2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
24 #include "ordered-data.h"
25 #include "transaction.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
67 struct scrub_block
*sblock
;
69 struct btrfs_device
*dev
;
70 u64 flags
; /* extent flags */
74 u64 physical_for_dev_replace
;
77 unsigned int mirror_num
:8;
78 unsigned int have_csum
:1;
79 unsigned int io_error
:1;
81 u8 csum
[BTRFS_CSUM_SIZE
];
86 struct scrub_ctx
*sctx
;
87 struct btrfs_device
*dev
;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page
*pagev
[SCRUB_PAGES_PER_WR_BIO
];
95 struct scrub_page
*pagev
[SCRUB_PAGES_PER_RD_BIO
];
99 struct btrfs_work work
;
103 struct scrub_page
*pagev
[SCRUB_MAX_PAGES_PER_BLOCK
];
105 atomic_t outstanding_pages
;
106 atomic_t ref_count
; /* free mem on transition to zero */
107 struct scrub_ctx
*sctx
;
109 unsigned int header_error
:1;
110 unsigned int checksum_error
:1;
111 unsigned int no_io_error_seen
:1;
112 unsigned int generation_error
:1; /* also sets header_error */
116 struct scrub_wr_ctx
{
117 struct scrub_bio
*wr_curr_bio
;
118 struct btrfs_device
*tgtdev
;
119 int pages_per_wr_bio
; /* <= SCRUB_PAGES_PER_WR_BIO */
120 atomic_t flush_all_writes
;
121 struct mutex wr_lock
;
125 struct scrub_bio
*bios
[SCRUB_BIOS_PER_SCTX
];
126 struct btrfs_root
*dev_root
;
129 atomic_t bios_in_flight
;
130 atomic_t workers_pending
;
131 spinlock_t list_lock
;
132 wait_queue_head_t list_wait
;
134 struct list_head csum_list
;
137 int pages_per_rd_bio
;
143 struct scrub_wr_ctx wr_ctx
;
148 struct btrfs_scrub_progress stat
;
149 spinlock_t stat_lock
;
152 struct scrub_fixup_nodatasum
{
153 struct scrub_ctx
*sctx
;
154 struct btrfs_device
*dev
;
156 struct btrfs_root
*root
;
157 struct btrfs_work work
;
161 struct scrub_copy_nocow_ctx
{
162 struct scrub_ctx
*sctx
;
166 u64 physical_for_dev_replace
;
167 struct btrfs_work work
;
170 struct scrub_warning
{
171 struct btrfs_path
*path
;
172 u64 extent_item_size
;
178 struct btrfs_device
*dev
;
184 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
);
185 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
);
186 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
);
187 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
);
188 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
);
189 static int scrub_setup_recheck_block(struct scrub_ctx
*sctx
,
190 struct btrfs_fs_info
*fs_info
,
191 struct scrub_block
*original_sblock
,
192 u64 length
, u64 logical
,
193 struct scrub_block
*sblocks_for_recheck
);
194 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
195 struct scrub_block
*sblock
, int is_metadata
,
196 int have_csum
, u8
*csum
, u64 generation
,
198 static void scrub_recheck_block_checksum(struct btrfs_fs_info
*fs_info
,
199 struct scrub_block
*sblock
,
200 int is_metadata
, int have_csum
,
201 const u8
*csum
, u64 generation
,
203 static void scrub_complete_bio_end_io(struct bio
*bio
, int err
);
204 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
205 struct scrub_block
*sblock_good
,
207 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
208 struct scrub_block
*sblock_good
,
209 int page_num
, int force_write
);
210 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
);
211 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
213 static int scrub_checksum_data(struct scrub_block
*sblock
);
214 static int scrub_checksum_tree_block(struct scrub_block
*sblock
);
215 static int scrub_checksum_super(struct scrub_block
*sblock
);
216 static void scrub_block_get(struct scrub_block
*sblock
);
217 static void scrub_block_put(struct scrub_block
*sblock
);
218 static void scrub_page_get(struct scrub_page
*spage
);
219 static void scrub_page_put(struct scrub_page
*spage
);
220 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
221 struct scrub_page
*spage
);
222 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
223 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
224 u64 gen
, int mirror_num
, u8
*csum
, int force
,
225 u64 physical_for_dev_replace
);
226 static void scrub_bio_end_io(struct bio
*bio
, int err
);
227 static void scrub_bio_end_io_worker(struct btrfs_work
*work
);
228 static void scrub_block_complete(struct scrub_block
*sblock
);
229 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
230 u64 extent_logical
, u64 extent_len
,
231 u64
*extent_physical
,
232 struct btrfs_device
**extent_dev
,
233 int *extent_mirror_num
);
234 static int scrub_setup_wr_ctx(struct scrub_ctx
*sctx
,
235 struct scrub_wr_ctx
*wr_ctx
,
236 struct btrfs_fs_info
*fs_info
,
237 struct btrfs_device
*dev
,
239 static void scrub_free_wr_ctx(struct scrub_wr_ctx
*wr_ctx
);
240 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
241 struct scrub_page
*spage
);
242 static void scrub_wr_submit(struct scrub_ctx
*sctx
);
243 static void scrub_wr_bio_end_io(struct bio
*bio
, int err
);
244 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
);
245 static int write_page_nocow(struct scrub_ctx
*sctx
,
246 u64 physical_for_dev_replace
, struct page
*page
);
247 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
,
249 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
250 int mirror_num
, u64 physical_for_dev_replace
);
251 static void copy_nocow_pages_worker(struct btrfs_work
*work
);
254 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
)
256 atomic_inc(&sctx
->bios_in_flight
);
259 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
)
261 atomic_dec(&sctx
->bios_in_flight
);
262 wake_up(&sctx
->list_wait
);
266 * used for workers that require transaction commits (i.e., for the
269 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
)
271 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
274 * increment scrubs_running to prevent cancel requests from
275 * completing as long as a worker is running. we must also
276 * increment scrubs_paused to prevent deadlocking on pause
277 * requests used for transactions commits (as the worker uses a
278 * transaction context). it is safe to regard the worker
279 * as paused for all matters practical. effectively, we only
280 * avoid cancellation requests from completing.
282 mutex_lock(&fs_info
->scrub_lock
);
283 atomic_inc(&fs_info
->scrubs_running
);
284 atomic_inc(&fs_info
->scrubs_paused
);
285 mutex_unlock(&fs_info
->scrub_lock
);
286 atomic_inc(&sctx
->workers_pending
);
289 /* used for workers that require transaction commits */
290 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
)
292 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
295 * see scrub_pending_trans_workers_inc() why we're pretending
296 * to be paused in the scrub counters
298 mutex_lock(&fs_info
->scrub_lock
);
299 atomic_dec(&fs_info
->scrubs_running
);
300 atomic_dec(&fs_info
->scrubs_paused
);
301 mutex_unlock(&fs_info
->scrub_lock
);
302 atomic_dec(&sctx
->workers_pending
);
303 wake_up(&fs_info
->scrub_pause_wait
);
304 wake_up(&sctx
->list_wait
);
307 static void scrub_free_csums(struct scrub_ctx
*sctx
)
309 while (!list_empty(&sctx
->csum_list
)) {
310 struct btrfs_ordered_sum
*sum
;
311 sum
= list_first_entry(&sctx
->csum_list
,
312 struct btrfs_ordered_sum
, list
);
313 list_del(&sum
->list
);
318 static noinline_for_stack
void scrub_free_ctx(struct scrub_ctx
*sctx
)
325 scrub_free_wr_ctx(&sctx
->wr_ctx
);
327 /* this can happen when scrub is cancelled */
328 if (sctx
->curr
!= -1) {
329 struct scrub_bio
*sbio
= sctx
->bios
[sctx
->curr
];
331 for (i
= 0; i
< sbio
->page_count
; i
++) {
332 WARN_ON(!sbio
->pagev
[i
]->page
);
333 scrub_block_put(sbio
->pagev
[i
]->sblock
);
338 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
339 struct scrub_bio
*sbio
= sctx
->bios
[i
];
346 scrub_free_csums(sctx
);
350 static noinline_for_stack
351 struct scrub_ctx
*scrub_setup_ctx(struct btrfs_device
*dev
, int is_dev_replace
)
353 struct scrub_ctx
*sctx
;
355 struct btrfs_fs_info
*fs_info
= dev
->dev_root
->fs_info
;
356 int pages_per_rd_bio
;
360 * the setting of pages_per_rd_bio is correct for scrub but might
361 * be wrong for the dev_replace code where we might read from
362 * different devices in the initial huge bios. However, that
363 * code is able to correctly handle the case when adding a page
367 pages_per_rd_bio
= min_t(int, SCRUB_PAGES_PER_RD_BIO
,
368 bio_get_nr_vecs(dev
->bdev
));
370 pages_per_rd_bio
= SCRUB_PAGES_PER_RD_BIO
;
371 sctx
= kzalloc(sizeof(*sctx
), GFP_NOFS
);
374 sctx
->is_dev_replace
= is_dev_replace
;
375 sctx
->pages_per_rd_bio
= pages_per_rd_bio
;
377 sctx
->dev_root
= dev
->dev_root
;
378 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
379 struct scrub_bio
*sbio
;
381 sbio
= kzalloc(sizeof(*sbio
), GFP_NOFS
);
384 sctx
->bios
[i
] = sbio
;
388 sbio
->page_count
= 0;
389 sbio
->work
.func
= scrub_bio_end_io_worker
;
391 if (i
!= SCRUB_BIOS_PER_SCTX
- 1)
392 sctx
->bios
[i
]->next_free
= i
+ 1;
394 sctx
->bios
[i
]->next_free
= -1;
396 sctx
->first_free
= 0;
397 sctx
->nodesize
= dev
->dev_root
->nodesize
;
398 sctx
->leafsize
= dev
->dev_root
->leafsize
;
399 sctx
->sectorsize
= dev
->dev_root
->sectorsize
;
400 atomic_set(&sctx
->bios_in_flight
, 0);
401 atomic_set(&sctx
->workers_pending
, 0);
402 atomic_set(&sctx
->cancel_req
, 0);
403 sctx
->csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
404 INIT_LIST_HEAD(&sctx
->csum_list
);
406 spin_lock_init(&sctx
->list_lock
);
407 spin_lock_init(&sctx
->stat_lock
);
408 init_waitqueue_head(&sctx
->list_wait
);
410 ret
= scrub_setup_wr_ctx(sctx
, &sctx
->wr_ctx
, fs_info
,
411 fs_info
->dev_replace
.tgtdev
, is_dev_replace
);
413 scrub_free_ctx(sctx
);
419 scrub_free_ctx(sctx
);
420 return ERR_PTR(-ENOMEM
);
423 static int scrub_print_warning_inode(u64 inum
, u64 offset
, u64 root
,
430 struct extent_buffer
*eb
;
431 struct btrfs_inode_item
*inode_item
;
432 struct scrub_warning
*swarn
= warn_ctx
;
433 struct btrfs_fs_info
*fs_info
= swarn
->dev
->dev_root
->fs_info
;
434 struct inode_fs_paths
*ipath
= NULL
;
435 struct btrfs_root
*local_root
;
436 struct btrfs_key root_key
;
438 root_key
.objectid
= root
;
439 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
440 root_key
.offset
= (u64
)-1;
441 local_root
= btrfs_read_fs_root_no_name(fs_info
, &root_key
);
442 if (IS_ERR(local_root
)) {
443 ret
= PTR_ERR(local_root
);
447 ret
= inode_item_info(inum
, 0, local_root
, swarn
->path
);
449 btrfs_release_path(swarn
->path
);
453 eb
= swarn
->path
->nodes
[0];
454 inode_item
= btrfs_item_ptr(eb
, swarn
->path
->slots
[0],
455 struct btrfs_inode_item
);
456 isize
= btrfs_inode_size(eb
, inode_item
);
457 nlink
= btrfs_inode_nlink(eb
