Merge branch 'linus' into perf/core
[linux-2.6/cjktty.git] / arch / x86 / kernel / kprobes.c
blob1bfb6cf4dd55d67aeeebbbf89d0bb60283a94c94
1 /*
2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
43 #include <linux/kprobes.h>
44 #include <linux/ptrace.h>
45 #include <linux/string.h>
46 #include <linux/slab.h>
47 #include <linux/hardirq.h>
48 #include <linux/preempt.h>
49 #include <linux/module.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
54 #include <asm/cacheflush.h>
55 #include <asm/desc.h>
56 #include <asm/pgtable.h>
57 #include <asm/uaccess.h>
58 #include <asm/alternative.h>
59 #include <asm/insn.h>
60 #include <asm/debugreg.h>
62 void jprobe_return_end(void);
64 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
65 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
67 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
69 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
70 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
71 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
72 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
73 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
74 << (row % 32))
76 * Undefined/reserved opcodes, conditional jump, Opcode Extension
77 * Groups, and some special opcodes can not boost.
79 static const u32 twobyte_is_boostable[256 / 32] = {
80 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
81 /* ---------------------------------------------- */
82 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
83 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
84 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
85 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
86 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
87 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
88 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
89 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
90 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
91 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
92 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
93 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
94 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
95 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
96 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
97 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
98 /* ----------------------------------------------- */
99 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
101 #undef W
103 struct kretprobe_blackpoint kretprobe_blacklist[] = {
104 {"__switch_to", }, /* This function switches only current task, but
105 doesn't switch kernel stack.*/
106 {NULL, NULL} /* Terminator */
108 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
110 static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op)
112 struct __arch_relative_insn {
113 u8 op;
114 s32 raddr;
115 } __attribute__((packed)) *insn;
117 insn = (struct __arch_relative_insn *)from;
118 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
119 insn->op = op;
122 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
123 static void __kprobes synthesize_reljump(void *from, void *to)
125 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
129 * Skip the prefixes of the instruction.
131 static kprobe_opcode_t *__kprobes skip_prefixes(kprobe_opcode_t *insn)
133 insn_attr_t attr;
135 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
136 while (inat_is_legacy_prefix(attr)) {
137 insn++;
138 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
140 #ifdef CONFIG_X86_64
141 if (inat_is_rex_prefix(attr))
142 insn++;
143 #endif
144 return insn;
148 * Returns non-zero if opcode is boostable.
149 * RIP relative instructions are adjusted at copying time in 64 bits mode
151 static int __kprobes can_boost(kprobe_opcode_t *opcodes)
153 kprobe_opcode_t opcode;
154 kprobe_opcode_t *orig_opcodes = opcodes;
156 if (search_exception_tables((unsigned long)opcodes))
157 return 0; /* Page fault may occur on this address. */
159 retry:
160 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
161 return 0;
162 opcode = *(opcodes++);
164 /* 2nd-byte opcode */
165 if (opcode == 0x0f) {
166 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
167 return 0;
168 return test_bit(*opcodes,
169 (unsigned long *)twobyte_is_boostable);
172 switch (opcode & 0xf0) {
173 #ifdef CONFIG_X86_64
174 case 0x40:
175 goto retry; /* REX prefix is boostable */
176 #endif
177 case 0x60:
178 if (0x63 < opcode && opcode < 0x67)
179 goto retry; /* prefixes */
180 /* can't boost Address-size override and bound */
181 return (opcode != 0x62 && opcode != 0x67);
182 case 0x70:
183 return 0; /* can't boost conditional jump */
184 case 0xc0:
185 /* can't boost software-interruptions */
186 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
187 case 0xd0:
188 /* can boost AA* and XLAT */
189 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
190 case 0xe0:
191 /* can boost in/out and absolute jmps */
192 return ((opcode & 0x04) || opcode == 0xea);
193 case 0xf0:
194 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
195 goto retry; /* lock/rep(ne) prefix */
196 /* clear and set flags are boostable */
197 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
198 default:
199 /* segment override prefixes are boostable */
200 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
201 goto retry; /* prefixes */
202 /* CS override prefix and call are not boostable */
203 return (opcode != 0x2e && opcode != 0x9a);
207 /* Recover the probed instruction at addr for further analysis. */
208 static int recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
210 struct kprobe *kp;
211 kp = get_kprobe((void *)addr);
212 if (!kp)
213 return -EINVAL;
216 * Basically, kp->ainsn.insn has an original instruction.
217 * However, RIP-relative instruction can not do single-stepping
218 * at different place, __copy_instruction() tweaks the displacement of
219 * that instruction. In that case, we can't recover the instruction
220 * from the kp->ainsn.insn.
222 * On the other hand, kp->opcode has a copy of the first byte of
223 * the probed instruction, which is overwritten by int3. And
224 * the instruction at kp->addr is not modified by kprobes except
225 * for the first byte, we can recover the original instruction
226 * from it and kp->opcode.
228 memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
229 buf[0] = kp->opcode;
230 return 0;
233 /* Dummy buffers for kallsyms_lookup */
234 static char __dummy_buf[KSYM_NAME_LEN];
236 /* Check if paddr is at an instruction boundary */
237 static int __kprobes can_probe(unsigned long paddr)
239 int ret;
240 unsigned long addr, offset = 0;
241 struct insn insn;
242 kprobe_opcode_t buf[MAX_INSN_SIZE];
244 if (!kallsyms_lookup(paddr, NULL, &offset, NULL, __dummy_buf))
245 return 0;
247 /* Decode instructions */
248 addr = paddr - offset;
249 while (addr < paddr) {
250 kernel_insn_init(&insn, (void *)addr);
251 insn_get_opcode(&insn);
254 * Check if the instruction has been modified by another
255 * kprobe, in which case we replace the breakpoint by the
256 * original instruction in our buffer.
