cpusets: replace zone allowed functions with node allowed
[linux-2.6/cjktty.git] / kernel / cpuset.c
blob3ff910eb30d38cbb23b3567475a77c4a062ee99f
1 /*
2 * kernel/cpuset.c
4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/module.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
57 #include <asm/uaccess.h>
58 #include <asm/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
64 * Workqueue for cpuset related tasks.
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
69 static struct workqueue_struct *cpuset_wq;
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
76 int number_of_cpusets __read_mostly;
78 /* Forward declare cgroup structures */
79 struct cgroup_subsys cpuset_subsys;
80 struct cpuset;
82 /* See "Frequency meter" comments, below. */
84 struct fmeter {
85 int cnt; /* unprocessed events count */
86 int val; /* most recent output value */
87 time_t time; /* clock (secs) when val computed */
88 spinlock_t lock; /* guards read or write of above */
91 struct cpuset {
92 struct cgroup_subsys_state css;
94 unsigned long flags; /* "unsigned long" so bitops work */
95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
98 struct cpuset *parent; /* my parent */
101 * Copy of global cpuset_mems_generation as of the most
102 * recent time this cpuset changed its mems_allowed.
104 int mems_generation;
106 struct fmeter fmeter; /* memory_pressure filter */
108 /* partition number for rebuild_sched_domains() */
109 int pn;
111 /* for custom sched domain */
112 int relax_domain_level;
114 /* used for walking a cpuset heirarchy */
115 struct list_head stack_list;
118 /* Retrieve the cpuset for a cgroup */
119 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
121 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
122 struct cpuset, css);
125 /* Retrieve the cpuset for a task */
126 static inline struct cpuset *task_cs(struct task_struct *task)
128 return container_of(task_subsys_state(task, cpuset_subsys_id),
129 struct cpuset, css);
132 /* bits in struct cpuset flags field */
133 typedef enum {
134 CS_CPU_EXCLUSIVE,
135 CS_MEM_EXCLUSIVE,
136 CS_MEM_HARDWALL,
137 CS_MEMORY_MIGRATE,
138 CS_SCHED_LOAD_BALANCE,
139 CS_SPREAD_PAGE,
140 CS_SPREAD_SLAB,
141 } cpuset_flagbits_t;
143 /* convenient tests for these bits */
144 static inline int is_cpu_exclusive(const struct cpuset *cs)
146 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
149 static inline int is_mem_exclusive(const struct cpuset *cs)
151 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
154 static inline int is_mem_hardwall(const struct cpuset *cs)
156 return test_bit(CS_MEM_HARDWALL, &cs->flags);
159 static inline int is_sched_load_balance(const struct cpuset *cs)
161 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
164 static inline int is_memory_migrate(const struct cpuset *cs)
166 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
169 static inline int is_spread_page(const struct cpuset *cs)
171 return test_bit(CS_SPREAD_PAGE, &cs->flags);
174 static inline int is_spread_slab(const struct cpuset *cs)
176 return test_bit(CS_SPREAD_SLAB, &cs->flags);
180 * Increment this integer everytime any cpuset changes its
181 * mems_allowed value. Users of cpusets can track this generation
182 * number, and avoid having to lock and reload mems_allowed unless
183 * the cpuset they're using changes generation.
185 * A single, global generation is needed because cpuset_attach_task() could
186 * reattach a task to a different cpuset, which must not have its
187 * generation numbers aliased with those of that tasks previous cpuset.
189 * Generations are needed for mems_allowed because one task cannot
190 * modify another's memory placement. So we must enable every task,
191 * on every visit to __alloc_pages(), to efficiently check whether
192 * its current->cpuset->mems_allowed has changed, requiring an update
193 * of its current->mems_allowed.
195 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
196 * there is no need to mark it atomic.
198 static int cpuset_mems_generation;
200 static struct cpuset top_cpuset = {
201 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
205 * There are two global mutexes guarding cpuset structures. The first
206 * is the main control groups cgroup_mutex, accessed via
207 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
208 * callback_mutex, below. They can nest. It is ok to first take
209 * cgroup_mutex, then nest callback_mutex. We also require taking
210 * task_lock() when dereferencing a task's cpuset pointer. See "The
211 * task_lock() exception", at the end of this comment.
213 * A task must hold both mutexes to modify cpusets. If a task
214 * holds cgroup_mutex, then it blocks others wanting that mutex,
215 * ensuring that it is the only task able to also acquire callback_mutex
216 * and be able to modify cpusets. It can perform various checks on
217 * the cpuset structure first, knowing nothing will change. It can
218 * also allocate memory while just holding cgroup_mutex. While it is
219 * performing these checks, various callback routines can briefly
220 * acquire callback_mutex to query cpusets. Once it is ready to make
221 * the changes, it takes callback_mutex, blocking everyone else.
223 * Calls to the kernel memory allocator can not be made while holding
224 * callback_mutex, as that would risk double tripping on callback_mutex
225 * from one of the callbacks into the cpuset code from within
226 * __alloc_pages().
228 * If a task is only holding callback_mutex, then it has read-only
229 * access to cpusets.
231 * The task_struct fields mems_allowed and mems_generation may only
232 * be accessed in the context of that task, so require no locks.
234 * The cpuset_common_file_read() handlers only hold callback_mutex across
235 * small pieces of code, such as when reading out possibly multi-word
236 * cpumasks and nodemasks.
238 * Accessing a task's cpuset should be done in accordance with the
239 * guidelines for accessing subsystem state in kernel/cgroup.c
242 static DEFINE_MUTEX(callback_mutex);
245 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
246 * buffers. They are statically allocated to prevent using excess stack
247 * when calling cpuset_print_task_mems_allowed().
249 #define CPUSET_NAME_LEN (128)
250 #define CPUSET_NODELIST_LEN (256)
251 static char cpuset_name[CPUSET_NAME_LEN];
252 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
253 static DEFINE_SPINLOCK(cpuset_buffer_lock);
256 * This is ugly, but preserves the userspace API for existing cpuset
257 * users. If someone tries to mount the "cpuset" filesystem, we
258 * silently switch it to mount "cgroup" instead
260 static int cpuset_get_sb(struct file_system_type *fs_type,
261 int flags, const char *unused_dev_name,
262 void *data, struct vfsmount *mnt)
264 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
265 int ret = -ENODEV;
266 if (cgroup_fs) {
267 char mountopts[] =
268 "cpuset,noprefix,"
269 "release_agent=/sbin/cpuset_release_agent";
270 ret = cgroup_fs->get_sb(cgroup_fs, flags,
271 unused_dev_name, mountopts, mnt);
272 put_filesystem(cgroup_fs);
274 return ret;
277 static struct file_system_type cpuset_fs_type = {
278 .name = "cpuset",
279 .get_sb = cpuset_get_sb,
283 * Return in pmask the portion of a cpusets's cpus_allowed that
284 * are online. If none are online, walk up the cpuset hierarchy
285 * until we find one that does have some online cpus. If we get
286 * all the way to the top and still haven't found any online cpus,
287 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
288 * task, return cpu_online_map.
290 * One way or another, we guarantee to return some non-empty subset
291 * of cpu_online_map.
293 * Call with callback_mutex held.
296 static void guarantee_online_cpus(const struct cpuset *cs,
297 struct cpumask *pmask)
299 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
300 cs = cs->parent;
301 if (cs)
302 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
303 else
304 cpumask_copy(pmask, cpu_online_mask);
305 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
309 * Return in *pmask the portion of a cpusets's mems_allowed that
310 * are online, with memory. If none are online with memory, walk
311 * up the cpuset hierarchy until we find one that does have some
312 * online mems. If we get all the way to the top and still haven't
313 * found any online mems, return node_states[N_HIGH_MEMORY].
315 * One way or another, we guarantee to return some non-empty subset
316 * of node_states[N_HIGH_MEMORY].
318 * Call with callback_mutex held.
321 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
323 while (cs && !nodes_intersects(cs->mems_allowed,
324 node_states[N_HIGH_MEMORY]))
325 cs = cs->parent;
326 if (cs)
327 nodes_and(*pmask, cs->mems_allowed,
328 node_states[N_HIGH_MEMORY]);
329 else
330 *pmask = node_states[N_HIGH_MEMORY];
331 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
335 * cpuset_update_task_memory_state - update task memory placement
337 * If the current tasks cpusets mems_allowed changed behind our
338 * backs, update current->mems_allowed, mems_generation and task NUMA
339 * mempolicy to the new value.
341 * Task mempolicy is updated by rebinding it relative to the
342 * current->cpuset if a task has its memory placement changed.
343 * Do not call this routine if in_interrupt().
345 * Call without callback_mutex or task_lock() held. May be
346 * called with or without cgroup_mutex held. Thanks in part to
347 * 'the_top_cpuset_hack', the task's cpuset pointer will never
348 * be NULL. This routine also might acquire callback_mutex during
349 * call.
