Linux 3.9-rc4
[linux-2.6/cjktty.git] / arch / x86 / kernel / cpu / intel.c
blob1905ce98bee01d667a0b6604d3c18f4d7c34e0fb
1 #include <linux/init.h>
2 #include <linux/kernel.h>
4 #include <linux/string.h>
5 #include <linux/bitops.h>
6 #include <linux/smp.h>
7 #include <linux/sched.h>
8 #include <linux/thread_info.h>
9 #include <linux/module.h>
10 #include <linux/uaccess.h>
12 #include <asm/processor.h>
13 #include <asm/pgtable.h>
14 #include <asm/msr.h>
15 #include <asm/bugs.h>
16 #include <asm/cpu.h>
18 #ifdef CONFIG_X86_64
19 #include <linux/topology.h>
20 #endif
22 #include "cpu.h"
24 #ifdef CONFIG_X86_LOCAL_APIC
25 #include <asm/mpspec.h>
26 #include <asm/apic.h>
27 #endif
29 static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
31 u64 misc_enable;
33 /* Unmask CPUID levels if masked: */
34 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
35 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
37 if (misc_enable & MSR_IA32_MISC_ENABLE_LIMIT_CPUID) {
38 misc_enable &= ~MSR_IA32_MISC_ENABLE_LIMIT_CPUID;
39 wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
40 c->cpuid_level = cpuid_eax(0);
41 get_cpu_cap(c);
45 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
46 (c->x86 == 0x6 && c->x86_model >= 0x0e))
47 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
49 if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
50 unsigned lower_word;
52 wrmsr(MSR_IA32_UCODE_REV, 0, 0);
53 /* Required by the SDM */
54 sync_core();
55 rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
59 * Atom erratum AAE44/AAF40/AAG38/AAH41:
61 * A race condition between speculative fetches and invalidating
62 * a large page. This is worked around in microcode, but we
63 * need the microcode to have already been loaded... so if it is
64 * not, recommend a BIOS update and disable large pages.
66 if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
67 c->microcode < 0x20e) {
68 printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
69 clear_cpu_cap(c, X86_FEATURE_PSE);
72 #ifdef CONFIG_X86_64
73 set_cpu_cap(c, X86_FEATURE_SYSENTER32);
74 #else
75 /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
76 if (c->x86 == 15 && c->x86_cache_alignment == 64)
77 c->x86_cache_alignment = 128;
78 #endif
80 /* CPUID workaround for 0F33/0F34 CPU */
81 if (c->x86 == 0xF && c->x86_model == 0x3
82 && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
83 c->x86_phys_bits = 36;
86 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
87 * with P/T states and does not stop in deep C-states.
89 * It is also reliable across cores and sockets. (but not across
90 * cabinets - we turn it off in that case explicitly.)
92 if (c->x86_power & (1 << 8)) {
93 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
94 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
95 if (!check_tsc_unstable())
96 sched_clock_stable = 1;
100 * There is a known erratum on Pentium III and Core Solo
101 * and Core Duo CPUs.
102 * " Page with PAT set to WC while associated MTRR is UC
103 * may consolidate to UC "
104 * Because of this erratum, it is better to stick with
105 * setting WC in MTRR rather than using PAT on these CPUs.
107 * Enable PAT WC only on P4, Core 2 or later CPUs.
109 if (c->x86 == 6 && c->x86_model < 15)
110 clear_cpu_cap(c, X86_FEATURE_PAT);
112 #ifdef CONFIG_KMEMCHECK
114 * P4s have a "fast strings" feature which causes single-
115 * stepping REP instructions to only generate a #DB on
116 * cache-line boundaries.
118 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
119 * (model 2) with the same problem.
121 if (c->x86 == 15) {
122 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
124 if (misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING) {
125 printk(KERN_INFO "kmemcheck: Disabling fast string operations\n");
127 misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
128 wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
131 #endif
134 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
135 * clear the fast string and enhanced fast string CPU capabilities.