, inode_item
);
458 btrfs_release_path(swarn
->path
);
460 ipath
= init_ipath(4096, local_root
, swarn
->path
);
462 ret
= PTR_ERR(ipath
);
466 ret
= paths_from_inode(inum
, ipath
);
472 * we deliberately ignore the bit ipath might have been too small to
473 * hold all of the paths here
475 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
)
476 printk_in_rcu(KERN_WARNING
"btrfs: %s at logical %llu on dev "
477 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
478 "length %llu, links %u (path: %s)\n", swarn
->errstr
,
479 swarn
->logical
, rcu_str_deref(swarn
->dev
->name
),
480 (unsigned long long)swarn
->sector
, root
, inum
, offset
,
481 min(isize
- offset
, (u64
)PAGE_SIZE
), nlink
,
482 (char *)(unsigned long)ipath
->fspath
->val
[i
]);
488 printk_in_rcu(KERN_WARNING
"btrfs: %s at logical %llu on dev "
489 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
490 "resolving failed with ret=%d\n", swarn
->errstr
,
491 swarn
->logical
, rcu_str_deref(swarn
->dev
->name
),
492 (unsigned long long)swarn
->sector
, root
, inum
, offset
, ret
);
498 static void scrub_print_warning(const char *errstr
, struct scrub_block
*sblock
)
500 struct btrfs_device
*dev
;
501 struct btrfs_fs_info
*fs_info
;
502 struct btrfs_path
*path
;
503 struct btrfs_key found_key
;
504 struct extent_buffer
*eb
;
505 struct btrfs_extent_item
*ei
;
506 struct scrub_warning swarn
;
507 unsigned long ptr
= 0;
513 const int bufsize
= 4096;
516 WARN_ON(sblock
->page_count
< 1);
517 dev
= sblock
->pagev
[0]->dev
;
518 fs_info
= sblock
->sctx
->dev_root
->fs_info
;
520 path
= btrfs_alloc_path();
522 swarn
.scratch_buf
= kmalloc(bufsize
, GFP_NOFS
);
523 swarn
.msg_buf
= kmalloc(bufsize
, GFP_NOFS
);
524 swarn
.sector
= (sblock
->pagev
[0]->physical
) >> 9;
525 swarn
.logical
= sblock
->pagev
[0]->logical
;
526 swarn
.errstr
= errstr
;
528 swarn
.msg_bufsize
= bufsize
;
529 swarn
.scratch_bufsize
= bufsize
;
531 if (!path
|| !swarn
.scratch_buf
|| !swarn
.msg_buf
)
534 ret
= extent_from_logical(fs_info
, swarn
.logical
, path
, &found_key
,
539 extent_item_pos
= swarn
.logical
- found_key
.objectid
;
540 swarn
.extent_item_size
= found_key
.offset
;
543 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
544 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
545 btrfs_release_path(path
);
547 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
549 ret
= tree_backref_for_extent(&ptr
, eb
, ei
, item_size
,
550 &ref_root
, &ref_level
);
551 printk_in_rcu(KERN_WARNING
552 "btrfs: %s at logical %llu on dev %s, "
553 "sector %llu: metadata %s (level %d) in tree "
554 "%llu\n", errstr
, swarn
.logical
,
555 rcu_str_deref(dev
->name
),
556 (unsigned long long)swarn
.sector
,
557 ref_level
? "node" : "leaf",
558 ret
< 0 ? -1 : ref_level
,
559 ret
< 0 ? -1 : ref_root
);
564 iterate_extent_inodes(fs_info
, found_key
.objectid
,
566 scrub_print_warning_inode
, &swarn
);
570 btrfs_free_path(path
);
571 kfree(swarn
.scratch_buf
);
572 kfree(swarn
.msg_buf
);
575 static int scrub_fixup_readpage(u64 inum
, u64 offset
, u64 root
, void *fixup_ctx
)
577 struct page
*page
= NULL
;
579 struct scrub_fixup_nodatasum
*fixup
= fixup_ctx
;
582 struct btrfs_key key
;
583 struct inode
*inode
= NULL
;
584 struct btrfs_fs_info
*fs_info
;
585 u64 end
= offset
+ PAGE_SIZE
- 1;
586 struct btrfs_root
*local_root
;
590 key
.type
= BTRFS_ROOT_ITEM_KEY
;
591 key
.offset
= (u64
)-1;
593 fs_info
= fixup
->root
->fs_info
;
594 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
596 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
597 if (IS_ERR(local_root
)) {
598 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
599 return PTR_ERR(local_root
);
602 key
.type
= BTRFS_INODE_ITEM_KEY
;
605 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
606 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
608 return PTR_ERR(inode
);
610 index
= offset
>> PAGE_CACHE_SHIFT
;
612 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
618 if (PageUptodate(page
)) {
619 if (PageDirty(page
)) {
621 * we need to write the data to the defect sector. the
622 * data that was in that sector is not in memory,
623 * because the page was modified. we must not write the
624 * modified page to that sector.
626 * TODO: what could be done here: wait for the delalloc
627 * runner to write out that page (might involve
628 * COW) and see whether the sector is still
629 * referenced afterwards.
631 * For the meantime, we'll treat this error
632 * incorrectable, although there is a chance that a
633 * later scrub will find the bad sector again and that
634 * there's no dirty page in memory, then.
639 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
640 ret
= repair_io_failure(fs_info
, offset
, PAGE_SIZE
,
641 fixup
->logical
, page
,
647 * we need to get good data first. the general readpage path
648 * will call repair_io_failure for us, we just have to make
649 * sure we read the bad mirror.
651 ret
= set_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
652 EXTENT_DAMAGED
, GFP_NOFS
);
654 /* set_extent_bits should give proper error */
661 ret
= extent_read_full_page(&BTRFS_I(inode
)->io_tree
, page
,
664 wait_on_page_locked(page
);
666 corrected
= !test_range_bit(&BTRFS_I(inode
)->io_tree
, offset
,
667 end
, EXTENT_DAMAGED
, 0, NULL
);
669 clear_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
670 EXTENT_DAMAGED
, GFP_NOFS
);
682 if (ret
== 0 && corrected
) {
684 * we only need to call readpage for one of the inodes belonging
685 * to this extent. so make iterate_extent_inodes stop
693 static void scrub_fixup_nodatasum(struct btrfs_work
*work
)
696 struct scrub_fixup_nodatasum
*fixup
;
697 struct scrub_ctx
*sctx
;
698 struct btrfs_trans_handle
*trans
= NULL
;
699 struct btrfs_fs_info
*fs_info
;
700 struct btrfs_path
*path
;
701 int uncorrectable
= 0;
703 fixup
= container_of(work
, struct scrub_fixup_nodatasum
, work
);
705 fs_info
= fixup
->root
->fs_info
;
707 path
= btrfs_alloc_path();
709 spin_lock(&sctx
->stat_lock
);
710 ++sctx
->stat
.malloc_errors
;
711 spin_unlock(&sctx
->stat_lock
);
716 trans
= btrfs_join_transaction(fixup
->root
);
723 * the idea is to trigger a regular read through the standard path. we
724 * read a page from the (failed) logical address by specifying the
725 * corresponding copynum of the failed sector. thus, that readpage is
727 * that is the point where on-the-fly error correction will kick in
728 * (once it's finished) and rewrite the failed sector if a good copy
731 ret
= iterate_inodes_from_logical(fixup
->logical
, fixup
->root
->fs_info
,
732 path
, scrub_fixup_readpage
,
740 spin_lock(&sctx
->stat_lock
);
741 ++sctx
->stat
.corrected_errors
;
742 spin_unlock(&sctx
->stat_lock
);
745 if (trans
&& !IS_ERR(trans
))
746 btrfs_end_transaction(trans
, fixup
->root
);
748 spin_lock(&sctx
->stat_lock
);
749 ++sctx
->stat
.uncorrectable_errors
;
750 spin_unlock(&sctx
->stat_lock
);
751 btrfs_dev_replace_stats_inc(
752 &sctx
->dev_root
->fs_info
->dev_replace
.
753 num_uncorrectable_read_errors
);
754 printk_ratelimited_in_rcu(KERN_ERR
755 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
756 (unsigned long long)fixup
->logical
,
757 rcu_str_deref(fixup
->dev
->name
));
760 btrfs_free_path(path
);
763 scrub_pending_trans_workers_dec(sctx
);
767 * scrub_handle_errored_block gets called when either verification of the
768 * pages failed or the bio failed to read, e.g. with EIO. In the latter
769 * case, this function handles all pages in the bio, even though only one
771 * The goal of this function is to repair the errored block by using the
772 * contents of one of the mirrors.
774 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
)
776 struct scrub_ctx
*sctx
= sblock_to_check
->sctx
;
777 struct btrfs_device
*dev
;
778 struct btrfs_fs_info
*fs_info
;
782 unsigned int failed_mirror_index
;
783 unsigned int is_metadata
;
784 unsigned int have_csum
;
786 struct scrub_block
*sblocks_for_recheck
; /* holds one for each mirror */
787 struct scrub_block
*sblock_bad
;
792 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
793 DEFAULT_RATELIMIT_BURST
);
795 BUG_ON(sblock_to_check
->page_count
< 1);
796 fs_info
= sctx
->dev_root
->fs_info
;
797 if (sblock_to_check
->pagev
[0]->flags
& BTRFS_EXTENT_FLAG_SUPER
) {
799 * if we find an error in a super block, we just report it.
800 * They will get written with the next transaction commit
803 spin_lock(&sctx
->stat_lock
);
804 ++sctx
->stat
.super_errors
;
805 spin_unlock(&sctx
->stat_lock
);
808 length
= sblock_to_check
->page_count
* PAGE_SIZE
;
809 logical
= sblock_to_check
->pagev
[0]->logical
;
810 generation
= sblock_to_check
->pagev
[0]->generation
;
811 BUG_ON(sblock_to_check
->pagev
[0]->mirror_num
< 1);
812 failed_mirror_index
= sblock_to_check
->pagev
[0]->mirror_num
- 1;
813 is_metadata
= !(sblock_to_check
->pagev
[0]->flags
&
814 BTRFS_EXTENT_FLAG_DATA
);
815 have_csum
= sblock_to_check
->pagev
[0]->have_csum
;
816 csum
= sblock_to_check
->pagev
[0]->csum
;
817 dev
= sblock_to_check
->pagev
[0]->dev
;
819 if (sctx
->is_dev_replace
&& !is_metadata
&& !have_csum
) {
820 sblocks_for_recheck
= NULL
;
825 * read all mirrors one after the other. This includes to
826 * re-read the extent or metadata block that failed (that was
827 * the cause that this fixup code is called) another time,
828 * page by page this time in order to know which pages
829 * caused I/O errors and which ones are good (for all mirrors).
830 * It is the goal to handle the situation when more than one
831 * mirror contains I/O errors, but the errors do not
832 * overlap, i.e. the data can be repaired by selecting the
833 * pages from those mirrors without I/O error on the
834 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
835 * would be that mirror #1 has an I/O error on the first page,
836 * the second page is good, and mirror #2 has an I/O error on
837 * the second page, but the first page is good.
838 * Then the first page of the first mirror can be repaired by
839 * taking the first page of the second mirror, and the
840 * second page of the second mirror can be repaired by
841 * copying the contents of the 2nd page of the 1st mirror.
842 * One more note: if the pages of one mirror contain I/O
843 * errors, the checksum cannot be verified. In order to get
844 * the best data for repairing, the first attempt is to find
845 * a mirror without I/O errors and with a validated checksum.
846 * Only if this is not possible, the pages are picked from
847 * mirrors with I/O errors without considering the checksum.
