2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
40 * (code doesn't rely on that order so it could be switched around)
42 * anon_vma->lock (memory_failure, collect_procs_anon)
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
61 #include <asm/tlbflush.h>
65 static struct kmem_cache
*anon_vma_cachep
;
66 static struct kmem_cache
*anon_vma_chain_cachep
;
68 static inline struct anon_vma
*anon_vma_alloc(void)
70 return kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
73 void anon_vma_free(struct anon_vma
*anon_vma
)
75 kmem_cache_free(anon_vma_cachep
, anon_vma
);
78 static inline struct anon_vma_chain
*anon_vma_chain_alloc(void)
80 return kmem_cache_alloc(anon_vma_chain_cachep
, GFP_KERNEL
);
83 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
85 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
89 * anon_vma_prepare - attach an anon_vma to a memory region
90 * @vma: the memory region in question
92 * This makes sure the memory mapping described by 'vma' has
93 * an 'anon_vma' attached to it, so that we can associate the
94 * anonymous pages mapped into it with that anon_vma.
96 * The common case will be that we already have one, but if
97 * not we either need to find an adjacent mapping that we
98 * can re-use the anon_vma from (very common when the only
99 * reason for splitting a vma has been mprotect()), or we
100 * allocate a new one.
102 * Anon-vma allocations are very subtle, because we may have
103 * optimistically looked up an anon_vma in page_lock_anon_vma()
104 * and that may actually touch the spinlock even in the newly
105 * allocated vma (it depends on RCU to make sure that the
106 * anon_vma isn't actually destroyed).
108 * As a result, we need to do proper anon_vma locking even
109 * for the new allocation. At the same time, we do not want
110 * to do any locking for the common case of already having
113 * This must be called with the mmap_sem held for reading.
115 int anon_vma_prepare(struct vm_area_struct
*vma
)
117 struct anon_vma
*anon_vma
= vma
->anon_vma
;
118 struct anon_vma_chain
*avc
;
121 if (unlikely(!anon_vma
)) {
122 struct mm_struct
*mm
= vma
->vm_mm
;
123 struct anon_vma
*allocated
;
125 avc
= anon_vma_chain_alloc();
129 anon_vma
= find_mergeable_anon_vma(vma
);
132 anon_vma
= anon_vma_alloc();
133 if (unlikely(!anon_vma
))
134 goto out_enomem_free_avc
;
135 allocated
= anon_vma
;
137 * This VMA had no anon_vma yet. This anon_vma is
138 * the root of any anon_vma tree that might form.
140 anon_vma
->root
= anon_vma
;
143 anon_vma_lock(anon_vma
);
144 /* page_table_lock to protect against threads */
145 spin_lock(&mm
->page_table_lock
);
146 if (likely(!vma
->anon_vma
)) {
147 vma
->anon_vma
= anon_vma
;
148 avc
->anon_vma
= anon_vma
;
150 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
151 list_add_tail(&avc
->same_anon_vma
, &anon_vma
->head
);
155 spin_unlock(&mm
->page_table_lock
);
156 anon_vma_unlock(anon_vma
);
158 if (unlikely(allocated
))
159 anon_vma_free(allocated
);
161 anon_vma_chain_free(avc
);
166 anon_vma_chain_free(avc
);
171 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
172 struct anon_vma_chain
*avc
,
173 struct anon_vma
*anon_vma
)
176 avc
->anon_vma
= anon_vma
;
177 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
179 anon_vma_lock(anon_vma
);
181 * It's critical to add new vmas to the tail of the anon_vma,
182 * see comment in huge_memory.c:__split_huge_page().
184 list_add_tail(&avc
->same_anon_vma
, &anon_vma
->head
);
185 anon_vma_unlock(anon_vma
);
189 * Attach the anon_vmas from src to dst.
190 * Returns 0 on success, -ENOMEM on failure.
