Linux 3.9-rc4
[linux-2.6/cjktty.git] / arch / powerpc / kernel / traps.c
blob37cc40ef5043f26ba0b0fb930ce0ae523d805ea0
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
15 * This file handles the architecture-dependent parts of hardware exceptions
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
39 #include <asm/emulated_ops.h>
40 #include <asm/pgtable.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/machdep.h>
44 #include <asm/rtas.h>
45 #include <asm/pmc.h>
46 #ifdef CONFIG_PPC32
47 #include <asm/reg.h>
48 #endif
49 #ifdef CONFIG_PMAC_BACKLIGHT
50 #include <asm/backlight.h>
51 #endif
52 #ifdef CONFIG_PPC64
53 #include <asm/firmware.h>
54 #include <asm/processor.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
64 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
65 int (*__debugger)(struct pt_regs *regs) __read_mostly;
66 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
73 EXPORT_SYMBOL(__debugger);
74 EXPORT_SYMBOL(__debugger_ipi);
75 EXPORT_SYMBOL(__debugger_bpt);
76 EXPORT_SYMBOL(__debugger_sstep);
77 EXPORT_SYMBOL(__debugger_iabr_match);
78 EXPORT_SYMBOL(__debugger_break_match);
79 EXPORT_SYMBOL(__debugger_fault_handler);
80 #endif
82 /* Transactional Memory trap debug */
83 #ifdef TM_DEBUG_SW
84 #define TM_DEBUG(x...) printk(KERN_INFO x)
85 #else
86 #define TM_DEBUG(x...) do { } while(0)
87 #endif
90 * Trap & Exception support
93 #ifdef CONFIG_PMAC_BACKLIGHT
94 static void pmac_backlight_unblank(void)
96 mutex_lock(&pmac_backlight_mutex);
97 if (pmac_backlight) {
98 struct backlight_properties *props;
100 props = &pmac_backlight->props;
101 props->brightness = props->max_brightness;
102 props->power = FB_BLANK_UNBLANK;
103 backlight_update_status(pmac_backlight);
105 mutex_unlock(&pmac_backlight_mutex);
107 #else
108 static inline void pmac_backlight_unblank(void) { }
109 #endif
111 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
112 static int die_owner = -1;
113 static unsigned int die_nest_count;
114 static int die_counter;
116 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
118 int cpu;
119 unsigned long flags;
121 if (debugger(regs))
122 return 1;
124 oops_enter();
126 /* racy, but better than risking deadlock. */
127 raw_local_irq_save(flags);
128 cpu = smp_processor_id();
129 if (!arch_spin_trylock(&die_lock)) {
130 if (cpu == die_owner)
131 /* nested oops. should stop eventually */;
132 else
133 arch_spin_lock(&die_lock);
135 die_nest_count++;
136 die_owner = cpu;
137 console_verbose();
138 bust_spinlocks(1);
139 if (machine_is(powermac))
140 pmac_backlight_unblank();
141 return flags;
144 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
145 int signr)
147 bust_spinlocks(0);
148 die_owner = -1;
149 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
150 die_nest_count--;
151 oops_exit();
152 printk("\n");
153 if (!die_nest_count)
154 /* Nest count reaches zero, release the lock. */
155 arch_spin_unlock(&die_lock);
156 raw_local_irq_restore(flags);
158 crash_fadump(regs, "die oops");
161 * A system reset (0x100) is a request to dump, so we always send
162 * it through the crashdump code.
164 if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
165 crash_kexec(regs);
168 * We aren't the primary crash CPU. We need to send it
169 * to a holding pattern to avoid it ending up in the panic
170 * code.
172 crash_kexec_secondary(regs);
175 if (!signr)
176 return;
179 * While our oops output is serialised by a spinlock, output
180 * from panic() called below can race and corrupt it. If we
181 * know we are going to panic, delay for 1 second so we have a
182 * chance to get clean backtraces from all CPUs that are oopsing.
184 if (in_interrupt() || panic_on_oops || !current->pid ||
185 is_global_init(current)) {
186 mdelay(MSEC_PER_SEC);
189 if (in_interrupt())
190 panic("Fatal exception in interrupt");
191 if (panic_on_oops)
192 panic("Fatal exception");
193 do_exit(signr);
196 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
198 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
199 #ifdef CONFIG_PREEMPT
200 printk("PREEMPT ");
201 #endif
202 #ifdef CONFIG_SMP
203 printk("SMP NR_CPUS=%d ", NR_CPUS);
204 #endif
205 #ifdef CONFIG_DEBUG_PAGEALLOC
206 printk("DEBUG_PAGEALLOC ");
207 #endif
208 #ifdef CONFIG_NUMA
209 printk("NUMA ");
210 #endif
211 printk("%s\n", ppc_md.name ? ppc_md.name : "");
213 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
214 return 1;
216 print_modules();
217 show_regs(regs);
219 return 0;
222 void die(const char *str, struct pt_regs *regs, long err)
224 unsigned long flags = oops_begin(regs);
226 if (__die(str, regs, err))
227 err = 0;
228 oops_end(flags, regs, err);
231 void user_single_step_siginfo(struct task_struct *tsk,
232 struct pt_regs *regs, siginfo_t *info)
234 memset(info, 0, sizeof(*info));
235 info->si_signo = SIGTRAP;
236 info->si_code = TRAP_TRACE;
237 info->si_addr = (void __user *)regs->nip;
240 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
242 siginfo_t info;
243 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
244 "at %08lx nip %08lx lr %08lx code %x\n";
245 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
246 "at %016lx nip %016lx lr %016lx code %x\n";
248 if (!user_mode(regs)) {
249 die("Exception in kernel mode", regs, signr);
250 return;
253 if (show_unhandled_signals && unhandled_signal(current, signr)) {
254 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
255 current->comm, current->pid, signr,
256 addr, regs->nip, regs->link, code);
259 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
260 local_irq_enable();
262 current->thread.trap_nr = code;
263 memset(&info, 0, sizeof(info));
264 info.si_signo = signr;
265 info.si_code = code;
266 info.si_addr = (void __user *) addr;
267 force_sig_info(signr, &info, current);
270 #ifdef CONFIG_PPC64
271 void system_reset_exception(struct pt_regs *regs)
273 /* See if any machine dependent calls */
274 if (ppc_md.system_reset_exception) {
275 if (ppc_md.system_reset_exception(regs))
276 return;
279 die("System Reset", regs, SIGABRT);
281 /* Must die if the interrupt is not recoverable */
282 if (!(regs->msr & MSR_RI))
283 panic("Unrecoverable System Reset");
285 /* What should we do here? We could issue a shutdown or hard reset. */
287 #endif
290 * I/O accesses can cause machine checks on powermacs.