848 * If the latter is the case, at the end, the checksum of the
849 * repaired area is verified in order to correctly maintain
853 sblocks_for_recheck
= kzalloc(BTRFS_MAX_MIRRORS
*
854 sizeof(*sblocks_for_recheck
),
856 if (!sblocks_for_recheck
) {
857 spin_lock(&sctx
->stat_lock
);
858 sctx
->stat
.malloc_errors
++;
859 sctx
->stat
.read_errors
++;
860 sctx
->stat
.uncorrectable_errors
++;
861 spin_unlock(&sctx
->stat_lock
);
862 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
866 /* setup the context, map the logical blocks and alloc the pages */
867 ret
= scrub_setup_recheck_block(sctx
, fs_info
, sblock_to_check
, length
,
868 logical
, sblocks_for_recheck
);
870 spin_lock(&sctx
->stat_lock
);
871 sctx
->stat
.read_errors
++;
872 sctx
->stat
.uncorrectable_errors
++;
873 spin_unlock(&sctx
->stat_lock
);
874 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
877 BUG_ON(failed_mirror_index
>= BTRFS_MAX_MIRRORS
);
878 sblock_bad
= sblocks_for_recheck
+ failed_mirror_index
;
880 /* build and submit the bios for the failed mirror, check checksums */
881 scrub_recheck_block(fs_info
, sblock_bad
, is_metadata
, have_csum
,
882 csum
, generation
, sctx
->csum_size
);
884 if (!sblock_bad
->header_error
&& !sblock_bad
->checksum_error
&&
885 sblock_bad
->no_io_error_seen
) {
887 * the error disappeared after reading page by page, or
888 * the area was part of a huge bio and other parts of the
889 * bio caused I/O errors, or the block layer merged several
890 * read requests into one and the error is caused by a
891 * different bio (usually one of the two latter cases is
894 spin_lock(&sctx
->stat_lock
);
895 sctx
->stat
.unverified_errors
++;
896 spin_unlock(&sctx
->stat_lock
);
898 if (sctx
->is_dev_replace
)
899 scrub_write_block_to_dev_replace(sblock_bad
);
903 if (!sblock_bad
->no_io_error_seen
) {
904 spin_lock(&sctx
->stat_lock
);
905 sctx
->stat
.read_errors
++;
906 spin_unlock(&sctx
->stat_lock
);
907 if (__ratelimit(&_rs
))
908 scrub_print_warning("i/o error", sblock_to_check
);
909 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
910 } else if (sblock_bad
->checksum_error
) {
911 spin_lock(&sctx
->stat_lock
);
912 sctx
->stat
.csum_errors
++;
913 spin_unlock(&sctx
->stat_lock
);
914 if (__ratelimit(&_rs
))
915 scrub_print_warning("checksum error", sblock_to_check
);
916 btrfs_dev_stat_inc_and_print(dev
,
917 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
918 } else if (sblock_bad
->header_error
) {
919 spin_lock(&sctx
->stat_lock
);
920 sctx
->stat
.verify_errors
++;
921 spin_unlock(&sctx
->stat_lock
);
922 if (__ratelimit(&_rs
))
923 scrub_print_warning("checksum/header error",
925 if (sblock_bad
->generation_error
)
926 btrfs_dev_stat_inc_and_print(dev
,
927 BTRFS_DEV_STAT_GENERATION_ERRS
);
929 btrfs_dev_stat_inc_and_print(dev
,
930 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
933 if (sctx
->readonly
&& !sctx
->is_dev_replace
)
934 goto did_not_correct_error
;
936 if (!is_metadata
&& !have_csum
) {
937 struct scrub_fixup_nodatasum
*fixup_nodatasum
;
940 WARN_ON(sctx
->is_dev_replace
);
943 * !is_metadata and !have_csum, this means that the data
944 * might not be COW'ed, that it might be modified
945 * concurrently. The general strategy to work on the
946 * commit root does not help in the case when COW is not
949 fixup_nodatasum
= kzalloc(sizeof(*fixup_nodatasum
), GFP_NOFS
);
950 if (!fixup_nodatasum
)
951 goto did_not_correct_error
;
952 fixup_nodatasum
->sctx
= sctx
;
953 fixup_nodatasum
->dev
= dev
;
954 fixup_nodatasum
->logical
= logical
;
955 fixup_nodatasum
->root
= fs_info
->extent_root
;
956 fixup_nodatasum
->mirror_num
= failed_mirror_index
+ 1;
957 scrub_pending_trans_workers_inc(sctx
);
958 fixup_nodatasum
->work
.func
= scrub_fixup_nodatasum
;
959 btrfs_queue_worker(&fs_info
->scrub_workers
,
960 &fixup_nodatasum
->work
);
965 * now build and submit the bios for the other mirrors, check
967 * First try to pick the mirror which is completely without I/O
968 * errors and also does not have a checksum error.
969 * If one is found, and if a checksum is present, the full block
970 * that is known to contain an error is rewritten. Afterwards
971 * the block is known to be corrected.
972 * If a mirror is found which is completely correct, and no
973 * checksum is present, only those pages are rewritten that had
974 * an I/O error in the block to be repaired, since it cannot be
975 * determined, which copy of the other pages is better (and it
976 * could happen otherwise that a correct page would be
977 * overwritten by a bad one).
979 for (mirror_index
= 0;
980 mirror_index
< BTRFS_MAX_MIRRORS
&&
981 sblocks_for_recheck
[mirror_index
].page_count
> 0;
983 struct scrub_block
*sblock_other
;
985 if (mirror_index
== failed_mirror_index
)
987 sblock_other
= sblocks_for_recheck
+ mirror_index
;
989 /* build and submit the bios, check checksums */
990 scrub_recheck_block(fs_info
, sblock_other
, is_metadata
,
991 have_csum
, csum
, generation
,
994 if (!sblock_other
->header_error
&&
995 !sblock_other
->checksum_error
&&
996 sblock_other
->no_io_error_seen
) {
997 if (sctx
->is_dev_replace
) {
998 scrub_write_block_to_dev_replace(sblock_other
);
1000 int force_write
= is_metadata
|| have_csum
;
1002 ret
= scrub_repair_block_from_good_copy(
1003 sblock_bad
, sblock_other
,
1007 goto corrected_error
;
1012 * for dev_replace, pick good pages and write to the target device.
1014 if (sctx
->is_dev_replace
) {
1016 for (page_num
= 0; page_num
< sblock_bad
->page_count
;
1021 for (mirror_index
= 0;
1022 mirror_index
< BTRFS_MAX_MIRRORS
&&
1023 sblocks_for_recheck
[mirror_index
].page_count
> 0;
1025 struct scrub_block
*sblock_other
=
1026 sblocks_for_recheck
+ mirror_index
;
1027 struct scrub_page
*page_other
=
1028 sblock_other
->pagev
[page_num
];
1030 if (!page_other
->io_error
) {
1031 ret
= scrub_write_page_to_dev_replace(
1032 sblock_other
, page_num
);
1034 /* succeeded for this page */
1038 btrfs_dev_replace_stats_inc(
1040 fs_info
->dev_replace
.
1048 * did not find a mirror to fetch the page
1049 * from. scrub_write_page_to_dev_replace()
1050 * handles this case (page->io_error), by
1051 * filling the block with zeros before
1052 * submitting the write request
1055 ret
= scrub_write_page_to_dev_replace(
1056 sblock_bad
, page_num
);
1058 btrfs_dev_replace_stats_inc(
1059 &sctx
->dev_root
->fs_info
->
1060 dev_replace
.num_write_errors
);
1068 * for regular scrub, repair those pages that are errored.
1069 * In case of I/O errors in the area that is supposed to be
1070 * repaired, continue by picking good copies of those pages.
1071 * Select the good pages from mirrors to rewrite bad pages from
1072 * the area to fix. Afterwards verify the checksum of the block
1073 * that is supposed to be repaired. This verification step is
1074 * only done for the purpose of statistic counting and for the
1075 * final scrub report, whether errors remain.
1076 * A perfect algorithm could make use of the checksum and try
1077 * all possible combinations of pages from the different mirrors
1078 * until the checksum verification succeeds. For example, when
1079 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1080 * of mirror #2 is readable but the final checksum test fails,
1081 * then the 2nd page of mirror #3 could be tried, whether now
1082 * the final checksum succeedes. But this would be a rare
1083 * exception and is therefore not implemented. At least it is
1084 * avoided that the good copy is overwritten.
1085 * A more useful improvement would be to pick the sectors
1086 * without I/O error based on sector sizes (512 bytes on legacy
1087 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1088 * mirror could be repaired by taking 512 byte of a different
1089 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1090 * area are unreadable.
1093 /* can only fix I/O errors from here on */
1094 if (sblock_bad
->no_io_error_seen
)
1095 goto did_not_correct_error
;
1098 for (page_num
= 0; page_num
< sblock_bad
->page_count
; page_num
++) {
1099 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1101 if (!page_bad
->io_error
)
1104 for (mirror_index
= 0;
1105 mirror_index
< BTRFS_MAX_MIRRORS
&&
1106 sblocks_for_recheck
[mirror_index
].page_count
> 0;
1108 struct scrub_block
*sblock_other
= sblocks_for_recheck
+
1110 struct scrub_page
*page_other
= sblock_other
->pagev
[
1113 if (!page_other
->io_error
) {
1114 ret
= scrub_repair_page_from_good_copy(
1115 sblock_bad
, sblock_other
, page_num
, 0);
1117 page_bad
->io_error
= 0;
1118 break; /* succeeded for this page */
1123 if (page_bad
->io_error
) {
1124 /* did not find a mirror to copy the page from */
1130 if (is_metadata
|| have_csum
) {
1132 * need to verify the checksum now that all
1133 * sectors on disk are repaired (the write
1134 * request for data to be repaired is on its way).
1135 * Just be lazy and use scrub_recheck_block()
1136 * which re-reads the data before the checksum
1137 * is verified, but most likely the data comes out
1138 * of the page cache.
1140 scrub_recheck_block(fs_info
, sblock_bad
,
1141 is_metadata
, have_csum
, csum
,
1142 generation
, sctx
->csum_size
);
1143 if (!sblock_bad
->header_error
&&
1144 !sblock_bad
->checksum_error
&&
1145 sblock_bad
->no_io_error_seen
)
1146 goto corrected_error
;
1148 goto did_not_correct_error
;
1151 spin_lock(&sctx
->stat_lock
);
1152 sctx
->stat
.corrected_errors
++;
1153 spin_unlock(&sctx
->stat_lock
);
1154 printk_ratelimited_in_rcu(KERN_ERR
1155 "btrfs: fixed up error at logical %llu on dev %s\n",
1156 (unsigned long long)logical
,
1157 rcu_str_deref(dev
->name
));
1160 did_not_correct_error
:
1161 spin_lock(&sctx
->stat_lock
);
1162 sctx
->stat
.uncorrectable_errors
++;
1163 spin_unlock(&sctx
->stat_lock
);
1164 printk_ratelimited_in_rcu(KERN_ERR
1165 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1166 (unsigned long long)logical
,
1167 rcu_str_deref(dev
->name
));
1171 if (sblocks_for_recheck
) {
1172 for (mirror_index
= 0; mirror_index
< BTRFS_MAX_MIRRORS
;
1174 struct scrub_block
*sblock
= sblocks_for_recheck
+
1178 for (page_index
= 0; page_index
< sblock
->page_count
;
1180 sblock
->pagev
[page_index
]->sblock
= NULL
;
1181 scrub_page_put(sblock
->pagev
[page_index
]);
1184 kfree(sblocks_for_recheck
);
1190 static int scrub_setup_recheck_block(struct scrub_ctx
*sctx
,
1191 struct btrfs_fs_info
*fs_info
,
1192 struct scrub_block
*original_sblock
,
1193 u64 length
, u64 logical
,
1194 struct scrub_block
*sblocks_for_recheck
)
1201 * note: the two members ref_count and outstanding_pages
1202 * are not used (and not set) in the blocks that are used for
1203 * the recheck procedure
1207 while (length
> 0) {
1208 u64 sublen
= min_t(u64
, length
, PAGE_SIZE
);
1209 u64 mapped_length
= sublen
;
1210 struct btrfs_bio
*bbio
= NULL
;
1213 * with a length of PAGE_SIZE, each returned stripe
1214 * represents one mirror
1216 ret
= btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
, logical
,
1217 &mapped_length
, &bbio
, 0);
1218 if (ret
|| !bbio
|| mapped_length
< sublen
) {
1223 BUG_ON(page_index
>= SCRUB_PAGES_PER_RD_BIO
);
1224 for (mirror_index
= 0; mirror_index
< (int)bbio
->num_stripes
;
1226 struct scrub_block
*sblock
;
1227 struct scrub_page
*page
;
1229 if (mirror_index
>= BTRFS_MAX_MIRRORS
)
1232 sblock
= sblocks_for_recheck
+ mirror_index
;
1233 sblock
->sctx
= sctx
;
1234 page
= kzalloc(sizeof(*page
), GFP_NOFS
);
1237 spin_lock(&sctx
->stat_lock
);
1238 sctx
->stat
.malloc_errors
++;
1239 spin_unlock(&sctx
->stat_lock
);
1243 scrub_page_get(page
);
1244 sblock
->pagev
[page_index
] = page
;
1245 page
->logical
= logical
;
1246 page
->physical
= bbio
->stripes
[mirror_index
].physical
;
1247 BUG_ON(page_index
>= original_sblock
->page_count
);
1248 page
->physical_for_dev_replace
=
1249 original_sblock
->pagev
[page_index
]->
1250 physical_for_dev_replace
;
1251 /* for missing devices, dev->bdev is NULL */
1252 page
->dev
= bbio
->stripes
[mirror_index
].dev
;
1253 page
->mirror_num
= mirror_index
+ 1;
1254 sblock
->page_count
++;
1255 page
->page
= alloc_page(GFP_NOFS
);
1269 * this function will check the on disk data for checksum errors, header
1270 * errors and read I/O errors. If any I/O errors happen, the exact pages
1271 * which are errored are marked as being bad. The goal is to enable scrub
1272 * to take those pages that are not errored from all the mirrors so that
1273 * the pages that are errored in the just handled mirror can be repaired.
