cpusets: replace zone allowed functions with node allowed
[linux-2.6/cjktty.git] / kernel / posix-cpu-timers.c
blob8e5d9a68b0222f0c028c42c059a39a736c636dba
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
13 * Called after updating RLIMIT_CPU to set timer expiration if necessary.
15 void update_rlimit_cpu(unsigned long rlim_new)
17 cputime_t cputime;
19 cputime = secs_to_cputime(rlim_new);
20 if (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
21 cputime_lt(current->signal->it_prof_expires, cputime)) {
22 spin_lock_irq(&current->sighand->siglock);
23 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
24 spin_unlock_irq(&current->sighand->siglock);
28 static int check_clock(const clockid_t which_clock)
30 int error = 0;
31 struct task_struct *p;
32 const pid_t pid = CPUCLOCK_PID(which_clock);
34 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
35 return -EINVAL;
37 if (pid == 0)
38 return 0;
40 read_lock(&tasklist_lock);
41 p = find_task_by_vpid(pid);
42 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
43 same_thread_group(p, current) : thread_group_leader(p))) {
44 error = -EINVAL;
46 read_unlock(&tasklist_lock);
48 return error;
51 static inline union cpu_time_count
52 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
54 union cpu_time_count ret;
55 ret.sched = 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
57 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
58 } else {
59 ret.cpu = timespec_to_cputime(tp);
61 return ret;
64 static void sample_to_timespec(const clockid_t which_clock,
65 union cpu_time_count cpu,
66 struct timespec *tp)
68 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
69 *tp = ns_to_timespec(cpu.sched);
70 else
71 cputime_to_timespec(cpu.cpu, tp);
74 static inline int cpu_time_before(const clockid_t which_clock,
75 union cpu_time_count now,
76 union cpu_time_count then)
78 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
79 return now.sched < then.sched;
80 } else {
81 return cputime_lt(now.cpu, then.cpu);
84 static inline void cpu_time_add(const clockid_t which_clock,
85 union cpu_time_count *acc,
86 union cpu_time_count val)
88 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
89 acc->sched += val.sched;
90 } else {
91 acc->cpu = cputime_add(acc->cpu, val.cpu);
94 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
95 union cpu_time_count a,
96 union cpu_time_count b)
98 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
99 a.sched -= b.sched;
100 } else {
101 a.cpu = cputime_sub(a.cpu, b.cpu);
103 return a;
107 * Divide and limit the result to res >= 1
109 * This is necessary to prevent signal delivery starvation, when the result of
110 * the division would be rounded down to 0.
112 static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
114 cputime_t res = cputime_div(time, div);
116 return max_t(cputime_t, res, 1);
120 * Update expiry time from increment, and increase overrun count,
121 * given the current clock sample.
123 static void bump_cpu_timer(struct k_itimer *timer,
124 union cpu_time_count now)
126 int i;
128 if (timer->it.cpu.incr.sched == 0)
129 return;
131 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
132 unsigned long long delta, incr;
134 if (now.sched < timer->it.cpu.expires.sched)
135 return;
136 incr = timer->it.cpu.incr.sched;
137 delta = now.sched + incr - timer->it.cpu.expires.sched;
138 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139 for (i = 0; incr < delta - incr; i++)
140 incr = incr << 1;
141 for (; i >= 0; incr >>= 1, i--) {
142 if (delta < incr)
143 continue;
144 timer->it.cpu.expires.sched += incr;
145 timer->it_overrun += 1 << i;
146 delta -= incr;
148 } else {
149 cputime_t delta, incr;
151 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
152 return;
153 incr = timer->it.cpu.incr.cpu;
154 delta = cputime_sub(cputime_add(now.cpu, incr),
155 timer->it.cpu.expires.cpu);
156 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
158 incr = cputime_add(incr, incr);
159 for (; i >= 0; incr = cputime_halve(incr), i--) {
160 if (cputime_lt(delta, incr))
161 continue;
162 timer->it.cpu.expires.cpu =
163 cputime_add(timer->it.cpu.expires.cpu, incr);
164 timer->it_overrun += 1 << i;
165 delta = cputime_sub(delta, incr);
170 static inline cputime_t prof_ticks(struct task_struct *p)
172 return cputime_add(p->utime, p->stime);
174 static inline cputime_t virt_ticks(struct task_struct *p)
176 return p->utime;
179 int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
181 int error = check_clock(which_clock);
182 if (!error) {
183 tp->tv_sec = 0;
184 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
185 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
187 * If sched_clock is using a cycle counter, we
188 * don't have any idea of its true resolution
189 * exported, but it is much more than 1s/HZ.
191 tp->tv_nsec = 1;
194 return error;
197 int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
200 * You can never reset a CPU clock, but we check for other errors
201 * in the call before failing with EPERM.
203 int error = check_clock(which_clock);
204 if (error == 0) {
205 error = -EPERM;
207 return error;
212 * Sample a per-thread clock for the given task.
