4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
39 #include <linux/memory.h>
40 #include <linux/module.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
57 #include <asm/uaccess.h>
58 #include <asm/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
64 * Workqueue for cpuset related tasks.
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
69 static struct workqueue_struct
*cpuset_wq
;
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
76 int number_of_cpusets __read_mostly
;
78 /* Forward declare cgroup structures */
79 struct cgroup_subsys cpuset_subsys
;
82 /* See "Frequency meter" comments, below. */
85 int cnt
; /* unprocessed events count */
86 int val
; /* most recent output value */
87 time_t time
; /* clock (secs) when val computed */
88 spinlock_t lock
; /* guards read or write of above */
92 struct cgroup_subsys_state css
;
94 unsigned long flags
; /* "unsigned long" so bitops work */
95 cpumask_var_t cpus_allowed
; /* CPUs allowed to tasks in cpuset */
96 nodemask_t mems_allowed
; /* Memory Nodes allowed to tasks */
98 struct cpuset
*parent
; /* my parent */
101 * Copy of global cpuset_mems_generation as of the most
102 * recent time this cpuset changed its mems_allowed.
106 struct fmeter fmeter
; /* memory_pressure filter */
108 /* partition number for rebuild_sched_domains() */
111 /* for custom sched domain */
112 int relax_domain_level
;
114 /* used for walking a cpuset heirarchy */
115 struct list_head stack_list
;
118 /* Retrieve the cpuset for a cgroup */
119 static inline struct cpuset
*cgroup_cs(struct cgroup
*cont
)
121 return container_of(cgroup_subsys_state(cont
, cpuset_subsys_id
),
125 /* Retrieve the cpuset for a task */
126 static inline struct cpuset
*task_cs(struct task_struct
*task
)
128 return container_of(task_subsys_state(task
, cpuset_subsys_id
),
132 /* bits in struct cpuset flags field */
138 CS_SCHED_LOAD_BALANCE
,
143 /* convenient tests for these bits */
144 static inline int is_cpu_exclusive(const struct cpuset
*cs
)
146 return test_bit(CS_CPU_EXCLUSIVE
, &cs
->flags
);
149 static inline int is_mem_exclusive(const struct cpuset
*cs
)
151 return test_bit(CS_MEM_EXCLUSIVE
, &cs
->flags
);
154 static inline int is_mem_hardwall(const struct cpuset
*cs
)
156 return test_bit(CS_MEM_HARDWALL
, &cs
->flags
);
159 static inline int is_sched_load_balance(const struct cpuset
*cs
)
161 return test_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
164 static inline int is_memory_migrate(const struct cpuset
*cs
)
166 return test_bit(CS_MEMORY_MIGRATE
, &cs
->flags
);
169 static inline int is_spread_page(const struct cpuset
*cs
)
171 return test_bit(CS_SPREAD_PAGE
, &cs
->flags
);
174 static inline int is_spread_slab(const struct cpuset
*cs
)
176 return test_bit(CS_SPREAD_SLAB
, &cs
->flags
);
180 * Increment this integer everytime any cpuset changes its
181 * mems_allowed value. Users of cpusets can track this generation
182 * number, and avoid having to lock and reload mems_allowed unless
183 * the cpuset they're using changes generation.
185 * A single, global generation is needed because cpuset_attach_task() could
186 * reattach a task to a different cpuset, which must not have its
187 * generation numbers aliased with those of that tasks previous cpuset.
189 * Generations are needed for mems_allowed because one task cannot
190 * modify another's memory placement. So we must enable every task,
191 * on every visit to __alloc_pages(), to efficiently check whether
192 * its current->cpuset->mems_allowed has changed, requiring an update
193 * of its current->mems_allowed.
195 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
196 * there is no need to mark it atomic.
198 static int cpuset_mems_generation
;
200 static struct cpuset top_cpuset
= {
201 .flags
= ((1 << CS_CPU_EXCLUSIVE
) | (1 << CS_MEM_EXCLUSIVE
)),
205 * There are two global mutexes guarding cpuset structures. The first
206 * is the main control groups cgroup_mutex, accessed via
207 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
208 * callback_mutex, below. They can nest. It is ok to first take
209 * cgroup_mutex, then nest callback_mutex. We also require taking
210 * task_lock() when dereferencing a task's cpuset pointer. See "The
211 * task_lock() exception", at the end of this comment.
213 * A task must hold both mutexes to modify cpusets. If a task
214 * holds cgroup_mutex, then it blocks others wanting that mutex,
215 * ensuring that it is the only task able to also acquire callback_mutex
216 * and be able to modify cpusets. It can perform various checks on
217 * the cpuset structure first, knowing nothing will change. It can
218 * also allocate memory while just holding cgroup_mutex. While it is
219 * performing these checks, various callback routines can briefly
220 * acquire callback_mutex to query cpusets. Once it is ready to make
221 * the changes, it takes callback_mutex, blocking everyone else.
223 * Calls to the kernel memory allocator can not be made while holding
224 * callback_mutex, as that would risk double tripping on callback_mutex
225 * from one of the callbacks into the cpuset code from within
228 * If a task is only holding callback_mutex, then it has read-only
231 * The task_struct fields mems_allowed and mems_generation may only
232 * be accessed in the context of that task, so require no locks.
234 * The cpuset_common_file_read() handlers only hold callback_mutex across
235 * small pieces of code, such as when reading out possibly multi-word
236 * cpumasks and nodemasks.
238 * Accessing a task's cpuset should be done in accordance with the
239 * guidelines for accessing subsystem state in kernel/cgroup.c
242 static DEFINE_MUTEX(callback_mutex
);
245 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
246 * buffers. They are statically allocated to prevent using excess stack
247 * when calling cpuset_print_task_mems_allowed().
249 #define CPUSET_NAME_LEN (128)
250 #define CPUSET_NODELIST_LEN (256)
251 static char cpuset_name
[CPUSET_NAME_LEN
];
252 static char cpuset_nodelist
[CPUSET_NODELIST_LEN
];
253 static DEFINE_SPINLOCK(cpuset_buffer_lock
);
256 * This is ugly, but preserves the userspace API for existing cpuset
257 * users. If someone tries to mount the "cpuset" filesystem, we
258 * silently switch it to mount "cgroup" instead
260 static int cpuset_get_sb(struct file_system_type
*fs_type
,
261 int flags
, const char *unused_dev_name
,
262 void *data
, struct vfsmount
*mnt
)
264 struct file_system_type
*cgroup_fs
= get_fs_type("cgroup");
269 "release_agent=/sbin/cpuset_release_agent";
270 ret
= cgroup_fs
->get_sb(cgroup_fs
, flags
,
271 unused_dev_name
, mountopts
, mnt
);
272 put_filesystem(cgroup_fs
);
277 static struct file_system_type cpuset_fs_type
= {
279 .get_sb
= cpuset_get_sb
,
283 * Return in pmask the portion of a cpusets's cpus_allowed that
284 * are online. If none are online, walk up the cpuset hierarchy
285 * until we find one that does have some online cpus. If we get
286 * all the way to the top and still haven't found any online cpus,
287 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
288 * task, return cpu_online_map.
290 * One way or another, we guarantee to return some non-empty subset
293 * Call with callback_mutex held.
296 static void guarantee_online_cpus(const struct cpuset
*cs
,
297 struct cpumask
*pmask
)
299 while (cs
&& !cpumask_intersects(cs
->cpus_allowed
, cpu_online_mask
))
302 cpumask_and(pmask
, cs
->cpus_allowed
, cpu_online_mask
);
304 cpumask_copy(pmask
, cpu_online_mask
);
305 BUG_ON(!cpumask_intersects(pmask
, cpu_online_mask
));
309 * Return in *pmask the portion of a cpusets's mems_allowed that
310 * are online, with memory. If none are online with memory, walk
311 * up the cpuset hierarchy until we find one that does have some
312 * online mems. If we get all the way to the top and still haven't
313 * found any online mems, return node_states[N_HIGH_MEMORY].
315 * One way or another, we guarantee to return some non-empty subset
316 * of node_states[N_HIGH_MEMORY].
318 * Call with callback_mutex held.
321 static void guarantee_online_mems(const struct cpuset
*cs
, nodemask_t
*pmask
)
323 while (cs
&& !nodes_intersects(cs
->mems_allowed
,
324 node_states
[N_HIGH_MEMORY
]))
327 nodes_and(*pmask
, cs
->mems_allowed
,
328 node_states
[N_HIGH_MEMORY
]);
330 *pmask
= node_states
[N_HIGH_MEMORY
];
331 BUG_ON(!nodes_intersects(*pmask
, node_states
[N_HIGH_MEMORY
]));
335 * cpuset_update_task_memory_state - update task memory placement
337 * If the current tasks cpusets mems_allowed changed behind our
338 * backs, update current->mems_allowed, mems_generation and task NUMA
339 * mempolicy to the new value.
341 * Task mempolicy is updated by rebinding it relative to the
342 * current->cpuset if a task has its memory placement changed.
343 * Do not call this routine if in_interrupt().
