2 * Linux INET6 implementation
3 * Forwarding Information Database
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
16 * Yuji SEKIYA @USAGI: Support default route on router node;
17 * remove ip6_null_entry from the top of
19 * Ville Nuorvala: Fixed routing subtrees.
22 #define pr_fmt(fmt) "IPv6: " fmt
24 #include <linux/errno.h>
25 #include <linux/types.h>
26 #include <linux/net.h>
27 #include <linux/route.h>
28 #include <linux/netdevice.h>
29 #include <linux/in6.h>
30 #include <linux/init.h>
31 #include <linux/list.h>
32 #include <linux/slab.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
44 #define RT6_TRACE(x...) pr_debug(x)
46 #define RT6_TRACE(x...) do { ; } while (0)
49 static struct kmem_cache
* fib6_node_kmem __read_mostly
;
53 #ifdef CONFIG_IPV6_SUBTREES
64 struct fib6_walker_t w
;
66 int (*func
)(struct rt6_info
*, void *arg
);
70 static DEFINE_RWLOCK(fib6_walker_lock
);
72 #ifdef CONFIG_IPV6_SUBTREES
73 #define FWS_INIT FWS_S
75 #define FWS_INIT FWS_L
78 static void fib6_prune_clones(struct net
*net
, struct fib6_node
*fn
,
80 static struct rt6_info
*fib6_find_prefix(struct net
*net
, struct fib6_node
*fn
);
81 static struct fib6_node
*fib6_repair_tree(struct net
*net
, struct fib6_node
*fn
);
82 static int fib6_walk(struct fib6_walker_t
*w
);
83 static int fib6_walk_continue(struct fib6_walker_t
*w
);
86 * A routing update causes an increase of the serial number on the
87 * affected subtree. This allows for cached routes to be asynchronously
88 * tested when modifications are made to the destination cache as a
89 * result of redirects, path MTU changes, etc.
92 static __u32 rt_sernum
;
94 static void fib6_gc_timer_cb(unsigned long arg
);
96 static LIST_HEAD(fib6_walkers
);
97 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
99 static inline void fib6_walker_link(struct fib6_walker_t
*w
)
101 write_lock_bh(&fib6_walker_lock
);
102 list_add(&w
->lh
, &fib6_walkers
);
103 write_unlock_bh(&fib6_walker_lock
);
106 static inline void fib6_walker_unlink(struct fib6_walker_t
*w
)
108 write_lock_bh(&fib6_walker_lock
);
110 write_unlock_bh(&fib6_walker_lock
);
112 static __inline__ u32
fib6_new_sernum(void)
121 * Auxiliary address test functions for the radix tree.
123 * These assume a 32bit processor (although it will work on
130 #if defined(__LITTLE_ENDIAN)
131 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
133 # define BITOP_BE32_SWIZZLE 0
136 static __inline__ __be32
addr_bit_set(const void *token
, int fn_bit
)
138 const __be32
*addr
= token
;
141 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
142 * is optimized version of
143 * htonl(1 << ((~fn_bit)&0x1F))
144 * See include/asm-generic/bitops/le.h.
146 return (__force __be32
)(1 << ((~fn_bit
^ BITOP_BE32_SWIZZLE
) & 0x1f)) &
150 static __inline__
struct fib6_node
* node_alloc(void)
152 struct fib6_node
*fn
;
154 fn
= kmem_cache_zalloc(fib6_node_kmem
, GFP_ATOMIC
);
159 static __inline__
void node_free(struct fib6_node
* fn
)
161 kmem_cache_free(fib6_node_kmem
, fn
);
164 static __inline__
void rt6_release(struct rt6_info
*rt
)
166 if (atomic_dec_and_test(&rt
->rt6i_ref
))
170 static void fib6_link_table(struct net
*net
, struct fib6_table
*tb
)
175 * Initialize table lock at a single place to give lockdep a key,
176 * tables aren't visible prior to being linked to the list.
178 rwlock_init(&tb
->tb6_lock
);
180 h
= tb
->tb6_id
& (FIB6_TABLE_HASHSZ
- 1);
183 * No protection necessary, this is the only list mutatation
184 * operation, tables never disappear once they exist.