214 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
215 union cpu_time_count *cpu)
217 switch (CPUCLOCK_WHICH(which_clock)) {
218 default:
219 return -EINVAL;
220 case CPUCLOCK_PROF:
221 cpu->cpu = prof_ticks(p);
222 break;
223 case CPUCLOCK_VIRT:
224 cpu->cpu = virt_ticks(p);
225 break;
226 case CPUCLOCK_SCHED:
227 cpu->sched = p->se.sum_exec_runtime + task_delta_exec(p);
228 break;
230 return 0;
233 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
235 struct sighand_struct *sighand;
236 struct signal_struct *sig;
237 struct task_struct *t;
239 *times = INIT_CPUTIME;
241 rcu_read_lock();
242 sighand = rcu_dereference(tsk->sighand);
243 if (!sighand)
244 goto out;
246 sig = tsk->signal;
248 t = tsk;
249 do {
250 times->utime = cputime_add(times->utime, t->utime);
251 times->stime = cputime_add(times->stime, t->stime);
252 times->sum_exec_runtime += t->se.sum_exec_runtime;
254 t = next_thread(t);
255 } while (t != tsk);
257 times->utime = cputime_add(times->utime, sig->utime);
258 times->stime = cputime_add(times->stime, sig->stime);
259 times->sum_exec_runtime += sig->sum_sched_runtime;
260 out:
261 rcu_read_unlock();
264 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
266 if (cputime_gt(b->utime, a->utime))
267 a->utime = b->utime;
269 if (cputime_gt(b->stime, a->stime))
270 a->stime = b->stime;
272 if (b->sum_exec_runtime > a->sum_exec_runtime)
273 a->sum_exec_runtime = b->sum_exec_runtime;
276 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
278 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
279 struct task_cputime sum;
280 unsigned long flags;
282 spin_lock_irqsave(&cputimer->lock, flags);
283 if (!cputimer->running) {
284 cputimer->running = 1;
286 * The POSIX timer interface allows for absolute time expiry
287 * values through the TIMER_ABSTIME flag, therefore we have
288 * to synchronize the timer to the clock every time we start
289 * it.
291 thread_group_cputime(tsk, &sum);
292 update_gt_cputime(&cputimer->cputime, &sum);
294 *times = cputimer->cputime;
295 spin_unlock_irqrestore(&cputimer->lock, flags);
299 * Sample a process (thread group) clock for the given group_leader task.
300 * Must be called with tasklist_lock held for reading.
302 static int cpu_clock_sample_group(const clockid_t which_clock,
303 struct task_struct *p,
304 union cpu_time_count *cpu)
306 struct task_cputime cputime;
308 thread_group_cputime(p, &cputime);
309 switch (CPUCLOCK_WHICH(which_clock)) {
310 default:
311 return -EINVAL;
312 case CPUCLOCK_PROF:
313 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
314 break;
315 case CPUCLOCK_VIRT:
316 cpu->cpu = cputime.utime;
317 break;
318 case CPUCLOCK_SCHED:
319 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
320 break;
322 return 0;
326 int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
328 const pid_t pid = CPUCLOCK_PID(which_clock);
329 int error = -EINVAL;
330 union cpu_time_count rtn;
332 if (pid == 0) {
334 * Special case constant value for our own clocks.
335 * We don't have to do any lookup to find ourselves.
337 if (CPUCLOCK_PERTHREAD(which_clock)) {
339 * Sampling just ourselves we can do with no locking.
341 error = cpu_clock_sample(which_clock,
342 current, &rtn);
343 } else {
344 read_lock(&tasklist_lock);
345 error = cpu_clock_sample_group(which_clock,
346 current, &rtn);
347 read_unlock(&tasklist_lock);
349 } else {
351 * Find the given PID, and validate that the caller
352 * should be able to see it.
354 struct task_struct *p;
355 rcu_read_lock();
356 p = find_task_by_vpid(pid);
357 if (p) {
358 if (CPUCLOCK_PERTHREAD(which_clock)) {
359 if (same_thread_group(p, current)) {
360 error = cpu_clock_sample(which_clock,
361 p, &rtn);
363 } else {
364 read_lock(&tasklist_lock);
365 if (thread_group_leader(p) && p->signal) {
366 error =
367 cpu_clock_sample_group(which_clock,
368 p, &rtn);
370 read_unlock(&tasklist_lock);
373 rcu_read_unlock();
376 if (error)
377 return error;
378 sample_to_timespec(which_clock, rtn, tp);
379 return 0;
384 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
385 * This is called from sys_timer_create with the new timer already locked.
387 int posix_cpu_timer_create(struct k_itimer *new_timer)
389 int ret = 0;
390 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
391 struct task_struct *p;
393 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
394 return -EINVAL;
396 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
397 new_timer->it.cpu.incr.sched = 0;
398 new_timer->it.cpu.expires.sched = 0;
400 read_lock(&tasklist_lock);
401 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
402 if (pid == 0) {
403 p = current;
404 } else {
405 p = find_task_by_vpid(pid);
406 if (p && !same_thread_group(p, current))
407 p = NULL;
409 } else {
410 if (pid == 0) {
411 p = current->group_leader;
412 } else {
413 p = find_task_by_vpid(pid);
414 if (p && !thread_group_leader(p))
415 p = NULL;
418 new_timer->it.cpu.task = p;
419 if (p) {
420 get_task_struct(p);
421 } else {
422 ret = -EINVAL;
424 read_unlock(&tasklist_lock);
426 return ret;
430 * Clean up a CPU-clock timer that is about to be destroyed.
431 * This is called from timer deletion with the timer already locked.
432 * If we return TIMER_RETRY, it's necessary to release the timer's lock
433 * and try again. (This happens when the timer is in the middle of firing.)
435 int posix_cpu_timer_del(struct k_itimer *timer)
437 struct task_struct *p = timer->it.cpu.task;
438 int ret = 0;
440 if (likely(p != NULL)) {
441 read_lock(&tasklist_lock);
442 if (unlikely(p->signal == NULL)) {
444 * We raced with the reaping of the task.
445 * The deletion should have cleared us off the list.
447 BUG_ON(!list_empty(&timer->it.cpu.entry));
448 } else {
449 spin_lock(&p->sighand->siglock);
450 if (timer->it.cpu.firing)
451 ret = TIMER_RETRY;
452 else
453 list_del(&timer->it.cpu.entry);
454 spin_unlock(&p->sighand->siglock);
456 read_unlock(&tasklist_lock);
458 if (!ret)
459 put_task_struct(p);
462 return ret;
466 * Clean out CPU timers still ticking when a thread exited. The task
467 * pointer is cleared, and the expiry time is replaced with the residual
468 * time for later timer_gettime calls to return.
469 * This must be called with the siglock held.