351 * Reading current->cpuset->mems_generation doesn't need task_lock
352 * to guard the current->cpuset derefence, because it is guarded
353 * from concurrent freeing of current->cpuset using RCU.
355 * The rcu_dereference() is technically probably not needed,
356 * as I don't actually mind if I see a new cpuset pointer but
357 * an old value of mems_generation. However this really only
358 * matters on alpha systems using cpusets heavily. If I dropped
359 * that rcu_dereference(), it would save them a memory barrier.
360 * For all other arch's, rcu_dereference is a no-op anyway, and for
361 * alpha systems not using cpusets, another planned optimization,
362 * avoiding the rcu critical section for tasks in the root cpuset
363 * which is statically allocated, so can't vanish, will make this
364 * irrelevant. Better to use RCU as intended, than to engage in
365 * some cute trick to save a memory barrier that is impossible to
366 * test, for alpha systems using cpusets heavily, which might not
367 * even exist.
369 * This routine is needed to update the per-task mems_allowed data,
370 * within the tasks context, when it is trying to allocate memory
371 * (in various mm/mempolicy.c routines) and notices that some other
372 * task has been modifying its cpuset.
375 void cpuset_update_task_memory_state(void)
377 int my_cpusets_mem_gen;
378 struct task_struct *tsk = current;
379 struct cpuset *cs;
381 rcu_read_lock();
382 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
383 rcu_read_unlock();
385 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
386 mutex_lock(&callback_mutex);
387 task_lock(tsk);
388 cs = task_cs(tsk); /* Maybe changed when task not locked */
389 guarantee_online_mems(cs, &tsk->mems_allowed);
390 tsk->cpuset_mems_generation = cs->mems_generation;
391 if (is_spread_page(cs))
392 tsk->flags |= PF_SPREAD_PAGE;
393 else
394 tsk->flags &= ~PF_SPREAD_PAGE;
395 if (is_spread_slab(cs))
396 tsk->flags |= PF_SPREAD_SLAB;
397 else
398 tsk->flags &= ~PF_SPREAD_SLAB;
399 task_unlock(tsk);
400 mutex_unlock(&callback_mutex);
401 mpol_rebind_task(tsk, &tsk->mems_allowed);
406 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
408 * One cpuset is a subset of another if all its allowed CPUs and
409 * Memory Nodes are a subset of the other, and its exclusive flags
410 * are only set if the other's are set. Call holding cgroup_mutex.
413 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
415 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
416 nodes_subset(p->mems_allowed, q->mems_allowed) &&
417 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
418 is_mem_exclusive(p) <= is_mem_exclusive(q);
422 * alloc_trial_cpuset - allocate a trial cpuset
423 * @cs: the cpuset that the trial cpuset duplicates
425 static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
427 struct cpuset *trial;
429 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
430 if (!trial)
431 return NULL;
433 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
434 kfree(trial);
435 return NULL;
437 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
439 return trial;
443 * free_trial_cpuset - free the trial cpuset
444 * @trial: the trial cpuset to be freed
446 static void free_trial_cpuset(struct cpuset *trial)
448 free_cpumask_var(trial->cpus_allowed);
449 kfree(trial);
453 * validate_change() - Used to validate that any proposed cpuset change
454 * follows the structural rules for cpusets.
456 * If we replaced the flag and mask values of the current cpuset
457 * (cur) with those values in the trial cpuset (trial), would
458 * our various subset and exclusive rules still be valid? Presumes
459 * cgroup_mutex held.
461 * 'cur' is the address of an actual, in-use cpuset. Operations
462 * such as list traversal that depend on the actual address of the
463 * cpuset in the list must use cur below, not trial.
465 * 'trial' is the address of bulk structure copy of cur, with
466 * perhaps one or more of the fields cpus_allowed, mems_allowed,
467 * or flags changed to new, trial values.
469 * Return 0 if valid, -errno if not.
472 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
474 struct cgroup *cont;
475 struct cpuset *c, *par;
477 /* Each of our child cpusets must be a subset of us */
478 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
479 if (!is_cpuset_subset(cgroup_cs(cont), trial))
480 return -EBUSY;
483 /* Remaining checks don't apply to root cpuset */
484 if (cur == &top_cpuset)
485 return 0;
487 par = cur->parent;
489 /* We must be a subset of our parent cpuset */
490 if (!is_cpuset_subset(trial, par))
491 return -EACCES;
494 * If either I or some sibling (!= me) is exclusive, we can't
495 * overlap
497 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
498 c = cgroup_cs(cont);
499 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
500 c != cur &&
501 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
502 return -EINVAL;
503 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
504 c != cur &&
505 nodes_intersects(trial->mems_allowed, c->mems_allowed))
506 return -EINVAL;
509 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
510 if (cgroup_task_count(cur->css.cgroup)) {
511 if (cpumask_empty(trial->cpus_allowed) ||
512 nodes_empty(trial->mems_allowed)) {
513 return -ENOSPC;
517 return 0;
521 * Helper routine for generate_sched_domains().
522 * Do cpusets a, b have overlapping cpus_allowed masks?
524 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
526 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
529 static void
530 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
532 if (dattr->relax_domain_level < c->relax_domain_level)
533 dattr->relax_domain_level = c->relax_domain_level;
534 return;
537 static void
538 update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
540 LIST_HEAD(q);
542 list_add(&c->stack_list, &q);
543 while (!list_empty(&q)) {
544 struct cpuset *cp;
545 struct cgroup *cont;
546 struct cpuset *child;
548 cp = list_first_entry(&q, struct cpuset, stack_list);
549 list_del(q.next);
551 if (cpumask_empty(cp->cpus_allowed))
552 continue;
554 if (is_sched_load_balance(cp))
555 update_domain_attr(dattr, cp);
557 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
558 child = cgroup_cs(cont);
559 list_add_tail(&child->stack_list, &q);
565 * generate_sched_domains()
567 * This function builds a partial partition of the systems CPUs
568 * A 'partial partition' is a set of non-overlapping subsets whose
569 * union is a subset of that set.
570 * The output of this function needs to be passed to kernel/sched.c
571 * partition_sched_domains() routine, which will rebuild the scheduler's
572 * load balancing domains (sched domains) as specified by that partial
573 * partition.
575 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
576 * for a background explanation of this.
578 * Does not return errors, on the theory that the callers of this
579 * routine would rather not worry about failures to rebuild sched
580 * domains when operating in the severe memory shortage situations
581 * that could cause allocation failures below.
583 * Must be called with cgroup_lock held.
585 * The three key local variables below are:
586 * q - a linked-list queue of cpuset pointers, used to implement a
587 * top-down scan of all cpusets. This scan loads a pointer
588 * to each cpuset marked is_sched_load_balance into the
589 * array 'csa'. For our purposes, rebuilding the schedulers
590 * sched domains, we can ignore !is_sched_load_balance cpusets.
591 * csa - (for CpuSet Array) Array of pointers to all the cpusets
592 * that need to be load balanced, for convenient iterative
593 * access by the subsequent code that finds the best partition,
594 * i.e the set of domains (subsets) of CPUs such that the
595 * cpus_allowed of every cpuset marked is_sched_load_balance
596 * is a subset of one of these domains, while there are as
597 * many such domains as possible, each as small as possible.
598 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
599 * the kernel/sched.c routine partition_sched_domains() in a
600 * convenient format, that can be easily compared to the prior
601 * value to determine what partition elements (sched domains)
602 * were changed (added or removed.)
604 * Finding the best partition (set of domains):
605 * The triple nested loops below over i, j, k scan over the
606 * load balanced cpusets (using the array of cpuset pointers in
607 * csa[]) looking for pairs of cpusets that have overlapping
608 * cpus_allowed, but which don't have the same 'pn' partition
609 * number and gives them in the same partition number. It keeps
610 * looping on the 'restart' label until it can no longer find
611 * any such pairs.
613 * The union of the cpus_allowed masks from the set of
614 * all cpusets having the same 'pn' value then form the one
615 * element of the partition (one sched domain) to be passed to
616 * partition_sched_domains().