192 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
194 struct anon_vma_chain
*avc
, *pavc
;
196 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
197 avc
= anon_vma_chain_alloc();
200 anon_vma_chain_link(dst
, avc
, pavc
->anon_vma
);
205 unlink_anon_vmas(dst
);
210 * Attach vma to its own anon_vma, as well as to the anon_vmas that
211 * the corresponding VMA in the parent process is attached to.
212 * Returns 0 on success, non-zero on failure.
214 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
216 struct anon_vma_chain
*avc
;
217 struct anon_vma
*anon_vma
;
219 /* Don't bother if the parent process has no anon_vma here. */
224 * First, attach the new VMA to the parent VMA's anon_vmas,
225 * so rmap can find non-COWed pages in child processes.
227 if (anon_vma_clone(vma
, pvma
))
230 /* Then add our own anon_vma. */
231 anon_vma
= anon_vma_alloc();
234 avc
= anon_vma_chain_alloc();
236 goto out_error_free_anon_vma
;
239 * The root anon_vma's spinlock is the lock actually used when we
240 * lock any of the anon_vmas in this anon_vma tree.
242 anon_vma
->root
= pvma
->anon_vma
->root
;
244 * With KSM refcounts, an anon_vma can stay around longer than the
245 * process it belongs to. The root anon_vma needs to be pinned
246 * until this anon_vma is freed, because the lock lives in the root.
248 get_anon_vma(anon_vma
->root
);
249 /* Mark this anon_vma as the one where our new (COWed) pages go. */
250 vma
->anon_vma
= anon_vma
;
251 anon_vma_chain_link(vma
, avc
, anon_vma
);
255 out_error_free_anon_vma
:
256 anon_vma_free(anon_vma
);
258 unlink_anon_vmas(vma
);
262 static void anon_vma_unlink(struct anon_vma_chain
*anon_vma_chain
)
264 struct anon_vma
*anon_vma
= anon_vma_chain
->anon_vma
;
267 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
271 anon_vma_lock(anon_vma
);
272 list_del(&anon_vma_chain
->same_anon_vma
);
274 /* We must garbage collect the anon_vma if it's empty */
275 empty
= list_empty(&anon_vma
->head
) && !anonvma_external_refcount(anon_vma
);
276 anon_vma_unlock(anon_vma
);
279 /* We no longer need the root anon_vma */
280 if (anon_vma
->root
!= anon_vma
)
281 drop_anon_vma(anon_vma
->root
);
282 anon_vma_free(anon_vma
);
286 void unlink_anon_vmas(struct vm_area_struct
*vma
)
288 struct anon_vma_chain
*avc
, *next
;
291 * Unlink each anon_vma chained to the VMA. This list is ordered
292 * from newest to oldest, ensuring the root anon_vma gets freed last.
294 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
295 anon_vma_unlink(avc
);
296 list_del(&avc
->same_vma
);
297 anon_vma_chain_free(avc
);
301 static void anon_vma_ctor(void *data
)
303 struct anon_vma
*anon_vma
= data
;
305 spin_lock_init(&anon_vma
->lock
);
306 anonvma_external_refcount_init(anon_vma
);
307 INIT_LIST_HEAD(&anon_vma
->head
);
310 void __init
anon_vma_init(void)
312 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
313 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
314 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
318 * Getting a lock on a stable anon_vma from a page off the LRU is
319 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
321 struct anon_vma
*__page_lock_anon_vma(struct page
*page
)
323 struct anon_vma
*anon_vma
, *root_anon_vma
;
324 unsigned long anon_mapping
;
327 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
328 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
330 if (!page_mapped(page
))
333 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
334 root_anon_vma
= ACCESS_ONCE(anon_vma
->root
);
335 spin_lock(&root_anon_vma
->lock
);
338 * If this page is still mapped, then its anon_vma cannot have been
339 * freed. But if it has been unmapped, we have no security against
340 * the anon_vma structure being freed and reused (for another anon_vma:
341 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
342 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
343 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
345 if (page_mapped(page
))
348 spin_unlock(&root_anon_vma
->lock
);
354 void page_unlock_anon_vma(struct anon_vma
*anon_vma
)
355 __releases(&anon_vma
->root
->lock
)
358 anon_vma_unlock(anon_vma
);
363 * At what user virtual address is page expected in @vma?