186 hlist_add_head_rcu(&tb
->tb6_hlist
, &net
->ipv6
.fib_table_hash
[h
]);
189 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
191 static struct fib6_table
*fib6_alloc_table(struct net
*net
, u32 id
)
193 struct fib6_table
*table
;
195 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
198 table
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
199 table
->tb6_root
.fn_flags
= RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
200 inet_peer_base_init(&table
->tb6_peers
);
206 struct fib6_table
*fib6_new_table(struct net
*net
, u32 id
)
208 struct fib6_table
*tb
;
212 tb
= fib6_get_table(net
, id
);
216 tb
= fib6_alloc_table(net
, id
);
218 fib6_link_table(net
, tb
);
223 struct fib6_table
*fib6_get_table(struct net
*net
, u32 id
)
225 struct fib6_table
*tb
;
226 struct hlist_head
*head
;
231 h
= id
& (FIB6_TABLE_HASHSZ
- 1);
233 head
= &net
->ipv6
.fib_table_hash
[h
];
234 hlist_for_each_entry_rcu(tb
, head
, tb6_hlist
) {
235 if (tb
->tb6_id
== id
) {
245 static void __net_init
fib6_tables_init(struct net
*net
)
247 fib6_link_table(net
, net
->ipv6
.fib6_main_tbl
);
248 fib6_link_table(net
, net
->ipv6
.fib6_local_tbl
);
252 struct fib6_table
*fib6_new_table(struct net
*net
, u32 id
)
254 return fib6_get_table(net
, id
);
257 struct fib6_table
*fib6_get_table(struct net
*net
, u32 id
)
259 return net
->ipv6
.fib6_main_tbl
;
262 struct dst_entry
*fib6_rule_lookup(struct net
*net
, struct flowi6
*fl6
,
263 int flags
, pol_lookup_t lookup
)
265 return (struct dst_entry
*) lookup(net
, net
->ipv6
.fib6_main_tbl
, fl6
, flags
);
268 static void __net_init
fib6_tables_init(struct net
*net
)
270 fib6_link_table(net
, net
->ipv6
.fib6_main_tbl
);
275 static int fib6_dump_node(struct fib6_walker_t
*w
)
280 for (rt
= w
->leaf
; rt
; rt
= rt
->dst
.rt6_next
) {
281 res
= rt6_dump_route(rt
, w
->args
);
283 /* Frame is full, suspend walking */
293 static void fib6_dump_end(struct netlink_callback
*cb
)
295 struct fib6_walker_t
*w
= (void*)cb
->args
[2];
300 fib6_walker_unlink(w
);
305 cb
->done
= (void*)cb
->args
[3];
309 static int fib6_dump_done(struct netlink_callback
*cb
)
312 return cb
->done
? cb
->done(cb
) : 0;
315 static int fib6_dump_table(struct fib6_table
*table
, struct sk_buff
*skb
,
316 struct netlink_callback
*cb
)
318 struct fib6_walker_t
*w
;
321 w
= (void *)cb
->args
[2];
322 w
->root
= &table
->tb6_root
;
324 if (cb
->args
[4] == 0) {
328 read_lock_bh(&table
->tb6_lock
);
330 read_unlock_bh(&table
->tb6_lock
);
333 cb
->args
[5] = w
->root
->fn_sernum
;
336 if (cb
->args
[5] != w
->root
->fn_sernum
) {
337 /* Begin at the root if the tree changed */
338 cb
->args
[5] = w
->root
->fn_sernum
;
345 read_lock_bh(&table
->tb6_lock
);
346 res
= fib6_walk_continue(w
);
347 read_unlock_bh(&table
->tb6_lock
);
349 fib6_walker_unlink(w
);
357 static int inet6_dump_fib(struct sk_buff
*skb
, struct netlink_callback
*cb
)
359 struct net
*net
= sock_net(skb
->sk
);
361 unsigned int e
= 0, s_e
;
362 struct rt6_rtnl_dump_arg arg
;
363 struct fib6_walker_t
*w
;
364 struct fib6_table
*tb
;
365 struct hlist_head
*head
;
371 w
= (void *)cb
->args
[2];
375 * 1. hook callback destructor.
377 cb
->args
[3] = (long)cb
->done
;
378 cb
->done
= fib6_dump_done
;
381 * 2. allocate and initialize walker.
383 w
= kzalloc(sizeof(*w
), GFP_ATOMIC
);
386 w
->func
= fib6_dump_node
;
387 cb
->args
[2] = (long)w
;
396 for (h
= s_h
; h
< FIB6_TABLE_HASHSZ
; h
++, s_e
= 0) {
398 head
= &net
->ipv6
.fib_table_hash
[h
];
399 hlist_for_each_entry_rcu(tb
, head
, tb6_hlist
) {
402 res
= fib6_dump_table(tb
, skb
, cb
);
414 res
= res
< 0 ? res
: skb
->len
;
423 * return the appropriate node for a routing tree "add" operation
424 * by either creating and inserting or by returning an existing
428 static struct fib6_node
* fib6_add_1(struct fib6_node
*root
, void *addr
,
429 int addrlen
, int plen
,
430 int offset
, int allow_create
,
431 int replace_required
)
433 struct fib6_node
*fn
, *in
, *ln
;
434 struct fib6_node
*pn
= NULL
;
438 __u32 sernum
= fib6_new_sernum();
440 RT6_TRACE("fib6_add_1\n");
442 /* insert node in tree */
447 key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
452 if (plen
< fn
->fn_bit
||
453 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
)) {
455 if (replace_required
) {
456 pr_warn("Can't replace route, no match found\n");
457 return ERR_PTR(-ENOENT
);
459 pr_warn("NLM_F_CREATE should be set when creating new route\n");
468 if (plen
== fn
->fn_bit
) {
469 /* clean up an intermediate node */
470 if (!(fn
->fn_flags
& RTN_RTINFO
)) {
471 rt6_release(fn
->leaf
);
475 fn
->fn_sernum
= sernum
;
481 * We have more bits to go
484 /* Try to walk down on tree. */
485 fn
->fn_sernum
= sernum
;
486 dir
= addr_bit_set(addr
, fn
->fn_bit
);
488 fn
= dir
? fn
->right
: fn
->left
;
492 /* We should not create new node because
493 * NLM_F_REPLACE was specified without NLM_F_CREATE
494 * I assume it is safe to require NLM_F_CREATE when
495 * REPLACE flag is used! Later we may want to remove the
496 * check for replace_required, because according
497 * to netlink specification, NLM_F_CREATE
498 * MUST be specified if new route is created.
499 * That would keep IPv6 consistent with IPv4
501 if (replace_required
) {
502 pr_warn("Can't replace route, no match found\n");
503 return ERR_PTR(-ENOENT
);
505 pr_warn("NLM_F_CREATE should be set when creating new route\n");
508 * We walked to the bottom of tree.