618 /* FIXME: see the FIXME in partition_sched_domains() */
619 static int generate_sched_domains(struct cpumask **domains,
620 struct sched_domain_attr **attributes)
622 LIST_HEAD(q); /* queue of cpusets to be scanned */
623 struct cpuset *cp; /* scans q */
624 struct cpuset **csa; /* array of all cpuset ptrs */
625 int csn; /* how many cpuset ptrs in csa so far */
626 int i, j, k; /* indices for partition finding loops */
627 struct cpumask *doms; /* resulting partition; i.e. sched domains */
628 struct sched_domain_attr *dattr; /* attributes for custom domains */
629 int ndoms = 0; /* number of sched domains in result */
630 int nslot; /* next empty doms[] struct cpumask slot */
632 doms = NULL;
633 dattr = NULL;
634 csa = NULL;
636 /* Special case for the 99% of systems with one, full, sched domain */
637 if (is_sched_load_balance(&top_cpuset)) {
638 doms = kmalloc(cpumask_size(), GFP_KERNEL);
639 if (!doms)
640 goto done;
642 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
643 if (dattr) {
644 *dattr = SD_ATTR_INIT;
645 update_domain_attr_tree(dattr, &top_cpuset);
647 cpumask_copy(doms, top_cpuset.cpus_allowed);
649 ndoms = 1;
650 goto done;
653 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
654 if (!csa)
655 goto done;
656 csn = 0;
658 list_add(&top_cpuset.stack_list, &q);
659 while (!list_empty(&q)) {
660 struct cgroup *cont;
661 struct cpuset *child; /* scans child cpusets of cp */
663 cp = list_first_entry(&q, struct cpuset, stack_list);
664 list_del(q.next);
666 if (cpumask_empty(cp->cpus_allowed))
667 continue;
670 * All child cpusets contain a subset of the parent's cpus, so
671 * just skip them, and then we call update_domain_attr_tree()
672 * to calc relax_domain_level of the corresponding sched
673 * domain.
675 if (is_sched_load_balance(cp)) {
676 csa[csn++] = cp;
677 continue;
680 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
681 child = cgroup_cs(cont);
682 list_add_tail(&child->stack_list, &q);
686 for (i = 0; i < csn; i++)
687 csa[i]->pn = i;
688 ndoms = csn;
690 restart:
691 /* Find the best partition (set of sched domains) */
692 for (i = 0; i < csn; i++) {
693 struct cpuset *a = csa[i];
694 int apn = a->pn;
696 for (j = 0; j < csn; j++) {
697 struct cpuset *b = csa[j];
698 int bpn = b->pn;
700 if (apn != bpn && cpusets_overlap(a, b)) {
701 for (k = 0; k < csn; k++) {
702 struct cpuset *c = csa[k];
704 if (c->pn == bpn)
705 c->pn = apn;
707 ndoms--; /* one less element */
708 goto restart;
714 * Now we know how many domains to create.
715 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
717 doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
718 if (!doms)
719 goto done;
722 * The rest of the code, including the scheduler, can deal with
723 * dattr==NULL case. No need to abort if alloc fails.
725 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
727 for (nslot = 0, i = 0; i < csn; i++) {
728 struct cpuset *a = csa[i];
729 struct cpumask *dp;
730 int apn = a->pn;
732 if (apn < 0) {
733 /* Skip completed partitions */
734 continue;
737 dp = doms + nslot;
739 if (nslot == ndoms) {
740 static int warnings = 10;
741 if (warnings) {
742 printk(KERN_WARNING
743 "rebuild_sched_domains confused:"
744 " nslot %d, ndoms %d, csn %d, i %d,"
745 " apn %d\n",
746 nslot, ndoms, csn, i, apn);
747 warnings--;
749 continue;
752 cpumask_clear(dp);
753 if (dattr)
754 *(dattr + nslot) = SD_ATTR_INIT;
755 for (j = i; j < csn; j++) {
756 struct cpuset *b = csa[j];
758 if (apn == b->pn) {
759 cpumask_or(dp, dp, b->cpus_allowed);
760 if (dattr)
761 update_domain_attr_tree(dattr + nslot, b);
763 /* Done with this partition */
764 b->pn = -1;
767 nslot++;
769 BUG_ON(nslot != ndoms);
771 done:
772 kfree(csa);
775 * Fallback to the default domain if kmalloc() failed.
776 * See comments in partition_sched_domains().
778 if (doms == NULL)
779 ndoms = 1;
781 *domains = doms;
782 *attributes = dattr;
783 return ndoms;
787 * Rebuild scheduler domains.
789 * Call with neither cgroup_mutex held nor within get_online_cpus().
790 * Takes both cgroup_mutex and get_online_cpus().
792 * Cannot be directly called from cpuset code handling changes
793 * to the cpuset pseudo-filesystem, because it cannot be called
794 * from code that already holds cgroup_mutex.
796 static void do_rebuild_sched_domains(struct work_struct *unused)
798 struct sched_domain_attr *attr;
799 struct cpumask *doms;
800 int ndoms;
802 get_online_cpus();
804 /* Generate domain masks and attrs */
805 cgroup_lock();
806 ndoms = generate_sched_domains(&doms, &attr);
807 cgroup_unlock();
809 /* Have scheduler rebuild the domains */
810 partition_sched_domains(ndoms, doms, attr);
812 put_online_cpus();
815 static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
818 * Rebuild scheduler domains, asynchronously via workqueue.
820 * If the flag 'sched_load_balance' of any cpuset with non-empty
821 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
822 * which has that flag enabled, or if any cpuset with a non-empty
823 * 'cpus' is removed, then call this routine to rebuild the
824 * scheduler's dynamic sched domains.
826 * The rebuild_sched_domains() and partition_sched_domains()
827 * routines must nest cgroup_lock() inside get_online_cpus(),
828 * but such cpuset changes as these must nest that locking the
829 * other way, holding cgroup_lock() for much of the code.
831 * So in order to avoid an ABBA deadlock, the cpuset code handling
832 * these user changes delegates the actual sched domain rebuilding
833 * to a separate workqueue thread, which ends up processing the
834 * above do_rebuild_sched_domains() function.
836 static void async_rebuild_sched_domains(void)
838 queue_work(cpuset_wq, &rebuild_sched_domains_work);
842 * Accomplishes the same scheduler domain rebuild as the above
843 * async_rebuild_sched_domains(), however it directly calls the
844 * rebuild routine synchronously rather than calling it via an
845 * asynchronous work thread.
847 * This can only be called from code that is not holding
848 * cgroup_mutex (not nested in a cgroup_lock() call.)
850 void rebuild_sched_domains(void)
852 do_rebuild_sched_domains(NULL);
856 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
857 * @tsk: task to test
858 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
860 * Call with cgroup_mutex held. May take callback_mutex during call.
861 * Called for each task in a cgroup by cgroup_scan_tasks().
862 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
863 * words, if its mask is not equal to its cpuset's mask).
865 static int cpuset_test_cpumask(struct task_struct *tsk,
866 struct cgroup_scanner *scan)
868 return !cpumask_equal(&tsk->cpus_allowed,
869 (cgroup_cs(scan->cg))->cpus_allowed);
873 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
874 * @tsk: task to test
875 * @scan: struct cgroup_scanner containing the cgroup of the task
877 * Called by cgroup_scan_tasks() for each task in a cgroup whose
878 * cpus_allowed mask needs to be changed.
880 * We don't need to re-check for the cgroup/cpuset membership, since we're
881 * holding cgroup_lock() at this point.
883 static void cpuset_change_cpumask(struct task_struct *tsk,
884 struct cgroup_scanner *scan)
886 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
890 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
891 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
892 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
894 * Called with cgroup_mutex held
896 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
897 * calling callback functions for each.
899 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
900 * if @heap != NULL.
902 static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
904 struct cgroup_scanner scan;
906 scan.cg = cs->css.cgroup;
907 scan.test_task = cpuset_test_cpumask;
908 scan.process_task = cpuset_change_cpumask;
909 scan.heap = heap;
910 cgroup_scan_tasks(&scan);
914 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
915 * @cs: the cpuset to consider
916 * @buf: buffer of cpu numbers written to this cpuset
918 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
919 const char *buf)
921 struct ptr_heap heap;
922 int retval;
923 int is_load_balanced;
925 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
926 if (cs == &top_cpuset)
927 return -EACCES;
930 * An empty cpus_allowed is ok only if the cpuset has no tasks.
931 * Since cpulist_parse() fails on an empty mask, we special case
932 * that parsing. The validate_change() call ensures that cpusets
933 * with tasks have cpus.
935 if (!*buf) {
936 cpumask_clear(trialcs->cpus_allowed);
937 } else {
938 retval = cpulist_parse(buf, trialcs->cpus_allowed);
939 if (retval < 0)
940 return retval;
942 if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
943 return -EINVAL;
945 retval = validate_change(cs, trialcs);
946 if (retval < 0)
947 return retval;
949 /* Nothing to do if the cpus didn't change */
950 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
951 return 0;
953 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
954 if (retval)
955 return retval;
957 is_load_balanced = is_sched_load_balance(trialcs);
959 mutex_lock(&callback_mutex);
960 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
961 mutex_unlock(&callback_mutex);
964 * Scan tasks in the cpuset, and update the cpumasks of any
965 * that need an update.
967 update_tasks_cpumask(cs, &heap);
969 heap_free(&heap);
971 if (is_load_balanced)
972 async_rebuild_sched_domains();
973 return 0;
977 * cpuset_migrate_mm
979 * Migrate memory region from one set of nodes to another.
981 * Temporarilly set tasks mems_allowed to target nodes of migration,
982 * so that the migration code can allocate pages on these nodes.
