Linux 3.9-rc4
[linux-2.6/cjktty.git] / include / linux / wait.h
blob7cb64d4b499d21263feba5f3abf09bd600c5f8dc
1 #ifndef _LINUX_WAIT_H
2 #define _LINUX_WAIT_H
5 #include <linux/list.h>
6 #include <linux/stddef.h>
7 #include <linux/spinlock.h>
8 #include <asm/current.h>
9 #include <uapi/linux/wait.h>
11 typedef struct __wait_queue wait_queue_t;
12 typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int flags, void *key);
13 int default_wake_function(wait_queue_t *wait, unsigned mode, int flags, void *key);
15 struct __wait_queue {
16 unsigned int flags;
17 #define WQ_FLAG_EXCLUSIVE 0x01
18 void *private;
19 wait_queue_func_t func;
20 struct list_head task_list;
23 struct wait_bit_key {
24 void *flags;
25 int bit_nr;
28 struct wait_bit_queue {
29 struct wait_bit_key key;
30 wait_queue_t wait;
33 struct __wait_queue_head {
34 spinlock_t lock;
35 struct list_head task_list;
37 typedef struct __wait_queue_head wait_queue_head_t;
39 struct task_struct;
42 * Macros for declaration and initialisaton of the datatypes
45 #define __WAITQUEUE_INITIALIZER(name, tsk) { \
46 .private = tsk, \
47 .func = default_wake_function, \
48 .task_list = { NULL, NULL } }
50 #define DECLARE_WAITQUEUE(name, tsk) \
51 wait_queue_t name = __WAITQUEUE_INITIALIZER(name, tsk)
53 #define __WAIT_QUEUE_HEAD_INITIALIZER(name) { \
54 .lock = __SPIN_LOCK_UNLOCKED(name.lock), \
55 .task_list = { &(name).task_list, &(name).task_list } }
57 #define DECLARE_WAIT_QUEUE_HEAD(name) \
58 wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
60 #define __WAIT_BIT_KEY_INITIALIZER(word, bit) \
61 { .flags = word, .bit_nr = bit, }
63 extern void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *);
65 #define init_waitqueue_head(q) \
66 do { \
67 static struct lock_class_key __key; \
69 __init_waitqueue_head((q), #q, &__key); \
70 } while (0)
72 #ifdef CONFIG_LOCKDEP
73 # define __WAIT_QUEUE_HEAD_INIT_ONSTACK(name) \
74 ({ init_waitqueue_head(&name); name; })
75 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) \
76 wait_queue_head_t name = __WAIT_QUEUE_HEAD_INIT_ONSTACK(name)
77 #else
78 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) DECLARE_WAIT_QUEUE_HEAD(name)
79 #endif
81 static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p)
83 q->flags = 0;
84 q->private = p;
85 q->func = default_wake_function;
88 static inline void init_waitqueue_func_entry(wait_queue_t *q,
89 wait_queue_func_t func)
91 q->flags = 0;
92 q->private = NULL;
93 q->func = func;
96 static inline int waitqueue_active(wait_queue_head_t *q)
98 return !list_empty(&q->task_list);
101 extern void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
102 extern void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait);
103 extern void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
105 static inline void __add_wait_queue(wait_queue_head_t *head, wait_queue_t *new)
107 list_add(&new->task_list, &head->task_list);
111 * Used for wake-one threads:
113 static inline void __add_wait_queue_exclusive(wait_queue_head_t *q,
114 wait_queue_t *wait)
116 wait->flags |= WQ_FLAG_EXCLUSIVE;
117 __add_wait_queue(q, wait);
120 static inline void __add_wait_queue_tail(wait_queue_head_t *head,
121 wait_queue_t *new)
123 list_add_tail(&new->task_list, &head->task_list);
126 static inline void __add_wait_queue_tail_exclusive(wait_queue_head_t *q,
127 wait_queue_t *wait)
129 wait->flags |= WQ_FLAG_EXCLUSIVE;
130 __add_wait_queue_tail(q, wait);
133 static inline void __remove_wait_queue(wait_queue_head_t *head,
134 wait_queue_t *old)
136 list_del(&old->task_list);
139 void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
140 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key);
141 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr,
142 void *key);
143 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr);
144 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr);
145 void __wake_up_bit(wait_queue_head_t *, void *, int);
146 int __wait_on_bit(wait_queue_head_t *, struct wait_bit_queue *, int (*)(void *), unsigned);
147 int __wait_on_bit_lock(wait_queue_head_t *, struct wait_bit_queue *, int (*)(void *), unsigned);
148 void wake_up_bit(void *, int);
149 int out_of_line_wait_on_bit(void *, int, int (*)(void *), unsigned);
150 int out_of_line_wait_on_bit_lock(void *, int, int (*)(void *), unsigned);
151 wait_queue_head_t *bit_waitqueue(void *, int);
153 #define wake_up(x) __wake_up(x, TASK_NORMAL, 1, NULL)
154 #define wake_up_nr(x, nr) __wake_up(x, TASK_NORMAL, nr, NULL)
155 #define wake_up_all(x) __wake_up(x, TASK_NORMAL, 0, NULL)
156 #define wake_up_locked(x) __wake_up_locked((x), TASK_NORMAL, 1)
157 #define wake_up_all_locked(x) __wake_up_locked((x), TASK_NORMAL, 0)
159 #define wake_up_interruptible(x) __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
160 #define wake_up_interruptible_nr(x, nr) __wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
161 #define wake_up_interruptible_all(x) __wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)
162 #define wake_up_interruptible_sync(x) __wake_up_sync((x), TASK_INTERRUPTIBLE, 1)
165 * Wakeup macros to be used to report events to the targets.