1275 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
1276 struct scrub_block
*sblock
, int is_metadata
,
1277 int have_csum
, u8
*csum
, u64 generation
,
1282 sblock
->no_io_error_seen
= 1;
1283 sblock
->header_error
= 0;
1284 sblock
->checksum_error
= 0;
1286 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1288 struct scrub_page
*page
= sblock
->pagev
[page_num
];
1289 DECLARE_COMPLETION_ONSTACK(complete
);
1291 if (page
->dev
->bdev
== NULL
) {
1293 sblock
->no_io_error_seen
= 0;
1297 WARN_ON(!page
->page
);
1298 bio
= bio_alloc(GFP_NOFS
, 1);
1301 sblock
->no_io_error_seen
= 0;
1304 bio
->bi_bdev
= page
->dev
->bdev
;
1305 bio
->bi_sector
= page
->physical
>> 9;
1306 bio
->bi_end_io
= scrub_complete_bio_end_io
;
1307 bio
->bi_private
= &complete
;
1309 bio_add_page(bio
, page
->page
, PAGE_SIZE
, 0);
1310 btrfsic_submit_bio(READ
, bio
);
1312 /* this will also unplug the queue */
1313 wait_for_completion(&complete
);
1315 page
->io_error
= !test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1316 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1317 sblock
->no_io_error_seen
= 0;
1321 if (sblock
->no_io_error_seen
)
1322 scrub_recheck_block_checksum(fs_info
, sblock
, is_metadata
,
1323 have_csum
, csum
, generation
,
1329 static void scrub_recheck_block_checksum(struct btrfs_fs_info
*fs_info
,
1330 struct scrub_block
*sblock
,
1331 int is_metadata
, int have_csum
,
1332 const u8
*csum
, u64 generation
,
1336 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1338 struct btrfs_root
*root
= fs_info
->extent_root
;
1339 void *mapped_buffer
;
1341 WARN_ON(!sblock
->pagev
[0]->page
);
1343 struct btrfs_header
*h
;
1345 mapped_buffer
= kmap_atomic(sblock
->pagev
[0]->page
);
1346 h
= (struct btrfs_header
*)mapped_buffer
;
1348 if (sblock
->pagev
[0]->logical
!= le64_to_cpu(h
->bytenr
) ||
1349 memcmp(h
->fsid
, fs_info
->fsid
, BTRFS_UUID_SIZE
) ||
1350 memcmp(h
->chunk_tree_uuid
, fs_info
->chunk_tree_uuid
,
1352 sblock
->header_error
= 1;
1353 } else if (generation
!= le64_to_cpu(h
->generation
)) {
1354 sblock
->header_error
= 1;
1355 sblock
->generation_error
= 1;
1362 mapped_buffer
= kmap_atomic(sblock
->pagev
[0]->page
);
1365 for (page_num
= 0;;) {
1366 if (page_num
== 0 && is_metadata
)
1367 crc
= btrfs_csum_data(root
,
1368 ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
,
1369 crc
, PAGE_SIZE
- BTRFS_CSUM_SIZE
);
1371 crc
= btrfs_csum_data(root
, mapped_buffer
, crc
,
1374 kunmap_atomic(mapped_buffer
);
1376 if (page_num
>= sblock
->page_count
)
1378 WARN_ON(!sblock
->pagev
[page_num
]->page
);
1380 mapped_buffer
= kmap_atomic(sblock
->pagev
[page_num
]->page
);
1383 btrfs_csum_final(crc
, calculated_csum
);
1384 if (memcmp(calculated_csum
, csum
, csum_size
))
1385 sblock
->checksum_error
= 1;
1388 static void scrub_complete_bio_end_io(struct bio
*bio
, int err
)
1390 complete((struct completion
*)bio
->bi_private
);
1393 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
1394 struct scrub_block
*sblock_good
,
1400 for (page_num
= 0; page_num
< sblock_bad
->page_count
; page_num
++) {
1403 ret_sub
= scrub_repair_page_from_good_copy(sblock_bad
,
1414 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
1415 struct scrub_block
*sblock_good
,
1416 int page_num
, int force_write
)
1418 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1419 struct scrub_page
*page_good
= sblock_good
->pagev
[page_num
];
1421 BUG_ON(page_bad
->page
== NULL
);
1422 BUG_ON(page_good
->page
== NULL
);
1423 if (force_write
|| sblock_bad
->header_error
||
1424 sblock_bad
->checksum_error
|| page_bad
->io_error
) {
1427 DECLARE_COMPLETION_ONSTACK(complete
);
1429 if (!page_bad
->dev
->bdev
) {
1430 printk_ratelimited(KERN_WARNING
1431 "btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1435 bio
= bio_alloc(GFP_NOFS
, 1);
1438 bio
->bi_bdev
= page_bad
->dev
->bdev
;
1439 bio
->bi_sector
= page_bad
->physical
>> 9;
1440 bio
->bi_end_io
= scrub_complete_bio_end_io
;
1441 bio
->bi_private
= &complete
;
1443 ret
= bio_add_page(bio
, page_good
->page
, PAGE_SIZE
, 0);
1444 if (PAGE_SIZE
!= ret
) {
1448 btrfsic_submit_bio(WRITE
, bio
);
1450 /* this will also unplug the queue */
1451 wait_for_completion(&complete
);
1452 if (!bio_flagged(bio
, BIO_UPTODATE
)) {
1453 btrfs_dev_stat_inc_and_print(page_bad
->dev
,
1454 BTRFS_DEV_STAT_WRITE_ERRS
);
1455 btrfs_dev_replace_stats_inc(
1456 &sblock_bad
->sctx
->dev_root
->fs_info
->
1457 dev_replace
.num_write_errors
);
1467 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
)
1471 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1474 ret
= scrub_write_page_to_dev_replace(sblock
, page_num
);
1476 btrfs_dev_replace_stats_inc(
1477 &sblock
->sctx
->dev_root
->fs_info
->dev_replace
.
1482 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
1485 struct scrub_page
*spage
= sblock
->pagev
[page_num
];
1487 BUG_ON(spage
->page
== NULL
);
1488 if (spage
->io_error
) {
1489 void *mapped_buffer
= kmap_atomic(spage
->page
);
1491 memset(mapped_buffer
, 0, PAGE_CACHE_SIZE
);
1492 flush_dcache_page(spage
->page
);
1493 kunmap_atomic(mapped_buffer
);
1495 return scrub_add_page_to_wr_bio(sblock
->sctx
, spage
);
1498 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
1499 struct scrub_page
*spage
)
1501 struct scrub_wr_ctx
*wr_ctx
= &sctx
->wr_ctx
;
1502 struct scrub_bio
*sbio
;
1505 mutex_lock(&wr_ctx
->wr_lock
);
1507 if (!wr_ctx
->wr_curr_bio
) {
1508 wr_ctx
->wr_curr_bio
= kzalloc(sizeof(*wr_ctx
->wr_curr_bio
),
1510 if (!wr_ctx
->wr_curr_bio
) {
1511 mutex_unlock(&wr_ctx
->wr_lock
);
1514 wr_ctx
->wr_curr_bio
->sctx
= sctx
;
1515 wr_ctx
->wr_curr_bio
->page_count
= 0;
1517 sbio
= wr_ctx
->wr_curr_bio
;
1518 if (sbio
->page_count
== 0) {
1521 sbio
->physical
= spage
->physical_for_dev_replace
;
1522 sbio
->logical
= spage
->logical
;
1523 sbio
->dev
= wr_ctx
->tgtdev
;
1526 bio
= bio_alloc(GFP_NOFS
, wr_ctx
->pages_per_wr_bio
);
1528 mutex_unlock(&wr_ctx
->wr_lock
);
1534 bio
->bi_private
= sbio
;
1535 bio
->bi_end_io
= scrub_wr_bio_end_io
;
1536 bio
->bi_bdev
= sbio
->dev
->bdev
;
1537 bio
->bi_sector
= sbio
->physical
>> 9;
1539 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
1540 spage
->physical_for_dev_replace
||
1541 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
1543 scrub_wr_submit(sctx
);
1547 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
1548 if (ret
!= PAGE_SIZE
) {
1549 if (sbio
->page_count
< 1) {
1552 mutex_unlock(&wr_ctx
->wr_lock
);
1555 scrub_wr_submit(sctx
);
1559 sbio
->pagev
[sbio
->page_count
] = spage
;
1560 scrub_page_get(spage
);
1562 if (sbio
->page_count
== wr_ctx
->pages_per_wr_bio
)
1563 scrub_wr_submit(sctx
);
1564 mutex_unlock(&wr_ctx
->wr_lock
);
1569 static void scrub_wr_submit(struct scrub_ctx
*sctx
)
1571 struct scrub_wr_ctx
*wr_ctx
= &sctx
->wr_ctx
;
1572 struct scrub_bio
*sbio
;
1574 if (!wr_ctx
->wr_curr_bio
)
1577 sbio
= wr_ctx
->wr_curr_bio
;
1578 wr_ctx
->wr_curr_bio
= NULL
;
1579 WARN_ON(!sbio
->bio
->bi_bdev
);
1580 scrub_pending_bio_inc(sctx
);
1581 /* process all writes in a single worker thread. Then the block layer
1582 * orders the requests before sending them to the driver which
1583 * doubled the write performance on spinning disks when measured
1585 btrfsic_submit_bio(WRITE
, sbio
->bio
);
1588 static void scrub_wr_bio_end_io(struct bio
*bio
, int err
)
1590 struct scrub_bio
*sbio
= bio
->bi_private
;
1591 struct btrfs_fs_info
*fs_info
= sbio
->dev
->dev_root
->fs_info
;
1596 sbio
->work
.func
= scrub_wr_bio_end_io_worker
;
1597 btrfs_queue_worker(&fs_info
->scrub_wr_completion_workers
, &sbio
->work
);
1600 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
)
1602 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
1603 struct scrub_ctx
*sctx
= sbio
->sctx
;
1606 WARN_ON(sbio
->page_count
> SCRUB_PAGES_PER_WR_BIO
);
1608 struct btrfs_dev_replace
*dev_replace
=
1609 &sbio
->sctx
->dev_root
->fs_info
->dev_replace
;
1611 for (i
= 0; i
< sbio
->page_count
; i
++) {
1612 struct scrub_page
*spage
= sbio
->pagev
[i
];
1614 spage
->io_error
= 1;
1615 btrfs_dev_replace_stats_inc(&dev_replace
->
1620 for (i
= 0; i
< sbio
->page_count
; i
++)
1621 scrub_page_put(sbio
->pagev
[i
]);
1625 scrub_pending_bio_dec(sctx
);
1628 static int scrub_checksum(struct scrub_block
*sblock
)
1633 WARN_ON(sblock
->page_count
< 1);
1634 flags
= sblock
->pagev
[0]->flags
;
1636 if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1637 ret
= scrub_checksum_data(sblock
);
1638 else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1639 ret
= scrub_checksum_tree_block(sblock
);
1640 else if (flags
& BTRFS_EXTENT_FLAG_SUPER
)
1641 (void)scrub_checksum_super(sblock
);
1645 scrub_handle_errored_block(sblock
);
1650 static int scrub_checksum_data(struct scrub_block
*sblock
)
1652 struct scrub_ctx
*sctx
= sblock
->sctx
;
1653 u8 csum
[BTRFS_CSUM_SIZE
];
1659 struct btrfs_root
*root
= sctx
->dev_root
;
1663 BUG_ON(sblock
->page_count
< 1);
1664 if (!sblock
->pagev
[0]->have_csum
)
1667 on_disk_csum
= sblock
->pagev
[0]->csum
;
1668 page
= sblock
->pagev
[0]->page
;
1669 buffer
= kmap_atomic(page
);
1671 len
= sctx
->sectorsize
;
1674 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
1676 crc
= btrfs_csum_data(root
, buffer
, crc
, l
);
1677 kunmap_atomic(buffer
);
1682 BUG_ON(index
>= sblock
->page_count
);
1683 BUG_ON(!sblock
->pagev
[index