345 * Call without callback_mutex or task_lock() held. May be
346 * called with or without cgroup_mutex held. Thanks in part to
347 * 'the_top_cpuset_hack', the task's cpuset pointer will never
348 * be NULL. This routine also might acquire callback_mutex during
351 * Reading current->cpuset->mems_generation doesn't need task_lock
352 * to guard the current->cpuset derefence, because it is guarded
353 * from concurrent freeing of current->cpuset using RCU.
355 * The rcu_dereference() is technically probably not needed,
356 * as I don't actually mind if I see a new cpuset pointer but
357 * an old value of mems_generation. However this really only
358 * matters on alpha systems using cpusets heavily. If I dropped
359 * that rcu_dereference(), it would save them a memory barrier.
360 * For all other arch's, rcu_dereference is a no-op anyway, and for
361 * alpha systems not using cpusets, another planned optimization,
362 * avoiding the rcu critical section for tasks in the root cpuset
363 * which is statically allocated, so can't vanish, will make this
364 * irrelevant. Better to use RCU as intended, than to engage in
365 * some cute trick to save a memory barrier that is impossible to
366 * test, for alpha systems using cpusets heavily, which might not
369 * This routine is needed to update the per-task mems_allowed data,
370 * within the tasks context, when it is trying to allocate memory
371 * (in various mm/mempolicy.c routines) and notices that some other
372 * task has been modifying its cpuset.
375 void cpuset_update_task_memory_state(void)
377 int my_cpusets_mem_gen
;
378 struct task_struct
*tsk
= current
;
382 my_cpusets_mem_gen
= task_cs(tsk
)->mems_generation
;
385 if (my_cpusets_mem_gen
!= tsk
->cpuset_mems_generation
) {
386 mutex_lock(&callback_mutex
);
388 cs
= task_cs(tsk
); /* Maybe changed when task not locked */
389 guarantee_online_mems(cs
, &tsk
->mems_allowed
);
390 tsk
->cpuset_mems_generation
= cs
->mems_generation
;
391 if (is_spread_page(cs
))
392 tsk
->flags
|= PF_SPREAD_PAGE
;
394 tsk
->flags
&= ~PF_SPREAD_PAGE
;
395 if (is_spread_slab(cs
))
396 tsk
->flags
|= PF_SPREAD_SLAB
;
398 tsk
->flags
&= ~PF_SPREAD_SLAB
;
400 mutex_unlock(&callback_mutex
);
401 mpol_rebind_task(tsk
, &tsk
->mems_allowed
);
406 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
408 * One cpuset is a subset of another if all its allowed CPUs and
409 * Memory Nodes are a subset of the other, and its exclusive flags
410 * are only set if the other's are set. Call holding cgroup_mutex.
413 static int is_cpuset_subset(const struct cpuset
*p
, const struct cpuset
*q
)
415 return cpumask_subset(p
->cpus_allowed
, q
->cpus_allowed
) &&
416 nodes_subset(p
->mems_allowed
, q
->mems_allowed
) &&
417 is_cpu_exclusive(p
) <= is_cpu_exclusive(q
) &&
418 is_mem_exclusive(p
) <= is_mem_exclusive(q
);
422 * alloc_trial_cpuset - allocate a trial cpuset
423 * @cs: the cpuset that the trial cpuset duplicates
425 static struct cpuset
*alloc_trial_cpuset(const struct cpuset
*cs
)
427 struct cpuset
*trial
;
429 trial
= kmemdup(cs
, sizeof(*cs
), GFP_KERNEL
);
433 if (!alloc_cpumask_var(&trial
->cpus_allowed
, GFP_KERNEL
)) {
437 cpumask_copy(trial
->cpus_allowed
, cs
->cpus_allowed
);
443 * free_trial_cpuset - free the trial cpuset
444 * @trial: the trial cpuset to be freed
446 static void free_trial_cpuset(struct cpuset
*trial
)
448 free_cpumask_var(trial
->cpus_allowed
);
453 * validate_change() - Used to validate that any proposed cpuset change
454 * follows the structural rules for cpusets.
456 * If we replaced the flag and mask values of the current cpuset
457 * (cur) with those values in the trial cpuset (trial), would
458 * our various subset and exclusive rules still be valid? Presumes
461 * 'cur' is the address of an actual, in-use cpuset. Operations
462 * such as list traversal that depend on the actual address of the
463 * cpuset in the list must use cur below, not trial.
465 * 'trial' is the address of bulk structure copy of cur, with
466 * perhaps one or more of the fields cpus_allowed, mems_allowed,
467 * or flags changed to new, trial values.
469 * Return 0 if valid, -errno if not.
472 static int validate_change(const struct cpuset
*cur
, const struct cpuset
*trial
)
475 struct cpuset
*c
, *par
;
477 /* Each of our child cpusets must be a subset of us */
478 list_for_each_entry(cont
, &cur
->css
.cgroup
->children
, sibling
) {
479 if (!is_cpuset_subset(cgroup_cs(cont
), trial
))
483 /* Remaining checks don't apply to root cpuset */
484 if (cur
== &top_cpuset
)
489 /* We must be a subset of our parent cpuset */
490 if (!is_cpuset_subset(trial
, par
))
494 * If either I or some sibling (!= me) is exclusive, we can't
497 list_for_each_entry(cont
, &par
->css
.cgroup
->children
, sibling
) {
499 if ((is_cpu_exclusive(trial
) || is_cpu_exclusive(c
)) &&
501 cpumask_intersects(trial
->cpus_allowed
, c
->cpus_allowed
))
503 if ((is_mem_exclusive(trial
) || is_mem_exclusive(c
)) &&
505 nodes_intersects(trial
->mems_allowed
, c
->mems_allowed
))
509 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
510 if (cgroup_task_count(cur
->css
.cgroup
)) {
511 if (cpumask_empty(trial
->cpus_allowed
) ||
512 nodes_empty(trial
->mems_allowed
)) {
521 * Helper routine for generate_sched_domains().
522 * Do cpusets a, b have overlapping cpus_allowed masks?
524 static int cpusets_overlap(struct cpuset
*a
, struct cpuset
*b
)
526 return cpumask_intersects(a
->cpus_allowed
, b
->cpus_allowed
);
530 update_domain_attr(struct sched_domain_attr
*dattr
, struct cpuset
*c
)
532 if (dattr
->relax_domain_level
< c
->relax_domain_level
)
533 dattr
->relax_domain_level
= c
->relax_domain_level
;
538 update_domain_attr_tree(struct sched_domain_attr
*dattr
, struct cpuset
*c
)
542 list_add(&c
->stack_list
, &q
);
543 while (!list_empty(&q
)) {
546 struct cpuset
*child
;
548 cp
= list_first_entry(&q
, struct cpuset
, stack_list
);
551 if (cpumask_empty(cp
->cpus_allowed
))
554 if (is_sched_load_balance(cp
))
555 update_domain_attr(dattr
, cp
);
557 list_for_each_entry(cont
, &cp
->css
.cgroup
->children
, sibling
) {
558 child
= cgroup_cs(cont
);
559 list_add_tail(&child
->stack_list
, &q
);
565 * generate_sched_domains()
567 * This function builds a partial partition of the systems CPUs
568 * A 'partial partition' is a set of non-overlapping subsets whose
569 * union is a subset of that set.
570 * The output of this function needs to be passed to kernel/sched.c
571 * partition_sched_domains() routine, which will rebuild the scheduler's
572 * load balancing domains (sched domains) as specified by that partial
575 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
576 * for a background explanation of this.
578 * Does not return errors, on the theory that the callers of this
579 * routine would rather not worry about failures to rebuild sched
580 * domains when operating in the severe memory shortage situations
581 * that could cause allocation failures below.
583 * Must be called with cgroup_lock held.
585 * The three key local variables below are:
586 * q - a linked-list queue of cpuset pointers, used to implement a
587 * top-down scan of all cpusets. This scan loads a pointer
588 * to each cpuset marked is_sched_load_balance into the
589 * array 'csa'. For our purposes, rebuilding the schedulers
590 * sched domains, we can ignore !is_sched_load_balance cpusets.
591 * csa - (for CpuSet Array) Array of pointers to all the cpusets
592 * that need to be load balanced, for convenient iterative
593 * access by the subsequent code that finds the best partition,
594 * i.e the set of domains (subsets) of CPUs such that the
595 * cpus_allowed of every cpuset marked is_sched_load_balance
596 * is a subset of one of these domains, while there are as
597 * many such domains as possible, each as small as possible.
598 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
599 * the kernel/sched.c routine partition_sched_domains() in a
600 * convenient format, that can be easily compared to the prior
601 * value to determine what partition elements (sched domains)
602 * were changed (added or removed.)
604 * Finding the best partition (set of domains):
605 * The triple nested loops below over i, j, k scan over the
606 * load balanced cpusets (using the array of cpuset pointers in
607 * csa[]) looking for pairs of cpusets that have overlapping
608 * cpus_allowed, but which don't have the same 'pn' partition
609 * number and gives them in the same partition number. It keeps
610 * looping on the 'restart' label until it can no longer find
613 * The union of the cpus_allowed masks from the set of
614 * all cpusets having the same 'pn' value then form the one
615 * element of the partition (one sched domain) to be passed to
616 * partition_sched_domains().
