3434 xfs_ifork_t
*ifp
, /* inode fork pointer */
3435 int erp_idx
, /* target extent irec index */
3436 xfs_extnum_t idx
, /* index within target list */
3437 int count
) /* new extents being added */
3439 int byte_diff
; /* new bytes being added */
3440 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3441 xfs_extnum_t ext_diff
; /* number of extents to add */
3442 xfs_extnum_t ext_cnt
; /* new extents still needed */
3443 xfs_extnum_t nex2
; /* extents after idx + count */
3444 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3445 int nlists
; /* number of irec's (lists) */
3447 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3448 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3449 nex2
= erp
->er_extcount
- idx
;
3450 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3453 * Save second part of target extent list
3454 * (all extents past */
3456 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3457 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_NOFS
);
3458 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3459 erp
->er_extcount
-= nex2
;
3460 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3461 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3465 * Add the new extents to the end of the target
3466 * list, then allocate new irec record(s) and
3467 * extent buffer(s) as needed to store the rest
3468 * of the new extents.
3471 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3473 erp
->er_extcount
+= ext_diff
;
3474 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3475 ext_cnt
-= ext_diff
;
3479 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3480 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3481 erp
->er_extcount
= ext_diff
;
3482 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3483 ext_cnt
-= ext_diff
;
3486 /* Add nex2 extents back to indirection array */
3488 xfs_extnum_t ext_avail
;
3491 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3492 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3495 * If nex2 extents fit in the current page, append
3496 * nex2_ep after the new extents.
3498 if (nex2
<= ext_avail
) {
3499 i
= erp
->er_extcount
;
3502 * Otherwise, check if space is available in the
3505 else if ((erp_idx
< nlists
- 1) &&
3506 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3507 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3510 /* Create a hole for nex2 extents */
3511 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3512 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3515 * Final choice, create a new extent page for
3520 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3522 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3524 erp
->er_extcount
+= nex2
;
3525 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3530 * This is called when the amount of space required for incore file
3531 * extents needs to be decreased. The ext_diff parameter stores the
3532 * number of extents to be removed and the idx parameter contains
3533 * the extent index where the extents will be removed from.
3535 * If the amount of space needed has decreased below the linear
3536 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3537 * extent array. Otherwise, use kmem_realloc() to adjust the
3538 * size to what is needed.
3542 xfs_ifork_t
*ifp
, /* inode fork pointer */
3543 xfs_extnum_t idx
, /* index to begin removing exts */
3544 int ext_diff
) /* number of extents to remove */
3546 xfs_extnum_t nextents
; /* number of extents in file */
3547 int new_size
; /* size of extents after removal */
3549 ASSERT(ext_diff
> 0);
3550 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3551 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3553 if (new_size
== 0) {
3554 xfs_iext_destroy(ifp
);
3555 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3556 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3557 } else if (ifp
->if_real_bytes
) {
3558 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3560 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3562 ifp
->if_bytes
= new_size
;
3566 * This removes ext_diff extents from the inline buffer, beginning
3567 * at extent index idx.
3570 xfs_iext_remove_inline(
3571 xfs_ifork_t
*ifp
, /* inode fork pointer */
3572 xfs_extnum_t idx
, /* index to begin removing exts */
3573 int ext_diff
) /* number of extents to remove */
3575 int nextents
; /* number of extents in file */
3577 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3578 ASSERT(idx
< XFS_INLINE_EXTS
);
3579 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3580 ASSERT(((nextents
- ext_diff
) > 0) &&
3581 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3583 if (idx
+ ext_diff
< nextents
) {
3584 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3585 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3586 (nextents
- (idx
+ ext_diff
)) *
3587 sizeof(xfs_bmbt_rec_t
));
3588 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3589 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3591 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3592 ext_diff
* sizeof(xfs_bmbt_rec_t
));
3597 * This removes ext_diff extents from a linear (direct) extent list,
3598 * beginning at extent index idx. If the extents are being removed
3599 * from the end of the list (ie. truncate) then we just need to re-
3600 * allocate the list to remove the extra space. Otherwise, if the
3601 * extents are being removed from the middle of the existing extent
3602 * entries, then we first need to move the extent records beginning
3603 * at idx + ext_diff up in the list to overwrite the records being
3604 * removed, then remove the extra space via kmem_realloc.