137 if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
138 rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
139 if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
140 printk(KERN_INFO "Disabled fast string operations\n");
141 setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
142 setup_clear_cpu_cap(X86_FEATURE_ERMS);
147 #ifdef CONFIG_X86_32
149 * Early probe support logic for ppro memory erratum #50
151 * This is called before we do cpu ident work
154 int __cpuinit ppro_with_ram_bug(void)
156 /* Uses data from early_cpu_detect now */
157 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
158 boot_cpu_data.x86 == 6 &&
159 boot_cpu_data.x86_model == 1 &&
160 boot_cpu_data.x86_mask < 8) {
161 printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
162 return 1;
164 return 0;
167 #ifdef CONFIG_X86_F00F_BUG
168 static void __cpuinit trap_init_f00f_bug(void)
170 __set_fixmap(FIX_F00F_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
173 * Update the IDT descriptor and reload the IDT so that
174 * it uses the read-only mapped virtual address.
176 idt_descr.address = fix_to_virt(FIX_F00F_IDT);
177 load_idt(&idt_descr);
179 #endif
181 static void __cpuinit intel_smp_check(struct cpuinfo_x86 *c)
183 /* calling is from identify_secondary_cpu() ? */
184 if (!c->cpu_index)
185 return;
188 * Mask B, Pentium, but not Pentium MMX
190 if (c->x86 == 5 &&
191 c->x86_mask >= 1 && c->x86_mask <= 4 &&
192 c->x86_model <= 3) {
194 * Remember we have B step Pentia with bugs
196 WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
197 "with B stepping processors.\n");
201 static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
203 unsigned long lo, hi;
205 #ifdef CONFIG_X86_F00F_BUG
207 * All current models of Pentium and Pentium with MMX technology CPUs
208 * have the F0 0F bug, which lets nonprivileged users lock up the
209 * system.
210 * Note that the workaround only should be initialized once...
212 c->f00f_bug = 0;
213 if (!paravirt_enabled() && c->x86 == 5) {
214 static int f00f_workaround_enabled;
216 c->f00f_bug = 1;
217 if (!f00f_workaround_enabled) {
218 trap_init_f00f_bug();
219 printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
220 f00f_workaround_enabled = 1;
223 #endif
226 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
227 * model 3 mask 3
229 if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
230 clear_cpu_cap(c, X86_FEATURE_SEP);
233 * P4 Xeon errata 037 workaround.
234 * Hardware prefetcher may cause stale data to be loaded into the cache.
236 if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
237 rdmsr(MSR_IA32_MISC_ENABLE, lo, hi);
238 if ((lo & MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE) == 0) {
239 printk (KERN_INFO "CPU: C0 stepping P4 Xeon detected.\n");
240 printk (KERN_INFO "CPU: Disabling hardware prefetching (Errata 037)\n");
241 lo |= MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE;
242 wrmsr(MSR_IA32_MISC_ENABLE, lo, hi);
247 * See if we have a good local APIC by checking for buggy Pentia,
248 * i.e. all B steppings and the C2 stepping of P54C when using their
249 * integrated APIC (see 11AP erratum in "Pentium Processor
250 * Specification Update").