984 * Call holding cgroup_mutex, so current's cpuset won't change
985 * during this call, as manage_mutex holds off any cpuset_attach()
986 * calls. Therefore we don't need to take task_lock around the
987 * call to guarantee_online_mems(), as we know no one is changing
988 * our task's cpuset.
990 * Hold callback_mutex around the two modifications of our tasks
991 * mems_allowed to synchronize with cpuset_mems_allowed().
993 * While the mm_struct we are migrating is typically from some
994 * other task, the task_struct mems_allowed that we are hacking
995 * is for our current task, which must allocate new pages for that
996 * migrating memory region.
998 * We call cpuset_update_task_memory_state() before hacking
999 * our tasks mems_allowed, so that we are assured of being in
1000 * sync with our tasks cpuset, and in particular, callbacks to
1001 * cpuset_update_task_memory_state() from nested page allocations
1002 * won't see any mismatch of our cpuset and task mems_generation
1003 * values, so won't overwrite our hacked tasks mems_allowed
1004 * nodemask.
1007 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1008 const nodemask_t *to)
1010 struct task_struct *tsk = current;
1012 cpuset_update_task_memory_state();
1014 mutex_lock(&callback_mutex);
1015 tsk->mems_allowed = *to;
1016 mutex_unlock(&callback_mutex);
1018 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
1020 mutex_lock(&callback_mutex);
1021 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
1022 mutex_unlock(&callback_mutex);
1026 * Rebind task's vmas to cpuset's new mems_allowed, and migrate pages to new
1027 * nodes if memory_migrate flag is set. Called with cgroup_mutex held.
1029 static void cpuset_change_nodemask(struct task_struct *p,
1030 struct cgroup_scanner *scan)
1032 struct mm_struct *mm;
1033 struct cpuset *cs;
1034 int migrate;
1035 const nodemask_t *oldmem = scan->data;
1037 mm = get_task_mm(p);
1038 if (!mm)
1039 return;
1041 cs = cgroup_cs(scan->cg);
1042 migrate = is_memory_migrate(cs);
1044 mpol_rebind_mm(mm, &cs->mems_allowed);
1045 if (migrate)
1046 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1047 mmput(mm);
1050 static void *cpuset_being_rebound;
1053 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1054 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1055 * @oldmem: old mems_allowed of cpuset cs
1056 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1058 * Called with cgroup_mutex held
1059 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1060 * if @heap != NULL.
1062 static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1063 struct ptr_heap *heap)
1065 struct cgroup_scanner scan;
1067 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1069 scan.cg = cs->css.cgroup;
1070 scan.test_task = NULL;
1071 scan.process_task = cpuset_change_nodemask;
1072 scan.heap = heap;
1073 scan.data = (nodemask_t *)oldmem;
1076 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1077 * take while holding tasklist_lock. Forks can happen - the
1078 * mpol_dup() cpuset_being_rebound check will catch such forks,
1079 * and rebind their vma mempolicies too. Because we still hold
1080 * the global cgroup_mutex, we know that no other rebind effort
1081 * will be contending for the global variable cpuset_being_rebound.
1082 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1083 * is idempotent. Also migrate pages in each mm to new nodes.
1085 cgroup_scan_tasks(&scan);
1087 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1088 cpuset_being_rebound = NULL;
1092 * Handle user request to change the 'mems' memory placement
1093 * of a cpuset. Needs to validate the request, update the
1094 * cpusets mems_allowed and mems_generation, and for each
1095 * task in the cpuset, rebind any vma mempolicies and if
1096 * the cpuset is marked 'memory_migrate', migrate the tasks
1097 * pages to the new memory.
1099 * Call with cgroup_mutex held. May take callback_mutex during call.
1100 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1101 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1102 * their mempolicies to the cpusets new mems_allowed.
1104 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1105 const char *buf)
1107 nodemask_t oldmem;
1108 int retval;
1109 struct ptr_heap heap;
1112 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1113 * it's read-only
1115 if (cs == &top_cpuset)
1116 return -EACCES;
1119 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1120 * Since nodelist_parse() fails on an empty mask, we special case
1121 * that parsing. The validate_change() call ensures that cpusets
1122 * with tasks have memory.
1124 if (!*buf) {
1125 nodes_clear(trialcs->mems_allowed);
1126 } else {
1127 retval = nodelist_parse(buf, trialcs->mems_allowed);
1128 if (retval < 0)
1129 goto done;
1131 if (!nodes_subset(trialcs->mems_allowed,
1132 node_states[N_HIGH_MEMORY]))
1133 return -EINVAL;
1135 oldmem = cs->mems_allowed;
1136 if (nodes_equal(oldmem, trialcs->mems_allowed)) {
1137 retval = 0; /* Too easy - nothing to do */
1138 goto done;
1140 retval = validate_change(cs, trialcs);
1141 if (retval < 0)
1142 goto done;
1144 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1145 if (retval < 0)
1146 goto done;
1148 mutex_lock(&callback_mutex);
1149 cs->mems_allowed = trialcs->mems_allowed;
1150 cs->mems_generation = cpuset_mems_generation++;
1151 mutex_unlock(&callback_mutex);
1153 update_tasks_nodemask(cs, &oldmem, &heap);
1155 heap_free(&heap);
1156 done:
1157 return retval;
1160 int current_cpuset_is_being_rebound(void)
1162 return task_cs(current) == cpuset_being_rebound;
1165 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1167 if (val < -1 || val >= SD_LV_MAX)
1168 return -EINVAL;
1170 if (val != cs->relax_domain_level) {
1171 cs->relax_domain_level = val;
1172 if (!cpumask_empty(cs->cpus_allowed) &&
1173 is_sched_load_balance(cs))
1174 async_rebuild_sched_domains();
1177 return 0;
1181 * update_flag - read a 0 or a 1 in a file and update associated flag
1182 * bit: the bit to update (see cpuset_flagbits_t)
1183 * cs: the cpuset to update
1184 * turning_on: whether the flag is being set or cleared
1186 * Call with cgroup_mutex held.
1189 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1190 int turning_on)
1192 struct cpuset *trialcs;
1193 int err;
1194 int balance_flag_changed;
1196 trialcs = alloc_trial_cpuset(cs);
1197 if (!trialcs)
1198 return -ENOMEM;
1200 if (turning_on)
1201 set_bit(bit, &trialcs->flags);
1202 else
1203 clear_bit(bit, &trialcs->flags);
1205 err = validate_change(cs, trialcs);
1206 if (err < 0)
1207 goto out;
1209 balance_flag_changed = (is_sched_load_balance(cs) !=
1210 is_sched_load_balance(trialcs));
1212 mutex_lock(&callback_mutex);
1213 cs->flags = trialcs->flags;
1214 mutex_unlock(&callback_mutex);
1216 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1217 async_rebuild_sched_domains();
1219 out:
1220 free_trial_cpuset(trialcs);
1221 return err;
1225 * Frequency meter - How fast is some event occurring?
1227 * These routines manage a digitally filtered, constant time based,
1228 * event frequency meter. There are four routines:
1229 * fmeter_init() - initialize a frequency meter.
1230 * fmeter_markevent() - called each time the event happens.
1231 * fmeter_getrate() - returns the recent rate of such events.
1232 * fmeter_update() - internal routine used to update fmeter.
1234 * A common data structure is passed to each of these routines,
1235 * which is used to keep track of the state required to manage the
1236 * frequency meter and its digital filter.
1238 * The filter works on the number of events marked per unit time.
1239 * The filter is single-pole low-pass recursive (IIR). The time unit
1240 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1241 * simulate 3 decimal digits of precision (multiplied by 1000).
1243 * With an FM_COEF of 933, and a time base of 1 second, the filter
1244 * has a half-life of 10 seconds, meaning that if the events quit
1245 * happening, then the rate returned from the fmeter_getrate()
1246 * will be cut in half each 10 seconds, until it converges to zero.
1248 * It is not worth doing a real infinitely recursive filter. If more
1249 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1250 * just compute FM_MAXTICKS ticks worth, by which point the level
1251 * will be stable.
1253 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1254 * arithmetic overflow in the fmeter_update() routine.
1256 * Given the simple 32 bit integer arithmetic used, this meter works
1257 * best for reporting rates between one per millisecond (msec) and
1258 * one per 32 (approx) seconds. At constant rates faster than one
1259 * per msec it maxes out at values just under 1,000,000. At constant
1260 * rates between one per msec, and one per second it will stabilize
1261 * to a value N*1000, where N is the rate of events per second.
1262 * At constant rates between one per second and one per 32 seconds,
1263 * it will be choppy, moving up on the seconds that have an event,
1264 * and then decaying until the next event. At rates slower than
1265 * about one in 32 seconds, it decays all the way back to zero between
1266 * each event.