167 #define wake_up_poll(x, m) \
168 __wake_up(x, TASK_NORMAL, 1, (void *) (m))
169 #define wake_up_locked_poll(x, m) \
170 __wake_up_locked_key((x), TASK_NORMAL, (void *) (m))
171 #define wake_up_interruptible_poll(x, m) \
172 __wake_up(x, TASK_INTERRUPTIBLE, 1, (void *) (m))
173 #define wake_up_interruptible_sync_poll(x, m) \
174 __wake_up_sync_key((x), TASK_INTERRUPTIBLE, 1, (void *) (m))
176 #define __wait_event(wq, condition) \
177 do { \
178 DEFINE_WAIT(__wait); \
180 for (;;) { \
181 prepare_to_wait(&wq, &__wait, TASK_UNINTERRUPTIBLE); \
182 if (condition) \
183 break; \
184 schedule(); \
186 finish_wait(&wq, &__wait); \
187 } while (0)
190 * wait_event - sleep until a condition gets true
191 * @wq: the waitqueue to wait on
192 * @condition: a C expression for the event to wait for
194 * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
195 * @condition evaluates to true. The @condition is checked each time
196 * the waitqueue @wq is woken up.
198 * wake_up() has to be called after changing any variable that could
199 * change the result of the wait condition.
201 #define wait_event(wq, condition) \
202 do { \
203 if (condition) \
204 break; \
205 __wait_event(wq, condition); \
206 } while (0)
208 #define __wait_event_timeout(wq, condition, ret) \
209 do { \
210 DEFINE_WAIT(__wait); \
212 for (;;) { \
213 prepare_to_wait(&wq, &__wait, TASK_UNINTERRUPTIBLE); \
214 if (condition) \
215 break; \
216 ret = schedule_timeout(ret); \
217 if (!ret) \
218 break; \
220 finish_wait(&wq, &__wait); \
221 } while (0)
224 * wait_event_timeout - sleep until a condition gets true or a timeout elapses
225 * @wq: the waitqueue to wait on
226 * @condition: a C expression for the event to wait for
227 * @timeout: timeout, in jiffies
229 * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
230 * @condition evaluates to true. The @condition is checked each time
231 * the waitqueue @wq is woken up.
233 * wake_up() has to be called after changing any variable that could
234 * change the result of the wait condition.
236 * The function returns 0 if the @timeout elapsed, and the remaining
237 * jiffies if the condition evaluated to true before the timeout elapsed.
239 #define wait_event_timeout(wq, condition, timeout) \
240 ({ \
241 long __ret = timeout; \
242 if (!(condition)) \
243 __wait_event_timeout(wq, condition, __ret); \
244 __ret; \
247 #define __wait_event_interruptible(wq, condition, ret) \
248 do { \
249 DEFINE_WAIT(__wait); \
251 for (;;) { \
252 prepare_to_wait(&wq, &__wait, TASK_INTERRUPTIBLE); \
253 if (condition) \
254 break; \
255 if (!signal_pending(current)) { \
256 schedule(); \
257 continue; \
259 ret = -ERESTARTSYS; \
260 break; \
262 finish_wait(&wq, &__wait); \
263 } while (0)
266 * wait_event_interruptible - sleep until a condition gets true
267 * @wq: the waitqueue to wait on
268 * @condition: a C expression for the event to wait for
270 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
271 * @condition evaluates to true or a signal is received.