]->page
);
1684 page
= sblock
->pagev
[index
]->page
;
1685 buffer
= kmap_atomic(page
);
1688 btrfs_csum_final(crc
, csum
);
1689 if (memcmp(csum
, on_disk_csum
, sctx
->csum_size
))
1695 static int scrub_checksum_tree_block(struct scrub_block
*sblock
)
1697 struct scrub_ctx
*sctx
= sblock
->sctx
;
1698 struct btrfs_header
*h
;
1699 struct btrfs_root
*root
= sctx
->dev_root
;
1700 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1701 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1702 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
1704 void *mapped_buffer
;
1713 BUG_ON(sblock
->page_count
< 1);
1714 page
= sblock
->pagev
[0]->page
;
1715 mapped_buffer
= kmap_atomic(page
);
1716 h
= (struct btrfs_header
*)mapped_buffer
;
1717 memcpy(on_disk_csum
, h
->csum
, sctx
->csum_size
);
1720 * we don't use the getter functions here, as we
1721 * a) don't have an extent buffer and
1722 * b) the page is already kmapped
1725 if (sblock
->pagev
[0]->logical
!= le64_to_cpu(h
->bytenr
))
1728 if (sblock
->pagev
[0]->generation
!= le64_to_cpu(h
->generation
))
1731 if (memcmp(h
->fsid
, fs_info
->fsid
, BTRFS_UUID_SIZE
))
1734 if (memcmp(h
->chunk_tree_uuid
, fs_info
->chunk_tree_uuid
,
1738 WARN_ON(sctx
->nodesize
!= sctx
->leafsize
);
1739 len
= sctx
->nodesize
- BTRFS_CSUM_SIZE
;
1740 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
1741 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
1744 u64 l
= min_t(u64
, len
, mapped_size
);
1746 crc
= btrfs_csum_data(root
, p
, crc
, l
);
1747 kunmap_atomic(mapped_buffer
);
1752 BUG_ON(index
>= sblock
->page_count
);
1753 BUG_ON(!sblock
->pagev
[index
]->page
);
1754 page
= sblock
->pagev
[index
]->page
;
1755 mapped_buffer
= kmap_atomic(page
);
1756 mapped_size
= PAGE_SIZE
;
1760 btrfs_csum_final(crc
, calculated_csum
);
1761 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
1764 return fail
|| crc_fail
;
1767 static int scrub_checksum_super(struct scrub_block
*sblock
)
1769 struct btrfs_super_block
*s
;
1770 struct scrub_ctx
*sctx
= sblock
->sctx
;
1771 struct btrfs_root
*root
= sctx
->dev_root
;
1772 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1773 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1774 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
1776 void *mapped_buffer
;
1785 BUG_ON(sblock
->page_count
< 1);
1786 page
= sblock
->pagev
[0]->page
;
1787 mapped_buffer
= kmap_atomic(page
);
1788 s
= (struct btrfs_super_block
*)mapped_buffer
;
1789 memcpy(on_disk_csum
, s
->csum
, sctx
->csum_size
);
1791 if (sblock
->pagev
[0]->logical
!= le64_to_cpu(s
->bytenr
))
1794 if (sblock
->pagev
[0]->generation
!= le64_to_cpu(s
->generation
))
1797 if (memcmp(s
->fsid
, fs_info
->fsid
, BTRFS_UUID_SIZE
))
1800 len
= BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
;
1801 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
1802 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
1805 u64 l
= min_t(u64
, len
, mapped_size
);
1807 crc
= btrfs_csum_data(root
, p
, crc
, l
);
1808 kunmap_atomic(mapped_buffer
);
1813 BUG_ON(index
>= sblock
->page_count
);
1814 BUG_ON(!sblock
->pagev
[index
]->page
);
1815 page
= sblock
->pagev
[index
]->page
;
1816 mapped_buffer
= kmap_atomic(page
);
1817 mapped_size
= PAGE_SIZE
;
1821 btrfs_csum_final(crc
, calculated_csum
);
1822 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
1825 if (fail_cor
+ fail_gen
) {
1827 * if we find an error in a super block, we just report it.
1828 * They will get written with the next transaction commit
1831 spin_lock(&sctx
->stat_lock
);
1832 ++sctx
->stat
.super_errors
;
1833 spin_unlock(&sctx
->stat_lock
);
1835 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
1836 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1838 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
1839 BTRFS_DEV_STAT_GENERATION_ERRS
);
1842 return fail_cor
+ fail_gen
;
1845 static void scrub_block_get(struct scrub_block
*sblock
)
1847 atomic_inc(&sblock
->ref_count
);
1850 static void scrub_block_put(struct scrub_block
*sblock
)
1852 if (atomic_dec_and_test(&sblock
->ref_count
)) {
1855 for (i
= 0; i
< sblock
->page_count
; i
++)
1856 scrub_page_put(sblock
->pagev
[i
]);
1861 static void scrub_page_get(struct scrub_page
*spage
)
1863 atomic_inc(&spage
->ref_count
);
1866 static void scrub_page_put(struct scrub_page
*spage
)
1868 if (atomic_dec_and_test(&spage
->ref_count
)) {
1870 __free_page(spage
->page
);
1875 static void scrub_submit(struct scrub_ctx
*sctx
)
1877 struct scrub_bio
*sbio
;
1879 if (sctx
->curr
== -1)
1882 sbio
= sctx
->bios
[sctx
->curr
];
1884 scrub_pending_bio_inc(sctx
);
1886 if (!sbio
->bio
->bi_bdev
) {
1888 * this case should not happen. If btrfs_map_block() is
1889 * wrong, it could happen for dev-replace operations on
1890 * missing devices when no mirrors are available, but in
1891 * this case it should already fail the mount.
1892 * This case is handled correctly (but _very_ slowly).
1894 printk_ratelimited(KERN_WARNING
1895 "btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1896 bio_endio(sbio
->bio
, -EIO
);
1898 btrfsic_submit_bio(READ
, sbio
->bio
);
1902 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
1903 struct scrub_page
*spage
)
1905 struct scrub_block
*sblock
= spage
->sblock
;
1906 struct scrub_bio
*sbio
;
1911 * grab a fresh bio or wait for one to become available
1913 while (sctx
->curr
== -1) {
1914 spin_lock(&sctx
->list_lock
);
1915 sctx
->curr
= sctx
->first_free
;
1916 if (sctx
->curr
!= -1) {
1917 sctx
->first_free
= sctx
->bios
[sctx
->curr
]->next_free
;
1918 sctx
->bios
[sctx
->curr
]->next_free
= -1;
1919 sctx
->bios
[sctx
->curr
]->page_count
= 0;
1920 spin_unlock(&sctx
->list_lock
);
1922 spin_unlock(&sctx
->list_lock
);
1923 wait_event(sctx
->list_wait
, sctx
->first_free
!= -1);
1926 sbio
= sctx
->bios
[sctx
->curr
];
1927 if (sbio
->page_count
== 0) {
1930 sbio
->physical
= spage
->physical
;
1931 sbio
->logical
= spage
->logical
;
1932 sbio
->dev
= spage
->dev
;
1935 bio
= bio_alloc(GFP_NOFS
, sctx
->pages_per_rd_bio
);
1941 bio
->bi_private
= sbio
;
1942 bio
->bi_end_io
= scrub_bio_end_io
;
1943 bio
->bi_bdev
= sbio
->dev
->bdev
;
1944 bio
->bi_sector
= sbio
->physical
>> 9;
1946 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
1948 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
1950 sbio
->dev
!= spage
->dev
) {
1955 sbio
->pagev
[sbio
->page_count
] = spage
;
1956 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
1957 if (ret
!= PAGE_SIZE
) {
1958 if (sbio
->page_count
< 1) {
1967 scrub_block_get(sblock
); /* one for the page added to the bio */
1968 atomic_inc(&sblock
->outstanding_pages
);
1970 if (sbio
->page_count
== sctx
->pages_per_rd_bio
)
1976 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
1977 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
1978 u64 gen
, int mirror_num
, u8
*csum
, int force
,
1979 u64 physical_for_dev_replace
)
1981 struct scrub_block
*sblock
;
1984 sblock
= kzalloc(sizeof(*sblock
), GFP_NOFS
);
1986 spin_lock(&sctx
->stat_lock
);
1987 sctx
->stat
.malloc_errors
++;
1988 spin_unlock(&sctx
->stat_lock
);
1992 /* one ref inside this function, plus one for each page added to
1994 atomic_set(&sblock
->ref_count
, 1);
1995 sblock
->sctx
= sctx
;
1996 sblock
->no_io_error_seen
= 1;
1998 for (index
= 0; len
> 0; index
++) {
1999 struct scrub_page
*spage
;
2000 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2002 spage
= kzalloc(sizeof(*spage
), GFP_NOFS
);
2005 spin_lock(&sctx
->stat_lock
);
2006 sctx
->stat
.malloc_errors
++;
2007 spin_unlock(&sctx
->stat_lock
);
2008 scrub_block_put(sblock
);
2011 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
2012 scrub_page_get(spage
);
2013 sblock
->pagev
[index
] = spage
;
2014 spage
->sblock
= sblock
;
2016 spage
->flags
= flags
;
2017 spage
->generation
= gen
;
2018 spage
->logical
= logical
;
2019 spage
->physical
= physical
;
2020 spage
->physical_for_dev_replace
= physical_for_dev_replace
;
2021 spage
->mirror_num
= mirror_num
;
2023 spage
->have_csum
= 1;
2024 memcpy(spage
->csum
, csum
, sctx
->csum_size
);
2026 spage
->have_csum
= 0;
2028 sblock
->page_count
++;
2029 spage
->page
= alloc_page(GFP_NOFS
);
2035 physical_for_dev_replace
+= l
;
2038 WARN_ON(sblock
->page_count
== 0);
2039 for (index
= 0; index
< sblock
->page_count
; index
++) {
2040 struct scrub_page
*spage
= sblock
->pagev
[index
];
2043 ret
= scrub_add_page_to_rd_bio(sctx
, spage
);
2045 scrub_block_put(sblock
);
2053 /* last one frees, either here or in bio completion for last page */
2054 scrub_block_put(sblock
);
2058 static void scrub_bio_end_io(struct bio
*bio
, int err
)
2060 struct scrub_bio
*sbio
= bio
->bi_private
;
2061 struct btrfs_fs_info
*fs_info
= sbio
->dev
->dev_root
->fs_info
;
2066 btrfs_queue_worker(&fs_info
->scrub_workers
, &sbio
->work
);
2069 static void scrub_bio_end_io_worker(struct btrfs_work
*work
)
2071 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
2072 struct scrub_ctx
*sctx
= sbio
->sctx
;
2075 BUG_ON(sbio
->page_count
> SCRUB_PAGES_PER_RD_BIO
);
2077 for (i
= 0; i
< sbio
->page_count
; i
++) {
2078 struct scrub_page
*spage
= sbio
->pagev
[i
];
2080 spage
->io_error
= 1;
2081 spage
->sblock
->no_io_error_seen
= 0;
2085 /* now complete the scrub_block items that have all pages completed */
2086 for (i
= 0; i
< sbio
->page_count