364 * Returns virtual address or -EFAULT if page's index/offset is not
365 * within the range mapped the @vma.
368 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
370 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
371 unsigned long address
;
373 if (unlikely(is_vm_hugetlb_page(vma
)))
374 pgoff
= page
->index
<< huge_page_order(page_hstate(page
));
375 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
376 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
377 /* page should be within @vma mapping range */
384 * At what user virtual address is page expected in vma?
385 * Caller should check the page is actually part of the vma.
387 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
389 if (PageAnon(page
)) {
390 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
392 * Note: swapoff's unuse_vma() is more efficient with this
393 * check, and needs it to match anon_vma when KSM is active.
395 if (!vma
->anon_vma
|| !page__anon_vma
||
396 vma
->anon_vma
->root
!= page__anon_vma
->root
)
398 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
400 vma
->vm_file
->f_mapping
!= page
->mapping
)
404 return vma_address(page
, vma
);
408 * Check that @page is mapped at @address into @mm.
410 * If @sync is false, page_check_address may perform a racy check to avoid
411 * the page table lock when the pte is not present (helpful when reclaiming
412 * highly shared pages).
414 * On success returns with pte mapped and locked.
416 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
417 unsigned long address
, spinlock_t
**ptlp
, int sync
)
425 if (unlikely(PageHuge(page
))) {
426 pte
= huge_pte_offset(mm
, address
);
427 ptl
= &mm
->page_table_lock
;
431 pgd
= pgd_offset(mm
, address
);
432 if (!pgd_present(*pgd
))
435 pud
= pud_offset(pgd
, address
);
436 if (!pud_present(*pud
))
439 pmd
= pmd_offset(pud
, address
);
440 if (!pmd_present(*pmd
))
442 if (pmd_trans_huge(*pmd
))
445 pte
= pte_offset_map(pmd
, address
);
446 /* Make a quick check before getting the lock */
447 if (!sync
&& !pte_present(*pte
)) {
452 ptl
= pte_lockptr(mm
, pmd
);
455 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
459 pte_unmap_unlock(pte
, ptl
);
464 * page_mapped_in_vma - check whether a page is really mapped in a VMA
465 * @page: the page to test
466 * @vma: the VMA to test
468 * Returns 1 if the page is mapped into the page tables of the VMA, 0
469 * if the page is not mapped into the page tables of this VMA. Only
470 * valid for normal file or anonymous VMAs.
472 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
474 unsigned long address
;
478 address
= vma_address(page
, vma
);
479 if (address
== -EFAULT
) /* out of vma range */
481 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
482 if (!pte
) /* the page is not in this mm */
484 pte_unmap_unlock(pte
, ptl
);
490 * Subfunctions of page_referenced: page_referenced_one called
491 * repeatedly from either page_referenced_anon or page_referenced_file.
493 int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
494 unsigned long address
, unsigned int *mapcount
,
495 unsigned long *vm_flags
)
497 struct mm_struct
*mm
= vma
->vm_mm
;
501 * Don't want to elevate referenced for mlocked page that gets this far,
502 * in order that it progresses to try_to_unmap and is moved to the
505 if (vma
->vm_flags
& VM_LOCKED
) {
506 *mapcount
= 0; /* break early from loop */
507 *vm_flags
|= VM_LOCKED
;
511 /* Pretend the page is referenced if the task has the
512 swap token and is in the middle of a page fault. */
513 if (mm
!= current
->mm
&& has_swap_token(mm
) &&
514 rwsem_is_locked(&mm
->mmap_sem
))
517 if (unlikely(PageTransHuge(page
))) {
520 spin_lock(&mm
->page_table_lock
);
521 pmd
= page_check_address_pmd(page
, mm
, address
,
522 PAGE_CHECK_ADDRESS_PMD_FLAG
);
523 if (pmd
&& !pmd_trans_splitting(*pmd
) &&
524 pmdp_clear_flush_young_notify(vma
, address
, pmd
))
526 spin_unlock(&mm
->page_table_lock
);
531 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
535 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
537 * Don't treat a reference through a sequentially read
538 * mapping as such. If the page has been used in
539 * another mapping, we will catch it; if this other
540 * mapping is already gone, the unmap path will have
541 * set PG_referenced or activated the page.