258 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
259 ret = recover_probed_instruction(buf, addr);
260 if (ret)
262 * Another debugging subsystem might insert
263 * this breakpoint. In that case, we can't
264 * recover it.
266 return 0;
267 kernel_insn_init(&insn, buf);
269 insn_get_length(&insn);
270 addr += insn.length;
273 return (addr == paddr);
277 * Returns non-zero if opcode modifies the interrupt flag.
279 static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
281 /* Skip prefixes */
282 insn = skip_prefixes(insn);
284 switch (*insn) {
285 case 0xfa: /* cli */
286 case 0xfb: /* sti */
287 case 0xcf: /* iret/iretd */
288 case 0x9d: /* popf/popfd */
289 return 1;
292 return 0;
296 * Copy an instruction and adjust the displacement if the instruction
297 * uses the %rip-relative addressing mode.
298 * If it does, Return the address of the 32-bit displacement word.
299 * If not, return null.
300 * Only applicable to 64-bit x86.
302 static int __kprobes __copy_instruction(u8 *dest, u8 *src, int recover)
304 struct insn insn;
305 int ret;
306 kprobe_opcode_t buf[MAX_INSN_SIZE];
308 kernel_insn_init(&insn, src);
309 if (recover) {
310 insn_get_opcode(&insn);
311 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
312 ret = recover_probed_instruction(buf,
313 (unsigned long)src);
314 if (ret)
315 return 0;
316 kernel_insn_init(&insn, buf);
319 insn_get_length(&insn);
320 memcpy(dest, insn.kaddr, insn.length);
322 #ifdef CONFIG_X86_64
323 if (insn_rip_relative(&insn)) {
324 s64 newdisp;
325 u8 *disp;
326 kernel_insn_init(&insn, dest);
327 insn_get_displacement(&insn);
329 * The copied instruction uses the %rip-relative addressing
330 * mode. Adjust the displacement for the difference between
331 * the original location of this instruction and the location
332 * of the copy that will actually be run. The tricky bit here
333 * is making sure that the sign extension happens correctly in
334 * this calculation, since we need a signed 32-bit result to
335 * be sign-extended to 64 bits when it's added to the %rip
336 * value and yield the same 64-bit result that the sign-
337 * extension of the original signed 32-bit displacement would
338 * have given.
340 newdisp = (u8 *) src + (s64) insn.displacement.value -
341 (u8 *) dest;
342 BUG_ON((s64) (s32) newdisp != newdisp); /* Sanity check. */
343 disp = (u8 *) dest + insn_offset_displacement(&insn);
344 *(s32 *) disp = (s32) newdisp;
346 #endif
347 return insn.length;
350 static void __kprobes arch_copy_kprobe(struct kprobe *p)
353 * Copy an instruction without recovering int3, because it will be
354 * put by another subsystem.
356 __copy_instruction(p->ainsn.insn, p->addr, 0);
358 if (can_boost(p->addr))
359 p->ainsn.boostable = 0;
360 else
361 p->ainsn.boostable = -1;
363 p->opcode = *p->addr;
366 int __kprobes arch_prepare_kprobe(struct kprobe *p)
368 if (alternatives_text_reserved(p->addr, p->addr))
369 return -EINVAL;
371 if (!can_probe((unsigned long)p->addr))
372 return -EILSEQ;
373 /* insn: must be on special executable page on x86. */
374 p->ainsn.insn = get_insn_slot();
375 if (!p->ainsn.insn)
376 return -ENOMEM;
377 arch_copy_kprobe(p);
378 return 0;
381 void __kprobes arch_arm_kprobe(struct kprobe *p)
383 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
386 void __kprobes arch_disarm_kprobe(struct kprobe *p)
388 text_poke(p->addr, &p->opcode, 1);
391 void __kprobes arch_remove_kprobe(struct kprobe *p)
393 if (p->ainsn.insn) {
394 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
395 p->ainsn.insn = NULL;
399 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
401 kcb->prev_kprobe.kp = kprobe_running();
402 kcb->prev_kprobe.status = kcb->kprobe_status;
403 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
404 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
407 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
409 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
410 kcb->kprobe_status = kcb->prev_kprobe.status;
411 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
412 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
415 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
416 struct kprobe_ctlblk *kcb)
418 __get_cpu_var(current_kprobe) = p;
419 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
420 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
421 if (is_IF_modifier(p->ainsn.insn))
422 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
425 static void __kprobes clear_btf(void)
427 if (test_thread_flag(TIF_BLOCKSTEP)) {
428 unsigned long debugctl = get_debugctlmsr();
430 debugctl &= ~DEBUGCTLMSR_BTF;
431 update_debugctlmsr(debugctl);
435 static void __kprobes restore_btf(void)
437 if (test_thread_flag(TIF_BLOCKSTEP)) {
438 unsigned long debugctl = get_debugctlmsr();
440 debugctl |= DEBUGCTLMSR_BTF;
441 update_debugctlmsr(debugctl);
445 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
446 struct pt_regs *regs)
448 unsigned long *sara = stack_addr(regs);
450 ri->ret_addr = (kprobe_opcode_t *) *sara;
452 /* Replace the return addr with trampoline addr */
453 *sara = (unsigned long) &kretprobe_trampoline;
456 #ifdef CONFIG_OPTPROBES
457 static int __kprobes setup_detour_execution(struct kprobe *p,
458 struct pt_regs *regs,
459 int reenter);
460 #else
461 #define setup_detour_execution(p, regs, reenter) (0)
462 #endif
464 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs,
465 struct kprobe_ctlblk *kcb, int reenter)
467 if (setup_detour_execution(p, regs, reenter))
468 return;
470 #if !defined(CONFIG_PREEMPT)
471 if (p->ainsn.boostable == 1 && !p->post_handler) {
472 /* Boost up -- we can execute copied instructions directly */
473 if (!reenter)
474 reset_current_kprobe();
476 * Reentering boosted probe doesn't reset current_kprobe,
477 * nor set current_kprobe, because it doesn't use single
478 * stepping.