509 * Create new leaf node without children.
515 return ERR_PTR(-ENOMEM
);
519 ln
->fn_sernum
= sernum
;
531 * split since we don't have a common prefix anymore or
532 * we have a less significant route.
533 * we've to insert an intermediate node on the list
534 * this new node will point to the one we need to create
540 /* find 1st bit in difference between the 2 addrs.
542 See comment in __ipv6_addr_diff: bit may be an invalid value,
543 but if it is >= plen, the value is ignored in any case.
546 bit
= __ipv6_addr_diff(addr
, &key
->addr
, addrlen
);
551 * (new leaf node)[ln] (old node)[fn]
562 return ERR_PTR(-ENOMEM
);
566 * new intermediate node.
568 * be off since that an address that chooses one of
569 * the branches would not match less specific routes
570 * in the other branch
577 atomic_inc(&in
->leaf
->rt6i_ref
);
579 in
->fn_sernum
= sernum
;
581 /* update parent pointer */
592 ln
->fn_sernum
= sernum
;
594 if (addr_bit_set(addr
, bit
)) {
601 } else { /* plen <= bit */
604 * (new leaf node)[ln]
606 * (old node)[fn] NULL
612 return ERR_PTR(-ENOMEM
);
618 ln
->fn_sernum
= sernum
;
625 if (addr_bit_set(&key
->addr
, plen
))
636 * Insert routing information in a node.
639 static int fib6_add_rt2node(struct fib6_node
*fn
, struct rt6_info
*rt
,
640 struct nl_info
*info
)
642 struct rt6_info
*iter
= NULL
;
643 struct rt6_info
**ins
;
644 int replace
= (info
->nlh
&&
645 (info
->nlh
->nlmsg_flags
& NLM_F_REPLACE
));
646 int add
= (!info
->nlh
||
647 (info
->nlh
->nlmsg_flags
& NLM_F_CREATE
));
652 for (iter
= fn
->leaf
; iter
; iter
= iter
->dst
.rt6_next
) {
654 * Search for duplicates
657 if (iter
->rt6i_metric
== rt
->rt6i_metric
) {
659 * Same priority level
662 (info
->nlh
->nlmsg_flags
& NLM_F_EXCL
))
669 if (iter
->dst
.dev
== rt
->dst
.dev
&&
670 iter
->rt6i_idev
== rt
->rt6i_idev
&&
671 ipv6_addr_equal(&iter
->rt6i_gateway
,
672 &rt
->rt6i_gateway
)) {
673 if (rt
->rt6i_nsiblings
)
674 rt
->rt6i_nsiblings
= 0;
675 if (!(iter
->rt6i_flags
& RTF_EXPIRES
))
677 if (!(rt
->rt6i_flags
& RTF_EXPIRES
))
678 rt6_clean_expires(iter
);
680 rt6_set_expires(iter
, rt
->dst
.expires
);
683 /* If we have the same destination and the same metric,
684 * but not the same gateway, then the route we try to
685 * add is sibling to this route, increment our counter
686 * of siblings, and later we will add our route to the
688 * Only static routes (which don't have flag
689 * RTF_EXPIRES) are used for ECMPv6.
691 * To avoid long list, we only had siblings if the
692 * route have a gateway.
694 if (rt
->rt6i_flags
& RTF_GATEWAY
&&
695 !(rt
->rt6i_flags
& RTF_EXPIRES
) &&
696 !(iter
->rt6i_flags
& RTF_EXPIRES
))
697 rt
->rt6i_nsiblings
++;
700 if (iter
->rt6i_metric
> rt
->rt6i_metric
)
703 ins
= &iter
->dst
.rt6_next
;
706 /* Reset round-robin state, if necessary */
707 if (ins
== &fn
->leaf
)
710 /* Link this route to others same route. */
711 if (rt
->rt6i_nsiblings
) {
712 unsigned int rt6i_nsiblings
;
713 struct rt6_info
*sibling
, *temp_sibling
;
715 /* Find the first route that have the same metric */
718 if (sibling
->rt6i_metric
== rt
->rt6i_metric
) {
719 list_add_tail(&rt
->rt6i_siblings
,
720 &sibling
->rt6i_siblings
);
723 sibling
= sibling
->dst
.rt6_next
;
725 /* For each sibling in the list, increment the counter of
726 * siblings. BUG() if counters does not match, list of siblings
730 list_for_each_entry_safe(sibling
, temp_sibling
,
731 &rt
->rt6i_siblings
, rt6i_siblings
) {
732 sibling
->rt6i_nsiblings
++;
733 BUG_ON(sibling
->rt6i_nsiblings
!= rt
->rt6i_nsiblings
);
736 BUG_ON(rt6i_nsiblings
!= rt
->rt6i_nsiblings
);
744 pr_warn("NLM_F_CREATE should be set when creating new route\n");
747 rt
->dst
.rt6_next
= iter
;
750 atomic_inc(&rt
->rt6i_ref
);
751 inet6_rt_notify(RTM_NEWROUTE
, rt
, info
);
752 info
->nl_net
->ipv6
.rt6_stats
->fib_rt_entries
++;
754 if (!(fn
->fn_flags
& RTN_RTINFO
)) {
755 info
->nl_net
->ipv6
.rt6_stats
->fib_route_nodes
++;
756 fn
->fn_flags
|= RTN_RTINFO
;
763 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
768 rt
->dst
.rt6_next
= iter
->dst
.rt6_next
;
769 atomic_inc(&rt
->rt6i_ref
);
770 inet6_rt_notify(RTM_NEWROUTE
, rt
, info
);
772 if (!(fn
->fn_flags
& RTN_RTINFO
)) {
773 info
->nl_net
->ipv6
.rt6_stats
->fib_route_nodes
++;
774 fn
->fn_flags
|= RTN_RTINFO
;
781 static __inline__
void fib6_start_gc(struct net
*net
, struct rt6_info
*rt
)
783 if (!timer_pending(&net
->ipv6
.ip6_fib_timer
) &&
784 (rt
->rt6i_flags
& (RTF_EXPIRES
| RTF_CACHE
)))
785 mod_timer(&net
->ipv6
.ip6_fib_timer
,
786 jiffies
+ net
->ipv6
.sysctl
.ip6_rt_gc_interval
);
789 void fib6_force_start_gc(struct net
*net
)
791 if (!timer_pending(&net
->ipv6
.ip6_fib_timer
))
792 mod_timer(&net
->ipv6
.ip6_fib_timer
,
793 jiffies
+ net
->ipv6
.sysctl
.ip6_rt_gc_interval
);
797 * Add routing information to the routing tree.