; i
++) {
2087 struct scrub_page
*spage
= sbio
->pagev
[i
];
2088 struct scrub_block
*sblock
= spage
->sblock
;
2090 if (atomic_dec_and_test(&sblock
->outstanding_pages
))
2091 scrub_block_complete(sblock
);
2092 scrub_block_put(sblock
);
2097 spin_lock(&sctx
->list_lock
);
2098 sbio
->next_free
= sctx
->first_free
;
2099 sctx
->first_free
= sbio
->index
;
2100 spin_unlock(&sctx
->list_lock
);
2102 if (sctx
->is_dev_replace
&&
2103 atomic_read(&sctx
->wr_ctx
.flush_all_writes
)) {
2104 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2105 scrub_wr_submit(sctx
);
2106 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2109 scrub_pending_bio_dec(sctx
);
2112 static void scrub_block_complete(struct scrub_block
*sblock
)
2114 if (!sblock
->no_io_error_seen
) {
2115 scrub_handle_errored_block(sblock
);
2118 * if has checksum error, write via repair mechanism in
2119 * dev replace case, otherwise write here in dev replace
2122 if (!scrub_checksum(sblock
) && sblock
->sctx
->is_dev_replace
)
2123 scrub_write_block_to_dev_replace(sblock
);
2127 static int scrub_find_csum(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
2130 struct btrfs_ordered_sum
*sum
= NULL
;
2133 unsigned long num_sectors
;
2135 while (!list_empty(&sctx
->csum_list
)) {
2136 sum
= list_first_entry(&sctx
->csum_list
,
2137 struct btrfs_ordered_sum
, list
);
2138 if (sum
->bytenr
> logical
)
2140 if (sum
->bytenr
+ sum
->len
> logical
)
2143 ++sctx
->stat
.csum_discards
;
2144 list_del(&sum
->list
);
2151 num_sectors
= sum
->len
/ sctx
->sectorsize
;
2152 for (i
= 0; i
< num_sectors
; ++i
) {
2153 if (sum
->sums
[i
].bytenr
== logical
) {
2154 memcpy(csum
, &sum
->sums
[i
].sum
, sctx
->csum_size
);
2159 if (ret
&& i
== num_sectors
- 1) {
2160 list_del(&sum
->list
);
2166 /* scrub extent tries to collect up to 64 kB for each bio */
2167 static int scrub_extent(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
2168 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
2169 u64 gen
, int mirror_num
, u64 physical_for_dev_replace
)
2172 u8 csum
[BTRFS_CSUM_SIZE
];
2175 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2176 blocksize
= sctx
->sectorsize
;
2177 spin_lock(&sctx
->stat_lock
);
2178 sctx
->stat
.data_extents_scrubbed
++;
2179 sctx
->stat
.data_bytes_scrubbed
+= len
;
2180 spin_unlock(&sctx
->stat_lock
);
2181 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
2182 WARN_ON(sctx
->nodesize
!= sctx
->leafsize
);
2183 blocksize
= sctx
->nodesize
;
2184 spin_lock(&sctx
->stat_lock
);
2185 sctx
->stat
.tree_extents_scrubbed
++;
2186 sctx
->stat
.tree_bytes_scrubbed
+= len
;
2187 spin_unlock(&sctx
->stat_lock
);
2189 blocksize
= sctx
->sectorsize
;
2194 u64 l
= min_t(u64
, len
, blocksize
);
2197 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2198 /* push csums to sbio */
2199 have_csum
= scrub_find_csum(sctx
, logical
, l
, csum
);
2201 ++sctx
->stat
.no_csum
;
2202 if (sctx
->is_dev_replace
&& !have_csum
) {
2203 ret
= copy_nocow_pages(sctx
, logical
, l
,
2205 physical_for_dev_replace
);
2206 goto behind_scrub_pages
;
2209 ret
= scrub_pages(sctx
, logical
, l
, physical
, dev
, flags
, gen
,
2210 mirror_num
, have_csum
? csum
: NULL
, 0,
2211 physical_for_dev_replace
);
2218 physical_for_dev_replace
+= l
;
2223 static noinline_for_stack
int scrub_stripe(struct scrub_ctx
*sctx
,
2224 struct map_lookup
*map
,
2225 struct btrfs_device
*scrub_dev
,
2226 int num
, u64 base
, u64 length
,
2229 struct btrfs_path
*path
;
2230 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
2231 struct btrfs_root
*root
= fs_info
->extent_root
;
2232 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
2233 struct btrfs_extent_item
*extent
;
2234 struct blk_plug plug
;
2240 struct extent_buffer
*l
;
2241 struct btrfs_key key
;
2246 struct reada_control
*reada1
;
2247 struct reada_control
*reada2
;
2248 struct btrfs_key key_start
;
2249 struct btrfs_key key_end
;
2250 u64 increment
= map
->stripe_len
;
2253 u64 extent_physical
;
2255 struct btrfs_device
*extent_dev
;
2256 int extent_mirror_num
;
2258 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
2259 BTRFS_BLOCK_GROUP_RAID6
)) {
2260 if (num
>= nr_data_stripes(map
)) {
2267 do_div(nstripes
, map
->stripe_len
);
2268 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
2269 offset
= map
->stripe_len
* num
;
2270 increment
= map
->stripe_len
* map
->num_stripes
;
2272 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2273 int factor
= map
->num_stripes
/ map
->sub_stripes
;
2274 offset
= map
->stripe_len
* (num
/ map
->sub_stripes
);
2275 increment
= map
->stripe_len
* factor
;
2276 mirror_num
= num
% map
->sub_stripes
+ 1;
2277 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
2278 increment
= map
->stripe_len
;
2279 mirror_num
= num
% map
->num_stripes
+ 1;
2280 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
2281 increment
= map
->stripe_len
;
2282 mirror_num
= num
% map
->num_stripes
+ 1;
2284 increment
= map
->stripe_len
;
2288 path
= btrfs_alloc_path();
2293 * work on commit root. The related disk blocks are static as
2294 * long as COW is applied. This means, it is save to rewrite
2295 * them to repair disk errors without any race conditions
2297 path
->search_commit_root
= 1;
2298 path
->skip_locking
= 1;
2301 * trigger the readahead for extent tree csum tree and wait for
2302 * completion. During readahead, the scrub is officially paused
2303 * to not hold off transaction commits
2305 logical
= base
+ offset
;
2307 wait_event(sctx
->list_wait
,
2308 atomic_read(&sctx
->bios_in_flight
) == 0);
2309 atomic_inc(&fs_info
->scrubs_paused
);
2310 wake_up(&fs_info
->scrub_pause_wait
);
2312 /* FIXME it might be better to start readahead at commit root */
2313 key_start
.objectid
= logical
;
2314 key_start
.type
= BTRFS_EXTENT_ITEM_KEY
;
2315 key_start
.offset
= (u64
)0;
2316 key_end
.objectid
= base
+ offset
+ nstripes
* increment
;
2317 key_end
.type
= BTRFS_EXTENT_ITEM_KEY
;
2318 key_end
.offset
= (u64
)0;
2319 reada1
= btrfs_reada_add(root
, &key_start
, &key_end
);
2321 key_start
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
2322 key_start
.type
= BTRFS_EXTENT_CSUM_KEY
;
2323 key_start
.offset
= logical
;
2324 key_end
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
2325 key_end
.type
= BTRFS_EXTENT_CSUM_KEY
;
2326 key_end
.offset
= base
+ offset
+ nstripes
* increment
;
2327 reada2
= btrfs_reada_add(csum_root
, &key_start
, &key_end
);
2329 if (!IS_ERR(reada1
))
2330 btrfs_reada_wait(reada1
);
2331 if (!IS_ERR(reada2
))
2332 btrfs_reada_wait(reada2
);
2334 mutex_lock(&fs_info
->scrub_lock
);
2335 while (atomic_read(&fs_info
->scrub_pause_req
)) {
2336 mutex_unlock(&fs_info
->scrub_lock
);
2337 wait_event(fs_info
->scrub_pause_wait
,
2338 atomic_read(&fs_info
->scrub_pause_req
) == 0);
2339 mutex_lock(&fs_info
->scrub_lock
);
2341 atomic_dec(&fs_info
->scrubs_paused
);
2342 mutex_unlock(&fs_info
->scrub_lock
);
2343 wake_up(&fs_info
->scrub_pause_wait
);
2346 * collect all data csums for the stripe to avoid seeking during
2347 * the scrub. This might currently (crc32) end up to be about 1MB
2349 blk_start_plug(&plug
);
2352 * now find all extents for each stripe and scrub them
2354 logical
= base
+ offset
;
2355 physical
= map
->stripes
[num
].physical
;
2357 for (i
= 0; i
< nstripes
; ++i
) {
2361 if (atomic_read(&fs_info
->scrub_cancel_req
) ||
2362 atomic_read(&sctx
->cancel_req
)) {
2367 * check to see if we have to pause
2369 if (atomic_read(&fs_info
->scrub_pause_req
)) {
2370 /* push queued extents */
2371 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 1);
2373 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2374 scrub_wr_submit(sctx
);
2375 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2376 wait_event(sctx
->list_wait
,
2377 atomic_read(&sctx
->bios_in_flight
) == 0);
2378 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 0);
2379 atomic_inc(&fs_info
->scrubs_paused
);
2380 wake_up(&fs_info
->scrub_pause_wait
);
2381 mutex_lock(&fs_info
->scrub_lock
);
2382 while (atomic_read(&fs_info
->scrub_pause_req
)) {
2383 mutex_unlock(&fs_info
->scrub_lock
);
2384 wait_event(fs_info
->scrub_pause_wait
,
2385 atomic_read(&fs_info
->scrub_pause_req
) == 0);
2386 mutex_lock(&fs_info
->scrub_lock
);
2388 atomic_dec(&fs_info
->scrubs_paused
);
2389 mutex_unlock(&fs_info
->scrub_lock
);
2390 wake_up(&fs_info
->scrub_pause_wait
);
2393 ret
= btrfs_lookup_csums_range(csum_root
, logical
,
2394 logical
+ map
->stripe_len
- 1,
2395 &sctx
->csum_list
, 1);
2399 key
.objectid
= logical
;
2400 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2401 key
.offset
= (u64
)0;
2403 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2407 ret
= btrfs_previous_item(root
, path
, 0,
2408 BTRFS_EXTENT_ITEM_KEY
);
2412 /* there's no smaller item, so stick with the
2414 btrfs_release_path(path
);
2415 ret
= btrfs_search_slot(NULL
, root
, &key
,
2424 slot
= path
->slots
[0];
2425 if (slot
>= btrfs_header_nritems(l
)) {
2426 ret
= btrfs_next_leaf(root
, path
);
2434 btrfs_item_key_to_cpu(l
, &key
, slot
);
2436 if (key
.objectid
+ key
.offset
<= logical
)
2439 if (key
.objectid
>= logical
+ map
->stripe_len
)
2442 if (btrfs_key_type(&key
) != BTRFS_EXTENT_ITEM_KEY
)
2445 extent
= btrfs_item_ptr(l
, slot
,
2446 struct btrfs_extent_item
);
2447 flags
= btrfs_extent_flags(l
, extent
);