3607 xfs_iext_remove_direct(
3608 xfs_ifork_t
*ifp
, /* inode fork pointer */
3609 xfs_extnum_t idx
, /* index to begin removing exts */
3610 int ext_diff
) /* number of extents to remove */
3612 xfs_extnum_t nextents
; /* number of extents in file */
3613 int new_size
; /* size of extents after removal */
3615 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3616 new_size
= ifp
->if_bytes
-
3617 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
3618 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3620 if (new_size
== 0) {
3621 xfs_iext_destroy(ifp
);
3624 /* Move extents up in the list (if needed) */
3625 if (idx
+ ext_diff
< nextents
) {
3626 memmove(&ifp
->if_u1
.if_extents
[idx
],
3627 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3628 (nextents
- (idx
+ ext_diff
)) *
3629 sizeof(xfs_bmbt_rec_t
));
3631 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
3632 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3634 * Reallocate the direct extent list. If the extents
3635 * will fit inside the inode then xfs_iext_realloc_direct
3636 * will switch from direct to inline extent allocation
3639 xfs_iext_realloc_direct(ifp
, new_size
);
3640 ifp
->if_bytes
= new_size
;
3644 * This is called when incore extents are being removed from the
3645 * indirection array and the extents being removed span multiple extent
3646 * buffers. The idx parameter contains the file extent index where we
3647 * want to begin removing extents, and the count parameter contains
3648 * how many extents need to be removed.
3650 * |-------| |-------|
3651 * | nex1 | | | nex1 - number of extents before idx
3652 * |-------| | count |
3653 * | | | | count - number of extents being removed at idx
3654 * | count | |-------|
3655 * | | | nex2 | nex2 - number of extents after idx + count
3656 * |-------| |-------|
3659 xfs_iext_remove_indirect(
3660 xfs_ifork_t
*ifp
, /* inode fork pointer */
3661 xfs_extnum_t idx
, /* index to begin removing extents */
3662 int count
) /* number of extents to remove */
3664 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3665 int erp_idx
= 0; /* indirection array index */
3666 xfs_extnum_t ext_cnt
; /* extents left to remove */
3667 xfs_extnum_t ext_diff
; /* extents to remove in current list */
3668 xfs_extnum_t nex1
; /* number of extents before idx */
3669 xfs_extnum_t nex2
; /* extents after idx + count */
3670 int nlists
; /* entries in indirection array */
3671 int page_idx
= idx
; /* index in target extent list */
3673 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3674 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3675 ASSERT(erp
!= NULL
);
3676 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3680 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
3681 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
3683 * Check for deletion of entire list;
3684 * xfs_iext_irec_remove() updates extent offsets.
3686 if (ext_diff
== erp
->er_extcount
) {
3687 xfs_iext_irec_remove(ifp
, erp_idx
);
3688 ext_cnt
-= ext_diff
;
3691 ASSERT(erp_idx
< ifp
->if_real_bytes
/
3693 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3700 /* Move extents up (if needed) */
3702 memmove(&erp
->er_extbuf
[nex1
],
3703 &erp
->er_extbuf
[nex1
+ ext_diff
],
3704 nex2
* sizeof(xfs_bmbt_rec_t
));
3706 /* Zero out rest of page */
3707 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
3708 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
3709 /* Update remaining counters */
3710 erp
->er_extcount
-= ext_diff
;
3711 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
3712 ext_cnt
-= ext_diff
;
3717 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
3718 xfs_iext_irec_compact(ifp
);
3722 * Create, destroy, or resize a linear (direct) block of extents.