798 * <destination addr>/<source addr>
799 * with source addr info in sub-trees
802 int fib6_add(struct fib6_node
*root
, struct rt6_info
*rt
, struct nl_info
*info
)
804 struct fib6_node
*fn
, *pn
= NULL
;
806 int allow_create
= 1;
807 int replace_required
= 0;
810 if (!(info
->nlh
->nlmsg_flags
& NLM_F_CREATE
))
812 if (info
->nlh
->nlmsg_flags
& NLM_F_REPLACE
)
813 replace_required
= 1;
815 if (!allow_create
&& !replace_required
)
816 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
818 fn
= fib6_add_1(root
, &rt
->rt6i_dst
.addr
, sizeof(struct in6_addr
),
819 rt
->rt6i_dst
.plen
, offsetof(struct rt6_info
, rt6i_dst
),
820 allow_create
, replace_required
);
829 #ifdef CONFIG_IPV6_SUBTREES
830 if (rt
->rt6i_src
.plen
) {
831 struct fib6_node
*sn
;
834 struct fib6_node
*sfn
;
846 /* Create subtree root node */
851 sfn
->leaf
= info
->nl_net
->ipv6
.ip6_null_entry
;
852 atomic_inc(&info
->nl_net
->ipv6
.ip6_null_entry
->rt6i_ref
);
853 sfn
->fn_flags
= RTN_ROOT
;
854 sfn
->fn_sernum
= fib6_new_sernum();
856 /* Now add the first leaf node to new subtree */
858 sn
= fib6_add_1(sfn
, &rt
->rt6i_src
.addr
,
859 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
860 offsetof(struct rt6_info
, rt6i_src
),
861 allow_create
, replace_required
);
864 /* If it is failed, discard just allocated
865 root, and then (in st_failure) stale node
873 /* Now link new subtree to main tree */
877 sn
= fib6_add_1(fn
->subtree
, &rt
->rt6i_src
.addr
,
878 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
879 offsetof(struct rt6_info
, rt6i_src
),
880 allow_create
, replace_required
);
890 atomic_inc(&rt
->rt6i_ref
);
896 err
= fib6_add_rt2node(fn
, rt
, info
);
898 fib6_start_gc(info
->nl_net
, rt
);
899 if (!(rt
->rt6i_flags
& RTF_CACHE
))
900 fib6_prune_clones(info
->nl_net
, pn
, rt
);
905 #ifdef CONFIG_IPV6_SUBTREES
907 * If fib6_add_1 has cleared the old leaf pointer in the
908 * super-tree leaf node we have to find a new one for it.
910 if (pn
!= fn
&& pn
->leaf
== rt
) {
912 atomic_dec(&rt
->rt6i_ref
);
914 if (pn
!= fn
&& !pn
->leaf
&& !(pn
->fn_flags
& RTN_RTINFO
)) {
915 pn
->leaf
= fib6_find_prefix(info
->nl_net
, pn
);
918 WARN_ON(pn
->leaf
== NULL
);
919 pn
->leaf
= info
->nl_net
->ipv6
.ip6_null_entry
;
922 atomic_inc(&pn
->leaf
->rt6i_ref
);
929 #ifdef CONFIG_IPV6_SUBTREES
930 /* Subtree creation failed, probably main tree node
931 is orphan. If it is, shoot it.