543 if (likely(!VM_SequentialReadHint(vma
)))
546 pte_unmap_unlock(pte
, ptl
);
552 *vm_flags
|= vma
->vm_flags
;
557 static int page_referenced_anon(struct page
*page
,
558 struct mem_cgroup
*mem_cont
,
559 unsigned long *vm_flags
)
561 unsigned int mapcount
;
562 struct anon_vma
*anon_vma
;
563 struct anon_vma_chain
*avc
;
566 anon_vma
= page_lock_anon_vma(page
);
570 mapcount
= page_mapcount(page
);
571 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
572 struct vm_area_struct
*vma
= avc
->vma
;
573 unsigned long address
= vma_address(page
, vma
);
574 if (address
== -EFAULT
)
577 * If we are reclaiming on behalf of a cgroup, skip
578 * counting on behalf of references from different
581 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
583 referenced
+= page_referenced_one(page
, vma
, address
,
584 &mapcount
, vm_flags
);
589 page_unlock_anon_vma(anon_vma
);
594 * page_referenced_file - referenced check for object-based rmap
595 * @page: the page we're checking references on.
596 * @mem_cont: target memory controller
597 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
599 * For an object-based mapped page, find all the places it is mapped and
600 * check/clear the referenced flag. This is done by following the page->mapping
601 * pointer, then walking the chain of vmas it holds. It returns the number
602 * of references it found.
604 * This function is only called from page_referenced for object-based pages.
606 static int page_referenced_file(struct page
*page
,
607 struct mem_cgroup
*mem_cont
,
608 unsigned long *vm_flags
)
610 unsigned int mapcount
;
611 struct address_space
*mapping
= page
->mapping
;
612 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
613 struct vm_area_struct
*vma
;
614 struct prio_tree_iter iter
;
618 * The caller's checks on page->mapping and !PageAnon have made
619 * sure that this is a file page: the check for page->mapping
620 * excludes the case just before it gets set on an anon page.
622 BUG_ON(PageAnon(page
));
625 * The page lock not only makes sure that page->mapping cannot
626 * suddenly be NULLified by truncation, it makes sure that the
627 * structure at mapping cannot be freed and reused yet,
628 * so we can safely take mapping->i_mmap_lock.
630 BUG_ON(!PageLocked(page
));
632 spin_lock(&mapping
->i_mmap_lock
);
635 * i_mmap_lock does not stabilize mapcount at all, but mapcount
636 * is more likely to be accurate if we note it after spinning.
638 mapcount
= page_mapcount(page
);
640 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
641 unsigned long address
= vma_address(page
, vma
);
642 if (address
== -EFAULT
)
645 * If we are reclaiming on behalf of a cgroup, skip
646 * counting on behalf of references from different
649 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
651 referenced
+= page_referenced_one(page
, vma
, address
,
652 &mapcount
, vm_flags
);
657 spin_unlock(&mapping
->i_mmap_lock
);
662 * page_referenced - test if the page was referenced
663 * @page: the page to test
664 * @is_locked: caller holds lock on the page
665 * @mem_cont: target memory controller
666 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
668 * Quick test_and_clear_referenced for all mappings to a page,
669 * returns the number of ptes which referenced the page.