272 * The @condition is checked each time the waitqueue @wq is woken up.
274 * wake_up() has to be called after changing any variable that could
275 * change the result of the wait condition.
277 * The function will return -ERESTARTSYS if it was interrupted by a
278 * signal and 0 if @condition evaluated to true.
280 #define wait_event_interruptible(wq, condition) \
281 ({ \
282 int __ret = 0; \
283 if (!(condition)) \
284 __wait_event_interruptible(wq, condition, __ret); \
285 __ret; \
288 #define __wait_event_interruptible_timeout(wq, condition, ret) \
289 do { \
290 DEFINE_WAIT(__wait); \
292 for (;;) { \
293 prepare_to_wait(&wq, &__wait, TASK_INTERRUPTIBLE); \
294 if (condition) \
295 break; \
296 if (!signal_pending(current)) { \
297 ret = schedule_timeout(ret); \
298 if (!ret) \
299 break; \
300 continue; \
302 ret = -ERESTARTSYS; \
303 break; \
305 finish_wait(&wq, &__wait); \
306 } while (0)
309 * wait_event_interruptible_timeout - sleep until a condition gets true or a timeout elapses
310 * @wq: the waitqueue to wait on
311 * @condition: a C expression for the event to wait for
312 * @timeout: timeout, in jiffies
314 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
315 * @condition evaluates to true or a signal is received.
316 * The @condition is checked each time the waitqueue @wq is woken up.
318 * wake_up() has to be called after changing any variable that could
319 * change the result of the wait condition.
321 * The function returns 0 if the @timeout elapsed, -ERESTARTSYS if it
322 * was interrupted by a signal, and the remaining jiffies otherwise
323 * if the condition evaluated to true before the timeout elapsed.
325 #define wait_event_interruptible_timeout(wq, condition, timeout) \
326 ({ \
327 long __ret = timeout; \
328 if (!(condition)) \
329 __wait_event_interruptible_timeout(wq, condition, __ret); \
330 __ret; \
333 #define __wait_event_interruptible_exclusive(wq, condition, ret) \
334 do { \
335 DEFINE_WAIT(__wait); \
337 for (;;) { \
338 prepare_to_wait_exclusive(&wq, &__wait, \
339 TASK_INTERRUPTIBLE); \
340 if (condition) { \
341 finish_wait(&wq, &__wait); \
342 break; \
344 if (!signal_pending(current)) { \
345 schedule(); \
346 continue; \
348 ret = -ERESTARTSYS; \
349 abort_exclusive_wait(&wq, &__wait, \
350 TASK_INTERRUPTIBLE, NULL); \
351 break; \
353 } while (0)
355 #define wait_event_interruptible_exclusive(wq, condition) \
356 ({ \
357 int __ret = 0; \
358 if (!(condition)) \
359 __wait_event_interruptible_exclusive(wq, condition, __ret);\
360 __ret; \
364 #define __wait_event_interruptible_locked(wq, condition, exclusive, irq) \
365 ({ \
366 int __ret = 0; \
367 DEFINE_WAIT(__wait); \
368 if (exclusive) \
369 __wait.flags |= WQ_FLAG_EXCLUSIVE; \
370 do { \
371 if (likely(list_empty(&__wait.task_list))) \
372 __add_wait_queue_tail(&(wq), &__wait); \
373 set_current_state(TASK_INTERRUPTIBLE); \
374 if (signal_pending(current)) { \
375 __ret = -ERESTARTSYS; \
376 break; \
378 if (irq) \
379 spin_unlock_irq(&(wq).lock); \
380 else \
381 spin_unlock(&(wq).lock); \
382 schedule(); \
383 if (irq) \
384 spin_lock_irq(&(wq).lock); \
385 else \
386 spin_lock(&(wq).lock); \
387 } while (!(condition)); \
388 __remove_wait_queue(&(wq), &__wait); \
389 __set_current_state(TASK_RUNNING); \
390 __ret; \
395 * wait_event_interruptible_locked - sleep until a condition gets true
396 * @wq: the waitqueue to wait on
397 * @condition: a C expression for the event to wait for
399 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
400 * @condition evaluates to true or a signal is received.
401 * The @condition is checked each time the waitqueue @wq is woken up.
403 * It must be called with wq.lock being held. This spinlock is
404 * unlocked while sleeping but @condition testing is done while lock
405 * is held and when this macro exits the lock is held.