252 if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
253 (c->x86_mask < 0x6 || c->x86_mask == 0xb))
254 set_cpu_cap(c, X86_FEATURE_11AP);
257 #ifdef CONFIG_X86_INTEL_USERCOPY
259 * Set up the preferred alignment for movsl bulk memory moves
261 switch (c->x86) {
262 case 4: /* 486: untested */
263 break;
264 case 5: /* Old Pentia: untested */
265 break;
266 case 6: /* PII/PIII only like movsl with 8-byte alignment */
267 movsl_mask.mask = 7;
268 break;
269 case 15: /* P4 is OK down to 8-byte alignment */
270 movsl_mask.mask = 7;
271 break;
273 #endif
275 #ifdef CONFIG_X86_NUMAQ
276 numaq_tsc_disable();
277 #endif
279 intel_smp_check(c);
281 #else
282 static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
285 #endif
287 static void __cpuinit srat_detect_node(struct cpuinfo_x86 *c)
289 #ifdef CONFIG_NUMA
290 unsigned node;
291 int cpu = smp_processor_id();
293 /* Don't do the funky fallback heuristics the AMD version employs
294 for now. */
295 node = numa_cpu_node(cpu);
296 if (node == NUMA_NO_NODE || !node_online(node)) {
297 /* reuse the value from init_cpu_to_node() */
298 node = cpu_to_node(cpu);
300 numa_set_node(cpu, node);
301 #endif
305 * find out the number of processor cores on the die
307 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
309 unsigned int eax, ebx, ecx, edx;
311 if (c->cpuid_level < 4)
312 return 1;
314 /* Intel has a non-standard dependency on %ecx for this CPUID level. */
315 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
316 if (eax & 0x1f)
317 return (eax >> 26) + 1;
318 else
319 return 1;
322 static void __cpuinit detect_vmx_virtcap(struct cpuinfo_x86 *c)
324 /* Intel VMX MSR indicated features */
325 #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000
326 #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000
327 #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000
328 #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001
329 #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002
330 #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020
332 u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
334 clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
335 clear_cpu_cap(c, X86_FEATURE_VNMI);
336 clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
337 clear_cpu_cap(c, X86_FEATURE_EPT);
338 clear_cpu_cap(c, X86_FEATURE_VPID);
340 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
341 msr_ctl = vmx_msr_high | vmx_msr_low;
342 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
343 set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
344 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
345 set_cpu_cap(c, X86_FEATURE_VNMI);
346 if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
347 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
348 vmx_msr_low, vmx_msr_high);
349 msr_ctl2 = vmx_msr_high | vmx_msr_low;
350 if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
351 (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
352 set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
353 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
354 set_cpu_cap(c, X86_FEATURE_EPT);
355 if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
356 set_cpu_cap(c, X86_FEATURE_VPID);
360 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
362 unsigned int l2 = 0;
364 early_init_intel(c);
366 intel_workarounds(c);
369 * Detect the extended topology information if available. This
370 * will reinitialise the initial_apicid which will be used
371 * in init_intel_cacheinfo()
373 detect_extended_topology(c);
375 l2 = init_intel_cacheinfo(c);
376 if (c->cpuid_level > 9) {
377 unsigned eax = cpuid_eax(10);
378 /* Check for version and the number of counters */
379 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
380 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
383 if (cpu_has_xmm2)
384 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
385 if (cpu_has_ds) {
386 unsigned int l1;
387 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
388 if (!(l1 & (1<<11)))
389 set_cpu_cap(c, X86_FEATURE_BTS);
390 if (!(l1 & (1<<12)))
391 set_cpu_cap(c, X86_FEATURE_PEBS);
394 if (c->x86 == 6 && c->x86_model == 29 && cpu_has_clflush)
395 set_cpu_cap(c, X86_FEATURE_CLFLUSH_MONITOR);
397 #ifdef CONFIG_X86_64
398 if (c->x86 == 15)
399 c->x86_cache_alignment = c->x86_clflush_size * 2;
400 if (c->x86 == 6)
401 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
402 #else
404 * Names for the Pentium II/Celeron processors
405 * detectable only by also checking the cache size.
406 * Dixon is NOT a Celeron.
408 if (c->x86 == 6) {
409 char *p = NULL;
411 switch (c->x86_model) {
412 case 5:
413 if (l2 == 0)
414 p = "Celeron (Covington)";
415 else if (l2 == 256)
416 p = "Mobile Pentium II (Dixon)";
417 break;
419 case 6:
420 if (l2 == 128)
421 p = "Celeron (Mendocino)";
422 else if (c->x86_mask == 0 || c->x86_mask == 5)
423 p = "Celeron-A";
424 break;
426 case 8:
427 if (l2 == 128)
428 p = "Celeron (Coppermine)";
429 break;
432 if (p)
433 strcpy(c->x86_model_id, p);
436 if (c->x86 == 15)
437 set_cpu_cap(c, X86_FEATURE_P4);
438 if (c->x86 == 6)
439 set_cpu_cap(c, X86_FEATURE_P3);
440 #endif
442 if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
444 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
445 * detection.