618 /* FIXME: see the FIXME in partition_sched_domains() */
619 static int generate_sched_domains(struct cpumask
**domains
,
620 struct sched_domain_attr
**attributes
)
622 LIST_HEAD(q
); /* queue of cpusets to be scanned */
623 struct cpuset
*cp
; /* scans q */
624 struct cpuset
**csa
; /* array of all cpuset ptrs */
625 int csn
; /* how many cpuset ptrs in csa so far */
626 int i
, j
, k
; /* indices for partition finding loops */
627 struct cpumask
*doms
; /* resulting partition; i.e. sched domains */
628 struct sched_domain_attr
*dattr
; /* attributes for custom domains */
629 int ndoms
= 0; /* number of sched domains in result */
630 int nslot
; /* next empty doms[] struct cpumask slot */
636 /* Special case for the 99% of systems with one, full, sched domain */
637 if (is_sched_load_balance(&top_cpuset
)) {
638 doms
= kmalloc(cpumask_size(), GFP_KERNEL
);
642 dattr
= kmalloc(sizeof(struct sched_domain_attr
), GFP_KERNEL
);
644 *dattr
= SD_ATTR_INIT
;
645 update_domain_attr_tree(dattr
, &top_cpuset
);
647 cpumask_copy(doms
, top_cpuset
.cpus_allowed
);
653 csa
= kmalloc(number_of_cpusets
* sizeof(cp
), GFP_KERNEL
);
658 list_add(&top_cpuset
.stack_list
, &q
);
659 while (!list_empty(&q
)) {
661 struct cpuset
*child
; /* scans child cpusets of cp */
663 cp
= list_first_entry(&q
, struct cpuset
, stack_list
);
666 if (cpumask_empty(cp
->cpus_allowed
))
670 * All child cpusets contain a subset of the parent's cpus, so
671 * just skip them, and then we call update_domain_attr_tree()
672 * to calc relax_domain_level of the corresponding sched
675 if (is_sched_load_balance(cp
)) {
680 list_for_each_entry(cont
, &cp
->css
.cgroup
->children
, sibling
) {
681 child
= cgroup_cs(cont
);
682 list_add_tail(&child
->stack_list
, &q
);
686 for (i
= 0; i
< csn
; i
++)
691 /* Find the best partition (set of sched domains) */
692 for (i
= 0; i
< csn
; i
++) {
693 struct cpuset
*a
= csa
[i
];
696 for (j
= 0; j
< csn
; j
++) {
697 struct cpuset
*b
= csa
[j
];
700 if (apn
!= bpn
&& cpusets_overlap(a
, b
)) {
701 for (k
= 0; k
< csn
; k
++) {
702 struct cpuset
*c
= csa
[k
];
707 ndoms
--; /* one less element */
714 * Now we know how many domains to create.
715 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
717 doms
= kmalloc(ndoms
* cpumask_size(), GFP_KERNEL
);
722 * The rest of the code, including the scheduler, can deal with
723 * dattr==NULL case. No need to abort if alloc fails.
725 dattr
= kmalloc(ndoms
* sizeof(struct sched_domain_attr
), GFP_KERNEL
);
727 for (nslot
= 0, i
= 0; i
< csn
; i
++) {
728 struct cpuset
*a
= csa
[i
];
733 /* Skip completed partitions */
739 if (nslot
== ndoms
) {
740 static int warnings
= 10;
743 "rebuild_sched_domains confused:"
744 " nslot %d, ndoms %d, csn %d, i %d,"
746 nslot
, ndoms
, csn
, i
, apn
);
754 *(dattr
+ nslot
) = SD_ATTR_INIT
;
755 for (j
= i
; j
< csn
; j
++) {
756 struct cpuset
*b
= csa
[j
];
759 cpumask_or(dp
, dp
, b
->cpus_allowed
);
761 update_domain_attr_tree(dattr
+ nslot
, b
);
763 /* Done with this partition */
769 BUG_ON(nslot
!= ndoms
);
775 * Fallback to the default domain if kmalloc() failed.
776 * See comments in partition_sched_domains().
787 * Rebuild scheduler domains.
789 * Call with neither cgroup_mutex held nor within get_online_cpus().
790 * Takes both cgroup_mutex and get_online_cpus().
792 * Cannot be directly called from cpuset code handling changes
793 * to the cpuset pseudo-filesystem, because it cannot be called
794 * from code that already holds cgroup_mutex.
796 static void do_rebuild_sched_domains(struct work_struct
*unused
)
798 struct sched_domain_attr
*attr
;
799 struct cpumask
*doms
;
804 /* Generate domain masks and attrs */
806 ndoms
= generate_sched_domains(&doms
, &attr
);
809 /* Have scheduler rebuild the domains */
810 partition_sched_domains(ndoms
, doms
, attr
);
815 static DECLARE_WORK(rebuild_sched_domains_work
, do_rebuild_sched_domains
);
818 * Rebuild scheduler domains, asynchronously via workqueue.
820 * If the flag 'sched_load_balance' of any cpuset with non-empty
821 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
822 * which has that flag enabled, or if any cpuset with a non-empty
823 * 'cpus' is removed, then call this routine to rebuild the
824 * scheduler's dynamic sched domains.
826 * The rebuild_sched_domains() and partition_sched_domains()
827 * routines must nest cgroup_lock() inside get_online_cpus(),
828 * but such cpuset changes as these must nest that locking the
829 * other way, holding cgroup_lock() for much of the code.
831 * So in order to avoid an ABBA deadlock, the cpuset code handling
832 * these user changes delegates the actual sched domain rebuilding
833 * to a separate workqueue thread, which ends up processing the
834 * above do_rebuild_sched_domains() function.
836 static void async_rebuild_sched_domains(void)
838 queue_work(cpuset_wq
, &rebuild_sched_domains_work
);
842 * Accomplishes the same scheduler domain rebuild as the above
843 * async_rebuild_sched_domains(), however it directly calls the
844 * rebuild routine synchronously rather than calling it via an
845 * asynchronous work thread.
847 * This can only be called from code that is not holding
848 * cgroup_mutex (not nested in a cgroup_lock() call.)
850 void rebuild_sched_domains(void)
852 do_rebuild_sched_domains(NULL
);
856 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
858 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
860 * Call with cgroup_mutex held. May take callback_mutex during call.
861 * Called for each task in a cgroup by cgroup_scan_tasks().
862 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
863 * words, if its mask is not equal to its cpuset's mask).
865 static int cpuset_test_cpumask(struct task_struct
*tsk
,
866 struct cgroup_scanner
*scan
)
868 return !cpumask_equal(&tsk
->cpus_allowed
,
869 (cgroup_cs(scan
->cg
))->cpus_allowed
);
873 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
875 * @scan: struct cgroup_scanner containing the cgroup of the task
877 * Called by cgroup_scan_tasks() for each task in a cgroup whose
878 * cpus_allowed mask needs to be changed.
880 * We don't need to re-check for the cgroup/cpuset membership, since we're
881 * holding cgroup_lock() at this point.
883 static void cpuset_change_cpumask(struct task_struct
*tsk
,
884 struct cgroup_scanner
*scan
)
886 set_cpus_allowed_ptr(tsk
, ((cgroup_cs(scan
->cg
))->cpus_allowed
));
890 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
891 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
892 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
894 * Called with cgroup_mutex held
896 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
897 * calling callback functions for each.
899 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
902 static void update_tasks_cpumask(struct cpuset
*cs
, struct ptr_heap
*heap
)
904 struct cgroup_scanner scan
;
906 scan
.cg
= cs
->css
.cgroup
;
907 scan
.test_task
= cpuset_test_cpumask
;
908 scan
.process_task
= cpuset_change_cpumask
;
910 cgroup_scan_tasks(&scan
);
914 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
915 * @cs: the cpuset to consider
916 * @buf: buffer of cpu numbers written to this cpuset
918 static int update_cpumask(struct cpuset
*cs
, struct cpuset
*trialcs
,
921 struct ptr_heap heap
;
923 int is_load_balanced
;
925 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
926 if (cs
== &top_cpuset
)
930 * An empty cpus_allowed is ok only if the cpuset has no tasks.
931 * Since cpulist_parse() fails on an empty mask, we special case
932 * that parsing. The validate_change() call ensures that cpusets
933 * with tasks have cpus.
936 cpumask_clear(trialcs
->cpus_allowed
);
938 retval
= cpulist_parse(buf
, trialcs
->cpus_allowed
);
942 if (!cpumask_subset(trialcs
->cpus_allowed
, cpu_online_mask
))
945 retval
= validate_change(cs
, trialcs
);
949 /* Nothing to do if the cpus didn't change */
950 if (cpumask_equal(cs
->cpus_allowed
, trialcs
->cpus_allowed
))
953 retval
= heap_init(&heap
, PAGE_SIZE
, GFP_KERNEL
, NULL
);
957 is_load_balanced
= is_sched_load_balance(trialcs
);
959 mutex_lock(&callback_mutex
);
960 cpumask_copy(cs
->cpus_allowed
, trialcs
->cpus_allowed
);
961 mutex_unlock(&callback_mutex
);
964 * Scan tasks in the cpuset, and update the cpumasks of any
965 * that need an update.
967 update_tasks_cpumask(cs
, &heap
);
971 if (is_load_balanced
)
972 async_rebuild_sched_domains();
979 * Migrate memory region from one set of nodes to another.