3725 xfs_iext_realloc_direct(
3726 xfs_ifork_t
*ifp
, /* inode fork pointer */
3727 int new_size
) /* new size of extents */
3729 int rnew_size
; /* real new size of extents */
3731 rnew_size
= new_size
;
3733 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
3734 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
3735 (new_size
!= ifp
->if_real_bytes
)));
3737 /* Free extent records */
3738 if (new_size
== 0) {
3739 xfs_iext_destroy(ifp
);
3741 /* Resize direct extent list and zero any new bytes */
3742 else if (ifp
->if_real_bytes
) {
3743 /* Check if extents will fit inside the inode */
3744 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
3745 xfs_iext_direct_to_inline(ifp
, new_size
/
3746 (uint
)sizeof(xfs_bmbt_rec_t
));
3747 ifp
->if_bytes
= new_size
;
3750 if (!is_power_of_2(new_size
)){
3751 rnew_size
= roundup_pow_of_two(new_size
);
3753 if (rnew_size
!= ifp
->if_real_bytes
) {
3754 ifp
->if_u1
.if_extents
=
3755 kmem_realloc(ifp
->if_u1
.if_extents
,
3757 ifp
->if_real_bytes
, KM_NOFS
);
3759 if (rnew_size
> ifp
->if_real_bytes
) {
3760 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
3761 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
3762 rnew_size
- ifp
->if_real_bytes
);
3766 * Switch from the inline extent buffer to a direct
3767 * extent list. Be sure to include the inline extent
3768 * bytes in new_size.
3771 new_size
+= ifp
->if_bytes
;
3772 if (!is_power_of_2(new_size
)) {
3773 rnew_size
= roundup_pow_of_two(new_size
);
3775 xfs_iext_inline_to_direct(ifp
, rnew_size
);
3777 ifp
->if_real_bytes
= rnew_size
;
3778 ifp
->if_bytes
= new_size
;
3782 * Switch from linear (direct) extent records to inline buffer.
3785 xfs_iext_direct_to_inline(
3786 xfs_ifork_t
*ifp
, /* inode fork pointer */
3787 xfs_extnum_t nextents
) /* number of extents in file */
3789 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3790 ASSERT(nextents
<= XFS_INLINE_EXTS
);
3792 * The inline buffer was zeroed when we switched
3793 * from inline to direct extent allocation mode,
3794 * so we don't need to clear it here.
3796 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
3797 nextents
* sizeof(xfs_bmbt_rec_t
));
3798 kmem_free(ifp
->if_u1
.if_extents
);
3799 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3800 ifp
->if_real_bytes
= 0;
3804 * Switch from inline buffer to linear (direct) extent records.
3805 * new_size should already be rounded up to the next power of 2
3806 * by the caller (when appropriate), so use new_size as it is.
3807 * However, since new_size may be rounded up, we can't update
3808 * if_bytes here. It is the caller's responsibility to update
3809 * if_bytes upon return.
3812 xfs_iext_inline_to_direct(
3813 xfs_ifork_t
*ifp
, /* inode fork pointer */
3814 int new_size
) /* number of extents in file */
3816 ifp
->if_u1
.if_extents
= kmem_alloc(new_size
, KM_NOFS
);
3817 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
3818 if (ifp
->if_bytes
) {
3819 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
3821 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3822 sizeof(xfs_bmbt_rec_t
));
3824 ifp
->if_real_bytes
= new_size
;
3828 * Resize an extent indirection array to new_size bytes.
3831 xfs_iext_realloc_indirect(
3832 xfs_ifork_t
*ifp
, /* inode fork pointer */
3833 int new_size
) /* new indirection array size */
3835 int nlists
; /* number of irec's (ex lists) */
3836 int size
; /* current indirection array size */
3838 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3839 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3840 size
= nlists
* sizeof(xfs_ext_irec_t
);
3841 ASSERT(ifp
->if_real_bytes
);
3842 ASSERT((new_size
>= 0) && (new_size
!= size
));
3843 if (new_size
== 0) {
3844 xfs_iext_destroy(ifp
);
3846 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
3847 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
3848 new_size
, size
, KM_NOFS
);
3853 * Switch from indirection array to linear (direct) extent allocations.