480 regs->ip = (unsigned long)p->ainsn.insn;
481 preempt_enable_no_resched();
482 return;
484 #endif
485 if (reenter) {
486 save_previous_kprobe(kcb);
487 set_current_kprobe(p, regs, kcb);
488 kcb->kprobe_status = KPROBE_REENTER;
489 } else
490 kcb->kprobe_status = KPROBE_HIT_SS;
491 /* Prepare real single stepping */
492 clear_btf();
493 regs->flags |= X86_EFLAGS_TF;
494 regs->flags &= ~X86_EFLAGS_IF;
495 /* single step inline if the instruction is an int3 */
496 if (p->opcode == BREAKPOINT_INSTRUCTION)
497 regs->ip = (unsigned long)p->addr;
498 else
499 regs->ip = (unsigned long)p->ainsn.insn;
503 * We have reentered the kprobe_handler(), since another probe was hit while
504 * within the handler. We save the original kprobes variables and just single
505 * step on the instruction of the new probe without calling any user handlers.
507 static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
508 struct kprobe_ctlblk *kcb)
510 switch (kcb->kprobe_status) {
511 case KPROBE_HIT_SSDONE:
512 case KPROBE_HIT_ACTIVE:
513 kprobes_inc_nmissed_count(p);
514 setup_singlestep(p, regs, kcb, 1);
515 break;
516 case KPROBE_HIT_SS:
517 /* A probe has been hit in the codepath leading up to, or just
518 * after, single-stepping of a probed instruction. This entire
519 * codepath should strictly reside in .kprobes.text section.
520 * Raise a BUG or we'll continue in an endless reentering loop
521 * and eventually a stack overflow.
523 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
524 p->addr);
525 dump_kprobe(p);
526 BUG();
527 default:
528 /* impossible cases */
529 WARN_ON(1);
530 return 0;
533 return 1;
537 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
538 * remain disabled throughout this function.
540 static int __kprobes kprobe_handler(struct pt_regs *regs)
542 kprobe_opcode_t *addr;
543 struct kprobe *p;
544 struct kprobe_ctlblk *kcb;
546 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
548 * We don't want to be preempted for the entire
549 * duration of kprobe processing. We conditionally
550 * re-enable preemption at the end of this function,
551 * and also in reenter_kprobe() and setup_singlestep().
553 preempt_disable();
555 kcb = get_kprobe_ctlblk();
556 p = get_kprobe(addr);
558 if (p) {
559 if (kprobe_running()) {
560 if (reenter_kprobe(p, regs, kcb))
561 return 1;
562 } else {
563 set_current_kprobe(p, regs, kcb);
564 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
567 * If we have no pre-handler or it returned 0, we
568 * continue with normal processing. If we have a
569 * pre-handler and it returned non-zero, it prepped
570 * for calling the break_handler below on re-entry
571 * for jprobe processing, so get out doing nothing
572 * more here.
574 if (!p->pre_handler || !p->pre_handler(p, regs))
575 setup_singlestep(p, regs, kcb, 0);
576 return 1;
578 } else if (*addr != BREAKPOINT_INSTRUCTION) {
580 * The breakpoint instruction was removed right
581 * after we hit it. Another cpu has removed
582 * either a probepoint or a debugger breakpoint
583 * at this address. In either case, no further
584 * handling of this interrupt is appropriate.
585 * Back up over the (now missing) int3 and run
586 * the original instruction.