407 * The lock is locked/unlocked using spin_lock()/spin_unlock()
408 * functions which must match the way they are locked/unlocked outside
409 * of this macro.
411 * wake_up_locked() has to be called after changing any variable that could
412 * change the result of the wait condition.
414 * The function will return -ERESTARTSYS if it was interrupted by a
415 * signal and 0 if @condition evaluated to true.
417 #define wait_event_interruptible_locked(wq, condition) \
418 ((condition) \
419 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 0))
422 * wait_event_interruptible_locked_irq - sleep until a condition gets true
423 * @wq: the waitqueue to wait on
424 * @condition: a C expression for the event to wait for
426 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
427 * @condition evaluates to true or a signal is received.
428 * The @condition is checked each time the waitqueue @wq is woken up.
430 * It must be called with wq.lock being held. This spinlock is
431 * unlocked while sleeping but @condition testing is done while lock
432 * is held and when this macro exits the lock is held.
434 * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
435 * functions which must match the way they are locked/unlocked outside
436 * of this macro.
438 * wake_up_locked() has to be called after changing any variable that could
439 * change the result of the wait condition.
441 * The function will return -ERESTARTSYS if it was interrupted by a
442 * signal and 0 if @condition evaluated to true.
444 #define wait_event_interruptible_locked_irq(wq, condition) \
445 ((condition) \
446 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 1))
449 * wait_event_interruptible_exclusive_locked - sleep exclusively until a condition gets true
450 * @wq: the waitqueue to wait on
451 * @condition: a C expression for the event to wait for
453 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
454 * @condition evaluates to true or a signal is received.
455 * The @condition is checked each time the waitqueue @wq is woken up.
457 * It must be called with wq.lock being held. This spinlock is
458 * unlocked while sleeping but @condition testing is done while lock
459 * is held and when this macro exits the lock is held.
461 * The lock is locked/unlocked using spin_lock()/spin_unlock()
462 * functions which must match the way they are locked/unlocked outside
463 * of this macro.
465 * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
466 * set thus when other process waits process on the list if this
467 * process is awaken further processes are not considered.
469 * wake_up_locked() has to be called after changing any variable that could
470 * change the result of the wait condition.
472 * The function will return -ERESTARTSYS if it was interrupted by a
473 * signal and 0 if @condition evaluated to true.
475 #define wait_event_interruptible_exclusive_locked(wq, condition) \
476 ((condition) \
477 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 0))
480 * wait_event_interruptible_exclusive_locked_irq - sleep until a condition gets true
481 * @wq: the waitqueue to wait on
482 * @condition: a C expression for the event to wait for
484 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
485 * @condition evaluates to true or a signal is received.
486 * The @condition is checked each time the waitqueue @wq is woken up.
488 * It must be called with wq.lock being held. This spinlock is
489 * unlocked while sleeping but @condition testing is done while lock
490 * is held and when this macro exits the lock is held.
492 * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
493 * functions which must match the way they are locked/unlocked outside
494 * of this macro.
496 * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
497 * set thus when other process waits process on the list if this
498 * process is awaken further processes are not considered.
500 * wake_up_locked() has to be called after changing any variable that could
501 * change the result of the wait condition.
503 * The function will return -ERESTARTSYS if it was interrupted by a
504 * signal and 0 if @condition evaluated to true.
506 #define wait_event_interruptible_exclusive_locked_irq(wq, condition) \
507 ((condition) \
508 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 1))
512 #define __wait_event_killable(wq, condition, ret) \
513 do { \
514 DEFINE_WAIT(__wait); \
516 for (;;) { \
517 prepare_to_wait(&wq, &__wait, TASK_KILLABLE); \
518 if (condition) \
519 break; \
520 if (!fatal_signal_pending(current)) { \
521 schedule(); \
522 continue; \
524 ret = -ERESTARTSYS; \
525 break; \
527 finish_wait(&wq, &__wait); \
528 } while (0)
531 * wait_event_killable - sleep until a condition gets true
532 * @wq: the waitqueue to wait on
533 * @condition: a C expression for the event to wait for
535 * The process is put to sleep (TASK_KILLABLE) until the
536 * @condition evaluates to true or a signal is received.
537 * The @condition is checked each time the waitqueue @wq is woken up.
539 * wake_up() has to be called after changing any variable that could
540 * change the result of the wait condition.
542 * The function will return -ERESTARTSYS if it was interrupted by a
543 * signal and 0 if @condition evaluated to true.