3856 xfs_iext_indirect_to_direct(
3857 xfs_ifork_t
*ifp
) /* inode fork pointer */
3859 xfs_bmbt_rec_host_t
*ep
; /* extent record pointer */
3860 xfs_extnum_t nextents
; /* number of extents in file */
3861 int size
; /* size of file extents */
3863 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3864 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3865 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3866 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
3868 xfs_iext_irec_compact_pages(ifp
);
3869 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
3871 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3872 kmem_free(ifp
->if_u1
.if_ext_irec
);
3873 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3874 ifp
->if_u1
.if_extents
= ep
;
3875 ifp
->if_bytes
= size
;
3876 if (nextents
< XFS_LINEAR_EXTS
) {
3877 xfs_iext_realloc_direct(ifp
, size
);
3882 * Free incore file extents.
3886 xfs_ifork_t
*ifp
) /* inode fork pointer */
3888 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3892 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3893 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
3894 xfs_iext_irec_remove(ifp
, erp_idx
);
3896 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3897 } else if (ifp
->if_real_bytes
) {
3898 kmem_free(ifp
->if_u1
.if_extents
);
3899 } else if (ifp
->if_bytes
) {
3900 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3901 sizeof(xfs_bmbt_rec_t
));
3903 ifp
->if_u1
.if_extents
= NULL
;
3904 ifp
->if_real_bytes
= 0;
3909 * Return a pointer to the extent record for file system block bno.
3911 xfs_bmbt_rec_host_t
* /* pointer to found extent record */
3912 xfs_iext_bno_to_ext(
3913 xfs_ifork_t
*ifp
, /* inode fork pointer */
3914 xfs_fileoff_t bno
, /* block number to search for */
3915 xfs_extnum_t
*idxp
) /* index of target extent */
3917 xfs_bmbt_rec_host_t
*base
; /* pointer to first extent */
3918 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
3919 xfs_bmbt_rec_host_t
*ep
= NULL
; /* pointer to target extent */
3920 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3921 int high
; /* upper boundary in search */
3922 xfs_extnum_t idx
= 0; /* index of target extent */
3923 int low
; /* lower boundary in search */
3924 xfs_extnum_t nextents
; /* number of file extents */
3925 xfs_fileoff_t startoff
= 0; /* start offset of extent */
3927 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3928 if (nextents
== 0) {
3933 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3934 /* Find target extent list */
3936 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
3937 base
= erp
->er_extbuf
;
3938 high
= erp
->er_extcount
- 1;
3940 base
= ifp
->if_u1
.if_extents
;
3941 high
= nextents
- 1;
3943 /* Binary search extent records */
3944 while (low
<= high
) {
3945 idx
= (low
+ high
) >> 1;
3947 startoff
= xfs_bmbt_get_startoff(ep
);
3948 blockcount
= xfs_bmbt_get_blockcount(ep
);
3949 if (bno
< startoff
) {
3951 } else if (bno
>= startoff
+ blockcount
) {
3954 /* Convert back to file-based extent index */
3955 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3956 idx
+= erp
->er_extoff
;
3962 /* Convert back to file-based extent index */
3963 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3964 idx
+= erp
->er_extoff
;
3966 if (bno
>= startoff
+ blockcount
) {
3967 if (++idx
== nextents
) {
3970 ep
= xfs_iext_get_ext(ifp
, idx
);
3978 * Return a pointer to the indirection array entry containing the
3979 * extent record for filesystem block bno. Store the index of the
3980 * target irec in *erp_idxp.