981 * Temporarilly set tasks mems_allowed to target nodes of migration,
982 * so that the migration code can allocate pages on these nodes.
984 * Call holding cgroup_mutex, so current's cpuset won't change
985 * during this call, as manage_mutex holds off any cpuset_attach()
986 * calls. Therefore we don't need to take task_lock around the
987 * call to guarantee_online_mems(), as we know no one is changing
990 * Hold callback_mutex around the two modifications of our tasks
991 * mems_allowed to synchronize with cpuset_mems_allowed().
993 * While the mm_struct we are migrating is typically from some
994 * other task, the task_struct mems_allowed that we are hacking
995 * is for our current task, which must allocate new pages for that
996 * migrating memory region.
998 * We call cpuset_update_task_memory_state() before hacking
999 * our tasks mems_allowed, so that we are assured of being in
1000 * sync with our tasks cpuset, and in particular, callbacks to
1001 * cpuset_update_task_memory_state() from nested page allocations
1002 * won't see any mismatch of our cpuset and task mems_generation
1003 * values, so won't overwrite our hacked tasks mems_allowed
1007 static void cpuset_migrate_mm(struct mm_struct
*mm
, const nodemask_t
*from
,
1008 const nodemask_t
*to
)
1010 struct task_struct
*tsk
= current
;
1012 cpuset_update_task_memory_state();
1014 mutex_lock(&callback_mutex
);
1015 tsk
->mems_allowed
= *to
;
1016 mutex_unlock(&callback_mutex
);
1018 do_migrate_pages(mm
, from
, to
, MPOL_MF_MOVE_ALL
);
1020 mutex_lock(&callback_mutex
);
1021 guarantee_online_mems(task_cs(tsk
),&tsk
->mems_allowed
);
1022 mutex_unlock(&callback_mutex
);
1026 * Rebind task's vmas to cpuset's new mems_allowed, and migrate pages to new
1027 * nodes if memory_migrate flag is set. Called with cgroup_mutex held.
1029 static void cpuset_change_nodemask(struct task_struct
*p
,
1030 struct cgroup_scanner
*scan
)
1032 struct mm_struct
*mm
;
1035 const nodemask_t
*oldmem
= scan
->data
;
1037 mm
= get_task_mm(p
);
1041 cs
= cgroup_cs(scan
->cg
);
1042 migrate
= is_memory_migrate(cs
);
1044 mpol_rebind_mm(mm
, &cs
->mems_allowed
);
1046 cpuset_migrate_mm(mm
, oldmem
, &cs
->mems_allowed
);
1050 static void *cpuset_being_rebound
;
1053 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1054 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1055 * @oldmem: old mems_allowed of cpuset cs
1056 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1058 * Called with cgroup_mutex held
1059 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1062 static void update_tasks_nodemask(struct cpuset
*cs
, const nodemask_t
*oldmem
,
1063 struct ptr_heap
*heap
)
1065 struct cgroup_scanner scan
;
1067 cpuset_being_rebound
= cs
; /* causes mpol_dup() rebind */
1069 scan
.cg
= cs
->css
.cgroup
;
1070 scan
.test_task
= NULL
;
1071 scan
.process_task
= cpuset_change_nodemask
;
1073 scan
.data
= (nodemask_t
*)oldmem
;
1076 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1077 * take while holding tasklist_lock. Forks can happen - the
1078 * mpol_dup() cpuset_being_rebound check will catch such forks,
1079 * and rebind their vma mempolicies too. Because we still hold
1080 * the global cgroup_mutex, we know that no other rebind effort
1081 * will be contending for the global variable cpuset_being_rebound.
1082 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1083 * is idempotent. Also migrate pages in each mm to new nodes.
1085 cgroup_scan_tasks(&scan
);
1087 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1088 cpuset_being_rebound
= NULL
;
1092 * Handle user request to change the 'mems' memory placement
1093 * of a cpuset. Needs to validate the request, update the
1094 * cpusets mems_allowed and mems_generation, and for each
1095 * task in the cpuset, rebind any vma mempolicies and if
1096 * the cpuset is marked 'memory_migrate', migrate the tasks
1097 * pages to the new memory.
1099 * Call with cgroup_mutex held. May take callback_mutex during call.
1100 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1101 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1102 * their mempolicies to the cpusets new mems_allowed.
1104 static int update_nodemask(struct cpuset
*cs
, struct cpuset
*trialcs
,
1109 struct ptr_heap heap
;
1112 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1115 if (cs
== &top_cpuset
)
1119 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1120 * Since nodelist_parse() fails on an empty mask, we special case
1121 * that parsing. The validate_change() call ensures that cpusets
1122 * with tasks have memory.
1125 nodes_clear(trialcs
->mems_allowed
);
1127 retval
= nodelist_parse(buf
, trialcs
->mems_allowed
);
1131 if (!nodes_subset(trialcs
->mems_allowed
,
1132 node_states
[N_HIGH_MEMORY
]))
1135 oldmem
= cs
->mems_allowed
;
1136 if (nodes_equal(oldmem
, trialcs
->mems_allowed
)) {
1137 retval
= 0; /* Too easy - nothing to do */
1140 retval
= validate_change(cs
, trialcs
);
1144 retval
= heap_init(&heap
, PAGE_SIZE
, GFP_KERNEL
, NULL
);
1148 mutex_lock(&callback_mutex
);
1149 cs
->mems_allowed
= trialcs
->mems_allowed
;
1150 cs
->mems_generation
= cpuset_mems_generation
++;
1151 mutex_unlock(&callback_mutex
);
1153 update_tasks_nodemask(cs
, &oldmem
, &heap
);
1160 int current_cpuset_is_being_rebound(void)
1162 return task_cs(current
) == cpuset_being_rebound
;
1165 static int update_relax_domain_level(struct cpuset
*cs
, s64 val
)
1167 if (val
< -1 || val
>= SD_LV_MAX
)
1170 if (val
!= cs
->relax_domain_level
) {
1171 cs
->relax_domain_level
= val
;
1172 if (!cpumask_empty(cs
->cpus_allowed
) &&
1173 is_sched_load_balance(cs
))
1174 async_rebuild_sched_domains();
1181 * update_flag - read a 0 or a 1 in a file and update associated flag
1182 * bit: the bit to update (see cpuset_flagbits_t)
1183 * cs: the cpuset to update
1184 * turning_on: whether the flag is being set or cleared
1186 * Call with cgroup_mutex held.
1189 static int update_flag(cpuset_flagbits_t bit
, struct cpuset
*cs
,
1192 struct cpuset
*trialcs
;
1194 int balance_flag_changed
;
1196 trialcs
= alloc_trial_cpuset(cs
);
1201 set_bit(bit
, &trialcs
->flags
);
1203 clear_bit(bit
, &trialcs
->flags
);
1205 err
= validate_change(cs
, trialcs
);
1209 balance_flag_changed
= (is_sched_load_balance(cs
) !=
1210 is_sched_load_balance(trialcs
));
1212 mutex_lock(&callback_mutex
);
1213 cs
->flags
= trialcs
->flags
;
1214 mutex_unlock(&callback_mutex
);
1216 if (!cpumask_empty(trialcs
->cpus_allowed
) && balance_flag_changed
)
1217 async_rebuild_sched_domains();
1220 free_trial_cpuset(trialcs
);
1225 * Frequency meter - How fast is some event occurring?
1227 * These routines manage a digitally filtered, constant time based,
1228 * event frequency meter. There are four routines:
1229 * fmeter_init() - initialize a frequency meter.
1230 * fmeter_markevent() - called each time the event happens.
1231 * fmeter_getrate() - returns the recent rate of such events.
1232 * fmeter_update() - internal routine used to update fmeter.
1234 * A common data structure is passed to each of these routines,
1235 * which is used to keep track of the state required to manage the
1236 * frequency meter and its digital filter.
1238 * The filter works on the number of events marked per unit time.
1239 * The filter is single-pole low-pass recursive (IIR). The time unit
1240 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1241 * simulate 3 decimal digits of precision (multiplied by 1000).
1243 * With an FM_COEF of 933, and a time base of 1 second, the filter
1244 * has a half-life of 10 seconds, meaning that if the events quit
1245 * happening, then the rate returned from the fmeter_getrate()
1246 * will be cut in half each 10 seconds, until it converges to zero.
1248 * It is not worth doing a real infinitely recursive filter. If more
1249 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1250 * just compute FM_MAXTICKS ticks worth, by which point the level
1253 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1254 * arithmetic overflow in the fmeter_update() routine.
1256 * Given the simple 32 bit integer arithmetic used, this meter works
1257 * best for reporting rates between one per millisecond (msec) and
1258 * one per 32 (approx) seconds. At constant rates faster than one
1259 * per msec it maxes out at values just under 1,000,000. At constant
1260 * rates between one per msec, and one per second it will stabilize
1261 * to a value N*1000, where N is the rate of events per second.