447 c->x86_max_cores = intel_num_cpu_cores(c);
448 #ifdef CONFIG_X86_32
449 detect_ht(c);
450 #endif
453 /* Work around errata */
454 srat_detect_node(c);
456 if (cpu_has(c, X86_FEATURE_VMX))
457 detect_vmx_virtcap(c);
460 * Initialize MSR_IA32_ENERGY_PERF_BIAS if BIOS did not.
461 * x86_energy_perf_policy(8) is available to change it at run-time
463 if (cpu_has(c, X86_FEATURE_EPB)) {
464 u64 epb;
466 rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
467 if ((epb & 0xF) == ENERGY_PERF_BIAS_PERFORMANCE) {
468 printk_once(KERN_WARNING "ENERGY_PERF_BIAS:"
469 " Set to 'normal', was 'performance'\n"
470 "ENERGY_PERF_BIAS: View and update with"
471 " x86_energy_perf_policy(8)\n");
472 epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
473 wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
478 #ifdef CONFIG_X86_32
479 static unsigned int __cpuinit intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
482 * Intel PIII Tualatin. This comes in two flavours.
483 * One has 256kb of cache, the other 512. We have no way
484 * to determine which, so we use a boottime override
485 * for the 512kb model, and assume 256 otherwise.
487 if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
488 size = 256;
489 return size;
491 #endif
493 #define TLB_INST_4K 0x01
494 #define TLB_INST_4M 0x02
495 #define TLB_INST_2M_4M 0x03
497 #define TLB_INST_ALL 0x05
498 #define TLB_INST_1G 0x06
500 #define TLB_DATA_4K 0x11
501 #define TLB_DATA_4M 0x12
502 #define TLB_DATA_2M_4M 0x13
503 #define TLB_DATA_4K_4M 0x14
505 #define TLB_DATA_1G 0x16
507 #define TLB_DATA0_4K 0x21
508 #define TLB_DATA0_4M 0x22
509 #define TLB_DATA0_2M_4M 0x23
511 #define STLB_4K 0x41
513 static const struct _tlb_table intel_tlb_table[] __cpuinitconst = {
514 { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" },
515 { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" },
516 { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" },
517 { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" },
518 { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" },
519 { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" },
520 { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" },
521 { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
522 { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
523 { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
524 { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
525 { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" },
526 { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" },
527 { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" },
528 { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
529 { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" },
530 { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" },
531 { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" },
532 { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" },
533 { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
534 { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" },
535 { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" },
536 { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" },
537 { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" },
538 { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
539 { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" },
540 { 0x00, 0, 0 }
543 static void __cpuinit intel_tlb_lookup(const unsigned char desc)
545 unsigned char k;
546 if (desc == 0)
547 return;
549 /* look up this descriptor in the table */
550 for (k = 0; intel_tlb_table[k].descriptor != desc && \
551 intel_tlb_table[k].descriptor != 0; k++)
554 if (intel_tlb_table[k].tlb_type == 0)
555 return;
557 switch (intel_tlb_table[k].tlb_type) {
558 case STLB_4K:
559 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
560 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
561 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
562 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
563 break;
564 case TLB_INST_ALL:
565 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
566 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
567 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
568 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
569 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
570 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
571 break;
572 case TLB_INST_4K:
573 if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
574 tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