2448 generation
= btrfs_extent_generation(l
, extent
);
2450 if (key
.objectid
< logical
&&
2451 (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)) {
2453 "btrfs scrub: tree block %llu spanning "
2454 "stripes, ignored. logical=%llu\n",
2455 (unsigned long long)key
.objectid
,
2456 (unsigned long long)logical
);
2461 * trim extent to this stripe
2463 if (key
.objectid
< logical
) {
2464 key
.offset
-= logical
- key
.objectid
;
2465 key
.objectid
= logical
;
2467 if (key
.objectid
+ key
.offset
>
2468 logical
+ map
->stripe_len
) {
2469 key
.offset
= logical
+ map
->stripe_len
-
2473 extent_logical
= key
.objectid
;
2474 extent_physical
= key
.objectid
- logical
+ physical
;
2475 extent_len
= key
.offset
;
2476 extent_dev
= scrub_dev
;
2477 extent_mirror_num
= mirror_num
;
2479 scrub_remap_extent(fs_info
, extent_logical
,
2480 extent_len
, &extent_physical
,
2482 &extent_mirror_num
);
2483 ret
= scrub_extent(sctx
, extent_logical
, extent_len
,
2484 extent_physical
, extent_dev
, flags
,
2485 generation
, extent_mirror_num
,
2486 key
.objectid
- logical
+ physical
);
2493 btrfs_release_path(path
);
2494 logical
+= increment
;
2495 physical
+= map
->stripe_len
;
2496 spin_lock(&sctx
->stat_lock
);
2497 sctx
->stat
.last_physical
= physical
;
2498 spin_unlock(&sctx
->stat_lock
);
2501 /* push queued extents */
2503 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2504 scrub_wr_submit(sctx
);
2505 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2507 blk_finish_plug(&plug
);
2508 btrfs_free_path(path
);
2509 return ret
< 0 ? ret
: 0;
2512 static noinline_for_stack
int scrub_chunk(struct scrub_ctx
*sctx
,
2513 struct btrfs_device
*scrub_dev
,
2514 u64 chunk_tree
, u64 chunk_objectid
,
2515 u64 chunk_offset
, u64 length
,
2516 u64 dev_offset
, int is_dev_replace
)
2518 struct btrfs_mapping_tree
*map_tree
=
2519 &sctx
->dev_root
->fs_info
->mapping_tree
;
2520 struct map_lookup
*map
;
2521 struct extent_map
*em
;
2525 read_lock(&map_tree
->map_tree
.lock
);
2526 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
2527 read_unlock(&map_tree
->map_tree
.lock
);
2532 map
= (struct map_lookup
*)em
->bdev
;
2533 if (em
->start
!= chunk_offset
)
2536 if (em
->len
< length
)
2539 for (i
= 0; i
< map
->num_stripes
; ++i
) {
2540 if (map
->stripes
[i
].dev
->bdev
== scrub_dev
->bdev
&&
2541 map
->stripes
[i
].physical
== dev_offset
) {
2542 ret
= scrub_stripe(sctx
, map
, scrub_dev
, i
,
2543 chunk_offset
, length
,
2550 free_extent_map(em
);
2555 static noinline_for_stack
2556 int scrub_enumerate_chunks(struct scrub_ctx
*sctx
,
2557 struct btrfs_device
*scrub_dev
, u64 start
, u64 end
,
2560 struct btrfs_dev_extent
*dev_extent
= NULL
;
2561 struct btrfs_path
*path
;
2562 struct btrfs_root
*root
= sctx
->dev_root
;
2563 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2570 struct extent_buffer
*l
;
2571 struct btrfs_key key
;
2572 struct btrfs_key found_key
;
2573 struct btrfs_block_group_cache
*cache
;
2574 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
2576 path
= btrfs_alloc_path();
2581 path
->search_commit_root
= 1;
2582 path
->skip_locking
= 1;
2584 key
.objectid
= scrub_dev
->devid
;
2586 key
.type
= BTRFS_DEV_EXTENT_KEY
;
2589 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2593 if (path
->slots
[0] >=
2594 btrfs_header_nritems(path
->nodes
[0])) {
2595 ret
= btrfs_next_leaf(root
, path
);
2602 slot
= path
->slots
[0];
2604 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
2606 if (found_key
.objectid
!= scrub_dev
->devid
)
2609 if (btrfs_key_type(&found_key
) != BTRFS_DEV_EXTENT_KEY
)
2612 if (found_key
.offset
>= end
)
2615 if (found_key
.offset
< key
.offset
)
2618 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
2619 length
= btrfs_dev_extent_length(l
, dev_extent
);
2621 if (found_key
.offset
+ length
<= start
) {
2622 key
.offset
= found_key
.offset
+ length
;
2623 btrfs_release_path(path
);
2627 chunk_tree
= btrfs_dev_extent_chunk_tree(l
, dev_extent
);
2628 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
2629 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
2632 * get a reference on the corresponding block group to prevent
2633 * the chunk from going away while we scrub it
2635 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
2640 dev_replace
->cursor_right
= found_key
.offset
+ length
;
2641 dev_replace
->cursor_left
= found_key
.offset
;
2642 dev_replace
->item_needs_writeback
= 1;
2643 ret
= scrub_chunk(sctx
, scrub_dev
, chunk_tree
, chunk_objectid
,
2644 chunk_offset
, length
, found_key
.offset
,
2648 * flush, submit all pending read and write bios, afterwards
2650 * Note that in the dev replace case, a read request causes
2651 * write requests that are submitted in the read completion
2652 * worker. Therefore in the current situation, it is required
2653 * that all write requests are flushed, so that all read and
2654 * write requests are really completed when bios_in_flight
2657 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 1);
2659 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2660 scrub_wr_submit(sctx
);
2661 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2663 wait_event(sctx
->list_wait
,
2664 atomic_read(&sctx
->bios_in_flight
) == 0);
2665 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 0);
2666 atomic_inc(&fs_info
->scrubs_paused
);
2667 wake_up(&fs_info
->scrub_pause_wait
);
2668 wait_event(sctx
->list_wait
,
2669 atomic_read(&sctx
->workers_pending
) == 0);
2671 mutex_lock(&fs_info
->scrub_lock
);
2672 while (atomic_read(&fs_info
->scrub_pause_req
)) {
2673 mutex_unlock(&fs_info
->scrub_lock
);
2674 wait_event(fs_info
->scrub_pause_wait
,
2675 atomic_read(&fs_info
->scrub_pause_req
) == 0);
2676 mutex_lock(&fs_info
->scrub_lock
);
2678 atomic_dec(&fs_info
->scrubs_paused
);
2679 mutex_unlock(&fs_info
->scrub_lock
);
2680 wake_up(&fs_info
->scrub_pause_wait
);
2682 dev_replace
->cursor_left
= dev_replace
->cursor_right
;
2683 dev_replace
->item_needs_writeback
= 1;
2684 btrfs_put_block_group(cache
);
2687 if (is_dev_replace
&&
2688 atomic64_read(&dev_replace
->num_write_errors
) > 0) {
2692 if (sctx
->stat
.malloc_errors
> 0) {
2697 key
.offset
= found_key
.offset
+ length
;
2698 btrfs_release_path(path
);
2701 btrfs_free_path(path
);
2704 * ret can still be 1 from search_slot or next_leaf,
2705 * that's not an error
2707 return ret
< 0 ? ret
: 0;
2710 static noinline_for_stack
int scrub_supers(struct scrub_ctx
*sctx
,
2711 struct btrfs_device
*scrub_dev
)
2717 struct btrfs_root
*root
= sctx
->dev_root
;
2719 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
2722 gen
= root
->fs_info
->last_trans_committed
;
2724 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
2725 bytenr
= btrfs_sb_offset(i
);
2726 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
> scrub_dev
->total_bytes
)
2729 ret
= scrub_pages(sctx
, bytenr
, BTRFS_SUPER_INFO_SIZE
, bytenr
,
2730 scrub_dev
, BTRFS_EXTENT_FLAG_SUPER
, gen
, i
,
2735 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
2741 * get a reference count on fs_info->scrub_workers. start worker if necessary
2743 static noinline_for_stack
int scrub_workers_get(struct btrfs_fs_info
*fs_info
,
2748 mutex_lock(&fs_info
->scrub_lock
);
2749 if (fs_info
->scrub_workers_refcnt
== 0) {
2751 btrfs_init_workers(&fs_info
->scrub_workers
, "scrub", 1,
2752 &fs_info
->generic_worker
);
2754 btrfs_init_workers(&fs_info
->scrub_workers
, "scrub",
2755 fs_info
->thread_pool_size
,
2756 &fs_info
->generic_worker
);
2757 fs_info
->scrub_workers
.idle_thresh
= 4;
2758 ret
= btrfs_start_workers(&fs_info
->scrub_workers
);
2761 btrfs_init_workers(&fs_info
->scrub_wr_completion_workers
,
2763 fs_info
->thread_pool_size
,
2764 &fs_info
->generic_worker
);
2765 fs_info
->scrub_wr_completion_workers
.idle_thresh
= 2;
2766 ret
= btrfs_start_workers(
2767 &fs_info
->scrub_wr_completion_workers
);
2770 btrfs_init_workers(&fs_info
->scrub_nocow_workers
, "scrubnc", 1,
2771 &fs_info
->generic_worker
);
2772 ret
= btrfs_start_workers(&fs_info
->scrub_nocow_workers
);
2776 ++fs_info
->scrub_workers_refcnt
;
2778 mutex_unlock(&fs_info
->scrub_lock
);
2783 static noinline_for_stack
void scrub_workers_put(struct btrfs_fs_info
*fs_info
)
2785 mutex_lock(&fs_info
->scrub_lock
);
2786 if (--fs_info
->scrub_workers_refcnt
== 0) {
2787 btrfs_stop_workers(&fs_info
->scrub_workers
);
2788 btrfs_stop_workers(&fs_info
->scrub_wr_completion_workers
);
2789 btrfs_stop_workers(&fs_info
->scrub_nocow_workers
);
2791 WARN_ON(fs_info
->scrub_workers_refcnt
< 0);
2792 mutex_unlock(&fs_info
->scrub_lock
);
2795 int btrfs_scrub_dev(struct btrfs_fs_info
*fs_info
, u64 devid
, u64 start
,
2796 u64 end
, struct btrfs_scrub_progress
*progress
,
2797 int readonly
, int is_dev_replace
)
2799 struct scrub_ctx
*sctx
;
2801 struct btrfs_device
*dev
;
2803 if (btrfs_fs_closing(fs_info
))
2807 * check some assumptions
2809 if (fs_info
->chunk_root
->nodesize
!= fs_info
->chunk_root
->leafsize
) {
2811 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2812 fs_info
->chunk_root
->nodesize
,
2813 fs_info
->chunk_root
->leafsize
);
2817 if (fs_info
->chunk_root
->nodesize
> BTRFS_STRIPE_LEN
) {
2819 * in this case scrub is unable to calculate the checksum
2820 * the way scrub is implemented. Do not handle this
2821 * situation at all because it won't ever happen.