3982 xfs_ext_irec_t
* /* pointer to found extent record */
3983 xfs_iext_bno_to_irec(
3984 xfs_ifork_t
*ifp
, /* inode fork pointer */
3985 xfs_fileoff_t bno
, /* block number to search for */
3986 int *erp_idxp
) /* irec index of target ext list */
3988 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3989 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
3990 int erp_idx
; /* indirection array index */
3991 int nlists
; /* number of extent irec's (lists) */
3992 int high
; /* binary search upper limit */
3993 int low
; /* binary search lower limit */
3995 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3996 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4000 while (low
<= high
) {
4001 erp_idx
= (low
+ high
) >> 1;
4002 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4003 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
4004 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
4006 } else if (erp_next
&& bno
>=
4007 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
4013 *erp_idxp
= erp_idx
;
4018 * Return a pointer to the indirection array entry containing the
4019 * extent record at file extent index *idxp. Store the index of the
4020 * target irec in *erp_idxp and store the page index of the target
4021 * extent record in *idxp.
4024 xfs_iext_idx_to_irec(
4025 xfs_ifork_t
*ifp
, /* inode fork pointer */
4026 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
4027 int *erp_idxp
, /* pointer to target irec */
4028 int realloc
) /* new bytes were just added */
4030 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
4031 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
4032 int erp_idx
; /* indirection array index */
4033 int nlists
; /* number of irec's (ex lists) */
4034 int high
; /* binary search upper limit */
4035 int low
; /* binary search lower limit */
4036 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
4038 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4039 ASSERT(page_idx
>= 0 && page_idx
<=
4040 ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
));
4041 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4046 /* Binary search extent irec's */
4047 while (low
<= high
) {
4048 erp_idx
= (low
+ high
) >> 1;
4049 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4050 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
4051 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
4052 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
4054 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
4055 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4058 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4059 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4063 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
4066 page_idx
-= erp
->er_extoff
;
4071 *erp_idxp
= erp_idx
;
4076 * Allocate and initialize an indirection array once the space needed
4077 * for incore extents increases above XFS_IEXT_BUFSZ.
4081 xfs_ifork_t
*ifp
) /* inode fork pointer */
4083 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4084 xfs_extnum_t nextents
; /* number of extents in file */
4086 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4087 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4088 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4090 erp
= kmem_alloc(sizeof(xfs_ext_irec_t
), KM_NOFS
);
4092 if (nextents
== 0) {
4093 ifp
->if_u1
.if_extents
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
4094 } else if (!ifp
->if_real_bytes
) {
4095 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
4096 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
4097 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
4099 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
4100 erp
->er_extcount
= nextents
;
4103 ifp
->if_flags
|= XFS_IFEXTIREC
;
4104 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
4105 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
4106 ifp
->if_u1
.if_ext_irec
= erp
;
4112 * Allocate and initialize a new entry in the indirection array.
4116 xfs_ifork_t
*ifp
, /* inode fork pointer */
4117 int erp_idx
) /* index for new irec */
4119 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4120 int i
; /* loop counter */
4121 int nlists
; /* number of irec's (ex lists) */
4123 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4124 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4126 /* Resize indirection array */
4127 xfs_iext_realloc_indirect(ifp
, ++nlists
*
4128 sizeof(xfs_ext_irec_t
));
4130 * Move records down in the array so the
4131 * new page can use erp_idx.
4133 erp
= ifp
->if_u1
.if_ext_irec
;
4134 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
4135 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
4137 ASSERT(i
== erp_idx
);
4139 /* Initialize new extent record */
4140 erp
= ifp
->if_u1
.if_ext_irec
;
4141 erp
[erp_idx
].er_extbuf
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
4142 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4143 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
4144 erp
[erp_idx
].er_extcount
= 0;
4145 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
4146 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
4147 return (&erp
[erp_idx
]);
4151 * Remove a record from the indirection array.