588 regs->ip = (unsigned long)addr;
589 preempt_enable_no_resched();
590 return 1;
591 } else if (kprobe_running()) {
592 p = __get_cpu_var(current_kprobe);
593 if (p->break_handler && p->break_handler(p, regs)) {
594 setup_singlestep(p, regs, kcb, 0);
595 return 1;
597 } /* else: not a kprobe fault; let the kernel handle it */
599 preempt_enable_no_resched();
600 return 0;
603 #ifdef CONFIG_X86_64
604 #define SAVE_REGS_STRING \
605 /* Skip cs, ip, orig_ax. */ \
606 " subq $24, %rsp\n" \
607 " pushq %rdi\n" \
608 " pushq %rsi\n" \
609 " pushq %rdx\n" \
610 " pushq %rcx\n" \
611 " pushq %rax\n" \
612 " pushq %r8\n" \
613 " pushq %r9\n" \
614 " pushq %r10\n" \
615 " pushq %r11\n" \
616 " pushq %rbx\n" \
617 " pushq %rbp\n" \
618 " pushq %r12\n" \
619 " pushq %r13\n" \
620 " pushq %r14\n" \
621 " pushq %r15\n"
622 #define RESTORE_REGS_STRING \
623 " popq %r15\n" \
624 " popq %r14\n" \
625 " popq %r13\n" \
626 " popq %r12\n" \
627 " popq %rbp\n" \
628 " popq %rbx\n" \
629 " popq %r11\n" \
630 " popq %r10\n" \
631 " popq %r9\n" \
632 " popq %r8\n" \
633 " popq %rax\n" \
634 " popq %rcx\n" \
635 " popq %rdx\n" \
636 " popq %rsi\n" \
637 " popq %rdi\n" \
638 /* Skip orig_ax, ip, cs */ \
639 " addq $24, %rsp\n"
640 #else
641 #define SAVE_REGS_STRING \
642 /* Skip cs, ip, orig_ax and gs. */ \
643 " subl $16, %esp\n" \
644 " pushl %fs\n" \
645 " pushl %es\n" \
646 " pushl %ds\n" \
647 " pushl %eax\n" \
648 " pushl %ebp\n" \
649 " pushl %edi\n" \
650 " pushl %esi\n" \
651 " pushl %edx\n" \
652 " pushl %ecx\n" \
653 " pushl %ebx\n"
654 #define RESTORE_REGS_STRING \
655 " popl %ebx\n" \
656 " popl %ecx\n" \
657 " popl %edx\n" \
658 " popl %esi\n" \
659 " popl %edi\n" \
660 " popl %ebp\n" \
661 " popl %eax\n" \
662 /* Skip ds, es, fs, gs, orig_ax, and ip. Note: don't pop cs here*/\
663 " addl $24, %esp\n"
664 #endif
667 * When a retprobed function returns, this code saves registers and
668 * calls trampoline_handler() runs, which calls the kretprobe's handler.
670 static void __used __kprobes kretprobe_trampoline_holder(void)
672 asm volatile (
673 ".global kretprobe_trampoline\n"
674 "kretprobe_trampoline: \n"
675 #ifdef CONFIG_X86_64
676 /* We don't bother saving the ss register */
677 " pushq %rsp\n"
678 " pushfq\n"
679 SAVE_REGS_STRING
680 " movq %rsp, %rdi\n"
681 " call trampoline_handler\n"
682 /* Replace saved sp with true return address. */
683 " movq %rax, 152(%rsp)\n"
684 RESTORE_REGS_STRING
685 " popfq\n"
686 #else
687 " pushf\n"
688 SAVE_REGS_STRING
689 " movl %esp, %eax\n"
690 " call trampoline_handler\n"
691 /* Move flags to cs */
692 " movl 56(%esp), %edx\n"
693 " movl %edx, 52(%esp)\n"
694 /* Replace saved flags with true return address. */
695 " movl %eax, 56(%esp)\n"
696 RESTORE_REGS_STRING
697 " popf\n"
698 #endif
699 " ret\n");
703 * Called from kretprobe_trampoline
705 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
707 struct kretprobe_instance *ri = NULL;
708 struct hlist_head *head, empty_rp;
709 struct hlist_node *node, *tmp;
710 unsigned long flags, orig_ret_address = 0;
711 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
713 INIT_HLIST_HEAD(&empty_rp);
714 kretprobe_hash_lock(current, &head, &flags);
715 /* fixup registers */
716 #ifdef CONFIG_X86_64
717 regs->cs = __KERNEL_CS;
718 #else
719 regs->cs = __KERNEL_CS | get_kernel_rpl();
720 regs->gs = 0;
721 #endif
722 regs->ip = trampoline_address;
723 regs->orig_ax = ~0UL;
726 * It is possible to have multiple instances associated with a given
727 * task either because multiple functions in the call path have
728 * return probes installed on them, and/or more than one
729 * return probe was registered for a target function.
731 * We can handle this because:
732 * - instances are always pushed into the head of the list
733 * - when multiple return probes are registered for the same
734 * function, the (chronologically) first instance's ret_addr
735 * will be the real return address, and all the rest will
736 * point to kretprobe_trampoline.
738 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
739 if (ri->task != current)
740 /* another task is sharing our hash bucket */
741 continue;
743 if (ri->rp && ri->rp->handler) {
744 __get_cpu_var(current_kprobe) = &ri->rp->kp;
745 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
746 ri->rp->handler(ri, regs);
747 __get_cpu_var(current_kprobe) = NULL;
750 orig_ret_address = (unsigned long)ri->ret_addr;
751 recycle_rp_inst(ri, &empty_rp);
753 if (orig_ret_address != trampoline_address)
755 * This is the real return address. Any other
756 * instances associated with this task are for
757 * other calls deeper on the call stack
759 break;
762 kretprobe_assert(ri, orig_ret_address, trampoline_address);
764 kretprobe_hash_unlock(current, &flags);
766 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
767 hlist_del(&ri->hlist);
768 kfree(ri);
770 return (void *)orig_ret_address;
774 * Called after single-stepping. p->addr is the address of the
775 * instruction whose first byte has been replaced by the "int 3"
776 * instruction. To avoid the SMP problems that can occur when we
777 * temporarily put back the original opcode to single-step, we
778 * single-stepped a copy of the instruction. The address of this
779 * copy is p->ainsn.insn.