934 if (fn
&& !(fn
->fn_flags
& (RTN_RTINFO
|RTN_ROOT
)))
935 fib6_repair_tree(info
->nl_net
, fn
);
942 * Routing tree lookup
947 int offset
; /* key offset on rt6_info */
948 const struct in6_addr
*addr
; /* search key */
951 static struct fib6_node
* fib6_lookup_1(struct fib6_node
*root
,
952 struct lookup_args
*args
)
954 struct fib6_node
*fn
;
957 if (unlikely(args
->offset
== 0))
967 struct fib6_node
*next
;
969 dir
= addr_bit_set(args
->addr
, fn
->fn_bit
);
971 next
= dir
? fn
->right
: fn
->left
;
981 if (FIB6_SUBTREE(fn
) || fn
->fn_flags
& RTN_RTINFO
) {
984 key
= (struct rt6key
*) ((u8
*) fn
->leaf
+
987 if (ipv6_prefix_equal(&key
->addr
, args
->addr
, key
->plen
)) {
988 #ifdef CONFIG_IPV6_SUBTREES
990 fn
= fib6_lookup_1(fn
->subtree
, args
+ 1);
992 if (!fn
|| fn
->fn_flags
& RTN_RTINFO
)
997 if (fn
->fn_flags
& RTN_ROOT
)
1006 struct fib6_node
* fib6_lookup(struct fib6_node
*root
, const struct in6_addr
*daddr
,
1007 const struct in6_addr
*saddr
)
1009 struct fib6_node
*fn
;
1010 struct lookup_args args
[] = {
1012 .offset
= offsetof(struct rt6_info
, rt6i_dst
),
1015 #ifdef CONFIG_IPV6_SUBTREES
1017 .offset
= offsetof(struct rt6_info
, rt6i_src
),
1022 .offset
= 0, /* sentinel */
1026 fn
= fib6_lookup_1(root
, daddr
? args
: args
+ 1);
1027 if (!fn
|| fn
->fn_flags
& RTN_TL_ROOT
)
1034 * Get node with specified destination prefix (and source prefix,
1035 * if subtrees are used)
1039 static struct fib6_node
* fib6_locate_1(struct fib6_node
*root
,
1040 const struct in6_addr
*addr
,
1041 int plen
, int offset
)
1043 struct fib6_node
*fn
;
1045 for (fn
= root
; fn
; ) {
1046 struct rt6key
*key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
1051 if (plen
< fn
->fn_bit
||
1052 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
1055 if (plen
== fn
->fn_bit
)
1059 * We have more bits to go
1061 if (addr_bit_set(addr
, fn
->fn_bit
))
1069 struct fib6_node
* fib6_locate(struct fib6_node
*root
,
1070 const struct in6_addr
*daddr
, int dst_len
,
1071 const struct in6_addr
*saddr
, int src_len
)
1073 struct fib6_node
*fn
;
1075 fn
= fib6_locate_1(root
, daddr
, dst_len
,
1076 offsetof(struct rt6_info
, rt6i_dst
));
1078 #ifdef CONFIG_IPV6_SUBTREES
1080 WARN_ON(saddr
== NULL
);
1081 if (fn
&& fn
->subtree
)
1082 fn
= fib6_locate_1(fn
->subtree
, saddr
, src_len
,
1083 offsetof(struct rt6_info
, rt6i_src
));
1087 if (fn
&& fn
->fn_flags
& RTN_RTINFO
)
1099 static struct rt6_info
*fib6_find_prefix(struct net
*net
, struct fib6_node
*fn
)
1101 if (fn
->fn_flags
& RTN_ROOT
)
1102 return net
->ipv6
.ip6_null_entry
;
1106 return fn
->left
->leaf
;
1108 return fn
->right
->leaf
;
1110 fn
= FIB6_SUBTREE(fn
);
1116 * Called to trim the tree of intermediate nodes when possible. "fn"
1117 * is the node we want to try and remove.
1120 static struct fib6_node
*fib6_repair_tree(struct net
*net
,
1121 struct fib6_node
*fn
)
1125 struct fib6_node
*child
, *pn
;
1126 struct fib6_walker_t
*w
;
1130 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn
->fn_bit
, iter
);
1133 WARN_ON(fn
->fn_flags
& RTN_RTINFO
);
1134 WARN_ON(fn
->fn_flags
& RTN_TL_ROOT
);
1135 WARN_ON(fn
->leaf
!= NULL
);
1139 if (fn
->right
) child
= fn
->right
, children
|= 1;
1140 if (fn
->left
) child
= fn
->left
, children
|= 2;
1142 if (children
== 3 || FIB6_SUBTREE(fn
)
1143 #ifdef CONFIG_IPV6_SUBTREES
1144 /* Subtree root (i.e. fn) may have one child */
1145 || (children
&& fn
->fn_flags
& RTN_ROOT
)
1148 fn
->leaf
= fib6_find_prefix(net
, fn
);
1152 fn
->leaf
= net
->ipv6
.ip6_null_entry
;
1155 atomic_inc(&fn
->leaf
->rt6i_ref
);
1160 #ifdef CONFIG_IPV6_SUBTREES
1161 if (FIB6_SUBTREE(pn
) == fn
) {
1162 WARN_ON(!(fn
->fn_flags
& RTN_ROOT
));
1163 FIB6_SUBTREE(pn
) = NULL
;
1166 WARN_ON(fn
->fn_flags
& RTN_ROOT
);
1168 if (pn
->right
== fn
) pn
->right
= child
;
1169 else if (pn
->left
== fn
) pn
->left
= child
;
1177 #ifdef CONFIG_IPV6_SUBTREES
1181 read_lock(&fib6_walker_lock
);
1184 if (w
->root
== fn
) {
1185 w
->root
= w
->node
= NULL
;
1186 RT6_TRACE("W %p adjusted by delroot 1\n", w
);
1187 } else if (w
->node
== fn
) {