545 #define wait_event_killable(wq, condition) \
546 ({ \
547 int __ret = 0; \
548 if (!(condition)) \
549 __wait_event_killable(wq, condition, __ret); \
550 __ret; \
554 #define __wait_event_lock_irq(wq, condition, lock, cmd) \
555 do { \
556 DEFINE_WAIT(__wait); \
558 for (;;) { \
559 prepare_to_wait(&wq, &__wait, TASK_UNINTERRUPTIBLE); \
560 if (condition) \
561 break; \
562 spin_unlock_irq(&lock); \
563 cmd; \
564 schedule(); \
565 spin_lock_irq(&lock); \
567 finish_wait(&wq, &__wait); \
568 } while (0)
571 * wait_event_lock_irq_cmd - sleep until a condition gets true. The
572 * condition is checked under the lock. This
573 * is expected to be called with the lock
574 * taken.
575 * @wq: the waitqueue to wait on
576 * @condition: a C expression for the event to wait for
577 * @lock: a locked spinlock_t, which will be released before cmd
578 * and schedule() and reacquired afterwards.
579 * @cmd: a command which is invoked outside the critical section before
580 * sleep
582 * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
583 * @condition evaluates to true. The @condition is checked each time
584 * the waitqueue @wq is woken up.
586 * wake_up() has to be called after changing any variable that could
587 * change the result of the wait condition.
589 * This is supposed to be called while holding the lock. The lock is
590 * dropped before invoking the cmd and going to sleep and is reacquired
591 * afterwards.
593 #define wait_event_lock_irq_cmd(wq, condition, lock, cmd) \
594 do { \
595 if (condition) \
596 break; \
597 __wait_event_lock_irq(wq, condition, lock, cmd); \
598 } while (0)
601 * wait_event_lock_irq - sleep until a condition gets true. The
602 * condition is checked under the lock. This
603 * is expected to be called with the lock
604 * taken.
605 * @wq: the waitqueue to wait on
606 * @condition: a C expression for the event to wait for
607 * @lock: a locked spinlock_t, which will be released before schedule()
608 * and reacquired afterwards.
610 * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
611 * @condition evaluates to true. The @condition is checked each time
612 * the waitqueue @wq is woken up.
614 * wake_up() has to be called after changing any variable that could
615 * change the result of the wait condition.
617 * This is supposed to be called while holding the lock. The lock is
618 * dropped before going to sleep and is reacquired afterwards.
620 #define wait_event_lock_irq(wq, condition, lock) \
621 do { \
622 if (condition) \
623 break; \
624 __wait_event_lock_irq(wq, condition, lock, ); \
625 } while (0)
628 #define __wait_event_interruptible_lock_irq(wq, condition, \
629 lock, ret, cmd) \
630 do { \
631 DEFINE_WAIT(__wait); \
633 for (;;) { \
634 prepare_to_wait(&wq, &__wait, TASK_INTERRUPTIBLE); \
635 if (condition) \
636 break; \
637 if (signal_pending(current)) { \
638 ret = -ERESTARTSYS; \
639 break; \
641 spin_unlock_irq(&lock); \
642 cmd; \
643 schedule(); \
644 spin_lock_irq(&lock); \
646 finish_wait(&wq, &__wait); \
647 } while (0)
650 * wait_event_interruptible_lock_irq_cmd - sleep until a condition gets true.
651 * The condition is checked under the lock. This is expected to
652 * be called with the lock taken.
653 * @wq: the waitqueue to wait on
654 * @condition: a C expression for the event to wait for
655 * @lock: a locked spinlock_t, which will be released before cmd and
656 * schedule() and reacquired afterwards.
657 * @cmd: a command which is invoked outside the critical section before
658 * sleep
660 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
661 * @condition evaluates to true or a signal is received. The @condition is
662 * checked each time the waitqueue @wq is woken up.
664 * wake_up() has to be called after changing any variable that could
665 * change the result of the wait condition.
667 * This is supposed to be called while holding the lock. The lock is
668 * dropped before invoking the cmd and going to sleep and is reacquired
669 * afterwards.
671 * The macro will return -ERESTARTSYS if it was interrupted by a signal
672 * and 0 if @condition evaluated to true.
674 #define wait_event_interruptible_lock_irq_cmd(wq, condition, lock, cmd) \
675 ({ \
676 int __ret = 0; \
678 if (!(condition)) \
679 __wait_event_interruptible_lock_irq(wq, condition, \
680 lock, __ret, cmd); \
681 __ret; \
685 * wait_event_interruptible_lock_irq - sleep until a condition gets true.