1269 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1270 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1271 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1272 #define FM_SCALE 1000 /* faux fixed point scale */
1274 /* Initialize a frequency meter */
1275 static void fmeter_init(struct fmeter *fmp)
1277 fmp->cnt = 0;
1278 fmp->val = 0;
1279 fmp->time = 0;
1280 spin_lock_init(&fmp->lock);
1283 /* Internal meter update - process cnt events and update value */
1284 static void fmeter_update(struct fmeter *fmp)
1286 time_t now = get_seconds();
1287 time_t ticks = now - fmp->time;
1289 if (ticks == 0)
1290 return;
1292 ticks = min(FM_MAXTICKS, ticks);
1293 while (ticks-- > 0)
1294 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1295 fmp->time = now;
1297 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1298 fmp->cnt = 0;
1301 /* Process any previous ticks, then bump cnt by one (times scale). */
1302 static void fmeter_markevent(struct fmeter *fmp)
1304 spin_lock(&fmp->lock);
1305 fmeter_update(fmp);
1306 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1307 spin_unlock(&fmp->lock);
1310 /* Process any previous ticks, then return current value. */
1311 static int fmeter_getrate(struct fmeter *fmp)
1313 int val;
1315 spin_lock(&fmp->lock);
1316 fmeter_update(fmp);
1317 val = fmp->val;
1318 spin_unlock(&fmp->lock);
1319 return val;
1322 /* Protected by cgroup_lock */
1323 static cpumask_var_t cpus_attach;
1325 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1326 static int cpuset_can_attach(struct cgroup_subsys *ss,
1327 struct cgroup *cont, struct task_struct *tsk)
1329 struct cpuset *cs = cgroup_cs(cont);
1330 int ret = 0;
1332 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1333 return -ENOSPC;
1335 if (tsk->flags & PF_THREAD_BOUND) {
1336 mutex_lock(&callback_mutex);
1337 if (!cpumask_equal(&tsk->cpus_allowed, cs->cpus_allowed))
1338 ret = -EINVAL;
1339 mutex_unlock(&callback_mutex);
1342 return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL);
1345 static void cpuset_attach(struct cgroup_subsys *ss,
1346 struct cgroup *cont, struct cgroup *oldcont,
1347 struct task_struct *tsk)
1349 nodemask_t from, to;
1350 struct mm_struct *mm;
1351 struct cpuset *cs = cgroup_cs(cont);
1352 struct cpuset *oldcs = cgroup_cs(oldcont);
1353 int err;
1355 if (cs == &top_cpuset) {
1356 cpumask_copy(cpus_attach, cpu_possible_mask);
1357 } else {
1358 mutex_lock(&callback_mutex);
1359 guarantee_online_cpus(cs, cpus_attach);
1360 mutex_unlock(&callback_mutex);
1362 err = set_cpus_allowed_ptr(tsk, cpus_attach);
1363 if (err)
1364 return;
1366 from = oldcs->mems_allowed;
1367 to = cs->mems_allowed;
1368 mm = get_task_mm(tsk);
1369 if (mm) {
1370 mpol_rebind_mm(mm, &to);
1371 if (is_memory_migrate(cs))
1372 cpuset_migrate_mm(mm, &from, &to);
1373 mmput(mm);
1377 /* The various types of files and directories in a cpuset file system */
1379 typedef enum {
1380 FILE_MEMORY_MIGRATE,
1381 FILE_CPULIST,
1382 FILE_MEMLIST,
1383 FILE_CPU_EXCLUSIVE,
1384 FILE_MEM_EXCLUSIVE,
1385 FILE_MEM_HARDWALL,
1386 FILE_SCHED_LOAD_BALANCE,
1387 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1388 FILE_MEMORY_PRESSURE_ENABLED,
1389 FILE_MEMORY_PRESSURE,
1390 FILE_SPREAD_PAGE,
1391 FILE_SPREAD_SLAB,
1392 } cpuset_filetype_t;
1394 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1396 int retval = 0;
1397 struct cpuset *cs = cgroup_cs(cgrp);
1398 cpuset_filetype_t type = cft->private;
1400 if (!cgroup_lock_live_group(cgrp))
1401 return -ENODEV;
1403 switch (type) {
1404 case FILE_CPU_EXCLUSIVE:
1405 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1406 break;
1407 case FILE_MEM_EXCLUSIVE:
1408 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1409 break;
1410 case FILE_MEM_HARDWALL:
1411 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1412 break;
1413 case FILE_SCHED_LOAD_BALANCE:
1414 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1415 break;
1416 case FILE_MEMORY_MIGRATE:
1417 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1418 break;
1419 case FILE_MEMORY_PRESSURE_ENABLED:
1420 cpuset_memory_pressure_enabled = !!val;
1421 break;
1422 case FILE_MEMORY_PRESSURE:
1423 retval = -EACCES;
1424 break;
1425 case FILE_SPREAD_PAGE:
1426 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1427 cs->mems_generation = cpuset_mems_generation++;
1428 break;
1429 case FILE_SPREAD_SLAB:
1430 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1431 cs->mems_generation = cpuset_mems_generation++;
1432 break;
1433 default:
1434 retval = -EINVAL;
1435 break;
1437 cgroup_unlock();
1438 return retval;
1441 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1443 int retval = 0;
1444 struct cpuset *cs = cgroup_cs(cgrp);
1445 cpuset_filetype_t type = cft->private;
1447 if (!cgroup_lock_live_group(cgrp))
1448 return -ENODEV;
1450 switch (type) {
1451 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1452 retval = update_relax_domain_level(cs, val);
1453 break;
1454 default:
1455 retval = -EINVAL;
1456 break;
1458 cgroup_unlock();
1459 return retval;
1463 * Common handling for a write to a "cpus" or "mems" file.
1465 static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1466 const char *buf)
1468 int retval = 0;
1469 struct cpuset *cs = cgroup_cs(cgrp);
1470 struct cpuset *trialcs;
1472 if (!cgroup_lock_live_group(cgrp))
1473 return -ENODEV;
1475 trialcs = alloc_trial_cpuset(cs);
1476 if (!trialcs)
1477 return -ENOMEM;
1479 switch (cft->private) {
1480 case FILE_CPULIST:
1481 retval = update_cpumask(cs, trialcs, buf);
1482 break;
1483 case FILE_MEMLIST:
1484 retval = update_nodemask(cs, trialcs, buf);
1485 break;
1486 default:
1487 retval = -EINVAL;
1488 break;
1491 free_trial_cpuset(trialcs);
1492 cgroup_unlock();
1493 return retval;
1497 * These ascii lists should be read in a single call, by using a user
1498 * buffer large enough to hold the entire map. If read in smaller
1499 * chunks, there is no guarantee of atomicity. Since the display format
1500 * used, list of ranges of sequential numbers, is variable length,
1501 * and since these maps can change value dynamically, one could read
1502 * gibberish by doing partial reads while a list was changing.
1503 * A single large read to a buffer that crosses a page boundary is
1504 * ok, because the result being copied to user land is not recomputed
1505 * across a page fault.