291 * Check if the NIP corresponds to the address of a sync
292 * instruction for which there is an entry in the exception
293 * table.
294 * Note that the 601 only takes a machine check on TEA
295 * (transfer error ack) signal assertion, and does not
296 * set any of the top 16 bits of SRR1.
297 * -- paulus.
299 static inline int check_io_access(struct pt_regs *regs)
301 #ifdef CONFIG_PPC32
302 unsigned long msr = regs->msr;
303 const struct exception_table_entry *entry;
304 unsigned int *nip = (unsigned int *)regs->nip;
306 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
307 && (entry = search_exception_tables(regs->nip)) != NULL) {
309 * Check that it's a sync instruction, or somewhere
310 * in the twi; isync; nop sequence that inb/inw/inl uses.
311 * As the address is in the exception table
312 * we should be able to read the instr there.
313 * For the debug message, we look at the preceding
314 * load or store.
316 if (*nip == 0x60000000) /* nop */
317 nip -= 2;
318 else if (*nip == 0x4c00012c) /* isync */
319 --nip;
320 if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
321 /* sync or twi */
322 unsigned int rb;
324 --nip;
325 rb = (*nip >> 11) & 0x1f;
326 printk(KERN_DEBUG "%s bad port %lx at %p\n",
327 (*nip & 0x100)? "OUT to": "IN from",
328 regs->gpr[rb] - _IO_BASE, nip);
329 regs->msr |= MSR_RI;
330 regs->nip = entry->fixup;
331 return 1;
334 #endif /* CONFIG_PPC32 */
335 return 0;
338 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
339 /* On 4xx, the reason for the machine check or program exception
340 is in the ESR. */
341 #define get_reason(regs) ((regs)->dsisr)
342 #ifndef CONFIG_FSL_BOOKE
343 #define get_mc_reason(regs) ((regs)->dsisr)
344 #else
345 #define get_mc_reason(regs) (mfspr(SPRN_MCSR))
346 #endif
347 #define REASON_FP ESR_FP
348 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
349 #define REASON_PRIVILEGED ESR_PPR
350 #define REASON_TRAP ESR_PTR
352 /* single-step stuff */
353 #define single_stepping(regs) (current->thread.dbcr0 & DBCR0_IC)
354 #define clear_single_step(regs) (current->thread.dbcr0 &= ~DBCR0_IC)
356 #else
357 /* On non-4xx, the reason for the machine check or program
358 exception is in the MSR. */
359 #define get_reason(regs) ((regs)->msr)
360 #define get_mc_reason(regs) ((regs)->msr)
361 #define REASON_TM 0x200000
362 #define REASON_FP 0x100000
363 #define REASON_ILLEGAL 0x80000
364 #define REASON_PRIVILEGED 0x40000
365 #define REASON_TRAP 0x20000
367 #define single_stepping(regs) ((regs)->msr & MSR_SE)
368 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
369 #endif
371 #if defined(CONFIG_4xx)
372 int machine_check_4xx(struct pt_regs *regs)
374 unsigned long reason = get_mc_reason(regs);
376 if (reason & ESR_IMCP) {
377 printk("Instruction");
378 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
379 } else
380 printk("Data");
381 printk(" machine check in kernel mode.\n");
383 return 0;
386 int machine_check_440A(struct pt_regs *regs)
388 unsigned long reason = get_mc_reason(regs);
390 printk("Machine check in kernel mode.\n");
391 if (reason & ESR_IMCP){
392 printk("Instruction Synchronous Machine Check exception\n");
393 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
395 else {
396 u32 mcsr = mfspr(SPRN_MCSR);
397 if (mcsr & MCSR_IB)
398 printk("Instruction Read PLB Error\n");
399 if (mcsr & MCSR_DRB)
400 printk("Data Read PLB Error\n");
401 if (mcsr & MCSR_DWB)
402 printk("Data Write PLB Error\n");
403 if (mcsr & MCSR_TLBP)
404 printk("TLB Parity Error\n");
405 if (mcsr & MCSR_ICP){
406 flush_instruction_cache();
407 printk("I-Cache Parity Error\n");
409 if (mcsr & MCSR_DCSP)
410 printk("D-Cache Search Parity Error\n");
411 if (mcsr & MCSR_DCFP)
412 printk("D-Cache Flush Parity Error\n");
413 if (mcsr & MCSR_IMPE)
414 printk("Machine Check exception is imprecise\n");
416 /* Clear MCSR */
417 mtspr(SPRN_MCSR, mcsr);
419 return 0;
422 int machine_check_47x(struct pt_regs *regs)
424 unsigned long reason = get_mc_reason(regs);
425 u32 mcsr;
427 printk(KERN_ERR "Machine check in kernel mode.\n");
428 if (reason & ESR_IMCP) {
429 printk(KERN_ERR
430 "Instruction Synchronous Machine Check exception\n");
431 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
432 return 0;
434 mcsr = mfspr(SPRN_MCSR);
435 if (mcsr & MCSR_IB)
436 printk(KERN_ERR "Instruction Read PLB Error\n");
437 if (mcsr & MCSR_DRB)
438 printk(KERN_ERR "Data Read PLB Error\n");
439 if (mcsr & MCSR_DWB)
440 printk(KERN_ERR "Data Write PLB Error\n");
441 if (mcsr & MCSR_TLBP)
442 printk(KERN_ERR "TLB Parity Error\n");
443 if (mcsr & MCSR_ICP) {
444 flush_instruction_cache();
445 printk(KERN_ERR "I-Cache Parity Error\n");
447 if (mcsr & MCSR_DCSP)
448 printk(KERN_ERR "D-Cache Search Parity Error\n");
449 if (mcsr & PPC47x_MCSR_GPR)
450 printk(KERN_ERR "GPR Parity Error\n");
451 if (mcsr & PPC47x_MCSR_FPR)
452 printk(KERN_ERR "FPR Parity Error\n");
453 if (mcsr & PPC47x_MCSR_IPR)
454 printk(KERN_ERR "Machine Check exception is imprecise\n");
456 /* Clear MCSR */
457 mtspr(SPRN_MCSR, mcsr);
459 return 0;
461 #elif defined(CONFIG_E500)
462 int machine_check_e500mc(struct pt_regs *regs)
464 unsigned long mcsr = mfspr(SPRN_MCSR);
465 unsigned long reason = mcsr;
466 int recoverable = 1;
468 if (reason & MCSR_LD) {
469 recoverable = fsl_rio_mcheck_exception(regs);
470 if (recoverable == 1)
471 goto silent_out;
474 printk("Machine check in kernel mode.\n");
475 printk("Caused by (from MCSR=%lx): ", reason);
477 if (reason & MCSR_MCP)
478 printk("Machine Check Signal\n");
480 if (reason & MCSR_ICPERR) {
481 printk("Instruction Cache Parity Error\n");
484 * This is recoverable by invalidating the i-cache.