1262 * At constant rates between one per second and one per 32 seconds,
1263 * it will be choppy, moving up on the seconds that have an event,
1264 * and then decaying until the next event. At rates slower than
1265 * about one in 32 seconds, it decays all the way back to zero between
1269 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1270 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1271 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1272 #define FM_SCALE 1000 /* faux fixed point scale */
1274 /* Initialize a frequency meter */
1275 static void fmeter_init(struct fmeter
*fmp
)
1280 spin_lock_init(&fmp
->lock
);
1283 /* Internal meter update - process cnt events and update value */
1284 static void fmeter_update(struct fmeter
*fmp
)
1286 time_t now
= get_seconds();
1287 time_t ticks
= now
- fmp
->time
;
1292 ticks
= min(FM_MAXTICKS
, ticks
);
1294 fmp
->val
= (FM_COEF
* fmp
->val
) / FM_SCALE
;
1297 fmp
->val
+= ((FM_SCALE
- FM_COEF
) * fmp
->cnt
) / FM_SCALE
;
1301 /* Process any previous ticks, then bump cnt by one (times scale). */
1302 static void fmeter_markevent(struct fmeter
*fmp
)
1304 spin_lock(&fmp
->lock
);
1306 fmp
->cnt
= min(FM_MAXCNT
, fmp
->cnt
+ FM_SCALE
);
1307 spin_unlock(&fmp
->lock
);
1310 /* Process any previous ticks, then return current value. */
1311 static int fmeter_getrate(struct fmeter
*fmp
)
1315 spin_lock(&fmp
->lock
);
1318 spin_unlock(&fmp
->lock
);
1322 /* Protected by cgroup_lock */
1323 static cpumask_var_t cpus_attach
;
1325 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1326 static int cpuset_can_attach(struct cgroup_subsys
*ss
,
1327 struct cgroup
*cont
, struct task_struct
*tsk
)
1329 struct cpuset
*cs
= cgroup_cs(cont
);
1332 if (cpumask_empty(cs
->cpus_allowed
) || nodes_empty(cs
->mems_allowed
))
1335 if (tsk
->flags
& PF_THREAD_BOUND
) {
1336 mutex_lock(&callback_mutex
);
1337 if (!cpumask_equal(&tsk
->cpus_allowed
, cs
->cpus_allowed
))
1339 mutex_unlock(&callback_mutex
);
1342 return ret
< 0 ? ret
: security_task_setscheduler(tsk
, 0, NULL
);
1345 static void cpuset_attach(struct cgroup_subsys
*ss
,
1346 struct cgroup
*cont
, struct cgroup
*oldcont
,
1347 struct task_struct
*tsk
)
1349 nodemask_t from
, to
;
1350 struct mm_struct
*mm
;
1351 struct cpuset
*cs
= cgroup_cs(cont
);
1352 struct cpuset
*oldcs
= cgroup_cs(oldcont
);
1355 if (cs
== &top_cpuset
) {
1356 cpumask_copy(cpus_attach
, cpu_possible_mask
);
1358 mutex_lock(&callback_mutex
);
1359 guarantee_online_cpus(cs
, cpus_attach
);
1360 mutex_unlock(&callback_mutex
);
1362 err
= set_cpus_allowed_ptr(tsk
, cpus_attach
);
1366 from
= oldcs
->mems_allowed
;
1367 to
= cs
->mems_allowed
;
1368 mm
= get_task_mm(tsk
);
1370 mpol_rebind_mm(mm
, &to
);
1371 if (is_memory_migrate(cs
))
1372 cpuset_migrate_mm(mm
, &from
, &to
);
1377 /* The various types of files and directories in a cpuset file system */
1380 FILE_MEMORY_MIGRATE
,
1386 FILE_SCHED_LOAD_BALANCE
,
1387 FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1388 FILE_MEMORY_PRESSURE_ENABLED
,
1389 FILE_MEMORY_PRESSURE
,
1392 } cpuset_filetype_t
;
1394 static int cpuset_write_u64(struct cgroup
*cgrp
, struct cftype
*cft
, u64 val
)
1397 struct cpuset
*cs
= cgroup_cs(cgrp
);
1398 cpuset_filetype_t type
= cft
->private;
1400 if (!cgroup_lock_live_group(cgrp
))
1404 case FILE_CPU_EXCLUSIVE
:
1405 retval
= update_flag(CS_CPU_EXCLUSIVE
, cs
, val
);
1407 case FILE_MEM_EXCLUSIVE
:
1408 retval
= update_flag(CS_MEM_EXCLUSIVE
, cs
, val
);
1410 case FILE_MEM_HARDWALL
:
1411 retval
= update_flag(CS_MEM_HARDWALL
, cs
, val
);
1413 case FILE_SCHED_LOAD_BALANCE
:
1414 retval
= update_flag(CS_SCHED_LOAD_BALANCE
, cs
, val
);
1416 case FILE_MEMORY_MIGRATE
:
1417 retval
= update_flag(CS_MEMORY_MIGRATE
, cs
, val
);
1419 case FILE_MEMORY_PRESSURE_ENABLED
:
1420 cpuset_memory_pressure_enabled
= !!val
;
1422 case FILE_MEMORY_PRESSURE
:
1425 case FILE_SPREAD_PAGE
:
1426 retval
= update_flag(CS_SPREAD_PAGE
, cs
, val
);
1427 cs
->mems_generation
= cpuset_mems_generation
++;
1429 case FILE_SPREAD_SLAB
:
1430 retval
= update_flag(CS_SPREAD_SLAB
, cs
, val
);
1431 cs
->mems_generation
= cpuset_mems_generation
++;
1441 static int cpuset_write_s64(struct cgroup
*cgrp
, struct cftype
*cft
, s64 val
)
1444 struct cpuset
*cs
= cgroup_cs(cgrp
);
1445 cpuset_filetype_t type
= cft
->private;
1447 if (!cgroup_lock_live_group(cgrp
))
1451 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1452 retval
= update_relax_domain_level(cs
, val
);
1463 * Common handling for a write to a "cpus" or "mems" file.
1465 static int cpuset_write_resmask(struct cgroup
*cgrp
, struct cftype
*cft
,
1469 struct cpuset
*cs
= cgroup_cs(cgrp
);
1470 struct cpuset
*trialcs
;
1472 if (!cgroup_lock_live_group(cgrp
))
1475 trialcs
= alloc_trial_cpuset(cs
);
1479 switch (cft
->private) {
1481 retval
= update_cpumask(cs
, trialcs
, buf
);
1484 retval
= update_nodemask(cs
, trialcs
, buf
);
1491 free_trial_cpuset(trialcs
);
1497 * These ascii lists should be read in a single call, by using a user
1498 * buffer large enough to hold the entire map. If read in smaller
1499 * chunks, there is no guarantee of atomicity. Since the display format
1500 * used, list of ranges of sequential numbers, is variable length,
1501 * and since these maps can change value dynamically, one could read
1502 * gibberish by doing partial reads while a list was changing.
1503 * A single large read to a buffer that crosses a page boundary is
1504 * ok, because the result being copied to user land is not recomputed
1505 * across a page fault.