1188 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w
, w
->state
, nstate
);
1193 if (w
->root
== fn
) {
1195 RT6_TRACE("W %p adjusted by delroot 2\n", w
);
1197 if (w
->node
== fn
) {
1200 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1201 w
->state
= w
->state
>=FWS_R
? FWS_U
: FWS_INIT
;
1203 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1204 w
->state
= w
->state
>=FWS_C
? FWS_U
: FWS_INIT
;
1209 read_unlock(&fib6_walker_lock
);
1212 if (pn
->fn_flags
& RTN_RTINFO
|| FIB6_SUBTREE(pn
))
1215 rt6_release(pn
->leaf
);
1221 static void fib6_del_route(struct fib6_node
*fn
, struct rt6_info
**rtp
,
1222 struct nl_info
*info
)
1224 struct fib6_walker_t
*w
;
1225 struct rt6_info
*rt
= *rtp
;
1226 struct net
*net
= info
->nl_net
;
1228 RT6_TRACE("fib6_del_route\n");
1231 *rtp
= rt
->dst
.rt6_next
;
1232 rt
->rt6i_node
= NULL
;
1233 net
->ipv6
.rt6_stats
->fib_rt_entries
--;
1234 net
->ipv6
.rt6_stats
->fib_discarded_routes
++;
1236 /* Reset round-robin state, if necessary */
1237 if (fn
->rr_ptr
== rt
)
1240 /* Remove this entry from other siblings */
1241 if (rt
->rt6i_nsiblings
) {
1242 struct rt6_info
*sibling
, *next_sibling
;
1244 list_for_each_entry_safe(sibling
, next_sibling
,
1245 &rt
->rt6i_siblings
, rt6i_siblings
)
1246 sibling
->rt6i_nsiblings
--;
1247 rt
->rt6i_nsiblings
= 0;
1248 list_del_init(&rt
->rt6i_siblings
);
1251 /* Adjust walkers */
1252 read_lock(&fib6_walker_lock
);
1254 if (w
->state
== FWS_C
&& w
->leaf
== rt
) {
1255 RT6_TRACE("walker %p adjusted by delroute\n", w
);
1256 w
->leaf
= rt
->dst
.rt6_next
;
1261 read_unlock(&fib6_walker_lock
);
1263 rt
->dst
.rt6_next
= NULL
;
1265 /* If it was last route, expunge its radix tree node */
1267 fn
->fn_flags
&= ~RTN_RTINFO
;
1268 net
->ipv6
.rt6_stats
->fib_route_nodes
--;
1269 fn
= fib6_repair_tree(net
, fn
);
1272 if (atomic_read(&rt
->rt6i_ref
) != 1) {
1273 /* This route is used as dummy address holder in some split
1274 * nodes. It is not leaked, but it still holds other resources,
1275 * which must be released in time. So, scan ascendant nodes
1276 * and replace dummy references to this route with references
1277 * to still alive ones.
1280 if (!(fn
->fn_flags
& RTN_RTINFO
) && fn
->leaf
== rt
) {
1281 fn
->leaf
= fib6_find_prefix(net
, fn
);
1282 atomic_inc(&fn
->leaf
->rt6i_ref
);
1287 /* No more references are possible at this point. */
1288 BUG_ON(atomic_read(&rt
->rt6i_ref
) != 1);
1291 inet6_rt_notify(RTM_DELROUTE
, rt
, info
);
1295 int fib6_del(struct rt6_info
*rt
, struct nl_info
*info
)
1297 struct net
*net
= info
->nl_net
;
1298 struct fib6_node
*fn
= rt
->rt6i_node
;
1299 struct rt6_info
**rtp
;
1302 if (rt
->dst
.obsolete
>0) {
1303 WARN_ON(fn
!= NULL
);
1307 if (!fn
|| rt
== net
->ipv6
.ip6_null_entry
)
1310 WARN_ON(!(fn
->fn_flags
& RTN_RTINFO
));
1312 if (!(rt
->rt6i_flags
& RTF_CACHE
)) {
1313 struct fib6_node
*pn
= fn
;
1314 #ifdef CONFIG_IPV6_SUBTREES
1315 /* clones of this route might be in another subtree */
1316 if (rt
->rt6i_src
.plen
) {
1317 while (!(pn
->fn_flags
& RTN_ROOT
))
1322 fib6_prune_clones(info
->nl_net
, pn
, rt
);
1326 * Walk the leaf entries looking for ourself
1329 for (rtp
= &fn
->leaf
; *rtp
; rtp
= &(*rtp
)->dst
.rt6_next
) {
1331 fib6_del_route(fn
, rtp
, info
);
1339 * Tree traversal function.
1341 * Certainly, it is not interrupt safe.
1342 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1343 * It means, that we can modify tree during walking
1344 * and use this function for garbage collection, clone pruning,
1345 * cleaning tree when a device goes down etc. etc.
1347 * It guarantees that every node will be traversed,
1348 * and that it will be traversed only once.
1350 * Callback function w->func may return:
1351 * 0 -> continue walking.
1352 * positive value -> walking is suspended (used by tree dumps,
1353 * and probably by gc, if it will be split to several slices)
1354 * negative value -> terminate walking.
1356 * The function itself returns:
1357 * 0 -> walk is complete.
1358 * >0 -> walk is incomplete (i.e. suspended)
1359 * <0 -> walk is terminated by an error.