486 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
487 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
491 * This will generally be accompanied by an instruction
492 * fetch error report -- only treat MCSR_IF as fatal
493 * if it wasn't due to an L1 parity error.
495 reason &= ~MCSR_IF;
498 if (reason & MCSR_DCPERR_MC) {
499 printk("Data Cache Parity Error\n");
502 * In write shadow mode we auto-recover from the error, but it
503 * may still get logged and cause a machine check. We should
504 * only treat the non-write shadow case as non-recoverable.
506 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
507 recoverable = 0;
510 if (reason & MCSR_L2MMU_MHIT) {
511 printk("Hit on multiple TLB entries\n");
512 recoverable = 0;
515 if (reason & MCSR_NMI)
516 printk("Non-maskable interrupt\n");
518 if (reason & MCSR_IF) {
519 printk("Instruction Fetch Error Report\n");
520 recoverable = 0;
523 if (reason & MCSR_LD) {
524 printk("Load Error Report\n");
525 recoverable = 0;
528 if (reason & MCSR_ST) {
529 printk("Store Error Report\n");
530 recoverable = 0;
533 if (reason & MCSR_LDG) {
534 printk("Guarded Load Error Report\n");
535 recoverable = 0;
538 if (reason & MCSR_TLBSYNC)
539 printk("Simultaneous tlbsync operations\n");
541 if (reason & MCSR_BSL2_ERR) {
542 printk("Level 2 Cache Error\n");
543 recoverable = 0;
546 if (reason & MCSR_MAV) {
547 u64 addr;
549 addr = mfspr(SPRN_MCAR);
550 addr |= (u64)mfspr(SPRN_MCARU) << 32;
552 printk("Machine Check %s Address: %#llx\n",
553 reason & MCSR_MEA ? "Effective" : "Physical", addr);
556 silent_out:
557 mtspr(SPRN_MCSR, mcsr);
558 return mfspr(SPRN_MCSR) == 0 && recoverable;
561 int machine_check_e500(struct pt_regs *regs)
563 unsigned long reason = get_mc_reason(regs);
565 if (reason & MCSR_BUS_RBERR) {
566 if (fsl_rio_mcheck_exception(regs))
567 return 1;
570 printk("Machine check in kernel mode.\n");
571 printk("Caused by (from MCSR=%lx): ", reason);
573 if (reason & MCSR_MCP)
574 printk("Machine Check Signal\n");
575 if (reason & MCSR_ICPERR)
576 printk("Instruction Cache Parity Error\n");
577 if (reason & MCSR_DCP_PERR)
578 printk("Data Cache Push Parity Error\n");
579 if (reason & MCSR_DCPERR)
580 printk("Data Cache Parity Error\n");
581 if (reason & MCSR_BUS_IAERR)
582 printk("Bus - Instruction Address Error\n");
583 if (reason & MCSR_BUS_RAERR)
584 printk("Bus - Read Address Error\n");
585 if (reason & MCSR_BUS_WAERR)
586 printk("Bus - Write Address Error\n");
587 if (reason & MCSR_BUS_IBERR)
588 printk("Bus - Instruction Data Error\n");
589 if (reason & MCSR_BUS_RBERR)
590 printk("Bus - Read Data Bus Error\n");
591 if (reason & MCSR_BUS_WBERR)
592 printk("Bus - Read Data Bus Error\n");
593 if (reason & MCSR_BUS_IPERR)
594 printk("Bus - Instruction Parity Error\n");
595 if (reason & MCSR_BUS_RPERR)
596 printk("Bus - Read Parity Error\n");
598 return 0;
601 int machine_check_generic(struct pt_regs *regs)
603 return 0;
605 #elif defined(CONFIG_E200)
606 int machine_check_e200(struct pt_regs *regs)
608 unsigned long reason = get_mc_reason(regs);
610 printk("Machine check in kernel mode.\n");
611 printk("Caused by (from MCSR=%lx): ", reason);
613 if (reason & MCSR_MCP)
614 printk("Machine Check Signal\n");
615 if (reason & MCSR_CP_PERR)
616 printk("Cache Push Parity Error\n");
617 if (reason & MCSR_CPERR)
618 printk("Cache Parity Error\n");
619 if (reason & MCSR_EXCP_ERR)
620 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
621 if (reason & MCSR_BUS_IRERR)
622 printk("Bus - Read Bus Error on instruction fetch\n");
623 if (reason & MCSR_BUS_DRERR)
624 printk("Bus - Read Bus Error on data load\n");
625 if (reason & MCSR_BUS_WRERR)
626 printk("Bus - Write Bus Error on buffered store or cache line push\n");
628 return 0;
630 #else
631 int machine_check_generic(struct pt_regs *regs)
633 unsigned long reason = get_mc_reason(regs);
635 printk("Machine check in kernel mode.\n");
636 printk("Caused by (from SRR1=%lx): ", reason);
637 switch (reason & 0x601F0000) {
638 case 0x80000:
639 printk("Machine check signal\n");
640 break;
641 case 0: /* for 601 */
642 case 0x40000:
643 case 0x140000: /* 7450 MSS error and TEA */
644 printk("Transfer error ack signal\n");
645 break;
646 case 0x20000:
647 printk("Data parity error signal\n");
648 break;
649 case 0x10000:
650 printk("Address parity error signal\n");
651 break;
652 case 0x20000000:
653 printk("L1 Data Cache error\n");
654 break;
655 case 0x40000000:
656 printk("L1 Instruction Cache error\n");
657 break;
658 case 0x00100000:
659 printk("L2 data cache parity error\n");
660 break;
661 default:
662 printk("Unknown values in msr\n");
664 return 0;
666 #endif /* everything else */
668 void machine_check_exception(struct pt_regs *regs)
670 int recover = 0;
672 __get_cpu_var(irq_stat).mce_exceptions++;
674 /* See if any machine dependent calls. In theory, we would want
675 * to call the CPU first, and call the ppc_md. one if the CPU
676 * one returns a positive number. However there is existing code
677 * that assumes the board gets a first chance, so let's keep it
678 * that way for now and fix things later. --BenH.