1508 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1510 int ret;
1512 mutex_lock(&callback_mutex);
1513 ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1514 mutex_unlock(&callback_mutex);
1516 return ret;
1519 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1521 nodemask_t mask;
1523 mutex_lock(&callback_mutex);
1524 mask = cs->mems_allowed;
1525 mutex_unlock(&callback_mutex);
1527 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1530 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1531 struct cftype *cft,
1532 struct file *file,
1533 char __user *buf,
1534 size_t nbytes, loff_t *ppos)
1536 struct cpuset *cs = cgroup_cs(cont);
1537 cpuset_filetype_t type = cft->private;
1538 char *page;
1539 ssize_t retval = 0;
1540 char *s;
1542 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1543 return -ENOMEM;
1545 s = page;
1547 switch (type) {
1548 case FILE_CPULIST:
1549 s += cpuset_sprintf_cpulist(s, cs);
1550 break;
1551 case FILE_MEMLIST:
1552 s += cpuset_sprintf_memlist(s, cs);
1553 break;
1554 default:
1555 retval = -EINVAL;
1556 goto out;
1558 *s++ = '\n';
1560 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1561 out:
1562 free_page((unsigned long)page);
1563 return retval;
1566 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1568 struct cpuset *cs = cgroup_cs(cont);
1569 cpuset_filetype_t type = cft->private;
1570 switch (type) {
1571 case FILE_CPU_EXCLUSIVE:
1572 return is_cpu_exclusive(cs);
1573 case FILE_MEM_EXCLUSIVE:
1574 return is_mem_exclusive(cs);
1575 case FILE_MEM_HARDWALL:
1576 return is_mem_hardwall(cs);
1577 case FILE_SCHED_LOAD_BALANCE:
1578 return is_sched_load_balance(cs);
1579 case FILE_MEMORY_MIGRATE:
1580 return is_memory_migrate(cs);
1581 case FILE_MEMORY_PRESSURE_ENABLED:
1582 return cpuset_memory_pressure_enabled;
1583 case FILE_MEMORY_PRESSURE:
1584 return fmeter_getrate(&cs->fmeter);
1585 case FILE_SPREAD_PAGE:
1586 return is_spread_page(cs);
1587 case FILE_SPREAD_SLAB:
1588 return is_spread_slab(cs);
1589 default:
1590 BUG();
1593 /* Unreachable but makes gcc happy */
1594 return 0;
1597 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1599 struct cpuset *cs = cgroup_cs(cont);
1600 cpuset_filetype_t type = cft->private;
1601 switch (type) {
1602 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1603 return cs->relax_domain_level;
1604 default:
1605 BUG();
1608 /* Unrechable but makes gcc happy */
1609 return 0;
1614 * for the common functions, 'private' gives the type of file
1617 static struct cftype files[] = {
1619 .name = "cpus",
1620 .read = cpuset_common_file_read,
1621 .write_string = cpuset_write_resmask,
1622 .max_write_len = (100U + 6 * NR_CPUS),
1623 .private = FILE_CPULIST,
1627 .name = "mems",
1628 .read = cpuset_common_file_read,
1629 .write_string = cpuset_write_resmask,
1630 .max_write_len = (100U + 6 * MAX_NUMNODES),
1631 .private = FILE_MEMLIST,
1635 .name = "cpu_exclusive",
1636 .read_u64 = cpuset_read_u64,
1637 .write_u64 = cpuset_write_u64,
1638 .private = FILE_CPU_EXCLUSIVE,
1642 .name = "mem_exclusive",
1643 .read_u64 = cpuset_read_u64,
1644 .write_u64 = cpuset_write_u64,
1645 .private = FILE_MEM_EXCLUSIVE,
1649 .name = "mem_hardwall",
1650 .read_u64 = cpuset_read_u64,
1651 .write_u64 = cpuset_write_u64,
1652 .private = FILE_MEM_HARDWALL,
1656 .name = "sched_load_balance",
1657 .read_u64 = cpuset_read_u64,
1658 .write_u64 = cpuset_write_u64,
1659 .private = FILE_SCHED_LOAD_BALANCE,
1663 .name = "sched_relax_domain_level",
1664 .read_s64 = cpuset_read_s64,
1665 .write_s64 = cpuset_write_s64,
1666 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1670 .name = "memory_migrate",
1671 .read_u64 = cpuset_read_u64,
1672 .write_u64 = cpuset_write_u64,
1673 .private = FILE_MEMORY_MIGRATE,
1677 .name = "memory_pressure",
1678 .read_u64 = cpuset_read_u64,
1679 .write_u64 = cpuset_write_u64,
1680 .private = FILE_MEMORY_PRESSURE,
1681 .mode = S_IRUGO,
1685 .name = "memory_spread_page",
1686 .read_u64 = cpuset_read_u64,
1687 .write_u64 = cpuset_write_u64,
1688 .private = FILE_SPREAD_PAGE,
1692 .name = "memory_spread_slab",
1693 .read_u64 = cpuset_read_u64,
1694 .write_u64 = cpuset_write_u64,
1695 .private = FILE_SPREAD_SLAB,
1699 static struct cftype cft_memory_pressure_enabled = {
1700 .name = "memory_pressure_enabled",
1701 .read_u64 = cpuset_read_u64,
1702 .write_u64 = cpuset_write_u64,
1703 .private = FILE_MEMORY_PRESSURE_ENABLED,
1706 static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1708 int err;
1710 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1711 if (err)
1712 return err;
1713 /* memory_pressure_enabled is in root cpuset only */
1714 if (!cont->parent)
1715 err = cgroup_add_file(cont, ss,
1716 &cft_memory_pressure_enabled);
1717 return err;
1721 * post_clone() is called at the end of cgroup_clone().
1722 * 'cgroup' was just created automatically as a result of
1723 * a cgroup_clone(), and the current task is about to
1724 * be moved into 'cgroup'.
1726 * Currently we refuse to set up the cgroup - thereby
1727 * refusing the task to be entered, and as a result refusing
1728 * the sys_unshare() or clone() which initiated it - if any
1729 * sibling cpusets have exclusive cpus or mem.
1731 * If this becomes a problem for some users who wish to
1732 * allow that scenario, then cpuset_post_clone() could be
1733 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1734 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1735 * held.
1737 static void cpuset_post_clone(struct cgroup_subsys *ss,
1738 struct cgroup *cgroup)
1740 struct cgroup *parent, *child;
1741 struct cpuset *cs, *parent_cs;
1743 parent = cgroup->parent;
1744 list_for_each_entry(child, &parent->children, sibling) {
1745 cs = cgroup_cs(child);
1746 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1747 return;
1749 cs = cgroup_cs(cgroup);
1750 parent_cs = cgroup_cs(parent);
1752 cs->mems_allowed = parent_cs->mems_allowed;
1753 cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1754 return;
1758 * cpuset_create - create a cpuset
1759 * ss: cpuset cgroup subsystem
1760 * cont: control group that the new cpuset will be part of
1763 static struct cgroup_subsys_state *cpuset_create(
1764 struct cgroup_subsys *ss,
1765 struct cgroup *cont)
1767 struct cpuset *cs;
1768 struct cpuset *parent;
1770 if (!cont->parent) {
1771 /* This is early initialization for the top cgroup */
1772 top_cpuset.mems_generation = cpuset_mems_generation++;
1773 return &top_cpuset.css;
1775 parent = cgroup_cs(cont->parent);
1776 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1777 if (!cs)
1778 return ERR_PTR(-ENOMEM);
1779 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1780 kfree(cs);
1781 return ERR_PTR(-ENOMEM);
1784 cpuset_update_task_memory_state();
1785 cs->flags = 0;
1786 if (is_spread_page(parent))
1787 set_bit(CS_SPREAD_PAGE, &cs->flags);
1788 if (is_spread_slab(parent))
1789 set_bit(CS_SPREAD_SLAB, &cs->flags);
1790 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1791 cpumask_clear(cs->cpus_allowed);
1792 nodes_clear(cs->mems_allowed);
1793 cs->mems_generation = cpuset_mems_generation++;
1794 fmeter_init(&cs->fmeter);
1795 cs->relax_domain_level = -1;
1797 cs->parent = parent;
1798 number_of_cpusets++;
1799 return &cs->css ;
1803 * If the cpuset being removed has its flag 'sched_load_balance'
1804 * enabled, then simulate turning sched_load_balance off, which
1805 * will call async_rebuild_sched_domains().
1808 static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1810 struct cpuset *cs = cgroup_cs(cont);
1812 cpuset_update_task_memory_state();
1814 if (is_sched_load_balance(cs))
1815 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1817 number_of_cpusets--;
1818 free_cpumask_var(cs->cpus_allowed);
1819 kfree(cs);
1822 struct cgroup_subsys cpuset_subsys = {
1823 .name = "cpuset",
1824 .create = cpuset_create,
1825 .destroy = cpuset_destroy,
1826 .can_attach = cpuset_can_attach,
1827 .attach = cpuset_attach,
1828 .populate = cpuset_populate,
1829 .post_clone = cpuset_post_clone,
1830 .subsys_id = cpuset_subsys_id,
1831 .early_init = 1,
1835 * cpuset_init_early - just enough so that the calls to
1836 * cpuset_update_task_memory_state() in early init code
1837 * are harmless.
1840 int __init cpuset_init_early(void)
1842 alloc_bootmem_cpumask_var(&top_cpuset.cpus_allowed);
1844 top_cpuset.mems_generation = cpuset_mems_generation++;
1845 return 0;
1850 * cpuset_init - initialize cpusets at system boot
1852 * Description: Initialize top_cpuset and the cpuset internal file system,
1855 int __init cpuset_init(void)
1857 int err = 0;
1859 cpumask_setall(top_cpuset.cpus_allowed);
1860 nodes_setall(top_cpuset.mems_allowed);
1862 fmeter_init(&top_cpuset.fmeter);
1863 top_cpuset.mems_generation = cpuset_mems_generation++;
1864 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1865 top_cpuset.relax_domain_level = -1;
1867 err = register_filesystem(&cpuset_fs_type);
1868 if (err < 0)
1869 return err;
1871 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1872 BUG();
1874 number_of_cpusets = 1;
1875 return 0;
1879 * cpuset_do_move_task - move a given task to another cpuset
1880 * @tsk: pointer to task_struct the task to move
1881 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1883 * Called by cgroup_scan_tasks() for each task in a cgroup.
1884 * Return nonzero to stop the walk through the tasks.
1886 static void cpuset_do_move_task(struct task_struct *tsk,
1887 struct cgroup_scanner *scan)
1889 struct cgroup *new_cgroup = scan->data;
1891 cgroup_attach_task(new_cgroup, tsk);
1895 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1896 * @from: cpuset in which the tasks currently reside
1897 * @to: cpuset to which the tasks will be moved
1899 * Called with cgroup_mutex held
1900 * callback_mutex must not be held, as cpuset_attach() will take it.