1508 static int cpuset_sprintf_cpulist(char *page
, struct cpuset
*cs
)
1512 mutex_lock(&callback_mutex
);
1513 ret
= cpulist_scnprintf(page
, PAGE_SIZE
, cs
->cpus_allowed
);
1514 mutex_unlock(&callback_mutex
);
1519 static int cpuset_sprintf_memlist(char *page
, struct cpuset
*cs
)
1523 mutex_lock(&callback_mutex
);
1524 mask
= cs
->mems_allowed
;
1525 mutex_unlock(&callback_mutex
);
1527 return nodelist_scnprintf(page
, PAGE_SIZE
, mask
);
1530 static ssize_t
cpuset_common_file_read(struct cgroup
*cont
,
1534 size_t nbytes
, loff_t
*ppos
)
1536 struct cpuset
*cs
= cgroup_cs(cont
);
1537 cpuset_filetype_t type
= cft
->private;
1542 if (!(page
= (char *)__get_free_page(GFP_TEMPORARY
)))
1549 s
+= cpuset_sprintf_cpulist(s
, cs
);
1552 s
+= cpuset_sprintf_memlist(s
, cs
);
1560 retval
= simple_read_from_buffer(buf
, nbytes
, ppos
, page
, s
- page
);
1562 free_page((unsigned long)page
);
1566 static u64
cpuset_read_u64(struct cgroup
*cont
, struct cftype
*cft
)
1568 struct cpuset
*cs
= cgroup_cs(cont
);
1569 cpuset_filetype_t type
= cft
->private;
1571 case FILE_CPU_EXCLUSIVE
:
1572 return is_cpu_exclusive(cs
);
1573 case FILE_MEM_EXCLUSIVE
:
1574 return is_mem_exclusive(cs
);
1575 case FILE_MEM_HARDWALL
:
1576 return is_mem_hardwall(cs
);
1577 case FILE_SCHED_LOAD_BALANCE
:
1578 return is_sched_load_balance(cs
);
1579 case FILE_MEMORY_MIGRATE
:
1580 return is_memory_migrate(cs
);
1581 case FILE_MEMORY_PRESSURE_ENABLED
:
1582 return cpuset_memory_pressure_enabled
;
1583 case FILE_MEMORY_PRESSURE
:
1584 return fmeter_getrate(&cs
->fmeter
);
1585 case FILE_SPREAD_PAGE
:
1586 return is_spread_page(cs
);
1587 case FILE_SPREAD_SLAB
:
1588 return is_spread_slab(cs
);
1593 /* Unreachable but makes gcc happy */
1597 static s64
cpuset_read_s64(struct cgroup
*cont
, struct cftype
*cft
)
1599 struct cpuset
*cs
= cgroup_cs(cont
);
1600 cpuset_filetype_t type
= cft
->private;
1602 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
1603 return cs
->relax_domain_level
;
1608 /* Unrechable but makes gcc happy */
1614 * for the common functions, 'private' gives the type of file
1617 static struct cftype files
[] = {
1620 .read
= cpuset_common_file_read
,
1621 .write_string
= cpuset_write_resmask
,
1622 .max_write_len
= (100U + 6 * NR_CPUS
),
1623 .private = FILE_CPULIST
,
1628 .read
= cpuset_common_file_read
,
1629 .write_string
= cpuset_write_resmask
,
1630 .max_write_len
= (100U + 6 * MAX_NUMNODES
),
1631 .private = FILE_MEMLIST
,
1635 .name
= "cpu_exclusive",
1636 .read_u64
= cpuset_read_u64
,
1637 .write_u64
= cpuset_write_u64
,
1638 .private = FILE_CPU_EXCLUSIVE
,
1642 .name
= "mem_exclusive",
1643 .read_u64
= cpuset_read_u64
,
1644 .write_u64
= cpuset_write_u64
,
1645 .private = FILE_MEM_EXCLUSIVE
,
1649 .name
= "mem_hardwall",
1650 .read_u64
= cpuset_read_u64
,
1651 .write_u64
= cpuset_write_u64
,
1652 .private = FILE_MEM_HARDWALL
,
1656 .name
= "sched_load_balance",
1657 .read_u64
= cpuset_read_u64
,
1658 .write_u64
= cpuset_write_u64
,
1659 .private = FILE_SCHED_LOAD_BALANCE
,
1663 .name
= "sched_relax_domain_level",
1664 .read_s64
= cpuset_read_s64
,
1665 .write_s64
= cpuset_write_s64
,
1666 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL
,
1670 .name
= "memory_migrate",
1671 .read_u64
= cpuset_read_u64
,
1672 .write_u64
= cpuset_write_u64
,
1673 .private = FILE_MEMORY_MIGRATE
,
1677 .name
= "memory_pressure",
1678 .read_u64
= cpuset_read_u64
,
1679 .write_u64
= cpuset_write_u64
,
1680 .private = FILE_MEMORY_PRESSURE
,
1685 .name
= "memory_spread_page",
1686 .read_u64
= cpuset_read_u64
,
1687 .write_u64
= cpuset_write_u64
,
1688 .private = FILE_SPREAD_PAGE
,
1692 .name
= "memory_spread_slab",
1693 .read_u64
= cpuset_read_u64
,
1694 .write_u64
= cpuset_write_u64
,
1695 .private = FILE_SPREAD_SLAB
,
1699 static struct cftype cft_memory_pressure_enabled
= {
1700 .name
= "memory_pressure_enabled",
1701 .read_u64
= cpuset_read_u64
,
1702 .write_u64
= cpuset_write_u64
,
1703 .private = FILE_MEMORY_PRESSURE_ENABLED
,
1706 static int cpuset_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
1710 err
= cgroup_add_files(cont
, ss
, files
, ARRAY_SIZE(files
));
1713 /* memory_pressure_enabled is in root cpuset only */
1715 err
= cgroup_add_file(cont
, ss
,
1716 &cft_memory_pressure_enabled
);
1721 * post_clone() is called at the end of cgroup_clone().
1722 * 'cgroup' was just created automatically as a result of
1723 * a cgroup_clone(), and the current task is about to
1724 * be moved into 'cgroup'.
1726 * Currently we refuse to set up the cgroup - thereby
1727 * refusing the task to be entered, and as a result refusing
1728 * the sys_unshare() or clone() which initiated it - if any
1729 * sibling cpusets have exclusive cpus or mem.
1731 * If this becomes a problem for some users who wish to
1732 * allow that scenario, then cpuset_post_clone() could be
1733 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1734 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1737 static void cpuset_post_clone(struct cgroup_subsys
*ss
,
1738 struct cgroup
*cgroup
)
1740 struct cgroup
*parent
, *child
;
1741 struct cpuset
*cs
, *parent_cs
;
1743 parent
= cgroup
->parent
;
1744 list_for_each_entry(child
, &parent
->children
, sibling
) {
1745 cs
= cgroup_cs(child
);
1746 if (is_mem_exclusive(cs
) || is_cpu_exclusive(cs
))
1749 cs
= cgroup_cs(cgroup
);
1750 parent_cs
= cgroup_cs(parent
);
1752 cs
->mems_allowed
= parent_cs
->mems_allowed
;
1753 cpumask_copy(cs
->cpus_allowed
, parent_cs
->cpus_allowed
);
1758 * cpuset_create - create a cpuset
1759 * ss: cpuset cgroup subsystem
1760 * cont: control group that the new cpuset will be part of
1763 static struct cgroup_subsys_state
*cpuset_create(
1764 struct cgroup_subsys
*ss
,
1765 struct cgroup
*cont
)
1768 struct cpuset
*parent
;
1770 if (!cont
->parent
) {
1771 /* This is early initialization for the top cgroup */
1772 top_cpuset
.mems_generation
= cpuset_mems_generation
++;
1773 return &top_cpuset
.css
;
1775 parent
= cgroup_cs(cont
->parent
);
1776 cs
= kmalloc(sizeof(*cs
), GFP_KERNEL
);
1778 return ERR_PTR(-ENOMEM
);
1779 if (!alloc_cpumask_var(&cs
->cpus_allowed
, GFP_KERNEL
)) {
1781 return ERR_PTR(-ENOMEM
);
1784 cpuset_update_task_memory_state();
1786 if (is_spread_page(parent
))
1787 set_bit(CS_SPREAD_PAGE
, &cs
->flags
);
1788 if (is_spread_slab(parent
))
1789 set_bit(CS_SPREAD_SLAB
, &cs
->flags
);
1790 set_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
1791 cpumask_clear(cs
->cpus_allowed
);
1792 nodes_clear(cs
->mems_allowed
);
1793 cs
->mems_generation
= cpuset_mems_generation
++;
1794 fmeter_init(&cs
->fmeter
);
1795 cs
->relax_domain_level
= -1;
1797 cs
->parent
= parent
;
1798 number_of_cpusets
++;
1803 * If the cpuset being removed has its flag 'sched_load_balance'
1804 * enabled, then simulate turning sched_load_balance off, which
1805 * will call async_rebuild_sched_domains().
1808 static void cpuset_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
1810 struct cpuset
*cs
= cgroup_cs(cont
);
1812 cpuset_update_task_memory_state();
1814 if (is_sched_load_balance(cs
))
1815 update_flag(CS_SCHED_LOAD_BALANCE
, cs
, 0);
1817 number_of_cpusets
--;
1818 free_cpumask_var(cs
->cpus_allowed
);
1822 struct cgroup_subsys cpuset_subsys
= {
1824 .create
= cpuset_create
,
1825 .destroy
= cpuset_destroy
,
1826 .can_attach
= cpuset_can_attach
,
1827 .attach
= cpuset_attach
,
1828 .populate
= cpuset_populate
,
1829 .post_clone
= cpuset_post_clone
,
1830 .subsys_id
= cpuset_subsys_id
,
1835 * cpuset_init_early - just enough so that the calls to
1836 * cpuset_update_task_memory_state() in early init code
1840 int __init
cpuset_init_early(void)
1842 alloc_bootmem_cpumask_var(&top_cpuset
.cpus_allowed
);
1844 top_cpuset
.mems_generation
= cpuset_mems_generation
++;
1850 * cpuset_init - initialize cpusets at system boot
1852 * Description: Initialize top_cpuset and the cpuset internal file system,
1855 int __init
cpuset_init(void)
1859 cpumask_setall(top_cpuset
.cpus_allowed
);
1860 nodes_setall(top_cpuset
.mems_allowed
);
1862 fmeter_init(&top_cpuset
.fmeter
);
1863 top_cpuset
.mems_generation
= cpuset_mems_generation
++;
1864 set_bit(CS_SCHED_LOAD_BALANCE
, &top_cpuset
.flags
);
1865 top_cpuset
.relax_domain_level
= -1;
1867 err
= register_filesystem(&cpuset_fs_type
);
1871 if (!alloc_cpumask_var(&cpus_attach
, GFP_KERNEL
))
1874 number_of_cpusets
= 1;
1879 * cpuset_do_move_task - move a given task to another cpuset
1880 * @tsk: pointer to task_struct the task to move
1881 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1883 * Called by cgroup_scan_tasks() for each task in a cgroup.
1884 * Return nonzero to stop the walk through the tasks.
1886 static void cpuset_do_move_task(struct task_struct
*tsk
,
1887 struct cgroup_scanner
*scan
)
1889 struct cgroup
*new_cgroup
= scan
->data
;
1891 cgroup_attach_task(new_cgroup
, tsk
);
1895 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1896 * @from: cpuset in which the tasks currently reside
1897 * @to: cpuset to which the tasks will be moved
1899 * Called with cgroup_mutex held
1900 * callback_mutex must not be held, as cpuset_attach() will take it.