680 if (ppc_md.machine_check_exception)
681 recover = ppc_md.machine_check_exception(regs);
682 else if (cur_cpu_spec->machine_check)
683 recover = cur_cpu_spec->machine_check(regs);
685 if (recover > 0)
686 return;
688 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
689 /* the qspan pci read routines can cause machine checks -- Cort
691 * yuck !!! that totally needs to go away ! There are better ways
692 * to deal with that than having a wart in the mcheck handler.
693 * -- BenH
695 bad_page_fault(regs, regs->dar, SIGBUS);
696 return;
697 #endif
699 if (debugger_fault_handler(regs))
700 return;
702 if (check_io_access(regs))
703 return;
705 die("Machine check", regs, SIGBUS);
707 /* Must die if the interrupt is not recoverable */
708 if (!(regs->msr & MSR_RI))
709 panic("Unrecoverable Machine check");
712 void SMIException(struct pt_regs *regs)
714 die("System Management Interrupt", regs, SIGABRT);
717 void unknown_exception(struct pt_regs *regs)
719 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
720 regs->nip, regs->msr, regs->trap);
722 _exception(SIGTRAP, regs, 0, 0);
725 void instruction_breakpoint_exception(struct pt_regs *regs)
727 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
728 5, SIGTRAP) == NOTIFY_STOP)
729 return;
730 if (debugger_iabr_match(regs))
731 return;
732 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
735 void RunModeException(struct pt_regs *regs)
737 _exception(SIGTRAP, regs, 0, 0);
740 void __kprobes single_step_exception(struct pt_regs *regs)
742 clear_single_step(regs);
744 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
745 5, SIGTRAP) == NOTIFY_STOP)
746 return;
747 if (debugger_sstep(regs))
748 return;
750 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
754 * After we have successfully emulated an instruction, we have to
755 * check if the instruction was being single-stepped, and if so,
756 * pretend we got a single-step exception. This was pointed out
757 * by Kumar Gala. -- paulus
759 static void emulate_single_step(struct pt_regs *regs)
761 if (single_stepping(regs))
762 single_step_exception(regs);
765 static inline int __parse_fpscr(unsigned long fpscr)
767 int ret = 0;
769 /* Invalid operation */
770 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
771 ret = FPE_FLTINV;
773 /* Overflow */
774 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
775 ret = FPE_FLTOVF;
777 /* Underflow */
778 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
779 ret = FPE_FLTUND;
781 /* Divide by zero */
782 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
783 ret = FPE_FLTDIV;
785 /* Inexact result */
786 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
787 ret = FPE_FLTRES;
789 return ret;
792 static void parse_fpe(struct pt_regs *regs)
794 int code = 0;
796 flush_fp_to_thread(current);
798 code = __parse_fpscr(current->thread.fpscr.val);
800 _exception(SIGFPE, regs, code, regs->nip);
804 * Illegal instruction emulation support. Originally written to
805 * provide the PVR to user applications using the mfspr rd, PVR.
806 * Return non-zero if we can't emulate, or -EFAULT if the associated
807 * memory access caused an access fault. Return zero on success.
809 * There are a couple of ways to do this, either "decode" the instruction
810 * or directly match lots of bits. In this case, matching lots of
811 * bits is faster and easier.
814 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
816 u8 rT = (instword >> 21) & 0x1f;
817 u8 rA = (instword >> 16) & 0x1f;
818 u8 NB_RB = (instword >> 11) & 0x1f;
819 u32 num_bytes;
820 unsigned long EA;
821 int pos = 0;
823 /* Early out if we are an invalid form of lswx */
824 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
825 if ((rT == rA) || (rT == NB_RB))
826 return -EINVAL;
828 EA = (rA == 0) ? 0 : regs->gpr[rA];
830 switch (instword & PPC_INST_STRING_MASK) {
831 case PPC_INST_LSWX:
832 case PPC_INST_STSWX:
833 EA += NB_RB;
834 num_bytes = regs->xer & 0x7f;
835 break;
836 case PPC_INST_LSWI:
837 case PPC_INST_STSWI:
838 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
839 break;
840 default:
841 return -EINVAL;
844 while (num_bytes != 0)
846 u8 val;
847 u32 shift = 8 * (3 - (pos & 0x3));
849 switch ((instword & PPC_INST_STRING_MASK)) {
850 case PPC_INST_LSWX:
851 case PPC_INST_LSWI:
852 if (get_user(val, (u8 __user *)EA))
853 return -EFAULT;
854 /* first time updating this reg,
855 * zero it out */
856 if (pos == 0)
857 regs->gpr[rT] = 0;
858 regs->gpr[rT] |= val << shift;
859 break;
860 case PPC_INST_STSWI:
861 case PPC_INST_STSWX:
862 val = regs->gpr[rT] >> shift;
863 if (put_user(val, (u8 __user *)EA))
864 return -EFAULT;
865 break;
867 /* move EA to next address */
868 EA += 1;
869 num_bytes--;
871 /* manage our position within the register */
872 if (++pos == 4) {
873 pos = 0;
874 if (++rT == 32)
875 rT = 0;
879 return 0;