781 * This function prepares to return from the post-single-step
782 * interrupt. We have to fix up the stack as follows:
784 * 0) Except in the case of absolute or indirect jump or call instructions,
785 * the new ip is relative to the copied instruction. We need to make
786 * it relative to the original instruction.
788 * 1) If the single-stepped instruction was pushfl, then the TF and IF
789 * flags are set in the just-pushed flags, and may need to be cleared.
791 * 2) If the single-stepped instruction was a call, the return address
792 * that is atop the stack is the address following the copied instruction.
793 * We need to make it the address following the original instruction.
795 * If this is the first time we've single-stepped the instruction at
796 * this probepoint, and the instruction is boostable, boost it: add a
797 * jump instruction after the copied instruction, that jumps to the next
798 * instruction after the probepoint.
800 static void __kprobes resume_execution(struct kprobe *p,
801 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
803 unsigned long *tos = stack_addr(regs);
804 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
805 unsigned long orig_ip = (unsigned long)p->addr;
806 kprobe_opcode_t *insn = p->ainsn.insn;
808 /* Skip prefixes */
809 insn = skip_prefixes(insn);
811 regs->flags &= ~X86_EFLAGS_TF;
812 switch (*insn) {
813 case 0x9c: /* pushfl */
814 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
815 *tos |= kcb->kprobe_old_flags;
816 break;
817 case 0xc2: /* iret/ret/lret */
818 case 0xc3:
819 case 0xca:
820 case 0xcb:
821 case 0xcf:
822 case 0xea: /* jmp absolute -- ip is correct */
823 /* ip is already adjusted, no more changes required */
824 p->ainsn.boostable = 1;
825 goto no_change;
826 case 0xe8: /* call relative - Fix return addr */
827 *tos = orig_ip + (*tos - copy_ip);
828 break;
829 #ifdef CONFIG_X86_32
830 case 0x9a: /* call absolute -- same as call absolute, indirect */
831 *tos = orig_ip + (*tos - copy_ip);
832 goto no_change;
833 #endif
834 case 0xff:
835 if ((insn[1] & 0x30) == 0x10) {
837 * call absolute, indirect
838 * Fix return addr; ip is correct.
839 * But this is not boostable
841 *tos = orig_ip + (*tos - copy_ip);
842 goto no_change;
843 } else if (((insn[1] & 0x31) == 0x20) ||
844 ((insn[1] & 0x31) == 0x21)) {
846 * jmp near and far, absolute indirect
847 * ip is correct. And this is boostable
849 p->ainsn.boostable = 1;
850 goto no_change;
852 default:
853 break;
856 if (p->ainsn.boostable == 0) {
857 if ((regs->ip > copy_ip) &&
858 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
860 * These instructions can be executed directly if it
861 * jumps back to correct address.
863 synthesize_reljump((void *)regs->ip,
864 (void *)orig_ip + (regs->ip - copy_ip));
865 p->ainsn.boostable = 1;
866 } else {
867 p->ainsn.boostable = -1;
871 regs->ip += orig_ip - copy_ip;
873 no_change:
874 restore_btf();
878 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
879 * remain disabled throughout this function.
881 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
883 struct kprobe *cur = kprobe_running();
884 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
886 if (!cur)
887 return 0;
889 resume_execution(cur, regs, kcb);
890 regs->flags |= kcb->kprobe_saved_flags;
892 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
893 kcb->kprobe_status = KPROBE_HIT_SSDONE;
894 cur->post_handler(cur, regs, 0);
897 /* Restore back the original saved kprobes variables and continue. */
898 if (kcb->kprobe_status == KPROBE_REENTER) {
899 restore_previous_kprobe(kcb);
900 goto out;
902 reset_current_kprobe();
903 out:
904 preempt_enable_no_resched();
907 * if somebody else is singlestepping across a probe point, flags
908 * will have TF set, in which case, continue the remaining processing
909 * of do_debug, as if this is not a probe hit.
911 if (regs->flags & X86_EFLAGS_TF)
912 return 0;
914 return 1;
917 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
919 struct kprobe *cur = kprobe_running();
920 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
922 switch (kcb->kprobe_status) {
923 case KPROBE_HIT_SS:
924 case KPROBE_REENTER:
926 * We are here because the instruction being single
927 * stepped caused a page fault. We reset the current
928 * kprobe and the ip points back to the probe address
929 * and allow the page fault handler to continue as a
930 * normal page fault.
932 regs->ip = (unsigned long)cur->addr;
933 regs->flags |= kcb->kprobe_old_flags;
934 if (kcb->kprobe_status == KPROBE_REENTER)
935 restore_previous_kprobe(kcb);
936 else
937 reset_current_kprobe();
938 preempt_enable_no_resched();
939 break;
940 case KPROBE_HIT_ACTIVE:
941 case KPROBE_HIT_SSDONE:
943 * We increment the nmissed count for accounting,
944 * we can also use npre/npostfault count for accounting
945 * these specific fault cases.
947 kprobes_inc_nmissed_count(cur);
950 * We come here because instructions in the pre/post
951 * handler caused the page_fault, this could happen
952 * if handler tries to access user space by
953 * copy_from_user(), get_user() etc. Let the
954 * user-specified handler try to fix it first.
956 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
957 return 1;
960 * In case the user-specified fault handler returned
961 * zero, try to fix up.
963 if (fixup_exception(regs))
964 return 1;
967 * fixup routine could not handle it,
968 * Let do_page_fault() fix it.
970 break;
971 default:
972 break;
974 return 0;
978 * Wrapper routine for handling exceptions.