471 static void cleanup_timers(struct list_head *head,
472 cputime_t utime, cputime_t stime,
473 unsigned long long sum_exec_runtime)
475 struct cpu_timer_list *timer, *next;
476 cputime_t ptime = cputime_add(utime, stime);
478 list_for_each_entry_safe(timer, next, head, entry) {
479 list_del_init(&timer->entry);
480 if (cputime_lt(timer->expires.cpu, ptime)) {
481 timer->expires.cpu = cputime_zero;
482 } else {
483 timer->expires.cpu = cputime_sub(timer->expires.cpu,
484 ptime);
488 ++head;
489 list_for_each_entry_safe(timer, next, head, entry) {
490 list_del_init(&timer->entry);
491 if (cputime_lt(timer->expires.cpu, utime)) {
492 timer->expires.cpu = cputime_zero;
493 } else {
494 timer->expires.cpu = cputime_sub(timer->expires.cpu,
495 utime);
499 ++head;
500 list_for_each_entry_safe(timer, next, head, entry) {
501 list_del_init(&timer->entry);
502 if (timer->expires.sched < sum_exec_runtime) {
503 timer->expires.sched = 0;
504 } else {
505 timer->expires.sched -= sum_exec_runtime;
511 * These are both called with the siglock held, when the current thread
512 * is being reaped. When the final (leader) thread in the group is reaped,
513 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
515 void posix_cpu_timers_exit(struct task_struct *tsk)
517 cleanup_timers(tsk->cpu_timers,
518 tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
521 void posix_cpu_timers_exit_group(struct task_struct *tsk)
523 struct task_cputime cputime;
525 thread_group_cputimer(tsk, &cputime);
526 cleanup_timers(tsk->signal->cpu_timers,
527 cputime.utime, cputime.stime, cputime.sum_exec_runtime);
530 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
533 * That's all for this thread or process.
534 * We leave our residual in expires to be reported.
536 put_task_struct(timer->it.cpu.task);
537 timer->it.cpu.task = NULL;
538 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
539 timer->it.cpu.expires,
540 now);
544 * Insert the timer on the appropriate list before any timers that
545 * expire later. This must be called with the tasklist_lock held
546 * for reading, and interrupts disabled.
548 static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
550 struct task_struct *p = timer->it.cpu.task;
551 struct list_head *head, *listpos;
552 struct cpu_timer_list *const nt = &timer->it.cpu;
553 struct cpu_timer_list *next;
554 unsigned long i;
556 head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
557 p->cpu_timers : p->signal->cpu_timers);
558 head += CPUCLOCK_WHICH(timer->it_clock);
560 BUG_ON(!irqs_disabled());
561 spin_lock(&p->sighand->siglock);
563 listpos = head;
564 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
565 list_for_each_entry(next, head, entry) {
566 if (next->expires.sched > nt->expires.sched)
567 break;
568 listpos = &next->entry;
570 } else {
571 list_for_each_entry(next, head, entry) {
572 if (cputime_gt(next->expires.cpu, nt->expires.cpu))
573 break;
574 listpos = &next->entry;
577 list_add(&nt->entry, listpos);
579 if (listpos == head) {
581 * We are the new earliest-expiring timer.
582 * If we are a thread timer, there can always
583 * be a process timer telling us to stop earlier.
586 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
587 switch (CPUCLOCK_WHICH(timer->it_clock)) {
588 default:
589 BUG();
590 case CPUCLOCK_PROF:
591 if (cputime_eq(p->cputime_expires.prof_exp,
592 cputime_zero) ||
593 cputime_gt(p->cputime_expires.prof_exp,
594 nt->expires.cpu))
595 p->cputime_expires.prof_exp =
596 nt->expires.cpu;
597 break;
598 case CPUCLOCK_VIRT:
599 if (cputime_eq(p->cputime_expires.virt_exp,
600 cputime_zero) ||
601 cputime_gt(p->cputime_expires.virt_exp,
602 nt->expires.cpu))
603 p->cputime_expires.virt_exp =
604 nt->expires.cpu;
605 break;
606 case CPUCLOCK_SCHED:
607 if (p->cputime_expires.sched_exp == 0 ||
608 p->cputime_expires.sched_exp >
609 nt->expires.sched)
610 p->cputime_expires.sched_exp =
611 nt->expires.sched;
612 break;
614 } else {
616 * For a process timer, set the cached expiration time.
618 switch (CPUCLOCK_WHICH(timer->it_clock)) {
619 default:
620 BUG();
621 case CPUCLOCK_VIRT:
622 if (!cputime_eq(p->signal->it_virt_expires,
623 cputime_zero) &&
624 cputime_lt(p->signal->it_virt_expires,
625 timer->it.cpu.expires.cpu))
626 break;
627 p->signal->cputime_expires.virt_exp =
628 timer->it.cpu.expires.cpu;
629 break;
630 case CPUCLOCK_PROF:
631 if (!cputime_eq(p->signal->it_prof_expires,
632 cputime_zero) &&
633 cputime_lt(p->signal->it_prof_expires,
634 timer->it.cpu.expires.cpu))
635 break;
636 i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
637 if (i != RLIM_INFINITY &&
638 i <= cputime_to_secs(timer->it.cpu.expires.cpu))
639 break;
640 p->signal->cputime_expires.prof_exp =
641 timer->it.cpu.expires.cpu;
642 break;
643 case CPUCLOCK_SCHED:
644 p->signal->cputime_expires.sched_exp =
645 timer->it.cpu.expires.sched;
646 break;
651 spin_unlock(&p->sighand->siglock);
655 * The timer is locked, fire it and arrange for its reload.
657 static void cpu_timer_fire(struct k_itimer *timer)
659 if (unlikely(timer->sigq == NULL)) {
661 * This a special case for clock_nanosleep,
662 * not a normal timer from sys_timer_create.
664 wake_up_process(timer->it_process);
665 timer->it.cpu.expires.sched = 0;
666 } else if (timer->it.cpu.incr.sched == 0) {
668 * One-shot timer. Clear it as soon as it's fired.