882 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
884 u32 ra,rs;
885 unsigned long tmp;
887 ra = (instword >> 16) & 0x1f;
888 rs = (instword >> 21) & 0x1f;
890 tmp = regs->gpr[rs];
891 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
892 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
893 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
894 regs->gpr[ra] = tmp;
896 return 0;
899 static int emulate_isel(struct pt_regs *regs, u32 instword)
901 u8 rT = (instword >> 21) & 0x1f;
902 u8 rA = (instword >> 16) & 0x1f;
903 u8 rB = (instword >> 11) & 0x1f;
904 u8 BC = (instword >> 6) & 0x1f;
905 u8 bit;
906 unsigned long tmp;
908 tmp = (rA == 0) ? 0 : regs->gpr[rA];
909 bit = (regs->ccr >> (31 - BC)) & 0x1;
911 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
913 return 0;
916 static int emulate_instruction(struct pt_regs *regs)
918 u32 instword;
919 u32 rd;
921 if (!user_mode(regs) || (regs->msr & MSR_LE))
922 return -EINVAL;
923 CHECK_FULL_REGS(regs);
925 if (get_user(instword, (u32 __user *)(regs->nip)))
926 return -EFAULT;
928 /* Emulate the mfspr rD, PVR. */
929 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
930 PPC_WARN_EMULATED(mfpvr, regs);
931 rd = (instword >> 21) & 0x1f;
932 regs->gpr[rd] = mfspr(SPRN_PVR);
933 return 0;
936 /* Emulating the dcba insn is just a no-op. */
937 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
938 PPC_WARN_EMULATED(dcba, regs);
939 return 0;
942 /* Emulate the mcrxr insn. */
943 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
944 int shift = (instword >> 21) & 0x1c;
945 unsigned long msk = 0xf0000000UL >> shift;
947 PPC_WARN_EMULATED(mcrxr, regs);
948 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
949 regs->xer &= ~0xf0000000UL;
950 return 0;
953 /* Emulate load/store string insn. */
954 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
955 PPC_WARN_EMULATED(string, regs);
956 return emulate_string_inst(regs, instword);
959 /* Emulate the popcntb (Population Count Bytes) instruction. */
960 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
961 PPC_WARN_EMULATED(popcntb, regs);
962 return emulate_popcntb_inst(regs, instword);
965 /* Emulate isel (Integer Select) instruction */
966 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
967 PPC_WARN_EMULATED(isel, regs);
968 return emulate_isel(regs, instword);
971 #ifdef CONFIG_PPC64
972 /* Emulate the mfspr rD, DSCR. */
973 if (((instword & PPC_INST_MFSPR_DSCR_MASK) == PPC_INST_MFSPR_DSCR) &&
974 cpu_has_feature(CPU_FTR_DSCR)) {
975 PPC_WARN_EMULATED(mfdscr, regs);
976 rd = (instword >> 21) & 0x1f;
977 regs->gpr[rd] = mfspr(SPRN_DSCR);
978 return 0;
980 /* Emulate the mtspr DSCR, rD. */
981 if (((instword & PPC_INST_MTSPR_DSCR_MASK) == PPC_INST_MTSPR_DSCR) &&
982 cpu_has_feature(CPU_FTR_DSCR)) {
983 PPC_WARN_EMULATED(mtdscr, regs);
984 rd = (instword >> 21) & 0x1f;
985 current->thread.dscr = regs->gpr[rd];
986 current->thread.dscr_inherit = 1;
987 mtspr(SPRN_DSCR, current->thread.dscr);
988 return 0;
990 #endif
992 return -EINVAL;
995 int is_valid_bugaddr(unsigned long addr)
997 return is_kernel_addr(addr);
1000 void __kprobes program_check_exception(struct pt_regs *regs)
1002 unsigned int reason = get_reason(regs);
1003 extern int do_mathemu(struct pt_regs *regs);
1005 /* We can now get here via a FP Unavailable exception if the core
1006 * has no FPU, in that case the reason flags will be 0 */
1008 if (reason & REASON_FP) {
1009 /* IEEE FP exception */
1010 parse_fpe(regs);
1011 return;
1013 if (reason & REASON_TRAP) {
1014 /* Debugger is first in line to stop recursive faults in
1015 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1016 if (debugger_bpt(regs))
1017 return;
1019 /* trap exception */
1020 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1021 == NOTIFY_STOP)
1022 return;
1024 if (!(regs->msr & MSR_PR) && /* not user-mode */
1025 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1026 regs->nip += 4;
1027 return;
1029 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1030 return;
1032 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1033 if (reason & REASON_TM) {
1034 /* This is a TM "Bad Thing Exception" program check.
1035 * This occurs when:
1036 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1037 * transition in TM states.
1038 * - A trechkpt is attempted when transactional.
1039 * - A treclaim is attempted when non transactional.
1040 * - A tend is illegally attempted.
1041 * - writing a TM SPR when transactional.
1043 if (!user_mode(regs) &&
1044 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1045 regs->nip += 4;
1046 return;
1048 /* If usermode caused this, it's done something illegal and
1049 * gets a SIGILL slap on the wrist. We call it an illegal
1050 * operand to distinguish from the instruction just being bad
1051 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1052 * illegal /placement/ of a valid instruction.