1902 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1903 * calling callback functions for each.
1905 static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1907 struct cgroup_scanner scan;
1909 scan.cg = from->css.cgroup;
1910 scan.test_task = NULL; /* select all tasks in cgroup */
1911 scan.process_task = cpuset_do_move_task;
1912 scan.heap = NULL;
1913 scan.data = to->css.cgroup;
1915 if (cgroup_scan_tasks(&scan))
1916 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1917 "cgroup_scan_tasks failed\n");
1921 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1922 * or memory nodes, we need to walk over the cpuset hierarchy,
1923 * removing that CPU or node from all cpusets. If this removes the
1924 * last CPU or node from a cpuset, then move the tasks in the empty
1925 * cpuset to its next-highest non-empty parent.
1927 * Called with cgroup_mutex held
1928 * callback_mutex must not be held, as cpuset_attach() will take it.
1930 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1932 struct cpuset *parent;
1935 * The cgroup's css_sets list is in use if there are tasks
1936 * in the cpuset; the list is empty if there are none;
1937 * the cs->css.refcnt seems always 0.
1939 if (list_empty(&cs->css.cgroup->css_sets))
1940 return;
1943 * Find its next-highest non-empty parent, (top cpuset
1944 * has online cpus, so can't be empty).
1946 parent = cs->parent;
1947 while (cpumask_empty(parent->cpus_allowed) ||
1948 nodes_empty(parent->mems_allowed))
1949 parent = parent->parent;
1951 move_member_tasks_to_cpuset(cs, parent);
1955 * Walk the specified cpuset subtree and look for empty cpusets.
1956 * The tasks of such cpuset must be moved to a parent cpuset.
1958 * Called with cgroup_mutex held. We take callback_mutex to modify
1959 * cpus_allowed and mems_allowed.
1961 * This walk processes the tree from top to bottom, completing one layer
1962 * before dropping down to the next. It always processes a node before
1963 * any of its children.
1965 * For now, since we lack memory hot unplug, we'll never see a cpuset
1966 * that has tasks along with an empty 'mems'. But if we did see such
1967 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1969 static void scan_for_empty_cpusets(struct cpuset *root)
1971 LIST_HEAD(queue);
1972 struct cpuset *cp; /* scans cpusets being updated */
1973 struct cpuset *child; /* scans child cpusets of cp */
1974 struct cgroup *cont;
1975 nodemask_t oldmems;
1977 list_add_tail((struct list_head *)&root->stack_list, &queue);
1979 while (!list_empty(&queue)) {
1980 cp = list_first_entry(&queue, struct cpuset, stack_list);
1981 list_del(queue.next);
1982 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1983 child = cgroup_cs(cont);
1984 list_add_tail(&child->stack_list, &queue);
1987 /* Continue past cpusets with all cpus, mems online */
1988 if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
1989 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1990 continue;
1992 oldmems = cp->mems_allowed;
1994 /* Remove offline cpus and mems from this cpuset. */
1995 mutex_lock(&callback_mutex);
1996 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
1997 cpu_online_mask);
1998 nodes_and(cp->mems_allowed, cp->mems_allowed,
1999 node_states[N_HIGH_MEMORY]);
2000 mutex_unlock(&callback_mutex);
2002 /* Move tasks from the empty cpuset to a parent */
2003 if (cpumask_empty(cp->cpus_allowed) ||
2004 nodes_empty(cp->mems_allowed))
2005 remove_tasks_in_empty_cpuset(cp);
2006 else {
2007 update_tasks_cpumask(cp, NULL);
2008 update_tasks_nodemask(cp, &oldmems, NULL);
2014 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2015 * period. This is necessary in order to make cpusets transparent
2016 * (of no affect) on systems that are actively using CPU hotplug
2017 * but making no active use of cpusets.
2019 * This routine ensures that top_cpuset.cpus_allowed tracks
2020 * cpu_online_map on each CPU hotplug (cpuhp) event.
2022 * Called within get_online_cpus(). Needs to call cgroup_lock()
2023 * before calling generate_sched_domains().
2025 static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
2026 unsigned long phase, void *unused_cpu)
2028 struct sched_domain_attr *attr;
2029 struct cpumask *doms;
2030 int ndoms;
2032 switch (phase) {
2033 case CPU_ONLINE:
2034 case CPU_ONLINE_FROZEN:
2035 case CPU_DEAD:
2036 case CPU_DEAD_FROZEN:
2037 break;
2039 default:
2040 return NOTIFY_DONE;
2043 cgroup_lock();
2044 mutex_lock(&callback_mutex);
2045 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
2046 mutex_unlock(&callback_mutex);
2047 scan_for_empty_cpusets(&top_cpuset);
2048 ndoms = generate_sched_domains(&doms, &attr);
2049 cgroup_unlock();
2051 /* Have scheduler rebuild the domains */
2052 partition_sched_domains(ndoms, doms, attr);
2054 return NOTIFY_OK;
2057 #ifdef CONFIG_MEMORY_HOTPLUG
2059 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2060 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2061 * See also the previous routine cpuset_track_online_cpus().
2063 static int cpuset_track_online_nodes(struct notifier_block *self,
2064 unsigned long action, void *arg)
2066 cgroup_lock();
2067 switch (action) {
2068 case MEM_ONLINE:
2069 case MEM_OFFLINE:
2070 mutex_lock(&callback_mutex);
2071 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2072 mutex_unlock(&callback_mutex);
2073 if (action == MEM_OFFLINE)
2074 scan_for_empty_cpusets(&top_cpuset);
2075 break;
2076 default:
2077 break;
2079 cgroup_unlock();
2080 return NOTIFY_OK;
2082 #endif
2085 * cpuset_init_smp - initialize cpus_allowed
2087 * Description: Finish top cpuset after cpu, node maps are initialized
2090 void __init cpuset_init_smp(void)
2092 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
2093 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2095 hotcpu_notifier(cpuset_track_online_cpus, 0);
2096 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2098 cpuset_wq = create_singlethread_workqueue("cpuset");
2099 BUG_ON(!cpuset_wq);
2103 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2104 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2105 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2107 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2108 * attached to the specified @tsk. Guaranteed to return some non-empty
2109 * subset of cpu_online_map, even if this means going outside the
2110 * tasks cpuset.
2113 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2115 mutex_lock(&callback_mutex);
2116 cpuset_cpus_allowed_locked(tsk, pmask);
2117 mutex_unlock(&callback_mutex);
2121 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2122 * Must be called with callback_mutex held.
2124 void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
2126 task_lock(tsk);
2127 guarantee_online_cpus(task_cs(tsk), pmask);
2128 task_unlock(tsk);
2131 void cpuset_init_current_mems_allowed(void)
2133 nodes_setall(current->mems_allowed);
2137 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2138 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2140 * Description: Returns the nodemask_t mems_allowed of the cpuset
2141 * attached to the specified @tsk. Guaranteed to return some non-empty
2142 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2143 * tasks cpuset.
2146 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2148 nodemask_t mask;
2150 mutex_lock(&callback_mutex);
2151 task_lock(tsk);
2152 guarantee_online_mems(task_cs(tsk), &mask);
2153 task_unlock(tsk);
2154 mutex_unlock(&callback_mutex);
2156 return mask;
2160 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2161 * @nodemask: the nodemask to be checked
2163 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2165 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2167 return nodes_intersects(*nodemask, current->mems_allowed);
2171 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2172 * mem_hardwall ancestor to the specified cpuset. Call holding
2173 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2174 * (an unusual configuration), then returns the root cpuset.
2176 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2178 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2179 cs = cs->parent;
2180 return cs;
2184 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2185 * @node: is this an allowed node?
2186 * @gfp_mask: memory allocation flags
2188 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2189 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2190 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2191 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2192 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2193 * flag, yes.
2194 * Otherwise, no.
2196 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2197 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2198 * might sleep, and might allow a node from an enclosing cpuset.
2200 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2201 * cpusets, and never sleeps.
2203 * The __GFP_THISNODE placement logic is really handled elsewhere,
2204 * by forcibly using a zonelist starting at a specified node, and by
2205 * (in get_page_from_freelist()) refusing to consider the zones for
2206 * any node on the zonelist except the first. By the time any such
2207 * calls get to this routine, we should just shut up and say 'yes'.
2209 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2210 * and do not allow allocations outside the current tasks cpuset
2211 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2212 * GFP_KERNEL allocations are not so marked, so can escape to the
2213 * nearest enclosing hardwalled ancestor cpuset.
2215 * Scanning up parent cpusets requires callback_mutex. The
2216 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2217 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2218 * current tasks mems_allowed came up empty on the first pass over
2219 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2220 * cpuset are short of memory, might require taking the callback_mutex
2221 * mutex.
2223 * The first call here from mm/page_alloc:get_page_from_freelist()
2224 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2225 * so no allocation on a node outside the cpuset is allowed (unless
2226 * in interrupt, of course).