670 posix_timer_event(timer, 0);
671 timer->it.cpu.expires.sched = 0;
672 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
674 * The signal did not get queued because the signal
675 * was ignored, so we won't get any callback to
676 * reload the timer. But we need to keep it
677 * ticking in case the signal is deliverable next time.
679 posix_cpu_timer_schedule(timer);
684 * Sample a process (thread group) timer for the given group_leader task.
685 * Must be called with tasklist_lock held for reading.
687 static int cpu_timer_sample_group(const clockid_t which_clock,
688 struct task_struct *p,
689 union cpu_time_count *cpu)
691 struct task_cputime cputime;
693 thread_group_cputimer(p, &cputime);
694 switch (CPUCLOCK_WHICH(which_clock)) {
695 default:
696 return -EINVAL;
697 case CPUCLOCK_PROF:
698 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
699 break;
700 case CPUCLOCK_VIRT:
701 cpu->cpu = cputime.utime;
702 break;
703 case CPUCLOCK_SCHED:
704 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
705 break;
707 return 0;
711 * Guts of sys_timer_settime for CPU timers.
712 * This is called with the timer locked and interrupts disabled.
713 * If we return TIMER_RETRY, it's necessary to release the timer's lock
714 * and try again. (This happens when the timer is in the middle of firing.)
716 int posix_cpu_timer_set(struct k_itimer *timer, int flags,
717 struct itimerspec *new, struct itimerspec *old)
719 struct task_struct *p = timer->it.cpu.task;
720 union cpu_time_count old_expires, new_expires, val;
721 int ret;
723 if (unlikely(p == NULL)) {
725 * Timer refers to a dead task's clock.
727 return -ESRCH;
730 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
732 read_lock(&tasklist_lock);
734 * We need the tasklist_lock to protect against reaping that
735 * clears p->signal. If p has just been reaped, we can no
736 * longer get any information about it at all.
738 if (unlikely(p->signal == NULL)) {
739 read_unlock(&tasklist_lock);
740 put_task_struct(p);
741 timer->it.cpu.task = NULL;
742 return -ESRCH;
746 * Disarm any old timer after extracting its expiry time.
748 BUG_ON(!irqs_disabled());
750 ret = 0;
751 spin_lock(&p->sighand->siglock);
752 old_expires = timer->it.cpu.expires;
753 if (unlikely(timer->it.cpu.firing)) {
754 timer->it.cpu.firing = -1;
755 ret = TIMER_RETRY;
756 } else
757 list_del_init(&timer->it.cpu.entry);
758 spin_unlock(&p->sighand->siglock);
761 * We need to sample the current value to convert the new
762 * value from to relative and absolute, and to convert the
763 * old value from absolute to relative. To set a process
764 * timer, we need a sample to balance the thread expiry
765 * times (in arm_timer). With an absolute time, we must
766 * check if it's already passed. In short, we need a sample.
768 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
769 cpu_clock_sample(timer->it_clock, p, &val);
770 } else {
771 cpu_timer_sample_group(timer->it_clock, p, &val);
774 if (old) {
775 if (old_expires.sched == 0) {
776 old->it_value.tv_sec = 0;
777 old->it_value.tv_nsec = 0;
778 } else {
780 * Update the timer in case it has
781 * overrun already. If it has,
782 * we'll report it as having overrun
783 * and with the next reloaded timer
784 * already ticking, though we are
785 * swallowing that pending
786 * notification here to install the
787 * new setting.
789 bump_cpu_timer(timer, val);
790 if (cpu_time_before(timer->it_clock, val,
791 timer->it.cpu.expires)) {
792 old_expires = cpu_time_sub(
793 timer->it_clock,
794 timer->it.cpu.expires, val);
795 sample_to_timespec(timer->it_clock,
796 old_expires,
797 &old->it_value);
798 } else {
799 old->it_value.tv_nsec = 1;
800 old->it_value.tv_sec = 0;
805 if (unlikely(ret)) {
807 * We are colliding with the timer actually firing.
808 * Punt after filling in the timer's old value, and
809 * disable this firing since we are already reporting
810 * it as an overrun (thanks to bump_cpu_timer above).
812 read_unlock(&tasklist_lock);
813 goto out;
816 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
817 cpu_time_add(timer->it_clock, &new_expires, val);
821 * Install the new expiry time (or zero).
822 * For a timer with no notification action, we don't actually
823 * arm the timer (we'll just fake it for timer_gettime).
825 timer->it.cpu.expires = new_expires;
826 if (new_expires.sched != 0 &&
827 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
828 cpu_time_before(timer->it_clock, val, new_expires)) {
829 arm_timer(timer, val);
832 read_unlock(&tasklist_lock);
835 * Install the new reload setting, and
836 * set up the signal and overrun bookkeeping.
838 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
839 &new->it_interval);
842 * This acts as a modification timestamp for the timer,
843 * so any automatic reload attempt will punt on seeing
844 * that we have reset the timer manually.
846 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
847 ~REQUEUE_PENDING;
848 timer->it_overrun_last = 0;
849 timer->it_overrun = -1;
851 if (new_expires.sched != 0 &&
852 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
853 !cpu_time_before(timer->it_clock, val, new_expires)) {
855 * The designated time already passed, so we notify
856 * immediately, even if the thread never runs to
857 * accumulate more time on this clock.
859 cpu_timer_fire(timer);
862 ret = 0;
863 out:
864 if (old) {
865 sample_to_timespec(timer->it_clock,
866 timer->it.cpu.incr, &old->it_interval);
868 return ret;
871 void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
873 union cpu_time_count now;
874 struct task_struct *p = timer->it.cpu.task;
875 int clear_dead;
878 * Easy part: convert the reload time.
880 sample_to_timespec(timer->it_clock,
881 timer->it.cpu.incr, &itp->it_interval);
883 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
884 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
885 return;
888 if (unlikely(p == NULL)) {
890 * This task already died and the timer will never fire.