1362 static int fib6_walk_continue(struct fib6_walker_t
*w
)
1364 struct fib6_node
*fn
, *pn
;
1371 if (w
->prune
&& fn
!= w
->root
&&
1372 fn
->fn_flags
& RTN_RTINFO
&& w
->state
< FWS_C
) {
1377 #ifdef CONFIG_IPV6_SUBTREES
1379 if (FIB6_SUBTREE(fn
)) {
1380 w
->node
= FIB6_SUBTREE(fn
);
1388 w
->state
= FWS_INIT
;
1394 w
->node
= fn
->right
;
1395 w
->state
= FWS_INIT
;
1401 if (w
->leaf
&& fn
->fn_flags
& RTN_RTINFO
) {
1422 #ifdef CONFIG_IPV6_SUBTREES
1423 if (FIB6_SUBTREE(pn
) == fn
) {
1424 WARN_ON(!(fn
->fn_flags
& RTN_ROOT
));
1429 if (pn
->left
== fn
) {
1433 if (pn
->right
== fn
) {
1435 w
->leaf
= w
->node
->leaf
;
1445 static int fib6_walk(struct fib6_walker_t
*w
)
1449 w
->state
= FWS_INIT
;
1452 fib6_walker_link(w
);
1453 res
= fib6_walk_continue(w
);
1455 fib6_walker_unlink(w
);
1459 static int fib6_clean_node(struct fib6_walker_t
*w
)
1462 struct rt6_info
*rt
;
1463 struct fib6_cleaner_t
*c
= container_of(w
, struct fib6_cleaner_t
, w
);
1464 struct nl_info info
= {
1468 for (rt
= w
->leaf
; rt
; rt
= rt
->dst
.rt6_next
) {
1469 res
= c
->func(rt
, c
->arg
);
1472 res
= fib6_del(rt
, &info
);
1475 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1476 __func__
, rt
, rt
->rt6i_node
, res
);
1489 * Convenient frontend to tree walker.
1491 * func is called on each route.
1492 * It may return -1 -> delete this route.
1493 * 0 -> continue walking
1495 * prune==1 -> only immediate children of node (certainly,
1496 * ignoring pure split nodes) will be scanned.
1499 static void fib6_clean_tree(struct net
*net
, struct fib6_node
*root
,
1500 int (*func
)(struct rt6_info
*, void *arg
),
1501 int prune
, void *arg
)
1503 struct fib6_cleaner_t c
;
1506 c
.w
.func
= fib6_clean_node
;
1517 void fib6_clean_all_ro(struct net
*net
, int (*func
)(struct rt6_info
*, void *arg
),
1518 int prune
, void *arg
)
1520 struct fib6_table
*table
;
1521 struct hlist_head
*head
;
1525 for (h
= 0; h
< FIB6_TABLE_HASHSZ
; h
++) {
1526 head
= &net
->ipv6
.fib_table_hash
[h
];
1527 hlist_for_each_entry_rcu(table
, head
, tb6_hlist
) {
1528 read_lock_bh(&table
->tb6_lock
);
1529 fib6_clean_tree(net
, &table
->tb6_root
,
1531 read_unlock_bh(&table
->tb6_lock
);
1536 void fib6_clean_all(struct net
*net
, int (*func
)(struct rt6_info
*, void *arg
),
1537 int prune
, void *arg
)
1539 struct fib6_table
*table
;
1540 struct hlist_head
*head
;
1544 for (h
= 0; h
< FIB6_TABLE_HASHSZ
; h
++) {
1545 head
= &net
->ipv6
.fib_table_hash
[h
];
1546 hlist_for_each_entry_rcu(table
, head
, tb6_hlist
) {
1547 write_lock_bh(&table
->tb6_lock
);
1548 fib6_clean_tree(net
, &table
->tb6_root
,
1550 write_unlock_bh(&table
->tb6_lock
);
1556 static int fib6_prune_clone(struct rt6_info
*rt
, void *arg
)
1558 if (rt
->rt6i_flags
& RTF_CACHE
) {
1559 RT6_TRACE("pruning clone %p\n", rt
);
1566 static void fib6_prune_clones(struct net
*net
, struct fib6_node
*fn
,
1567 struct rt6_info
*rt
)
1569 fib6_clean_tree(net
, fn
, fib6_prune_clone
, 1, rt
);
1573 * Garbage collection
1576 static struct fib6_gc_args
1582 static int fib6_age(struct rt6_info
*rt
, void *arg
)
1584 unsigned long now
= jiffies
;
1587 * check addrconf expiration here.
1588 * Routes are expired even if they are in use.
1590 * Also age clones. Note, that clones are aged out
1591 * only if they are not in use now.