1054 if (user_mode(regs)) {
1055 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1056 return;
1057 } else {
1058 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1059 "at %lx (msr 0x%x)\n", regs->nip, reason);
1060 die("Unrecoverable exception", regs, SIGABRT);
1063 #endif
1065 /* We restore the interrupt state now */
1066 if (!arch_irq_disabled_regs(regs))
1067 local_irq_enable();
1069 #ifdef CONFIG_MATH_EMULATION
1070 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1071 * but there seems to be a hardware bug on the 405GP (RevD)
1072 * that means ESR is sometimes set incorrectly - either to
1073 * ESR_DST (!?) or 0. In the process of chasing this with the
1074 * hardware people - not sure if it can happen on any illegal
1075 * instruction or only on FP instructions, whether there is a
1076 * pattern to occurrences etc. -dgibson 31/Mar/2003 */
1077 switch (do_mathemu(regs)) {
1078 case 0:
1079 emulate_single_step(regs);
1080 return;
1081 case 1: {
1082 int code = 0;
1083 code = __parse_fpscr(current->thread.fpscr.val);
1084 _exception(SIGFPE, regs, code, regs->nip);
1085 return;
1087 case -EFAULT:
1088 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1089 return;
1091 /* fall through on any other errors */
1092 #endif /* CONFIG_MATH_EMULATION */
1094 /* Try to emulate it if we should. */
1095 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1096 switch (emulate_instruction(regs)) {
1097 case 0:
1098 regs->nip += 4;
1099 emulate_single_step(regs);
1100 return;
1101 case -EFAULT:
1102 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1103 return;
1107 if (reason & REASON_PRIVILEGED)
1108 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1109 else
1110 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1113 void alignment_exception(struct pt_regs *regs)
1115 int sig, code, fixed = 0;
1117 /* We restore the interrupt state now */
1118 if (!arch_irq_disabled_regs(regs))
1119 local_irq_enable();
1121 /* we don't implement logging of alignment exceptions */
1122 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1123 fixed = fix_alignment(regs);
1125 if (fixed == 1) {
1126 regs->nip += 4; /* skip over emulated instruction */
1127 emulate_single_step(regs);
1128 return;
1131 /* Operand address was bad */
1132 if (fixed == -EFAULT) {
1133 sig = SIGSEGV;
1134 code = SEGV_ACCERR;
1135 } else {
1136 sig = SIGBUS;
1137 code = BUS_ADRALN;
1139 if (user_mode(regs))
1140 _exception(sig, regs, code, regs->dar);
1141 else
1142 bad_page_fault(regs, regs->dar, sig);
1145 void StackOverflow(struct pt_regs *regs)
1147 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1148 current, regs->gpr[1]);
1149 debugger(regs);
1150 show_regs(regs);
1151 panic("kernel stack overflow");
1154 void nonrecoverable_exception(struct pt_regs *regs)
1156 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1157 regs->nip, regs->msr);
1158 debugger(regs);
1159 die("nonrecoverable exception", regs, SIGKILL);
1162 void trace_syscall(struct pt_regs *regs)
1164 printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld %s\n",
1165 current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1166 regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1169 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1171 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1172 "%lx at %lx\n", regs->trap, regs->nip);
1173 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1176 void altivec_unavailable_exception(struct pt_regs *regs)
1178 if (user_mode(regs)) {
1179 /* A user program has executed an altivec instruction,
1180 but this kernel doesn't support altivec. */
1181 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1182 return;
1185 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1186 "%lx at %lx\n", regs->trap, regs->nip);
1187 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1190 void vsx_unavailable_exception(struct pt_regs *regs)
1192 if (user_mode(regs)) {
1193 /* A user program has executed an vsx instruction,
1194 but this kernel doesn't support vsx. */
1195 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1196 return;
1199 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1200 "%lx at %lx\n", regs->trap, regs->nip);
1201 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1204 void tm_unavailable_exception(struct pt_regs *regs)
1206 /* We restore the interrupt state now */
1207 if (!arch_irq_disabled_regs(regs))
1208 local_irq_enable();
1210 /* Currently we never expect a TMU exception. Catch
1211 * this and kill the process!
1213 printk(KERN_EMERG "Unexpected TM unavailable exception at %lx "
1214 "(msr %lx)\n",
1215 regs->nip, regs->msr);
1217 if (user_mode(regs)) {
1218 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1219 return;
1222 die("Unexpected TM unavailable exception", regs, SIGABRT);
1225 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1227 extern void do_load_up_fpu(struct pt_regs *regs);
1229 void fp_unavailable_tm(struct pt_regs *regs)
1231 /* Note: This does not handle any kind of FP laziness. */
1233 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1234 regs->nip, regs->msr);
1235 tm_enable();
1237 /* We can only have got here if the task started using FP after
1238 * beginning the transaction. So, the transactional regs are just a
1239 * copy of the checkpointed ones. But, we still need to recheckpoint
1240 * as we're enabling FP for the process; it will return, abort the
1241 * transaction, and probably retry but now with FP enabled. So the
1242 * checkpointed FP registers need to be loaded.
1244 tm_reclaim(&current->thread, current->thread.regs->msr,
1245 TM_CAUSE_FAC_UNAV);
1246 /* Reclaim didn't save out any FPRs to transact_fprs. */
1248 /* Enable FP for the task: */
1249 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1251 /* This loads and recheckpoints the FP registers from
1252 * thread.fpr[]. They will remain in registers after the
1253 * checkpoint so we don't need to reload them after.
1255 tm_recheckpoint(&current->thread, regs->msr);
1258 #ifdef CONFIG_ALTIVEC
1259 extern void do_load_up_altivec(struct pt_regs *regs);
1261 void altivec_unavailable_tm(struct pt_regs *regs)
1263 /* See the comments in fp_unavailable_tm(). This function operates
1264 * the same way.
1267 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1268 "MSR=%lx\n",
1269 regs->nip, regs->msr);
1270 tm_enable();
1271 tm_reclaim(&current->thread, current->thread.regs->msr,
1272 TM_CAUSE_FAC_UNAV);
1273 regs->msr |= MSR_VEC;
1274 tm_recheckpoint(&current->thread, regs->msr);
1275 current->thread.used_vr = 1;
1277 #endif
1279 #ifdef CONFIG_VSX
1280 void vsx_unavailable_tm(struct pt_regs *regs)
1282 /* See the comments in fp_unavailable_tm(). This works similarly,
1283 * though we're loading both FP and VEC registers in here.
1285 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1286 * regs. Either way, set MSR_VSX.