2228 * The second pass through get_page_from_freelist() doesn't even call
2229 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2230 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2231 * in alloc_flags. That logic and the checks below have the combined
2232 * affect that:
2233 * in_interrupt - any node ok (current task context irrelevant)
2234 * GFP_ATOMIC - any node ok
2235 * TIF_MEMDIE - any node ok
2236 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2237 * GFP_USER - only nodes in current tasks mems allowed ok.
2239 * Rule:
2240 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2241 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2242 * the code that might scan up ancestor cpusets and sleep.
2244 int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2246 const struct cpuset *cs; /* current cpuset ancestors */
2247 int allowed; /* is allocation in zone z allowed? */
2249 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2250 return 1;
2251 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2252 if (node_isset(node, current->mems_allowed))
2253 return 1;
2255 * Allow tasks that have access to memory reserves because they have
2256 * been OOM killed to get memory anywhere.
2258 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2259 return 1;
2260 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2261 return 0;
2263 if (current->flags & PF_EXITING) /* Let dying task have memory */
2264 return 1;
2266 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2267 mutex_lock(&callback_mutex);
2269 task_lock(current);
2270 cs = nearest_hardwall_ancestor(task_cs(current));
2271 task_unlock(current);
2273 allowed = node_isset(node, cs->mems_allowed);
2274 mutex_unlock(&callback_mutex);
2275 return allowed;
2279 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2280 * @node: is this an allowed node?
2281 * @gfp_mask: memory allocation flags
2283 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2284 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2285 * yes. If the task has been OOM killed and has access to memory reserves as
2286 * specified by the TIF_MEMDIE flag, yes.
2287 * Otherwise, no.
2289 * The __GFP_THISNODE placement logic is really handled elsewhere,
2290 * by forcibly using a zonelist starting at a specified node, and by
2291 * (in get_page_from_freelist()) refusing to consider the zones for
2292 * any node on the zonelist except the first. By the time any such
2293 * calls get to this routine, we should just shut up and say 'yes'.
2295 * Unlike the cpuset_node_allowed_softwall() variant, above,
2296 * this variant requires that the node be in the current task's
2297 * mems_allowed or that we're in interrupt. It does not scan up the
2298 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2299 * It never sleeps.
2301 int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2303 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2304 return 1;
2305 if (node_isset(node, current->mems_allowed))
2306 return 1;
2308 * Allow tasks that have access to memory reserves because they have
2309 * been OOM killed to get memory anywhere.
2311 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2312 return 1;
2313 return 0;
2317 * cpuset_lock - lock out any changes to cpuset structures
2319 * The out of memory (oom) code needs to mutex_lock cpusets
2320 * from being changed while it scans the tasklist looking for a
2321 * task in an overlapping cpuset. Expose callback_mutex via this
2322 * cpuset_lock() routine, so the oom code can lock it, before
2323 * locking the task list. The tasklist_lock is a spinlock, so
2324 * must be taken inside callback_mutex.
2327 void cpuset_lock(void)
2329 mutex_lock(&callback_mutex);
2333 * cpuset_unlock - release lock on cpuset changes
2335 * Undo the lock taken in a previous cpuset_lock() call.
2338 void cpuset_unlock(void)
2340 mutex_unlock(&callback_mutex);
2344 * cpuset_mem_spread_node() - On which node to begin search for a page
2346 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2347 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2348 * and if the memory allocation used cpuset_mem_spread_node()
2349 * to determine on which node to start looking, as it will for
2350 * certain page cache or slab cache pages such as used for file
2351 * system buffers and inode caches, then instead of starting on the
2352 * local node to look for a free page, rather spread the starting
2353 * node around the tasks mems_allowed nodes.
2355 * We don't have to worry about the returned node being offline
2356 * because "it can't happen", and even if it did, it would be ok.
2358 * The routines calling guarantee_online_mems() are careful to
2359 * only set nodes in task->mems_allowed that are online. So it
2360 * should not be possible for the following code to return an
2361 * offline node. But if it did, that would be ok, as this routine
2362 * is not returning the node where the allocation must be, only
2363 * the node where the search should start. The zonelist passed to
2364 * __alloc_pages() will include all nodes. If the slab allocator
2365 * is passed an offline node, it will fall back to the local node.
2366 * See kmem_cache_alloc_node().
2369 int cpuset_mem_spread_node(void)
2371 int node;
2373 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2374 if (node == MAX_NUMNODES)
2375 node = first_node(current->mems_allowed);
2376 current->cpuset_mem_spread_rotor = node;
2377 return node;
2379 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2382 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2383 * @tsk1: pointer to task_struct of some task.
2384 * @tsk2: pointer to task_struct of some other task.
2386 * Description: Return true if @tsk1's mems_allowed intersects the
2387 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2388 * one of the task's memory usage might impact the memory available
2389 * to the other.
2392 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2393 const struct task_struct *tsk2)
2395 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2399 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2400 * @task: pointer to task_struct of some task.
2402 * Description: Prints @task's name, cpuset name, and cached copy of its
2403 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2404 * dereferencing task_cs(task).
2406 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2408 struct dentry *dentry;
2410 dentry = task_cs(tsk)->css.cgroup->dentry;
2411 spin_lock(&cpuset_buffer_lock);
2412 snprintf(cpuset_name, CPUSET_NAME_LEN,
2413 dentry ? (const char *)dentry->d_name.name : "/");
2414 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2415 tsk->mems_allowed);
2416 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2417 tsk->comm, cpuset_name, cpuset_nodelist);
2418 spin_unlock(&cpuset_buffer_lock);
2422 * Collection of memory_pressure is suppressed unless
2423 * this flag is enabled by writing "1" to the special
2424 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2427 int cpuset_memory_pressure_enabled __read_mostly;
2430 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2432 * Keep a running average of the rate of synchronous (direct)
2433 * page reclaim efforts initiated by tasks in each cpuset.
2435 * This represents the rate at which some task in the cpuset
2436 * ran low on memory on all nodes it was allowed to use, and
2437 * had to enter the kernels page reclaim code in an effort to
2438 * create more free memory by tossing clean pages or swapping
2439 * or writing dirty pages.
2441 * Display to user space in the per-cpuset read-only file
2442 * "memory_pressure". Value displayed is an integer
2443 * representing the recent rate of entry into the synchronous
2444 * (direct) page reclaim by any task attached to the cpuset.
2447 void __cpuset_memory_pressure_bump(void)
2449 task_lock(current);
2450 fmeter_markevent(&task_cs(current)->fmeter);
2451 task_unlock(current);
2454 #ifdef CONFIG_PROC_PID_CPUSET
2456 * proc_cpuset_show()
2457 * - Print tasks cpuset path into seq_file.
2458 * - Used for /proc/<pid>/cpuset.
2459 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2460 * doesn't really matter if tsk->cpuset changes after we read it,
2461 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2462 * anyway.
2464 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2466 struct pid *pid;
2467 struct task_struct *tsk;
2468 char *buf;
2469 struct cgroup_subsys_state *css;
2470 int retval;
2472 retval = -ENOMEM;
2473 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2474 if (!buf)
2475 goto out;
2477 retval = -ESRCH;
2478 pid = m->private;
2479 tsk = get_pid_task(pid, PIDTYPE_PID);
2480 if (!tsk)
2481 goto out_free;
2483 retval = -EINVAL;
2484 cgroup_lock();
2485 css = task_subsys_state(tsk, cpuset_subsys_id);
2486 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2487 if (retval < 0)
2488 goto out_unlock;
2489 seq_puts(m, buf);
2490 seq_putc(m, '\n');
2491 out_unlock:
2492 cgroup_unlock();
2493 put_task_struct(tsk);
2494 out_free:
2495 kfree(buf);
2496 out:
2497 return retval;
2500 static int cpuset_open(struct inode *inode, struct file *file)
2502 struct pid *pid = PROC_I(inode)->pid;
2503 return single_open(file, proc_cpuset_show, pid);
2506 const struct file_operations proc_cpuset_operations = {
2507 .open = cpuset_open,
2508 .read = seq_read,
2509 .llseek = seq_lseek,
2510 .release = single_release,
2512 #endif /* CONFIG_PROC_PID_CPUSET */
2514 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2515 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2517 seq_printf(m, "Cpus_allowed:\t");
2518 seq_cpumask(m, &task->cpus_allowed);
2519 seq_printf(m, "\n");
2520 seq_printf(m, "Cpus_allowed_list:\t");
2521 seq_cpumask_list(m, &task->cpus_allowed);
2522 seq_printf(m, "\n");
2523 seq_printf(m, "Mems_allowed:\t");
2524 seq_nodemask(m, &task->mems_allowed);
2525 seq_printf(m, "\n");
2526 seq_printf(m, "Mems_allowed_list:\t");
2527 seq_nodemask_list(m, &task->mems_allowed);
2528 seq_printf(m, "\n");