891 * In this case, expires is actually the dead value.
893 dead:
894 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
895 &itp->it_value);
896 return;
900 * Sample the clock to take the difference with the expiry time.
902 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
903 cpu_clock_sample(timer->it_clock, p, &now);
904 clear_dead = p->exit_state;
905 } else {
906 read_lock(&tasklist_lock);
907 if (unlikely(p->signal == NULL)) {
909 * The process has been reaped.
910 * We can't even collect a sample any more.
911 * Call the timer disarmed, nothing else to do.
913 put_task_struct(p);
914 timer->it.cpu.task = NULL;
915 timer->it.cpu.expires.sched = 0;
916 read_unlock(&tasklist_lock);
917 goto dead;
918 } else {
919 cpu_timer_sample_group(timer->it_clock, p, &now);
920 clear_dead = (unlikely(p->exit_state) &&
921 thread_group_empty(p));
923 read_unlock(&tasklist_lock);
926 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
927 if (timer->it.cpu.incr.sched == 0 &&
928 cpu_time_before(timer->it_clock,
929 timer->it.cpu.expires, now)) {
931 * Do-nothing timer expired and has no reload,
932 * so it's as if it was never set.
934 timer->it.cpu.expires.sched = 0;
935 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
936 return;
939 * Account for any expirations and reloads that should
940 * have happened.
942 bump_cpu_timer(timer, now);
945 if (unlikely(clear_dead)) {
947 * We've noticed that the thread is dead, but
948 * not yet reaped. Take this opportunity to
949 * drop our task ref.
951 clear_dead_task(timer, now);
952 goto dead;
955 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
956 sample_to_timespec(timer->it_clock,
957 cpu_time_sub(timer->it_clock,
958 timer->it.cpu.expires, now),
959 &itp->it_value);
960 } else {
962 * The timer should have expired already, but the firing
963 * hasn't taken place yet. Say it's just about to expire.
965 itp->it_value.tv_nsec = 1;
966 itp->it_value.tv_sec = 0;
971 * Check for any per-thread CPU timers that have fired and move them off
972 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
973 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
975 static void check_thread_timers(struct task_struct *tsk,
976 struct list_head *firing)
978 int maxfire;
979 struct list_head *timers = tsk->cpu_timers;
980 struct signal_struct *const sig = tsk->signal;
982 maxfire = 20;
983 tsk->cputime_expires.prof_exp = cputime_zero;
984 while (!list_empty(timers)) {
985 struct cpu_timer_list *t = list_first_entry(timers,
986 struct cpu_timer_list,
987 entry);
988 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
989 tsk->cputime_expires.prof_exp = t->expires.cpu;
990 break;
992 t->firing = 1;
993 list_move_tail(&t->entry, firing);
996 ++timers;
997 maxfire = 20;
998 tsk->cputime_expires.virt_exp = cputime_zero;
999 while (!list_empty(timers)) {
1000 struct cpu_timer_list *t = list_first_entry(timers,
1001 struct cpu_timer_list,
1002 entry);
1003 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
1004 tsk->cputime_expires.virt_exp = t->expires.cpu;
1005 break;
1007 t->firing = 1;
1008 list_move_tail(&t->entry, firing);
1011 ++timers;
1012 maxfire = 20;
1013 tsk->cputime_expires.sched_exp = 0;
1014 while (!list_empty(timers)) {
1015 struct cpu_timer_list *t = list_first_entry(timers,
1016 struct cpu_timer_list,
1017 entry);
1018 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
1019 tsk->cputime_expires.sched_exp = t->expires.sched;
1020 break;
1022 t->firing = 1;
1023 list_move_tail(&t->entry, firing);
1027 * Check for the special case thread timers.
1029 if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) {
1030 unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max;
1031 unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur;
1033 if (hard != RLIM_INFINITY &&
1034 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
1036 * At the hard limit, we just die.
1037 * No need to calculate anything else now.
1039 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1040 return;
1042 if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) {
1044 * At the soft limit, send a SIGXCPU every second.
1046 if (sig->rlim[RLIMIT_RTTIME].rlim_cur
1047 < sig->rlim[RLIMIT_RTTIME].rlim_max) {
1048 sig->rlim[RLIMIT_RTTIME].rlim_cur +=
1049 USEC_PER_SEC;
1051 printk(KERN_INFO
1052 "RT Watchdog Timeout: %s[%d]\n",
1053 tsk->comm, task_pid_nr(tsk));
1054 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1059 static void stop_process_timers(struct task_struct *tsk)
1061 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
1062 unsigned long flags;
1064 if (!cputimer->running)
1065 return;
1067 spin_lock_irqsave(&cputimer->lock, flags);
1068 cputimer->running = 0;
1069 spin_unlock_irqrestore(&cputimer->lock, flags);
1073 * Check for any per-thread CPU timers that have fired and move them
1074 * off the tsk->*_timers list onto the firing list. Per-thread timers
1075 * have already been taken off.
1077 static void check_process_timers(struct task_struct *tsk,
1078 struct list_head *firing)
1080 int maxfire;
1081 struct signal_struct *const sig = tsk->signal;
1082 cputime_t utime, ptime, virt_expires, prof_expires;
1083 unsigned long long sum_sched_runtime, sched_expires;
1084 struct list_head *timers = sig->cpu_timers;
1085 struct task_cputime cputime;
1088 * Don't sample the current process CPU clocks if there are no timers.
1090 if (list_empty(&timers[CPUCLOCK_PROF]) &&
1091 cputime_eq(sig->it_prof_expires, cputime_zero) &&
1092 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1093 list_empty(&timers[CPUCLOCK_VIRT]) &&
1094 cputime_eq(sig->it_virt_expires, cputime_zero) &&
1095 list_empty(&timers[CPUCLOCK_SCHED])) {
1096 stop_process_timers(tsk);
1097 return;
1101 * Collect the current process totals.