671 int page_referenced(struct page
*page
,
673 struct mem_cgroup
*mem_cont
,
674 unsigned long *vm_flags
)
680 if (page_mapped(page
) && page_rmapping(page
)) {
681 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
682 we_locked
= trylock_page(page
);
688 if (unlikely(PageKsm(page
)))
689 referenced
+= page_referenced_ksm(page
, mem_cont
,
691 else if (PageAnon(page
))
692 referenced
+= page_referenced_anon(page
, mem_cont
,
694 else if (page
->mapping
)
695 referenced
+= page_referenced_file(page
, mem_cont
,
701 if (page_test_and_clear_young(page
))
707 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
708 unsigned long address
)
710 struct mm_struct
*mm
= vma
->vm_mm
;
715 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
719 if (pte_dirty(*pte
) || pte_write(*pte
)) {
722 flush_cache_page(vma
, address
, pte_pfn(*pte
));
723 entry
= ptep_clear_flush_notify(vma
, address
, pte
);
724 entry
= pte_wrprotect(entry
);
725 entry
= pte_mkclean(entry
);
726 set_pte_at(mm
, address
, pte
, entry
);
730 pte_unmap_unlock(pte
, ptl
);
735 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
737 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
738 struct vm_area_struct
*vma
;
739 struct prio_tree_iter iter
;
742 BUG_ON(PageAnon(page
));
744 spin_lock(&mapping
->i_mmap_lock
);
745 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
746 if (vma
->vm_flags
& VM_SHARED
) {
747 unsigned long address
= vma_address(page
, vma
);
748 if (address
== -EFAULT
)
750 ret
+= page_mkclean_one(page
, vma
, address
);
753 spin_unlock(&mapping
->i_mmap_lock
);
757 int page_mkclean(struct page
*page
)
761 BUG_ON(!PageLocked(page
));
763 if (page_mapped(page
)) {
764 struct address_space
*mapping
= page_mapping(page
);
766 ret
= page_mkclean_file(mapping
, page
);
767 if (page_test_dirty(page
)) {
768 page_clear_dirty(page
, 1);
776 EXPORT_SYMBOL_GPL(page_mkclean
);
779 * page_move_anon_rmap - move a page to our anon_vma
780 * @page: the page to move to our anon_vma
781 * @vma: the vma the page belongs to
782 * @address: the user virtual address mapped
784 * When a page belongs exclusively to one process after a COW event,
785 * that page can be moved into the anon_vma that belongs to just that
786 * process, so the rmap code will not search the parent or sibling
789 void page_move_anon_rmap(struct page
*page
,
790 struct vm_area_struct
*vma
, unsigned long address
)
792 struct anon_vma
*anon_vma
= vma
->anon_vma
;
794 VM_BUG_ON(!PageLocked(page
));
795 VM_BUG_ON(!anon_vma
);
796 VM_BUG_ON(page
->index
!= linear_page_index(vma
, address
));
798 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
799 page
->mapping
= (struct address_space
*) anon_vma
;
803 * __page_set_anon_rmap - set up new anonymous rmap
804 * @page: Page to add to rmap
805 * @vma: VM area to add page to.
806 * @address: User virtual address of the mapping
807 * @exclusive: the page is exclusively owned by the current process
809 static void __page_set_anon_rmap(struct page
*page
,
810 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
812 struct anon_vma
*anon_vma
= vma
->anon_vma
;
820 * If the page isn't exclusively mapped into this vma,
821 * we must use the _oldest_ possible anon_vma for the
825 anon_vma
= anon_vma
->root
;
827 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
828 page
->mapping
= (struct address_space
*) anon_vma
;
829 page
->index
= linear_page_index(vma
, address
);
833 * __page_check_anon_rmap - sanity check anonymous rmap addition
834 * @page: the page to add the mapping to
835 * @vma: the vm area in which the mapping is added
836 * @address: the user virtual address mapped
838 static void __page_check_anon_rmap(struct page
*page
,
839 struct vm_area_struct
*vma
, unsigned long address
)
841 #ifdef CONFIG_DEBUG_VM
843 * The page's anon-rmap details (mapping and index) are guaranteed to
844 * be set up correctly at this point.
846 * We have exclusion against page_add_anon_rmap because the caller
847 * always holds the page locked, except if called from page_dup_rmap,
848 * in which case the page is already known to be setup.