1902 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1903 * calling callback functions for each.
1905 static void move_member_tasks_to_cpuset(struct cpuset
*from
, struct cpuset
*to
)
1907 struct cgroup_scanner scan
;
1909 scan
.cg
= from
->css
.cgroup
;
1910 scan
.test_task
= NULL
; /* select all tasks in cgroup */
1911 scan
.process_task
= cpuset_do_move_task
;
1913 scan
.data
= to
->css
.cgroup
;
1915 if (cgroup_scan_tasks(&scan
))
1916 printk(KERN_ERR
"move_member_tasks_to_cpuset: "
1917 "cgroup_scan_tasks failed\n");
1921 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1922 * or memory nodes, we need to walk over the cpuset hierarchy,
1923 * removing that CPU or node from all cpusets. If this removes the
1924 * last CPU or node from a cpuset, then move the tasks in the empty
1925 * cpuset to its next-highest non-empty parent.
1927 * Called with cgroup_mutex held
1928 * callback_mutex must not be held, as cpuset_attach() will take it.
1930 static void remove_tasks_in_empty_cpuset(struct cpuset
*cs
)
1932 struct cpuset
*parent
;
1935 * The cgroup's css_sets list is in use if there are tasks
1936 * in the cpuset; the list is empty if there are none;
1937 * the cs->css.refcnt seems always 0.
1939 if (list_empty(&cs
->css
.cgroup
->css_sets
))
1943 * Find its next-highest non-empty parent, (top cpuset
1944 * has online cpus, so can't be empty).
1946 parent
= cs
->parent
;
1947 while (cpumask_empty(parent
->cpus_allowed
) ||
1948 nodes_empty(parent
->mems_allowed
))
1949 parent
= parent
->parent
;
1951 move_member_tasks_to_cpuset(cs
, parent
);
1955 * Walk the specified cpuset subtree and look for empty cpusets.
1956 * The tasks of such cpuset must be moved to a parent cpuset.
1958 * Called with cgroup_mutex held. We take callback_mutex to modify
1959 * cpus_allowed and mems_allowed.
1961 * This walk processes the tree from top to bottom, completing one layer
1962 * before dropping down to the next. It always processes a node before
1963 * any of its children.
1965 * For now, since we lack memory hot unplug, we'll never see a cpuset
1966 * that has tasks along with an empty 'mems'. But if we did see such
1967 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1969 static void scan_for_empty_cpusets(struct cpuset
*root
)
1972 struct cpuset
*cp
; /* scans cpusets being updated */
1973 struct cpuset
*child
; /* scans child cpusets of cp */
1974 struct cgroup
*cont
;
1977 list_add_tail((struct list_head
*)&root
->stack_list
, &queue
);
1979 while (!list_empty(&queue
)) {
1980 cp
= list_first_entry(&queue
, struct cpuset
, stack_list
);
1981 list_del(queue
.next
);
1982 list_for_each_entry(cont
, &cp
->css
.cgroup
->children
, sibling
) {
1983 child
= cgroup_cs(cont
);
1984 list_add_tail(&child
->stack_list
, &queue
);
1987 /* Continue past cpusets with all cpus, mems online */
1988 if (cpumask_subset(cp
->cpus_allowed
, cpu_online_mask
) &&
1989 nodes_subset(cp
->mems_allowed
, node_states
[N_HIGH_MEMORY
]))
1992 oldmems
= cp
->mems_allowed
;
1994 /* Remove offline cpus and mems from this cpuset. */
1995 mutex_lock(&callback_mutex
);
1996 cpumask_and(cp
->cpus_allowed
, cp
->cpus_allowed
,
1998 nodes_and(cp
->mems_allowed
, cp
->mems_allowed
,
1999 node_states
[N_HIGH_MEMORY
]);
2000 mutex_unlock(&callback_mutex
);
2002 /* Move tasks from the empty cpuset to a parent */
2003 if (cpumask_empty(cp
->cpus_allowed
) ||
2004 nodes_empty(cp
->mems_allowed
))
2005 remove_tasks_in_empty_cpuset(cp
);
2007 update_tasks_cpumask(cp
, NULL
);
2008 update_tasks_nodemask(cp
, &oldmems
, NULL
);
2014 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2015 * period. This is necessary in order to make cpusets transparent
2016 * (of no affect) on systems that are actively using CPU hotplug
2017 * but making no active use of cpusets.
2019 * This routine ensures that top_cpuset.cpus_allowed tracks
2020 * cpu_online_map on each CPU hotplug (cpuhp) event.
2022 * Called within get_online_cpus(). Needs to call cgroup_lock()
2023 * before calling generate_sched_domains().
2025 static int cpuset_track_online_cpus(struct notifier_block
*unused_nb
,
2026 unsigned long phase
, void *unused_cpu
)
2028 struct sched_domain_attr
*attr
;
2029 struct cpumask
*doms
;
2034 case CPU_ONLINE_FROZEN
:
2036 case CPU_DEAD_FROZEN
:
2044 mutex_lock(&callback_mutex
);
2045 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_online_mask
);
2046 mutex_unlock(&callback_mutex
);
2047 scan_for_empty_cpusets(&top_cpuset
);
2048 ndoms
= generate_sched_domains(&doms
, &attr
);
2051 /* Have scheduler rebuild the domains */
2052 partition_sched_domains(ndoms
, doms
, attr
);
2057 #ifdef CONFIG_MEMORY_HOTPLUG
2059 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2060 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2061 * See also the previous routine cpuset_track_online_cpus().
2063 static int cpuset_track_online_nodes(struct notifier_block
*self
,
2064 unsigned long action
, void *arg
)
2070 mutex_lock(&callback_mutex
);
2071 top_cpuset
.mems_allowed
= node_states
[N_HIGH_MEMORY
];
2072 mutex_unlock(&callback_mutex
);
2073 if (action
== MEM_OFFLINE
)
2074 scan_for_empty_cpusets(&top_cpuset
);
2085 * cpuset_init_smp - initialize cpus_allowed
2087 * Description: Finish top cpuset after cpu, node maps are initialized
2090 void __init
cpuset_init_smp(void)
2092 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_online_mask
);
2093 top_cpuset
.mems_allowed
= node_states
[N_HIGH_MEMORY
];
2095 hotcpu_notifier(cpuset_track_online_cpus
, 0);
2096 hotplug_memory_notifier(cpuset_track_online_nodes
, 10);
2098 cpuset_wq
= create_singlethread_workqueue("cpuset");
2103 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2104 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2105 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2107 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2108 * attached to the specified @tsk. Guaranteed to return some non-empty
2109 * subset of cpu_online_map, even if this means going outside the
2113 void cpuset_cpus_allowed(struct task_struct
*tsk
, struct cpumask
*pmask
)
2115 mutex_lock(&callback_mutex
);
2116 cpuset_cpus_allowed_locked(tsk
, pmask
);
2117 mutex_unlock(&callback_mutex
);
2121 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2122 * Must be called with callback_mutex held.
2124 void cpuset_cpus_allowed_locked(struct task_struct
*tsk
, struct cpumask
*pmask
)
2127 guarantee_online_cpus(task_cs(tsk
), pmask
);
2131 void cpuset_init_current_mems_allowed(void)
2133 nodes_setall(current
->mems_allowed
);
2137 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2138 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2140 * Description: Returns the nodemask_t mems_allowed of the cpuset
2141 * attached to the specified @tsk. Guaranteed to return some non-empty
2142 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2146 nodemask_t
cpuset_mems_allowed(struct task_struct
*tsk
)
2150 mutex_lock(&callback_mutex
);
2152 guarantee_online_mems(task_cs(tsk
), &mask
);
2154 mutex_unlock(&callback_mutex
);
2160 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2161 * @nodemask: the nodemask to be checked
2163 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2165 int cpuset_nodemask_valid_mems_allowed(nodemask_t
*nodemask
)
2167 return nodes_intersects(*nodemask
, current
->mems_allowed
);
2171 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2172 * mem_hardwall ancestor to the specified cpuset. Call holding
2173 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2174 * (an unusual configuration), then returns the root cpuset.
2176 static const struct cpuset
*nearest_hardwall_ancestor(const struct cpuset
*cs
)
2178 while (!(is_mem_exclusive(cs
) || is_mem_hardwall(cs
)) && cs
->parent
)
2184 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2185 * @node: is this an allowed node?
2186 * @gfp_mask: memory allocation flags
2188 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2189 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2190 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2191 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2192 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2196 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2197 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2198 * might sleep, and might allow a node from an enclosing cpuset.
2200 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2201 * cpusets, and never sleeps.
2203 * The __GFP_THISNODE placement logic is really handled elsewhere,
2204 * by forcibly using a zonelist starting at a specified node, and by
2205 * (in get_page_from_freelist()) refusing to consider the zones for
2206 * any node on the zonelist except the first. By the time any such
2207 * calls get to this routine, we should just shut up and say 'yes'.
2209 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2210 * and do not allow allocations outside the current tasks cpuset
2211 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2212 * GFP_KERNEL allocations are not so marked, so can escape to the
2213 * nearest enclosing hardwalled ancestor cpuset.