1103 thread_group_cputimer(tsk, &cputime);
1104 utime = cputime.utime;
1105 ptime = cputime_add(utime, cputime.stime);
1106 sum_sched_runtime = cputime.sum_exec_runtime;
1107 maxfire = 20;
1108 prof_expires = cputime_zero;
1109 while (!list_empty(timers)) {
1110 struct cpu_timer_list *tl = list_first_entry(timers,
1111 struct cpu_timer_list,
1112 entry);
1113 if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1114 prof_expires = tl->expires.cpu;
1115 break;
1117 tl->firing = 1;
1118 list_move_tail(&tl->entry, firing);
1121 ++timers;
1122 maxfire = 20;
1123 virt_expires = cputime_zero;
1124 while (!list_empty(timers)) {
1125 struct cpu_timer_list *tl = list_first_entry(timers,
1126 struct cpu_timer_list,
1127 entry);
1128 if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1129 virt_expires = tl->expires.cpu;
1130 break;
1132 tl->firing = 1;
1133 list_move_tail(&tl->entry, firing);
1136 ++timers;
1137 maxfire = 20;
1138 sched_expires = 0;
1139 while (!list_empty(timers)) {
1140 struct cpu_timer_list *tl = list_first_entry(timers,
1141 struct cpu_timer_list,
1142 entry);
1143 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1144 sched_expires = tl->expires.sched;
1145 break;
1147 tl->firing = 1;
1148 list_move_tail(&tl->entry, firing);
1152 * Check for the special case process timers.
1154 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1155 if (cputime_ge(ptime, sig->it_prof_expires)) {
1156 /* ITIMER_PROF fires and reloads. */
1157 sig->it_prof_expires = sig->it_prof_incr;
1158 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1159 sig->it_prof_expires = cputime_add(
1160 sig->it_prof_expires, ptime);
1162 __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
1164 if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
1165 (cputime_eq(prof_expires, cputime_zero) ||
1166 cputime_lt(sig->it_prof_expires, prof_expires))) {
1167 prof_expires = sig->it_prof_expires;
1170 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1171 if (cputime_ge(utime, sig->it_virt_expires)) {
1172 /* ITIMER_VIRTUAL fires and reloads. */
1173 sig->it_virt_expires = sig->it_virt_incr;
1174 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1175 sig->it_virt_expires = cputime_add(
1176 sig->it_virt_expires, utime);
1178 __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
1180 if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
1181 (cputime_eq(virt_expires, cputime_zero) ||
1182 cputime_lt(sig->it_virt_expires, virt_expires))) {
1183 virt_expires = sig->it_virt_expires;
1186 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1187 unsigned long psecs = cputime_to_secs(ptime);
1188 cputime_t x;
1189 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1191 * At the hard limit, we just die.
1192 * No need to calculate anything else now.
1194 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1195 return;
1197 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1199 * At the soft limit, send a SIGXCPU every second.
1201 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1202 if (sig->rlim[RLIMIT_CPU].rlim_cur
1203 < sig->rlim[RLIMIT_CPU].rlim_max) {
1204 sig->rlim[RLIMIT_CPU].rlim_cur++;
1207 x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1208 if (cputime_eq(prof_expires, cputime_zero) ||
1209 cputime_lt(x, prof_expires)) {
1210 prof_expires = x;
1214 if (!cputime_eq(prof_expires, cputime_zero) &&
1215 (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
1216 cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
1217 sig->cputime_expires.prof_exp = prof_expires;
1218 if (!cputime_eq(virt_expires, cputime_zero) &&
1219 (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
1220 cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
1221 sig->cputime_expires.virt_exp = virt_expires;
1222 if (sched_expires != 0 &&
1223 (sig->cputime_expires.sched_exp == 0 ||
1224 sig->cputime_expires.sched_exp > sched_expires))
1225 sig->cputime_expires.sched_exp = sched_expires;
1229 * This is called from the signal code (via do_schedule_next_timer)
1230 * when the last timer signal was delivered and we have to reload the timer.
1232 void posix_cpu_timer_schedule(struct k_itimer *timer)
1234 struct task_struct *p = timer->it.cpu.task;
1235 union cpu_time_count now;
1237 if (unlikely(p == NULL))
1239 * The task was cleaned up already, no future firings.
1241 goto out;
1244 * Fetch the current sample and update the timer's expiry time.
1246 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1247 cpu_clock_sample(timer->it_clock, p, &now);
1248 bump_cpu_timer(timer, now);
1249 if (unlikely(p->exit_state)) {
1250 clear_dead_task(timer, now);
1251 goto out;
1253 read_lock(&tasklist_lock); /* arm_timer needs it. */
1254 } else {
1255 read_lock(&tasklist_lock);
1256 if (unlikely(p->signal == NULL)) {
1258 * The process has been reaped.
1259 * We can't even collect a sample any more.
1261 put_task_struct(p);
1262 timer->it.cpu.task = p = NULL;
1263 timer->it.cpu.expires.sched = 0;
1264 goto out_unlock;
1265 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1267 * We've noticed that the thread is dead, but
1268 * not yet reaped. Take this opportunity to
1269 * drop our task ref.
1271 clear_dead_task(timer, now);
1272 goto out_unlock;
1274 cpu_timer_sample_group(timer->it_clock, p, &now);
1275 bump_cpu_timer(timer, now);
1276 /* Leave the tasklist_lock locked for the call below. */
1280 * Now re-arm for the new expiry time.
1282 arm_timer(timer, now);
1284 out_unlock:
1285 read_unlock(&tasklist_lock);
1287 out:
1288 timer->it_overrun_last = timer->it_overrun;
1289 timer->it_overrun = -1;
1290 ++timer->it_requeue_pending;
1294 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1296 * @cputime: The struct to compare.
1298 * Checks @cputime to see if all fields are zero. Returns true if all fields
1299 * are zero, false if any field is nonzero.