4154 xfs_iext_irec_remove(
4155 xfs_ifork_t
*ifp
, /* inode fork pointer */
4156 int erp_idx
) /* irec index to remove */
4158 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4159 int i
; /* loop counter */
4160 int nlists
; /* number of irec's (ex lists) */
4162 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4163 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4164 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4165 if (erp
->er_extbuf
) {
4166 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
4168 kmem_free(erp
->er_extbuf
);
4170 /* Compact extent records */
4171 erp
= ifp
->if_u1
.if_ext_irec
;
4172 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
4173 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
4176 * Manually free the last extent record from the indirection
4177 * array. A call to xfs_iext_realloc_indirect() with a size
4178 * of zero would result in a call to xfs_iext_destroy() which
4179 * would in turn call this function again, creating a nasty
4183 xfs_iext_realloc_indirect(ifp
,
4184 nlists
* sizeof(xfs_ext_irec_t
));
4186 kmem_free(ifp
->if_u1
.if_ext_irec
);
4188 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4192 * This is called to clean up large amounts of unused memory allocated
4193 * by the indirection array. Before compacting anything though, verify
4194 * that the indirection array is still needed and switch back to the
4195 * linear extent list (or even the inline buffer) if possible. The
4196 * compaction policy is as follows:
4198 * Full Compaction: Extents fit into a single page (or inline buffer)
4199 * Partial Compaction: Extents occupy less than 50% of allocated space
4200 * No Compaction: Extents occupy at least 50% of allocated space
4203 xfs_iext_irec_compact(
4204 xfs_ifork_t
*ifp
) /* inode fork pointer */
4206 xfs_extnum_t nextents
; /* number of extents in file */
4207 int nlists
; /* number of irec's (ex lists) */
4209 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4210 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4211 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4213 if (nextents
== 0) {
4214 xfs_iext_destroy(ifp
);
4215 } else if (nextents
<= XFS_INLINE_EXTS
) {
4216 xfs_iext_indirect_to_direct(ifp
);
4217 xfs_iext_direct_to_inline(ifp
, nextents
);
4218 } else if (nextents
<= XFS_LINEAR_EXTS
) {
4219 xfs_iext_indirect_to_direct(ifp
);
4220 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
4221 xfs_iext_irec_compact_pages(ifp
);
4226 * Combine extents from neighboring extent pages.
4229 xfs_iext_irec_compact_pages(
4230 xfs_ifork_t
*ifp
) /* inode fork pointer */
4232 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
4233 int erp_idx
= 0; /* indirection array index */
4234 int nlists
; /* number of irec's (ex lists) */
4236 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4237 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4238 while (erp_idx
< nlists
- 1) {
4239 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4241 if (erp_next
->er_extcount
<=
4242 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
4243 memcpy(&erp
->er_extbuf
[erp
->er_extcount
],
4244 erp_next
->er_extbuf
, erp_next
->er_extcount
*
4245 sizeof(xfs_bmbt_rec_t
));
4246 erp
->er_extcount
+= erp_next
->er_extcount
;
4248 * Free page before removing extent record
4249 * so er_extoffs don't get modified in
4250 * xfs_iext_irec_remove.
4252 kmem_free(erp_next
->er_extbuf
);
4253 erp_next
->er_extbuf
= NULL
;
4254 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4255 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4263 * This is called to update the er_extoff field in the indirection
4264 * array when extents have been added or removed from one of the
4265 * extent lists. erp_idx contains the irec index to begin updating
4266 * at and ext_diff contains the number of extents that were added
4270 xfs_iext_irec_update_extoffs(
4271 xfs_ifork_t
*ifp
, /* inode fork pointer */
4272 int erp_idx
, /* irec index to update */
4273 int ext_diff
) /* number of new extents */
4275 int i
; /* loop counter */
4276 int nlists
; /* number of irec's (ex lists */
4278 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4279 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4280 for (i
= erp_idx
; i
< nlists
; i
++) {
4281 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;