2215 * Scanning up parent cpusets requires callback_mutex. The
2216 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2217 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2218 * current tasks mems_allowed came up empty on the first pass over
2219 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2220 * cpuset are short of memory, might require taking the callback_mutex
2223 * The first call here from mm/page_alloc:get_page_from_freelist()
2224 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2225 * so no allocation on a node outside the cpuset is allowed (unless
2226 * in interrupt, of course).
2228 * The second pass through get_page_from_freelist() doesn't even call
2229 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2230 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2231 * in alloc_flags. That logic and the checks below have the combined
2233 * in_interrupt - any node ok (current task context irrelevant)
2234 * GFP_ATOMIC - any node ok
2235 * TIF_MEMDIE - any node ok
2236 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2237 * GFP_USER - only nodes in current tasks mems allowed ok.
2240 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2241 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2242 * the code that might scan up ancestor cpusets and sleep.
2244 int __cpuset_node_allowed_softwall(int node
, gfp_t gfp_mask
)
2246 const struct cpuset
*cs
; /* current cpuset ancestors */
2247 int allowed
; /* is allocation in zone z allowed? */
2249 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
2251 might_sleep_if(!(gfp_mask
& __GFP_HARDWALL
));
2252 if (node_isset(node
, current
->mems_allowed
))
2255 * Allow tasks that have access to memory reserves because they have
2256 * been OOM killed to get memory anywhere.
2258 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2260 if (gfp_mask
& __GFP_HARDWALL
) /* If hardwall request, stop here */
2263 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
2266 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2267 mutex_lock(&callback_mutex
);
2270 cs
= nearest_hardwall_ancestor(task_cs(current
));
2271 task_unlock(current
);
2273 allowed
= node_isset(node
, cs
->mems_allowed
);
2274 mutex_unlock(&callback_mutex
);
2279 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2280 * @node: is this an allowed node?
2281 * @gfp_mask: memory allocation flags
2283 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2284 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2285 * yes. If the task has been OOM killed and has access to memory reserves as
2286 * specified by the TIF_MEMDIE flag, yes.
2289 * The __GFP_THISNODE placement logic is really handled elsewhere,
2290 * by forcibly using a zonelist starting at a specified node, and by
2291 * (in get_page_from_freelist()) refusing to consider the zones for
2292 * any node on the zonelist except the first. By the time any such
2293 * calls get to this routine, we should just shut up and say 'yes'.
2295 * Unlike the cpuset_node_allowed_softwall() variant, above,
2296 * this variant requires that the node be in the current task's
2297 * mems_allowed or that we're in interrupt. It does not scan up the
2298 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2301 int __cpuset_node_allowed_hardwall(int node
, gfp_t gfp_mask
)
2303 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
2305 if (node_isset(node
, current
->mems_allowed
))
2308 * Allow tasks that have access to memory reserves because they have
2309 * been OOM killed to get memory anywhere.
2311 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2317 * cpuset_lock - lock out any changes to cpuset structures
2319 * The out of memory (oom) code needs to mutex_lock cpusets
2320 * from being changed while it scans the tasklist looking for a
2321 * task in an overlapping cpuset. Expose callback_mutex via this
2322 * cpuset_lock() routine, so the oom code can lock it, before
2323 * locking the task list. The tasklist_lock is a spinlock, so
2324 * must be taken inside callback_mutex.
2327 void cpuset_lock(void)
2329 mutex_lock(&callback_mutex
);
2333 * cpuset_unlock - release lock on cpuset changes
2335 * Undo the lock taken in a previous cpuset_lock() call.
2338 void cpuset_unlock(void)
2340 mutex_unlock(&callback_mutex
);
2344 * cpuset_mem_spread_node() - On which node to begin search for a page
2346 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2347 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2348 * and if the memory allocation used cpuset_mem_spread_node()
2349 * to determine on which node to start looking, as it will for
2350 * certain page cache or slab cache pages such as used for file
2351 * system buffers and inode caches, then instead of starting on the
2352 * local node to look for a free page, rather spread the starting
2353 * node around the tasks mems_allowed nodes.
2355 * We don't have to worry about the returned node being offline
2356 * because "it can't happen", and even if it did, it would be ok.
2358 * The routines calling guarantee_online_mems() are careful to
2359 * only set nodes in task->mems_allowed that are online. So it
2360 * should not be possible for the following code to return an
2361 * offline node. But if it did, that would be ok, as this routine
2362 * is not returning the node where the allocation must be, only
2363 * the node where the search should start. The zonelist passed to
2364 * __alloc_pages() will include all nodes. If the slab allocator
2365 * is passed an offline node, it will fall back to the local node.
2366 * See kmem_cache_alloc_node().
2369 int cpuset_mem_spread_node(void)
2373 node
= next_node(current
->cpuset_mem_spread_rotor
, current
->mems_allowed
);
2374 if (node
== MAX_NUMNODES
)
2375 node
= first_node(current
->mems_allowed
);
2376 current
->cpuset_mem_spread_rotor
= node
;
2379 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node
);
2382 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2383 * @tsk1: pointer to task_struct of some task.
2384 * @tsk2: pointer to task_struct of some other task.
2386 * Description: Return true if @tsk1's mems_allowed intersects the
2387 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2388 * one of the task's memory usage might impact the memory available
2392 int cpuset_mems_allowed_intersects(const struct task_struct
*tsk1
,
2393 const struct task_struct
*tsk2
)
2395 return nodes_intersects(tsk1
->mems_allowed
, tsk2
->mems_allowed
);
2399 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2400 * @task: pointer to task_struct of some task.
2402 * Description: Prints @task's name, cpuset name, and cached copy of its
2403 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2404 * dereferencing task_cs(task).
2406 void cpuset_print_task_mems_allowed(struct task_struct
*tsk
)
2408 struct dentry
*dentry
;
2410 dentry
= task_cs(tsk
)->css
.cgroup
->dentry
;
2411 spin_lock(&cpuset_buffer_lock
);
2412 snprintf(cpuset_name
, CPUSET_NAME_LEN
,
2413 dentry
? (const char *)dentry
->d_name
.name
: "/");
2414 nodelist_scnprintf(cpuset_nodelist
, CPUSET_NODELIST_LEN
,
2416 printk(KERN_INFO
"%s cpuset=%s mems_allowed=%s\n",
2417 tsk
->comm
, cpuset_name
, cpuset_nodelist
);
2418 spin_unlock(&cpuset_buffer_lock
);
2422 * Collection of memory_pressure is suppressed unless
2423 * this flag is enabled by writing "1" to the special
2424 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2427 int cpuset_memory_pressure_enabled __read_mostly
;
2430 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2432 * Keep a running average of the rate of synchronous (direct)
2433 * page reclaim efforts initiated by tasks in each cpuset.
2435 * This represents the rate at which some task in the cpuset
2436 * ran low on memory on all nodes it was allowed to use, and
2437 * had to enter the kernels page reclaim code in an effort to
2438 * create more free memory by tossing clean pages or swapping
2439 * or writing dirty pages.
2441 * Display to user space in the per-cpuset read-only file
2442 * "memory_pressure". Value displayed is an integer
2443 * representing the recent rate of entry into the synchronous
2444 * (direct) page reclaim by any task attached to the cpuset.
2447 void __cpuset_memory_pressure_bump(void)
2450 fmeter_markevent(&task_cs(current
)->fmeter
);
2451 task_unlock(current
);
2454 #ifdef CONFIG_PROC_PID_CPUSET
2456 * proc_cpuset_show()
2457 * - Print tasks cpuset path into seq_file.
2458 * - Used for /proc/<pid>/cpuset.
2459 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2460 * doesn't really matter if tsk->cpuset changes after we read it,
2461 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2464 static int proc_cpuset_show(struct seq_file
*m
, void *unused_v
)
2467 struct task_struct
*tsk
;
2469 struct cgroup_subsys_state
*css
;
2473 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2479 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
2485 css
= task_subsys_state(tsk
, cpuset_subsys_id
);
2486 retval
= cgroup_path(css
->cgroup
, buf
, PAGE_SIZE
);
2493 put_task_struct(tsk
);
2500 static int cpuset_open(struct inode
*inode
, struct file
*file
)
2502 struct pid
*pid
= PROC_I(inode
)->pid
;
2503 return single_open(file
, proc_cpuset_show
, pid
);
2506 const struct file_operations proc_cpuset_operations
= {
2507 .open
= cpuset_open
,
2509 .llseek
= seq_lseek
,
2510 .release
= single_release
,
2512 #endif /* CONFIG_PROC_PID_CPUSET */
2514 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2515 void cpuset_task_status_allowed(struct seq_file
*m
, struct task_struct
*task
)
2517 seq_printf(m
, "Cpus_allowed:\t");
2518 seq_cpumask(m
, &task
->cpus_allowed
);
2519 seq_printf(m
, "\n");
2520 seq_printf(m
, "Cpus_allowed_list:\t");
2521 seq_cpumask_list(m
, &task
->cpus_allowed
);
2522 seq_printf(m
, "\n");
2523 seq_printf(m
, "Mems_allowed:\t");
2524 seq_nodemask(m
, &task
->mems_allowed
);
2525 seq_printf(m
, "\n");
2526 seq_printf(m
, "Mems_allowed_list:\t");
2527 seq_nodemask_list(m
, &task
->mems_allowed
);
2528 seq_printf(m
, "\n");