686 * The condition is checked under the lock. This is expected
687 * to be called with the lock taken.
688 * @wq: the waitqueue to wait on
689 * @condition: a C expression for the event to wait for
690 * @lock: a locked spinlock_t, which will be released before schedule()
691 * and reacquired afterwards.
693 * The process is put to sleep (TASK_INTERRUPTIBLE) until the
694 * @condition evaluates to true or signal is received. The @condition is
695 * checked each time the waitqueue @wq is woken up.
697 * wake_up() has to be called after changing any variable that could
698 * change the result of the wait condition.
700 * This is supposed to be called while holding the lock. The lock is
701 * dropped before going to sleep and is reacquired afterwards.
703 * The macro will return -ERESTARTSYS if it was interrupted by a signal
704 * and 0 if @condition evaluated to true.
706 #define wait_event_interruptible_lock_irq(wq, condition, lock) \
707 ({ \
708 int __ret = 0; \
710 if (!(condition)) \
711 __wait_event_interruptible_lock_irq(wq, condition, \
712 lock, __ret, ); \
713 __ret; \
718 * These are the old interfaces to sleep waiting for an event.
719 * They are racy. DO NOT use them, use the wait_event* interfaces above.
720 * We plan to remove these interfaces.
722 extern void sleep_on(wait_queue_head_t *q);
723 extern long sleep_on_timeout(wait_queue_head_t *q,
724 signed long timeout);
725 extern void interruptible_sleep_on(wait_queue_head_t *q);
726 extern long interruptible_sleep_on_timeout(wait_queue_head_t *q,
727 signed long timeout);
730 * Waitqueues which are removed from the waitqueue_head at wakeup time
732 void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state);
733 void prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state);
734 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait);
735 void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait,
736 unsigned int mode, void *key);
737 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
738 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
740 #define DEFINE_WAIT_FUNC(name, function) \
741 wait_queue_t name = { \
742 .private = current, \
743 .func = function, \
744 .task_list = LIST_HEAD_INIT((name).task_list), \
747 #define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function)
749 #define DEFINE_WAIT_BIT(name, word, bit) \
750 struct wait_bit_queue name = { \
751 .key = __WAIT_BIT_KEY_INITIALIZER(word, bit), \
752 .wait = { \
753 .private = current, \
754 .func = wake_bit_function, \
755 .task_list = \
756 LIST_HEAD_INIT((name).wait.task_list), \
757 }, \
760 #define init_wait(wait) \
761 do { \
762 (wait)->private = current; \
763 (wait)->func = autoremove_wake_function; \
764 INIT_LIST_HEAD(&(wait)->task_list); \
765 (wait)->flags = 0; \
766 } while (0)
769 * wait_on_bit - wait for a bit to be cleared
770 * @word: the word being waited on, a kernel virtual address
771 * @bit: the bit of the word being waited on
772 * @action: the function used to sleep, which may take special actions
773 * @mode: the task state to sleep in
775 * There is a standard hashed waitqueue table for generic use. This
776 * is the part of the hashtable's accessor API that waits on a bit.
777 * For instance, if one were to have waiters on a bitflag, one would
778 * call wait_on_bit() in threads waiting for the bit to clear.
779 * One uses wait_on_bit() where one is waiting for the bit to clear,
780 * but has no intention of setting it.
782 static inline int wait_on_bit(void *word, int bit,
783 int (*action)(void *), unsigned mode)
785 if (!test_bit(bit, word))
786 return 0;
787 return out_of_line_wait_on_bit(word, bit, action, mode);
791 * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it
792 * @word: the word being waited on, a kernel virtual address
793 * @bit: the bit of the word being waited on
794 * @action: the function used to sleep, which may take special actions
795 * @mode: the task state to sleep in
797 * There is a standard hashed waitqueue table for generic use. This
798 * is the part of the hashtable's accessor API that waits on a bit
799 * when one intends to set it, for instance, trying to lock bitflags.
800 * For instance, if one were to have waiters trying to set bitflag
801 * and waiting for it to clear before setting it, one would call
802 * wait_on_bit() in threads waiting to be able to set the bit.
803 * One uses wait_on_bit_lock() where one is waiting for the bit to
804 * clear with the intention of setting it, and when done, clearing it.
806 static inline int wait_on_bit_lock(void *word, int bit,
807 int (*action)(void *), unsigned mode)
809 if (!test_and_set_bit(bit, word))
810 return 0;
811 return out_of_line_wait_on_bit_lock(word, bit, action, mode);
814 #endif