980 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
981 unsigned long val, void *data)
983 struct die_args *args = data;
984 int ret = NOTIFY_DONE;
986 if (args->regs && user_mode_vm(args->regs))
987 return ret;
989 switch (val) {
990 case DIE_INT3:
991 if (kprobe_handler(args->regs))
992 ret = NOTIFY_STOP;
993 break;
994 case DIE_DEBUG:
995 if (post_kprobe_handler(args->regs)) {
997 * Reset the BS bit in dr6 (pointed by args->err) to
998 * denote completion of processing
1000 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
1001 ret = NOTIFY_STOP;
1003 break;
1004 case DIE_GPF:
1006 * To be potentially processing a kprobe fault and to
1007 * trust the result from kprobe_running(), we have
1008 * be non-preemptible.
1010 if (!preemptible() && kprobe_running() &&
1011 kprobe_fault_handler(args->regs, args->trapnr))
1012 ret = NOTIFY_STOP;
1013 break;
1014 default:
1015 break;
1017 return ret;
1020 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1022 struct jprobe *jp = container_of(p, struct jprobe, kp);
1023 unsigned long addr;
1024 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1026 kcb->jprobe_saved_regs = *regs;
1027 kcb->jprobe_saved_sp = stack_addr(regs);
1028 addr = (unsigned long)(kcb->jprobe_saved_sp);
1031 * As Linus pointed out, gcc assumes that the callee
1032 * owns the argument space and could overwrite it, e.g.
1033 * tailcall optimization. So, to be absolutely safe
1034 * we also save and restore enough stack bytes to cover
1035 * the argument area.
1037 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1038 MIN_STACK_SIZE(addr));
1039 regs->flags &= ~X86_EFLAGS_IF;
1040 trace_hardirqs_off();
1041 regs->ip = (unsigned long)(jp->entry);
1042 return 1;
1045 void __kprobes jprobe_return(void)
1047 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1049 asm volatile (
1050 #ifdef CONFIG_X86_64
1051 " xchg %%rbx,%%rsp \n"
1052 #else
1053 " xchgl %%ebx,%%esp \n"
1054 #endif
1055 " int3 \n"
1056 " .globl jprobe_return_end\n"
1057 " jprobe_return_end: \n"
1058 " nop \n"::"b"
1059 (kcb->jprobe_saved_sp):"memory");
1062 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1064 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1065 u8 *addr = (u8 *) (regs->ip - 1);
1066 struct jprobe *jp = container_of(p, struct jprobe, kp);
1068 if ((addr > (u8 *) jprobe_return) &&
1069 (addr < (u8 *) jprobe_return_end)) {
1070 if (stack_addr(regs) != kcb->jprobe_saved_sp) {
1071 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1072 printk(KERN_ERR
1073 "current sp %p does not match saved sp %p\n",
1074 stack_addr(regs), kcb->jprobe_saved_sp);
1075 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1076 show_registers(saved_regs);
1077 printk(KERN_ERR "Current registers\n");
1078 show_registers(regs);
1079 BUG();
1081 *regs = kcb->jprobe_saved_regs;
1082 memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1083 kcb->jprobes_stack,
1084 MIN_STACK_SIZE(kcb->jprobe_saved_sp));
1085 preempt_enable_no_resched();
1086 return 1;
1088 return 0;
1092 #ifdef CONFIG_OPTPROBES
1094 /* Insert a call instruction at address 'from', which calls address 'to'.*/
1095 static void __kprobes synthesize_relcall(void *from, void *to)
1097 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
1100 /* Insert a move instruction which sets a pointer to eax/rdi (1st arg). */
1101 static void __kprobes synthesize_set_arg1(kprobe_opcode_t *addr,
1102 unsigned long val)
1104 #ifdef CONFIG_X86_64
1105 *addr++ = 0x48;
1106 *addr++ = 0xbf;
1107 #else
1108 *addr++ = 0xb8;
1109 #endif
1110 *(unsigned long *)addr = val;
1113 void __kprobes kprobes_optinsn_template_holder(void)
1115 asm volatile (
1116 ".global optprobe_template_entry\n"
1117 "optprobe_template_entry: \n"
1118 #ifdef CONFIG_X86_64
1119 /* We don't bother saving the ss register */
1120 " pushq %rsp\n"
1121 " pushfq\n"
1122 SAVE_REGS_STRING
1123 " movq %rsp, %rsi\n"
1124 ".global optprobe_template_val\n"
1125 "optprobe_template_val: \n"
1126 ASM_NOP5
1127 ASM_NOP5
1128 ".global optprobe_template_call\n"
1129 "optprobe_template_call: \n"
1130 ASM_NOP5
1131 /* Move flags to rsp */
1132 " movq 144(%rsp), %rdx\n"