1301 static inline int task_cputime_zero(const struct task_cputime *cputime)
1303 if (cputime_eq(cputime->utime, cputime_zero) &&
1304 cputime_eq(cputime->stime, cputime_zero) &&
1305 cputime->sum_exec_runtime == 0)
1306 return 1;
1307 return 0;
1311 * task_cputime_expired - Compare two task_cputime entities.
1313 * @sample: The task_cputime structure to be checked for expiration.
1314 * @expires: Expiration times, against which @sample will be checked.
1316 * Checks @sample against @expires to see if any field of @sample has expired.
1317 * Returns true if any field of the former is greater than the corresponding
1318 * field of the latter if the latter field is set. Otherwise returns false.
1320 static inline int task_cputime_expired(const struct task_cputime *sample,
1321 const struct task_cputime *expires)
1323 if (!cputime_eq(expires->utime, cputime_zero) &&
1324 cputime_ge(sample->utime, expires->utime))
1325 return 1;
1326 if (!cputime_eq(expires->stime, cputime_zero) &&
1327 cputime_ge(cputime_add(sample->utime, sample->stime),
1328 expires->stime))
1329 return 1;
1330 if (expires->sum_exec_runtime != 0 &&
1331 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1332 return 1;
1333 return 0;
1337 * fastpath_timer_check - POSIX CPU timers fast path.
1339 * @tsk: The task (thread) being checked.
1341 * Check the task and thread group timers. If both are zero (there are no
1342 * timers set) return false. Otherwise snapshot the task and thread group
1343 * timers and compare them with the corresponding expiration times. Return
1344 * true if a timer has expired, else return false.
1346 static inline int fastpath_timer_check(struct task_struct *tsk)
1348 struct signal_struct *sig;
1350 /* tsk == current, ensure it is safe to use ->signal/sighand */
1351 if (unlikely(tsk->exit_state))
1352 return 0;
1354 if (!task_cputime_zero(&tsk->cputime_expires)) {
1355 struct task_cputime task_sample = {
1356 .utime = tsk->utime,
1357 .stime = tsk->stime,
1358 .sum_exec_runtime = tsk->se.sum_exec_runtime
1361 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1362 return 1;
1365 sig = tsk->signal;
1366 if (!task_cputime_zero(&sig->cputime_expires)) {
1367 struct task_cputime group_sample;
1369 thread_group_cputimer(tsk, &group_sample);
1370 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1371 return 1;
1374 return sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY;
1378 * This is called from the timer interrupt handler. The irq handler has
1379 * already updated our counts. We need to check if any timers fire now.
1380 * Interrupts are disabled.
1382 void run_posix_cpu_timers(struct task_struct *tsk)
1384 LIST_HEAD(firing);
1385 struct k_itimer *timer, *next;
1387 BUG_ON(!irqs_disabled());
1390 * The fast path checks that there are no expired thread or thread
1391 * group timers. If that's so, just return.
1393 if (!fastpath_timer_check(tsk))
1394 return;
1396 spin_lock(&tsk->sighand->siglock);
1398 * Here we take off tsk->signal->cpu_timers[N] and
1399 * tsk->cpu_timers[N] all the timers that are firing, and
1400 * put them on the firing list.
1402 check_thread_timers(tsk, &firing);
1403 check_process_timers(tsk, &firing);
1406 * We must release these locks before taking any timer's lock.
1407 * There is a potential race with timer deletion here, as the
1408 * siglock now protects our private firing list. We have set
1409 * the firing flag in each timer, so that a deletion attempt
1410 * that gets the timer lock before we do will give it up and
1411 * spin until we've taken care of that timer below.
1413 spin_unlock(&tsk->sighand->siglock);
1416 * Now that all the timers on our list have the firing flag,
1417 * noone will touch their list entries but us. We'll take
1418 * each timer's lock before clearing its firing flag, so no
1419 * timer call will interfere.
1421 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1422 int firing;
1423 spin_lock(&timer->it_lock);
1424 list_del_init(&timer->it.cpu.entry);
1425 firing = timer->it.cpu.firing;
1426 timer->it.cpu.firing = 0;
1428 * The firing flag is -1 if we collided with a reset
1429 * of the timer, which already reported this
1430 * almost-firing as an overrun. So don't generate an event.
1432 if (likely(firing >= 0)) {
1433 cpu_timer_fire(timer);
1435 spin_unlock(&timer->it_lock);
1440 * Set one of the process-wide special case CPU timers.
1441 * The tsk->sighand->siglock must be held by the caller.
1442 * The *newval argument is relative and we update it to be absolute, *oldval
1443 * is absolute and we update it to be relative.
1445 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1446 cputime_t *newval, cputime_t *oldval)
1448 union cpu_time_count now;
1449 struct list_head *head;
1451 BUG_ON(clock_idx == CPUCLOCK_SCHED);
1452 cpu_timer_sample_group(clock_idx, tsk, &now);
1454 if (oldval) {
1455 if (!cputime_eq(*oldval, cputime_zero)) {
1456 if (cputime_le(*oldval, now.cpu)) {
1457 /* Just about to fire. */
1458 *oldval = jiffies_to_cputime(1);
1459 } else {
1460 *oldval = cputime_sub(*oldval, now.cpu);
1464 if (cputime_eq(*newval, cputime_zero))
1465 return;
1466 *newval = cputime_add(*newval, now.cpu);
1469 * If the RLIMIT_CPU timer will expire before the
1470 * ITIMER_PROF timer, we have nothing else to do.
1472 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1473 < cputime_to_secs(*newval))
1474 return;
1478 * Check whether there are any process timers already set to fire
1479 * before this one. If so, we don't have anything more to do.