2824 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2825 fs_info
->chunk_root
->nodesize
, BTRFS_STRIPE_LEN
);
2829 if (fs_info
->chunk_root
->sectorsize
!= PAGE_SIZE
) {
2830 /* not supported for data w/o checksums */
2832 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2833 fs_info
->chunk_root
->sectorsize
,
2834 (unsigned long long)PAGE_SIZE
);
2838 if (fs_info
->chunk_root
->nodesize
>
2839 PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
||
2840 fs_info
->chunk_root
->sectorsize
>
2841 PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
) {
2843 * would exhaust the array bounds of pagev member in
2844 * struct scrub_block
2846 pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2847 fs_info
->chunk_root
->nodesize
,
2848 SCRUB_MAX_PAGES_PER_BLOCK
,
2849 fs_info
->chunk_root
->sectorsize
,
2850 SCRUB_MAX_PAGES_PER_BLOCK
);
2854 ret
= scrub_workers_get(fs_info
, is_dev_replace
);
2858 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2859 dev
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
2860 if (!dev
|| (dev
->missing
&& !is_dev_replace
)) {
2861 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2862 scrub_workers_put(fs_info
);
2865 mutex_lock(&fs_info
->scrub_lock
);
2867 if (!dev
->in_fs_metadata
|| dev
->is_tgtdev_for_dev_replace
) {
2868 mutex_unlock(&fs_info
->scrub_lock
);
2869 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2870 scrub_workers_put(fs_info
);
2874 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
2875 if (dev
->scrub_device
||
2877 btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))) {
2878 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
2879 mutex_unlock(&fs_info
->scrub_lock
);
2880 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2881 scrub_workers_put(fs_info
);
2882 return -EINPROGRESS
;
2884 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
2885 sctx
= scrub_setup_ctx(dev
, is_dev_replace
);
2887 mutex_unlock(&fs_info
->scrub_lock
);
2888 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2889 scrub_workers_put(fs_info
);
2890 return PTR_ERR(sctx
);
2892 sctx
->readonly
= readonly
;
2893 dev
->scrub_device
= sctx
;
2895 atomic_inc(&fs_info
->scrubs_running
);
2896 mutex_unlock(&fs_info
->scrub_lock
);
2897 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2899 if (!is_dev_replace
) {
2900 down_read(&fs_info
->scrub_super_lock
);
2901 ret
= scrub_supers(sctx
, dev
);
2902 up_read(&fs_info
->scrub_super_lock
);
2906 ret
= scrub_enumerate_chunks(sctx
, dev
, start
, end
,
2909 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
2910 atomic_dec(&fs_info
->scrubs_running
);
2911 wake_up(&fs_info
->scrub_pause_wait
);
2913 wait_event(sctx
->list_wait
, atomic_read(&sctx
->workers_pending
) == 0);
2916 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
2918 mutex_lock(&fs_info
->scrub_lock
);
2919 dev
->scrub_device
= NULL
;
2920 mutex_unlock(&fs_info
->scrub_lock
);
2922 scrub_free_ctx(sctx
);
2923 scrub_workers_put(fs_info
);
2928 void btrfs_scrub_pause(struct btrfs_root
*root
)
2930 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2932 mutex_lock(&fs_info
->scrub_lock
);
2933 atomic_inc(&fs_info
->scrub_pause_req
);
2934 while (atomic_read(&fs_info
->scrubs_paused
) !=
2935 atomic_read(&fs_info
->scrubs_running
)) {
2936 mutex_unlock(&fs_info
->scrub_lock
);
2937 wait_event(fs_info
->scrub_pause_wait
,
2938 atomic_read(&fs_info
->scrubs_paused
) ==
2939 atomic_read(&fs_info
->scrubs_running
));
2940 mutex_lock(&fs_info
->scrub_lock
);
2942 mutex_unlock(&fs_info
->scrub_lock
);
2945 void btrfs_scrub_continue(struct btrfs_root
*root
)
2947 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2949 atomic_dec(&fs_info
->scrub_pause_req
);
2950 wake_up(&fs_info
->scrub_pause_wait
);
2953 void btrfs_scrub_pause_super(struct btrfs_root
*root
)
2955 down_write(&root
->fs_info
->scrub_super_lock
);
2958 void btrfs_scrub_continue_super(struct btrfs_root
*root
)
2960 up_write(&root
->fs_info
->scrub_super_lock
);
2963 int btrfs_scrub_cancel(struct btrfs_fs_info
*fs_info
)
2965 mutex_lock(&fs_info
->scrub_lock
);
2966 if (!atomic_read(&fs_info
->scrubs_running
)) {
2967 mutex_unlock(&fs_info
->scrub_lock
);
2971 atomic_inc(&fs_info
->scrub_cancel_req
);
2972 while (atomic_read(&fs_info
->scrubs_running
)) {
2973 mutex_unlock(&fs_info
->scrub_lock
);
2974 wait_event(fs_info
->scrub_pause_wait
,
2975 atomic_read(&fs_info
->scrubs_running
) == 0);
2976 mutex_lock(&fs_info
->scrub_lock
);
2978 atomic_dec(&fs_info
->scrub_cancel_req
);
2979 mutex_unlock(&fs_info
->scrub_lock
);
2984 int btrfs_scrub_cancel_dev(struct btrfs_fs_info
*fs_info
,
2985 struct btrfs_device
*dev
)
2987 struct scrub_ctx
*sctx
;
2989 mutex_lock(&fs_info
->scrub_lock
);
2990 sctx
= dev
->scrub_device
;
2992 mutex_unlock(&fs_info
->scrub_lock
);
2995 atomic_inc(&sctx
->cancel_req
);
2996 while (dev
->scrub_device
) {
2997 mutex_unlock(&fs_info
->scrub_lock
);
2998 wait_event(fs_info
->scrub_pause_wait
,
2999 dev
->scrub_device
== NULL
);
3000 mutex_lock(&fs_info
->scrub_lock
);
3002 mutex_unlock(&fs_info
->scrub_lock
);
3007 int btrfs_scrub_cancel_devid(struct btrfs_root
*root
, u64 devid
)
3009 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3010 struct btrfs_device
*dev
;
3014 * we have to hold the device_list_mutex here so the device
3015 * does not go away in cancel_dev. FIXME: find a better solution
3017 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3018 dev
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
3020 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3023 ret
= btrfs_scrub_cancel_dev(fs_info
, dev
);
3024 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3029 int btrfs_scrub_progress(struct btrfs_root
*root
, u64 devid
,
3030 struct btrfs_scrub_progress
*progress
)
3032 struct btrfs_device
*dev
;
3033 struct scrub_ctx
*sctx
= NULL
;
3035 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3036 dev
= btrfs_find_device(root
->fs_info
, devid
, NULL
, NULL
);
3038 sctx
= dev
->scrub_device
;
3040 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
3041 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3043 return dev
? (sctx
? 0 : -ENOTCONN
) : -ENODEV
;
3046 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
3047 u64 extent_logical
, u64 extent_len
,
3048 u64
*extent_physical
,
3049 struct btrfs_device
**extent_dev
,
3050 int *extent_mirror_num
)
3053 struct btrfs_bio
*bbio
= NULL
;
3056 mapped_length
= extent_len
;
3057 ret
= btrfs_map_block(fs_info
, READ
, extent_logical
,
3058 &mapped_length
, &bbio
, 0);
3059 if (ret
|| !bbio
|| mapped_length
< extent_len
||
3060 !bbio
->stripes
[0].dev
->bdev
) {
3065 *extent_physical
= bbio
->stripes
[0].physical
;
3066 *extent_mirror_num
= bbio
->mirror_num
;
3067 *extent_dev
= bbio
->stripes
[0].dev
;
3071 static int scrub_setup_wr_ctx(struct scrub_ctx
*sctx
,
3072 struct scrub_wr_ctx
*wr_ctx
,
3073 struct btrfs_fs_info
*fs_info
,
3074 struct btrfs_device
*dev
,
3077 WARN_ON(wr_ctx
->wr_curr_bio
!= NULL
);
3079 mutex_init(&wr_ctx
->wr_lock
);
3080 wr_ctx
->wr_curr_bio
= NULL
;
3081 if (!is_dev_replace
)
3084 WARN_ON(!dev
->bdev
);
3085 wr_ctx
->pages_per_wr_bio
= min_t(int, SCRUB_PAGES_PER_WR_BIO
,
3086 bio_get_nr_vecs(dev
->bdev
));
3087 wr_ctx
->tgtdev
= dev
;
3088 atomic_set(&wr_ctx
->flush_all_writes
, 0);
3092 static void scrub_free_wr_ctx(struct scrub_wr_ctx
*wr_ctx
)
3094 mutex_lock(&wr_ctx
->wr_lock
);
3095 kfree(wr_ctx
->wr_curr_bio
);
3096 wr_ctx
->wr_curr_bio
= NULL
;
3097 mutex_unlock(&wr_ctx
->wr_lock
);
3100 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
3101 int mirror_num
, u64 physical_for_dev_replace
)
3103 struct scrub_copy_nocow_ctx
*nocow_ctx
;
3104 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
3106 nocow_ctx
= kzalloc(sizeof(*nocow_ctx
), GFP_NOFS
);
3108 spin_lock(&sctx
->stat_lock
);
3109 sctx
->stat
.malloc_errors
++;
3110 spin_unlock(&sctx
->stat_lock
);
3114 scrub_pending_trans_workers_inc(sctx
);
3116 nocow_ctx
->sctx
= sctx
;
3117 nocow_ctx
->logical
= logical
;
3118 nocow_ctx
->len
= len
;
3119 nocow_ctx
->mirror_num
= mirror_num
;
3120 nocow_ctx
->physical_for_dev_replace
= physical_for_dev_replace
;
3121 nocow_ctx
->work
.func
= copy_nocow_pages_worker
;
3122 btrfs_queue_worker(&fs_info
->scrub_nocow_workers
,
3128 static void copy_nocow_pages_worker(struct btrfs_work
*work
)
3130 struct scrub_copy_nocow_ctx
*nocow_ctx
=
3131 container_of(work
, struct scrub_copy_nocow_ctx
, work
);
3132 struct scrub_ctx
*sctx
= nocow_ctx
->sctx
;
3133 u64 logical
= nocow_ctx
->logical
;
3134 u64 len
= nocow_ctx
->len
;
3135 int mirror_num
= nocow_ctx
->mirror_num
;
3136 u64 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
3138 struct btrfs_trans_handle
*trans
= NULL
;
3139 struct btrfs_fs_info
*fs_info
;
3140 struct btrfs_path
*path
;
3141 struct btrfs_root
*root
;
3142 int not_written
= 0;
3144 fs_info
= sctx
->dev_root
->fs_info
;
3145 root
= fs_info
->extent_root
;
3147 path
= btrfs_alloc_path();
3149 spin_lock(&sctx
->stat_lock
);
3150 sctx
->stat
.malloc_errors
++;
3151 spin_unlock(&sctx
->stat_lock
);
3156 trans
= btrfs_join_transaction(root
);
3157 if (IS_ERR(trans
)) {
3162 ret
= iterate_inodes_from_logical(logical
, fs_info
, path
,
3163 copy_nocow_pages_for_inode
,
3165 if (ret
!= 0 && ret
!= -ENOENT
) {
3166 pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %llu, ret %d\n",
3167 (unsigned long long)logical
,
3168 (unsigned long long)physical_for_dev_replace
,
3169 (unsigned long long)len
,
3170 (unsigned long long)mirror_num
, ret
);
3176 if (trans
&& !IS_ERR(trans
))
3177 btrfs_end_transaction(trans
, root
);
3179 btrfs_dev_replace_stats_inc(&fs_info
->dev_replace
.
3180 num_uncorrectable_read_errors
);
3182 btrfs_free_path(path
);
3185 scrub_pending_trans_workers_dec(sctx
);
3188 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
, void *ctx
)
3190 unsigned long index
;
3191 struct scrub_copy_nocow_ctx
*nocow_ctx
= ctx
;
3193 struct btrfs_key key
;
3194 struct inode
*inode
= NULL
;
3195 struct btrfs_root
*local_root
;
3196 u64 physical_for_dev_replace
;
3198 struct btrfs_fs_info
*fs_info
= nocow_ctx
->sctx
->dev_root
->fs_info
;
3201 key
.objectid
= root
;
3202 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3203 key
.offset
= (u64
)-1;
3205 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
3207 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
3208 if (IS_ERR(local_root
)) {
3209 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
3210 return PTR_ERR(local_root
);
3213 key
.type
= BTRFS_INODE_ITEM_KEY
;
3214 key
.objectid
= inum
;
3216 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
3217 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
3219 return PTR_ERR(inode
);
3221 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
3222 len
= nocow_ctx
->len
;
3223 while (len
>= PAGE_CACHE_SIZE
) {
3224 struct page
*page
= NULL
;
3227 index
= offset
>> PAGE_CACHE_SHIFT
;
3229 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
3231 pr_err("find_or_create_page() failed\n");
3236 if (PageUptodate(page
)) {
3237 if (PageDirty(page
))
3240 ClearPageError(page
);
3241 ret_sub
= extent_read_full_page(&BTRFS_I(inode
)->
3243 page
, btrfs_get_extent
,
3244 nocow_ctx
->mirror_num
);
3249 wait_on_page_locked(page
);
3250 if (!PageUptodate(page
)) {
3255 ret_sub
= write_page_nocow(nocow_ctx
->sctx
,
3256 physical_for_dev_replace
, page
);
3267 offset
+= PAGE_CACHE_SIZE
;
3268 physical_for_dev_replace
+= PAGE_CACHE_SIZE
;
3269 len
-= PAGE_CACHE_SIZE
;
3277 static int write_page_nocow(struct scrub_ctx
*sctx
,
3278 u64 physical_for_dev_replace
, struct page
*page
)
3281 struct btrfs_device
*dev
;
3283 DECLARE_COMPLETION_ONSTACK(compl);
3285 dev
= sctx
->wr_ctx
.tgtdev
;
3289 printk_ratelimited(KERN_WARNING
3290 "btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3293 bio
= bio_alloc(GFP_NOFS
, 1);
3295 spin_lock(&sctx
->stat_lock
);
3296 sctx
->stat
.malloc_errors
++;
3297 spin_unlock(&sctx
->stat_lock
);
3300 bio
->bi_private
= &compl;
3301 bio
->bi_end_io
= scrub_complete_bio_end_io
;
3303 bio
->bi_sector
= physical_for_dev_replace
>> 9;
3304 bio
->bi_bdev
= dev
->bdev
;
3305 ret
= bio_add_page(bio
, page
, PAGE_CACHE_SIZE
, 0);
3306 if (ret
!= PAGE_CACHE_SIZE
) {
3309 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
3312 btrfsic_submit_bio(WRITE_SYNC
, bio
);
3313 wait_for_completion(&compl);
3315 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
3316 goto leave_with_eio
;