1133 " movq %rdx, 152(%rsp)\n"
1134 RESTORE_REGS_STRING
1135 /* Skip flags entry */
1136 " addq $8, %rsp\n"
1137 " popfq\n"
1138 #else /* CONFIG_X86_32 */
1139 " pushf\n"
1140 SAVE_REGS_STRING
1141 " movl %esp, %edx\n"
1142 ".global optprobe_template_val\n"
1143 "optprobe_template_val: \n"
1144 ASM_NOP5
1145 ".global optprobe_template_call\n"
1146 "optprobe_template_call: \n"
1147 ASM_NOP5
1148 RESTORE_REGS_STRING
1149 " addl $4, %esp\n" /* skip cs */
1150 " popf\n"
1151 #endif
1152 ".global optprobe_template_end\n"
1153 "optprobe_template_end: \n");
1156 #define TMPL_MOVE_IDX \
1157 ((long)&optprobe_template_val - (long)&optprobe_template_entry)
1158 #define TMPL_CALL_IDX \
1159 ((long)&optprobe_template_call - (long)&optprobe_template_entry)
1160 #define TMPL_END_IDX \
1161 ((long)&optprobe_template_end - (long)&optprobe_template_entry)
1163 #define INT3_SIZE sizeof(kprobe_opcode_t)
1165 /* Optimized kprobe call back function: called from optinsn */
1166 static void __kprobes optimized_callback(struct optimized_kprobe *op,
1167 struct pt_regs *regs)
1169 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1171 preempt_disable();
1172 if (kprobe_running()) {
1173 kprobes_inc_nmissed_count(&op->kp);
1174 } else {
1175 /* Save skipped registers */
1176 #ifdef CONFIG_X86_64
1177 regs->cs = __KERNEL_CS;
1178 #else
1179 regs->cs = __KERNEL_CS | get_kernel_rpl();
1180 regs->gs = 0;
1181 #endif
1182 regs->ip = (unsigned long)op->kp.addr + INT3_SIZE;
1183 regs->orig_ax = ~0UL;
1185 __get_cpu_var(current_kprobe) = &op->kp;
1186 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1187 opt_pre_handler(&op->kp, regs);
1188 __get_cpu_var(current_kprobe) = NULL;
1190 preempt_enable_no_resched();
1193 static int __kprobes copy_optimized_instructions(u8 *dest, u8 *src)
1195 int len = 0, ret;
1197 while (len < RELATIVEJUMP_SIZE) {
1198 ret = __copy_instruction(dest + len, src + len, 1);
1199 if (!ret || !can_boost(dest + len))
1200 return -EINVAL;
1201 len += ret;
1203 /* Check whether the address range is reserved */
1204 if (ftrace_text_reserved(src, src + len - 1) ||
1205 alternatives_text_reserved(src, src + len - 1))
1206 return -EBUSY;
1208 return len;
1211 /* Check whether insn is indirect jump */
1212 static int __kprobes insn_is_indirect_jump(struct insn *insn)
1214 return ((insn->opcode.bytes[0] == 0xff &&
1215 (X86_MODRM_REG(insn->modrm.value) & 6) == 4) || /* Jump */
1216 insn->opcode.bytes[0] == 0xea); /* Segment based jump */
1219 /* Check whether insn jumps into specified address range */
1220 static int insn_jump_into_range(struct insn *insn, unsigned long start, int len)
1222 unsigned long target = 0;
1224 switch (insn->opcode.bytes[0]) {
1225 case 0xe0: /* loopne */
1226 case 0xe1: /* loope */
1227 case 0xe2: /* loop */
1228 case 0xe3: /* jcxz */
1229 case 0xe9: /* near relative jump */
1230 case 0xeb: /* short relative jump */
1231 break;
1232 case 0x0f:
1233 if ((insn->opcode.bytes[1] & 0xf0) == 0x80) /* jcc near */
1234 break;
1235 return 0;
1236 default:
1237 if ((insn->opcode.bytes[0] & 0xf0) == 0x70) /* jcc short */
1238 break;
1239 return 0;
1241 target = (unsigned long)insn->next_byte + insn->immediate.value;
1243 return (start <= target && target <= start + len);
1246 /* Decode whole function to ensure any instructions don't jump into target */
1247 static int __kprobes can_optimize(unsigned long paddr)
1249 int ret;
1250 unsigned long addr, size = 0, offset = 0;
1251 struct insn insn;
1252 kprobe_opcode_t buf[MAX_INSN_SIZE];
1253 /* Dummy buffers for lookup_symbol_attrs */
1254 static char __dummy_buf[KSYM_NAME_LEN];
1256 /* Lookup symbol including addr */
1257 if (!kallsyms_lookup(paddr, &size, &offset, NULL, __dummy_buf))
1258 return 0;
1260 /* Check there is enough space for a relative jump. */
1261 if (size - offset < RELATIVEJUMP_SIZE)
1262 return 0;
1264 /* Decode instructions */
1265 addr = paddr - offset;
1266 while (addr < paddr - offset + size) { /* Decode until function end */
1267 if (search_exception_tables(addr))
1269 * Since some fixup code will jumps into this function,
1270 * we can't optimize kprobe in this function.