1481 head = &tsk->signal->cpu_timers[clock_idx];
1482 if (list_empty(head) ||
1483 cputime_ge(list_first_entry(head,
1484 struct cpu_timer_list, entry)->expires.cpu,
1485 *newval)) {
1486 switch (clock_idx) {
1487 case CPUCLOCK_PROF:
1488 tsk->signal->cputime_expires.prof_exp = *newval;
1489 break;
1490 case CPUCLOCK_VIRT:
1491 tsk->signal->cputime_expires.virt_exp = *newval;
1492 break;
1497 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1498 struct timespec *rqtp, struct itimerspec *it)
1500 struct k_itimer timer;
1501 int error;
1504 * Set up a temporary timer and then wait for it to go off.
1506 memset(&timer, 0, sizeof timer);
1507 spin_lock_init(&timer.it_lock);
1508 timer.it_clock = which_clock;
1509 timer.it_overrun = -1;
1510 error = posix_cpu_timer_create(&timer);
1511 timer.it_process = current;
1512 if (!error) {
1513 static struct itimerspec zero_it;
1515 memset(it, 0, sizeof *it);
1516 it->it_value = *rqtp;
1518 spin_lock_irq(&timer.it_lock);
1519 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1520 if (error) {
1521 spin_unlock_irq(&timer.it_lock);
1522 return error;
1525 while (!signal_pending(current)) {
1526 if (timer.it.cpu.expires.sched == 0) {
1528 * Our timer fired and was reset.
1530 spin_unlock_irq(&timer.it_lock);
1531 return 0;
1535 * Block until cpu_timer_fire (or a signal) wakes us.
1537 __set_current_state(TASK_INTERRUPTIBLE);
1538 spin_unlock_irq(&timer.it_lock);
1539 schedule();
1540 spin_lock_irq(&timer.it_lock);
1544 * We were interrupted by a signal.
1546 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1547 posix_cpu_timer_set(&timer, 0, &zero_it, it);
1548 spin_unlock_irq(&timer.it_lock);
1550 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1552 * It actually did fire already.
1554 return 0;
1557 error = -ERESTART_RESTARTBLOCK;
1560 return error;
1563 int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1564 struct timespec *rqtp, struct timespec __user *rmtp)
1566 struct restart_block *restart_block =
1567 &current_thread_info()->restart_block;
1568 struct itimerspec it;
1569 int error;
1572 * Diagnose required errors first.
1574 if (CPUCLOCK_PERTHREAD(which_clock) &&
1575 (CPUCLOCK_PID(which_clock) == 0 ||
1576 CPUCLOCK_PID(which_clock) == current->pid))
1577 return -EINVAL;
1579 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1581 if (error == -ERESTART_RESTARTBLOCK) {
1583 if (flags & TIMER_ABSTIME)
1584 return -ERESTARTNOHAND;
1586 * Report back to the user the time still remaining.
1588 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1589 return -EFAULT;
1591 restart_block->fn = posix_cpu_nsleep_restart;
1592 restart_block->arg0 = which_clock;
1593 restart_block->arg1 = (unsigned long) rmtp;
1594 restart_block->arg2 = rqtp->tv_sec;
1595 restart_block->arg3 = rqtp->tv_nsec;
1597 return error;
1600 long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1602 clockid_t which_clock = restart_block->arg0;
1603 struct timespec __user *rmtp;
1604 struct timespec t;
1605 struct itimerspec it;
1606 int error;
1608 rmtp = (struct timespec __user *) restart_block->arg1;
1609 t.tv_sec = restart_block->arg2;
1610 t.tv_nsec = restart_block->arg3;
1612 restart_block->fn = do_no_restart_syscall;
1613 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1615 if (error == -ERESTART_RESTARTBLOCK) {
1617 * Report back to the user the time still remaining.
1619 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1620 return -EFAULT;
1622 restart_block->fn = posix_cpu_nsleep_restart;
1623 restart_block->arg0 = which_clock;
1624 restart_block->arg1 = (unsigned long) rmtp;
1625 restart_block->arg2 = t.tv_sec;
1626 restart_block->arg3 = t.tv_nsec;
1628 return error;
1633 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1634 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1636 static int process_cpu_clock_getres(const clockid_t which_clock,
1637 struct timespec *tp)
1639 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1641 static int process_cpu_clock_get(const clockid_t which_clock,
1642 struct timespec *tp)
1644 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1646 static int process_cpu_timer_create(struct k_itimer *timer)
1648 timer->it_clock = PROCESS_CLOCK;
1649 return posix_cpu_timer_create(timer);
1651 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1652 struct timespec *rqtp,
1653 struct timespec __user *rmtp)
1655 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1657 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1659 return -EINVAL;
1661 static int thread_cpu_clock_getres(const clockid_t which_clock,
1662 struct timespec *tp)
1664 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1666 static int thread_cpu_clock_get(const clockid_t which_clock,
1667 struct timespec *tp)
1669 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1671 static int thread_cpu_timer_create(struct k_itimer *timer)
1673 timer->it_clock = THREAD_CLOCK;
1674 return posix_cpu_timer_create(timer);
1676 static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
1677 struct timespec *rqtp, struct timespec __user *rmtp)
1679 return -EINVAL;
1681 static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1683 return -EINVAL;
1686 static __init int init_posix_cpu_timers(void)
1688 struct k_clock process = {
1689 .clock_getres = process_cpu_clock_getres,
1690 .clock_get = process_cpu_clock_get,
1691 .clock_set = do_posix_clock_nosettime,
1692 .timer_create = process_cpu_timer_create,
1693 .nsleep = process_cpu_nsleep,
1694 .nsleep_restart = process_cpu_nsleep_restart,
1696 struct k_clock thread = {
1697 .clock_getres = thread_cpu_clock_getres,
1698 .clock_get = thread_cpu_clock_get,
1699 .clock_set = do_posix_clock_nosettime,
1700 .timer_create = thread_cpu_timer_create,
1701 .nsleep = thread_cpu_nsleep,
1702 .nsleep_restart = thread_cpu_nsleep_restart,
1705 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1706 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1708 return 0;
1710 __initcall(init_posix_cpu_timers);