1289 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1290 "MSR=%lx\n",
1291 regs->nip, regs->msr);
1293 tm_enable();
1294 /* This reclaims FP and/or VR regs if they're already enabled */
1295 tm_reclaim(&current->thread, current->thread.regs->msr,
1296 TM_CAUSE_FAC_UNAV);
1298 regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1299 MSR_VSX;
1300 /* This loads & recheckpoints FP and VRs. */
1301 tm_recheckpoint(&current->thread, regs->msr);
1302 current->thread.used_vsr = 1;
1304 #endif
1305 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1307 void performance_monitor_exception(struct pt_regs *regs)
1309 __get_cpu_var(irq_stat).pmu_irqs++;
1311 perf_irq(regs);
1314 #ifdef CONFIG_8xx
1315 void SoftwareEmulation(struct pt_regs *regs)
1317 extern int do_mathemu(struct pt_regs *);
1318 extern int Soft_emulate_8xx(struct pt_regs *);
1319 #if defined(CONFIG_MATH_EMULATION) || defined(CONFIG_8XX_MINIMAL_FPEMU)
1320 int errcode;
1321 #endif
1323 CHECK_FULL_REGS(regs);
1325 if (!user_mode(regs)) {
1326 debugger(regs);
1327 die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1330 #ifdef CONFIG_MATH_EMULATION
1331 errcode = do_mathemu(regs);
1332 if (errcode >= 0)
1333 PPC_WARN_EMULATED(math, regs);
1335 switch (errcode) {
1336 case 0:
1337 emulate_single_step(regs);
1338 return;
1339 case 1: {
1340 int code = 0;
1341 code = __parse_fpscr(current->thread.fpscr.val);
1342 _exception(SIGFPE, regs, code, regs->nip);
1343 return;
1345 case -EFAULT:
1346 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1347 return;
1348 default:
1349 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1350 return;
1353 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1354 errcode = Soft_emulate_8xx(regs);
1355 if (errcode >= 0)
1356 PPC_WARN_EMULATED(8xx, regs);
1358 switch (errcode) {
1359 case 0:
1360 emulate_single_step(regs);
1361 return;
1362 case 1:
1363 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1364 return;
1365 case -EFAULT:
1366 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1367 return;
1369 #else
1370 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1371 #endif
1373 #endif /* CONFIG_8xx */
1375 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1376 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1378 int changed = 0;
1380 * Determine the cause of the debug event, clear the
1381 * event flags and send a trap to the handler. Torez
1383 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1384 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1385 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1386 current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1387 #endif
1388 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1390 changed |= 0x01;
1391 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1392 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1393 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1395 changed |= 0x01;
1396 } else if (debug_status & DBSR_IAC1) {
1397 current->thread.dbcr0 &= ~DBCR0_IAC1;
1398 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1399 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1401 changed |= 0x01;
1402 } else if (debug_status & DBSR_IAC2) {
1403 current->thread.dbcr0 &= ~DBCR0_IAC2;
1404 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1406 changed |= 0x01;
1407 } else if (debug_status & DBSR_IAC3) {
1408 current->thread.dbcr0 &= ~DBCR0_IAC3;
1409 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1410 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1412 changed |= 0x01;
1413 } else if (debug_status & DBSR_IAC4) {
1414 current->thread.dbcr0 &= ~DBCR0_IAC4;
1415 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1417 changed |= 0x01;
1420 * At the point this routine was called, the MSR(DE) was turned off.
1421 * Check all other debug flags and see if that bit needs to be turned
1422 * back on or not.
1424 if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1425 regs->msr |= MSR_DE;
1426 else
1427 /* Make sure the IDM flag is off */
1428 current->thread.dbcr0 &= ~DBCR0_IDM;
1430 if (changed & 0x01)
1431 mtspr(SPRN_DBCR0, current->thread.dbcr0);
1434 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1436 current->thread.dbsr = debug_status;
1438 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1439 * on server, it stops on the target of the branch. In order to simulate
1440 * the server behaviour, we thus restart right away with a single step
1441 * instead of stopping here when hitting a BT
1443 if (debug_status & DBSR_BT) {
1444 regs->msr &= ~MSR_DE;
1446 /* Disable BT */
1447 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1448 /* Clear the BT event */
1449 mtspr(SPRN_DBSR, DBSR_BT);
1451 /* Do the single step trick only when coming from userspace */
1452 if (user_mode(regs)) {
1453 current->thread.dbcr0 &= ~DBCR0_BT;
1454 current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1455 regs->msr |= MSR_DE;
1456 return;
1459 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1460 5, SIGTRAP) == NOTIFY_STOP) {
1461 return;
1463 if (debugger_sstep(regs))
1464 return;
1465 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1466 regs->msr &= ~MSR_DE;
1468 /* Disable instruction completion */
1469 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1470 /* Clear the instruction completion event */
1471 mtspr(SPRN_DBSR, DBSR_IC);
1473 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1474 5, SIGTRAP) == NOTIFY_STOP) {
1475 return;
1478 if (debugger_sstep(regs))
1479 return;
1481 if (user_mode(regs)) {
1482 current->thread.dbcr0 &= ~DBCR0_IC;
1483 if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1484 current->thread.dbcr1))
1485 regs->msr |= MSR_DE;
1486 else
1487 /* Make sure the IDM bit is off */
1488 current->thread.dbcr0 &= ~DBCR0_IDM;
1491 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1492 } else
1493 handle_debug(regs, debug_status);
1495 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1497 #if !defined(CONFIG_TAU_INT)
1498 void TAUException(struct pt_regs *regs)
1500 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1501 regs->nip, regs->msr, regs->trap, print_tainted());
1503 #endif /* CONFIG_INT_TAU */
1505 #ifdef CONFIG_ALTIVEC
1506 void altivec_assist_exception(struct pt_regs *regs)
1508 int err;
1510 if (!user_mode(regs)) {
1511 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1512 " at %lx\n", regs->nip);
1513 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1516 flush_altivec_to_thread(current);
1518 PPC_WARN_EMULATED(altivec, regs);
1519 err = emulate_altivec(regs);
1520 if (err == 0) {
1521 regs->nip += 4; /* skip emulated instruction */