1272 return 0;
1273 kernel_insn_init(&insn, (void *)addr);
1274 insn_get_opcode(&insn);
1275 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
1276 ret = recover_probed_instruction(buf, addr);
1277 if (ret)
1278 return 0;
1279 kernel_insn_init(&insn, buf);
1281 insn_get_length(&insn);
1282 /* Recover address */
1283 insn.kaddr = (void *)addr;
1284 insn.next_byte = (void *)(addr + insn.length);
1285 /* Check any instructions don't jump into target */
1286 if (insn_is_indirect_jump(&insn) ||
1287 insn_jump_into_range(&insn, paddr + INT3_SIZE,
1288 RELATIVE_ADDR_SIZE))
1289 return 0;
1290 addr += insn.length;
1293 return 1;
1296 /* Check optimized_kprobe can actually be optimized. */
1297 int __kprobes arch_check_optimized_kprobe(struct optimized_kprobe *op)
1299 int i;
1300 struct kprobe *p;
1302 for (i = 1; i < op->optinsn.size; i++) {
1303 p = get_kprobe(op->kp.addr + i);
1304 if (p && !kprobe_disabled(p))
1305 return -EEXIST;
1308 return 0;
1311 /* Check the addr is within the optimized instructions. */
1312 int __kprobes arch_within_optimized_kprobe(struct optimized_kprobe *op,
1313 unsigned long addr)
1315 return ((unsigned long)op->kp.addr <= addr &&
1316 (unsigned long)op->kp.addr + op->optinsn.size > addr);
1319 /* Free optimized instruction slot */
1320 static __kprobes
1321 void __arch_remove_optimized_kprobe(struct optimized_kprobe *op, int dirty)
1323 if (op->optinsn.insn) {
1324 free_optinsn_slot(op->optinsn.insn, dirty);
1325 op->optinsn.insn = NULL;
1326 op->optinsn.size = 0;
1330 void __kprobes arch_remove_optimized_kprobe(struct optimized_kprobe *op)
1332 __arch_remove_optimized_kprobe(op, 1);
1336 * Copy replacing target instructions
1337 * Target instructions MUST be relocatable (checked inside)
1339 int __kprobes arch_prepare_optimized_kprobe(struct optimized_kprobe *op)
1341 u8 *buf;
1342 int ret;
1343 long rel;
1345 if (!can_optimize((unsigned long)op->kp.addr))
1346 return -EILSEQ;
1348 op->optinsn.insn = get_optinsn_slot();
1349 if (!op->optinsn.insn)
1350 return -ENOMEM;
1353 * Verify if the address gap is in 2GB range, because this uses
1354 * a relative jump.
1356 rel = (long)op->optinsn.insn - (long)op->kp.addr + RELATIVEJUMP_SIZE;
1357 if (abs(rel) > 0x7fffffff)
1358 return -ERANGE;
1360 buf = (u8 *)op->optinsn.insn;
1362 /* Copy instructions into the out-of-line buffer */
1363 ret = copy_optimized_instructions(buf + TMPL_END_IDX, op->kp.addr);
1364 if (ret < 0) {
1365 __arch_remove_optimized_kprobe(op, 0);
1366 return ret;
1368 op->optinsn.size = ret;
1370 /* Copy arch-dep-instance from template */
1371 memcpy(buf, &optprobe_template_entry, TMPL_END_IDX);
1373 /* Set probe information */
1374 synthesize_set_arg1(buf + TMPL_MOVE_IDX, (unsigned long)op);
1376 /* Set probe function call */
1377 synthesize_relcall(buf + TMPL_CALL_IDX, optimized_callback);
1379 /* Set returning jmp instruction at the tail of out-of-line buffer */
1380 synthesize_reljump(buf + TMPL_END_IDX + op->optinsn.size,
1381 (u8 *)op->kp.addr + op->optinsn.size);
1383 flush_icache_range((unsigned long) buf,
1384 (unsigned long) buf + TMPL_END_IDX +
1385 op->optinsn.size + RELATIVEJUMP_SIZE);
1386 return 0;
1389 /* Replace a breakpoint (int3) with a relative jump. */
1390 int __kprobes arch_optimize_kprobe(struct optimized_kprobe *op)
1392 unsigned char jmp_code[RELATIVEJUMP_SIZE];
1393 s32 rel = (s32)((long)op->optinsn.insn -
1394 ((long)op->kp.addr + RELATIVEJUMP_SIZE));
1396 /* Backup instructions which will be replaced by jump address */
1397 memcpy(op->optinsn.copied_insn, op->kp.addr + INT3_SIZE,
1398 RELATIVE_ADDR_SIZE);
1400 jmp_code[0] = RELATIVEJUMP_OPCODE;
1401 *(s32 *)(&jmp_code[1]) = rel;
1404 * text_poke_smp doesn't support NMI/MCE code modifying.
1405 * However, since kprobes itself also doesn't support NMI/MCE
1406 * code probing, it's not a problem.
1408 text_poke_smp(op->kp.addr, jmp_code, RELATIVEJUMP_SIZE);
1409 return 0;
1412 /* Replace a relative jump with a breakpoint (int3). */
1413 void __kprobes arch_unoptimize_kprobe(struct optimized_kprobe *op)
1415 u8 buf[RELATIVEJUMP_SIZE];
1417 /* Set int3 to first byte for kprobes */
1418 buf[0] = BREAKPOINT_INSTRUCTION;
1419 memcpy(buf + 1, op->optinsn.copied_insn, RELATIVE_ADDR_SIZE);
1420 text_poke_smp(op->kp.addr, buf, RELATIVEJUMP_SIZE);
1423 static int __kprobes setup_detour_execution(struct kprobe *p,
1424 struct pt_regs *regs,
1425 int reenter)
1427 struct optimized_kprobe *op;
1429 if (p->flags & KPROBE_FLAG_OPTIMIZED) {
1430 /* This kprobe is really able to run optimized path. */
1431 op = container_of(p, struct optimized_kprobe, kp);
1432 /* Detour through copied instructions */
1433 regs->ip = (unsigned long)op->optinsn.insn + TMPL_END_IDX;
1434 if (!reenter)
1435 reset_current_kprobe();
1436 preempt_enable_no_resched();
1437 return 1;
1439 return 0;
1441 #endif
1443 int __init arch_init_kprobes(void)
1445 return 0;
1448 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1450 return 0;