575 break;
576 case TLB_INST_4M:
577 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
578 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
579 break;
580 case TLB_INST_2M_4M:
581 if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
582 tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
583 if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
584 tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
585 break;
586 case TLB_DATA_4K:
587 case TLB_DATA0_4K:
588 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
589 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
590 break;
591 case TLB_DATA_4M:
592 case TLB_DATA0_4M:
593 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
594 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
595 break;
596 case TLB_DATA_2M_4M:
597 case TLB_DATA0_2M_4M:
598 if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
599 tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
600 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
601 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
602 break;
603 case TLB_DATA_4K_4M:
604 if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
605 tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
606 if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
607 tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
608 break;
612 static void __cpuinit intel_tlb_flushall_shift_set(struct cpuinfo_x86 *c)
614 switch ((c->x86 << 8) + c->x86_model) {
615 case 0x60f: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
616 case 0x616: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
617 case 0x617: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
618 case 0x61d: /* six-core 45 nm xeon "Dunnington" */
619 tlb_flushall_shift = -1;
620 break;
621 case 0x61a: /* 45 nm nehalem, "Bloomfield" */
622 case 0x61e: /* 45 nm nehalem, "Lynnfield" */
623 case 0x625: /* 32 nm nehalem, "Clarkdale" */
624 case 0x62c: /* 32 nm nehalem, "Gulftown" */
625 case 0x62e: /* 45 nm nehalem-ex, "Beckton" */
626 case 0x62f: /* 32 nm Xeon E7 */
627 tlb_flushall_shift = 6;
628 break;
629 case 0x62a: /* SandyBridge */
630 case 0x62d: /* SandyBridge, "Romely-EP" */
631 tlb_flushall_shift = 5;
632 break;
633 case 0x63a: /* Ivybridge */
634 tlb_flushall_shift = 1;
635 break;
636 default:
637 tlb_flushall_shift = 6;
641 static void __cpuinit intel_detect_tlb(struct cpuinfo_x86 *c)
643 int i, j, n;
644 unsigned int regs[4];
645 unsigned char *desc = (unsigned char *)regs;
647 if (c->cpuid_level < 2)
648 return;
650 /* Number of times to iterate */
651 n = cpuid_eax(2) & 0xFF;
653 for (i = 0 ; i < n ; i++) {
654 cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
656 /* If bit 31 is set, this is an unknown format */
657 for (j = 0 ; j < 3 ; j++)
658 if (regs[j] & (1 << 31))
659 regs[j] = 0;
661 /* Byte 0 is level count, not a descriptor */
662 for (j = 1 ; j < 16 ; j++)
663 intel_tlb_lookup(desc[j]);
665 intel_tlb_flushall_shift_set(c);
668 static const struct cpu_dev __cpuinitconst intel_cpu_dev = {
669 .c_vendor = "Intel",
670 .c_ident = { "GenuineIntel" },
671 #ifdef CONFIG_X86_32
672 .c_models = {
673 { .vendor = X86_VENDOR_INTEL, .family = 4, .model_names =
675 [0] = "486 DX-25/33",
676 [1] = "486 DX-50",
677 [2] = "486 SX",
678 [3] = "486 DX/2",
679 [4] = "486 SL",
680 [5] = "486 SX/2",
681 [7] = "486 DX/2-WB",
682 [8] = "486 DX/4",
683 [9] = "486 DX/4-WB"
686 { .vendor = X86_VENDOR_INTEL, .family = 5, .model_names =
688 [0] = "Pentium 60/66 A-step",
689 [1] = "Pentium 60/66",
690 [2] = "Pentium 75 - 200",
691 [3] = "OverDrive PODP5V83",
692 [4] = "Pentium MMX",
693 [7] = "Mobile Pentium 75 - 200",
694 [8] = "Mobile Pentium MMX"
697 { .vendor = X86_VENDOR_INTEL, .family = 6, .model_names =
699 [0] = "Pentium Pro A-step",
700 [1] = "Pentium Pro",
701 [3] = "Pentium II (Klamath)",
702 [4] = "Pentium II (Deschutes)",
703 [5] = "Pentium II (Deschutes)",
704 [6] = "Mobile Pentium II",
705 [7] = "Pentium III (Katmai)",
706 [8] = "Pentium III (Coppermine)",
707 [10] = "Pentium III (Cascades)",
708 [11] = "Pentium III (Tualatin)",
711 { .vendor = X86_VENDOR_INTEL, .family = 15, .model_names =
713 [0] = "Pentium 4 (Unknown)",
714 [1] = "Pentium 4 (Willamette)",
715 [2] = "Pentium 4 (Northwood)",
716 [4] = "Pentium 4 (Foster)",
717 [5] = "Pentium 4 (Foster)",
721 .c_size_cache = intel_size_cache,
722 #endif
723 .c_detect_tlb = intel_detect_tlb,
724 .c_early_init = early_init_intel,
725 .c_init = init_intel,
726 .c_x86_vendor = X86_VENDOR_INTEL,
729 cpu_dev_register(intel_cpu_dev);