1522 emulate_single_step(regs);
1523 return;
1526 if (err == -EFAULT) {
1527 /* got an error reading the instruction */
1528 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1529 } else {
1530 /* didn't recognize the instruction */
1531 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1532 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1533 "in %s at %lx\n", current->comm, regs->nip);
1534 current->thread.vscr.u[3] |= 0x10000;
1537 #endif /* CONFIG_ALTIVEC */
1539 #ifdef CONFIG_VSX
1540 void vsx_assist_exception(struct pt_regs *regs)
1542 if (!user_mode(regs)) {
1543 printk(KERN_EMERG "VSX assist exception in kernel mode"
1544 " at %lx\n", regs->nip);
1545 die("Kernel VSX assist exception", regs, SIGILL);
1548 flush_vsx_to_thread(current);
1549 printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1550 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1552 #endif /* CONFIG_VSX */
1554 #ifdef CONFIG_FSL_BOOKE
1555 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1556 unsigned long error_code)
1558 /* We treat cache locking instructions from the user
1559 * as priv ops, in the future we could try to do
1560 * something smarter
1562 if (error_code & (ESR_DLK|ESR_ILK))
1563 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1564 return;
1566 #endif /* CONFIG_FSL_BOOKE */
1568 #ifdef CONFIG_SPE
1569 void SPEFloatingPointException(struct pt_regs *regs)
1571 extern int do_spe_mathemu(struct pt_regs *regs);
1572 unsigned long spefscr;
1573 int fpexc_mode;
1574 int code = 0;
1575 int err;
1577 flush_spe_to_thread(current);
1579 spefscr = current->thread.spefscr;
1580 fpexc_mode = current->thread.fpexc_mode;
1582 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1583 code = FPE_FLTOVF;
1585 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1586 code = FPE_FLTUND;
1588 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1589 code = FPE_FLTDIV;
1590 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1591 code = FPE_FLTINV;
1593 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1594 code = FPE_FLTRES;
1596 err = do_spe_mathemu(regs);
1597 if (err == 0) {
1598 regs->nip += 4; /* skip emulated instruction */
1599 emulate_single_step(regs);
1600 return;
1603 if (err == -EFAULT) {
1604 /* got an error reading the instruction */
1605 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1606 } else if (err == -EINVAL) {
1607 /* didn't recognize the instruction */
1608 printk(KERN_ERR "unrecognized spe instruction "
1609 "in %s at %lx\n", current->comm, regs->nip);
1610 } else {
1611 _exception(SIGFPE, regs, code, regs->nip);
1614 return;
1617 void SPEFloatingPointRoundException(struct pt_regs *regs)
1619 extern int speround_handler(struct pt_regs *regs);
1620 int err;
1622 preempt_disable();
1623 if (regs->msr & MSR_SPE)
1624 giveup_spe(current);
1625 preempt_enable();
1627 regs->nip -= 4;
1628 err = speround_handler(regs);
1629 if (err == 0) {
1630 regs->nip += 4; /* skip emulated instruction */
1631 emulate_single_step(regs);
1632 return;
1635 if (err == -EFAULT) {
1636 /* got an error reading the instruction */
1637 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1638 } else if (err == -EINVAL) {
1639 /* didn't recognize the instruction */
1640 printk(KERN_ERR "unrecognized spe instruction "
1641 "in %s at %lx\n", current->comm, regs->nip);
1642 } else {
1643 _exception(SIGFPE, regs, 0, regs->nip);
1644 return;
1647 #endif
1650 * We enter here if we get an unrecoverable exception, that is, one
1651 * that happened at a point where the RI (recoverable interrupt) bit
1652 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1653 * we therefore lost state by taking this exception.
1655 void unrecoverable_exception(struct pt_regs *regs)
1657 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1658 regs->trap, regs->nip);
1659 die("Unrecoverable exception", regs, SIGABRT);
1662 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1664 * Default handler for a Watchdog exception,
1665 * spins until a reboot occurs
1667 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1669 /* Generic WatchdogHandler, implement your own */
1670 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1671 return;
1674 void WatchdogException(struct pt_regs *regs)
1676 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1677 WatchdogHandler(regs);
1679 #endif
1682 * We enter here if we discover during exception entry that we are
1683 * running in supervisor mode with a userspace value in the stack pointer.
1685 void kernel_bad_stack(struct pt_regs *regs)
1687 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1688 regs->gpr[1], regs->nip);
1689 die("Bad kernel stack pointer", regs, SIGABRT);
1692 void __init trap_init(void)
1697 #ifdef CONFIG_PPC_EMULATED_STATS
1699 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
1701 struct ppc_emulated ppc_emulated = {
1702 #ifdef CONFIG_ALTIVEC
1703 WARN_EMULATED_SETUP(altivec),
1704 #endif
1705 WARN_EMULATED_SETUP(dcba),
1706 WARN_EMULATED_SETUP(dcbz),
1707 WARN_EMULATED_SETUP(fp_pair),
1708 WARN_EMULATED_SETUP(isel),
1709 WARN_EMULATED_SETUP(mcrxr),
1710 WARN_EMULATED_SETUP(mfpvr),
1711 WARN_EMULATED_SETUP(multiple),
1712 WARN_EMULATED_SETUP(popcntb),
1713 WARN_EMULATED_SETUP(spe),
1714 WARN_EMULATED_SETUP(string),
1715 WARN_EMULATED_SETUP(unaligned),
1716 #ifdef CONFIG_MATH_EMULATION
1717 WARN_EMULATED_SETUP(math),
1718 #elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1719 WARN_EMULATED_SETUP(8xx),
1720 #endif
1721 #ifdef CONFIG_VSX
1722 WARN_EMULATED_SETUP(vsx),
1723 #endif
1724 #ifdef CONFIG_PPC64
1725 WARN_EMULATED_SETUP(mfdscr),
1726 WARN_EMULATED_SETUP(mtdscr),
1727 #endif
1730 u32 ppc_warn_emulated;
1732 void ppc_warn_emulated_print(const char *type)
1734 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1735 type);
1738 static int __init ppc_warn_emulated_init(void)
1740 struct dentry *dir, *d;
1741 unsigned int i;
1742 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1744 if (!powerpc_debugfs_root)
1745 return -ENODEV;
1747 dir = debugfs_create_dir("emulated_instructions",
1748 powerpc_debugfs_root);
1749 if (!dir)
1750 return -ENOMEM;
1752 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1753 &ppc_warn_emulated);
1754 if (!d)
1755 goto fail;
1757 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1758 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1759 (u32 *)&entries[i].val.counter);
1760 if (!d)
1761 goto fail;
1764 return 0;
1766 fail:
1767 debugfs_remove_recursive(dir);
1768 return -ENOMEM;
1771 device_initcall(ppc_warn_emulated_init);
1773 #endif /* CONFIG_PPC_EMULATED_STATS */