1594 if (rt
->rt6i_flags
& RTF_EXPIRES
&& rt
->dst
.expires
) {
1595 if (time_after(now
, rt
->dst
.expires
)) {
1596 RT6_TRACE("expiring %p\n", rt
);
1600 } else if (rt
->rt6i_flags
& RTF_CACHE
) {
1601 if (atomic_read(&rt
->dst
.__refcnt
) == 0 &&
1602 time_after_eq(now
, rt
->dst
.lastuse
+ gc_args
.timeout
)) {
1603 RT6_TRACE("aging clone %p\n", rt
);
1605 } else if (rt
->rt6i_flags
& RTF_GATEWAY
) {
1606 struct neighbour
*neigh
;
1607 __u8 neigh_flags
= 0;
1609 neigh
= dst_neigh_lookup(&rt
->dst
, &rt
->rt6i_gateway
);
1611 neigh_flags
= neigh
->flags
;
1612 neigh_release(neigh
);
1614 if (!(neigh_flags
& NTF_ROUTER
)) {
1615 RT6_TRACE("purging route %p via non-router but gateway\n",
1626 static DEFINE_SPINLOCK(fib6_gc_lock
);
1628 void fib6_run_gc(unsigned long expires
, struct net
*net
)
1630 if (expires
!= ~0UL) {
1631 spin_lock_bh(&fib6_gc_lock
);
1632 gc_args
.timeout
= expires
? (int)expires
:
1633 net
->ipv6
.sysctl
.ip6_rt_gc_interval
;
1635 if (!spin_trylock_bh(&fib6_gc_lock
)) {
1636 mod_timer(&net
->ipv6
.ip6_fib_timer
, jiffies
+ HZ
);
1639 gc_args
.timeout
= net
->ipv6
.sysctl
.ip6_rt_gc_interval
;
1642 gc_args
.more
= icmp6_dst_gc();
1644 fib6_clean_all(net
, fib6_age
, 0, NULL
);
1647 mod_timer(&net
->ipv6
.ip6_fib_timer
,
1648 round_jiffies(jiffies
1649 + net
->ipv6
.sysctl
.ip6_rt_gc_interval
));
1651 del_timer(&net
->ipv6
.ip6_fib_timer
);
1652 spin_unlock_bh(&fib6_gc_lock
);
1655 static void fib6_gc_timer_cb(unsigned long arg
)
1657 fib6_run_gc(0, (struct net
*)arg
);
1660 static int __net_init
fib6_net_init(struct net
*net
)
1662 size_t size
= sizeof(struct hlist_head
) * FIB6_TABLE_HASHSZ
;
1664 setup_timer(&net
->ipv6
.ip6_fib_timer
, fib6_gc_timer_cb
, (unsigned long)net
);
1666 net
->ipv6
.rt6_stats
= kzalloc(sizeof(*net
->ipv6
.rt6_stats
), GFP_KERNEL
);
1667 if (!net
->ipv6
.rt6_stats
)
1670 /* Avoid false sharing : Use at least a full cache line */
1671 size
= max_t(size_t, size
, L1_CACHE_BYTES
);
1673 net
->ipv6
.fib_table_hash
= kzalloc(size
, GFP_KERNEL
);
1674 if (!net
->ipv6
.fib_table_hash
)
1677 net
->ipv6
.fib6_main_tbl
= kzalloc(sizeof(*net
->ipv6
.fib6_main_tbl
),
1679 if (!net
->ipv6
.fib6_main_tbl
)
1680 goto out_fib_table_hash
;
1682 net
->ipv6
.fib6_main_tbl
->tb6_id
= RT6_TABLE_MAIN
;
1683 net
->ipv6
.fib6_main_tbl
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
1684 net
->ipv6
.fib6_main_tbl
->tb6_root
.fn_flags
=
1685 RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
1686 inet_peer_base_init(&net
->ipv6
.fib6_main_tbl
->tb6_peers
);
1688 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1689 net
->ipv6
.fib6_local_tbl
= kzalloc(sizeof(*net
->ipv6
.fib6_local_tbl
),
1691 if (!net
->ipv6
.fib6_local_tbl
)
1692 goto out_fib6_main_tbl
;
1693 net
->ipv6
.fib6_local_tbl
->tb6_id
= RT6_TABLE_LOCAL
;
1694 net
->ipv6
.fib6_local_tbl
->tb6_root
.leaf
= net
->ipv6
.ip6_null_entry
;
1695 net
->ipv6
.fib6_local_tbl
->tb6_root
.fn_flags
=
1696 RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
1697 inet_peer_base_init(&net
->ipv6
.fib6_local_tbl
->tb6_peers
);
1699 fib6_tables_init(net
);
1703 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1705 kfree(net
->ipv6
.fib6_main_tbl
);
1708 kfree(net
->ipv6
.fib_table_hash
);
1710 kfree(net
->ipv6
.rt6_stats
);
1715 static void fib6_net_exit(struct net
*net
)
1717 rt6_ifdown(net
, NULL
);
1718 del_timer_sync(&net
->ipv6
.ip6_fib_timer
);
1720 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1721 inetpeer_invalidate_tree(&net
->ipv6
.fib6_local_tbl
->tb6_peers
);
1722 kfree(net
->ipv6
.fib6_local_tbl
);
1724 inetpeer_invalidate_tree(&net
->ipv6
.fib6_main_tbl
->tb6_peers
);
1725 kfree(net
->ipv6
.fib6_main_tbl
);
1726 kfree(net
->ipv6
.fib_table_hash
);
1727 kfree(net
->ipv6
.rt6_stats
);
1730 static struct pernet_operations fib6_net_ops
= {
1731 .init
= fib6_net_init
,
1732 .exit
= fib6_net_exit
,
1735 int __init
fib6_init(void)
1739 fib6_node_kmem
= kmem_cache_create("fib6_nodes",
1740 sizeof(struct fib6_node
),
1741 0, SLAB_HWCACHE_ALIGN
,
1743 if (!fib6_node_kmem
)
1746 ret
= register_pernet_subsys(&fib6_net_ops
);
1748 goto out_kmem_cache_create
;
1750 ret
= __rtnl_register(PF_INET6
, RTM_GETROUTE
, NULL
, inet6_dump_fib
,
1753 goto out_unregister_subsys
;
1757 out_unregister_subsys
:
1758 unregister_pernet_subsys(&fib6_net_ops
);
1759 out_kmem_cache_create
:
1760 kmem_cache_destroy(fib6_node_kmem
);
1764 void fib6_gc_cleanup(void)
1766 unregister_pernet_subsys(&fib6_net_ops
);
1767 kmem_cache_destroy(fib6_node_kmem
);