850 * We have exclusion against page_add_new_anon_rmap because those pages
851 * are initially only visible via the pagetables, and the pte is locked
852 * over the call to page_add_new_anon_rmap.
854 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
855 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
860 * page_add_anon_rmap - add pte mapping to an anonymous page
861 * @page: the page to add the mapping to
862 * @vma: the vm area in which the mapping is added
863 * @address: the user virtual address mapped
865 * The caller needs to hold the pte lock, and the page must be locked in
866 * the anon_vma case: to serialize mapping,index checking after setting,
867 * and to ensure that PageAnon is not being upgraded racily to PageKsm
868 * (but PageKsm is never downgraded to PageAnon).
870 void page_add_anon_rmap(struct page
*page
,
871 struct vm_area_struct
*vma
, unsigned long address
)
873 do_page_add_anon_rmap(page
, vma
, address
, 0);
877 * Special version of the above for do_swap_page, which often runs
878 * into pages that are exclusively owned by the current process.
879 * Everybody else should continue to use page_add_anon_rmap above.
881 void do_page_add_anon_rmap(struct page
*page
,
882 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
884 int first
= atomic_inc_and_test(&page
->_mapcount
);
886 if (!PageTransHuge(page
))
887 __inc_zone_page_state(page
, NR_ANON_PAGES
);
889 __inc_zone_page_state(page
,
890 NR_ANON_TRANSPARENT_HUGEPAGES
);
892 if (unlikely(PageKsm(page
)))
895 VM_BUG_ON(!PageLocked(page
));
896 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
898 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
900 __page_check_anon_rmap(page
, vma
, address
);
904 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
905 * @page: the page to add the mapping to
906 * @vma: the vm area in which the mapping is added
907 * @address: the user virtual address mapped
909 * Same as page_add_anon_rmap but must only be called on *new* pages.
910 * This means the inc-and-test can be bypassed.
911 * Page does not have to be locked.
913 void page_add_new_anon_rmap(struct page
*page
,
914 struct vm_area_struct
*vma
, unsigned long address
)
916 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
917 SetPageSwapBacked(page
);
918 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
919 if (!PageTransHuge(page
))
920 __inc_zone_page_state(page
, NR_ANON_PAGES
);
922 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
923 __page_set_anon_rmap(page
, vma
, address
, 1);
924 if (page_evictable(page
, vma
))
925 lru_cache_add_lru(page
, LRU_ACTIVE_ANON
);
927 add_page_to_unevictable_list(page
);
931 * page_add_file_rmap - add pte mapping to a file page
932 * @page: the page to add the mapping to
934 * The caller needs to hold the pte lock.
936 void page_add_file_rmap(struct page
*page
)
938 if (atomic_inc_and_test(&page
->_mapcount
)) {
939 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
940 mem_cgroup_update_file_mapped(page
, 1);
945 * page_remove_rmap - take down pte mapping from a page
946 * @page: page to remove mapping from
948 * The caller needs to hold the pte lock.
950 void page_remove_rmap(struct page
*page
)
952 /* page still mapped by someone else? */
953 if (!atomic_add_negative(-1, &page
->_mapcount
))
957 * Now that the last pte has gone, s390 must transfer dirty
958 * flag from storage key to struct page. We can usually skip
959 * this if the page is anon, so about to be freed; but perhaps
960 * not if it's in swapcache - there might be another pte slot
961 * containing the swap entry, but page not yet written to swap.
963 if ((!PageAnon(page
) || PageSwapCache(page
)) && page_test_dirty(page
)) {
964 page_clear_dirty(page
, 1);
965 set_page_dirty(page
);
968 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
969 * and not charged by memcg for now.
971 if (unlikely(PageHuge(page
)))
973 if (PageAnon(page
)) {
974 mem_cgroup_uncharge_page(page
);
975 if (!PageTransHuge(page
))
976 __dec_zone_page_state(page
, NR_ANON_PAGES
);
978 __dec_zone_page_state(page
,
979 NR_ANON_TRANSPARENT_HUGEPAGES
);
981 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
982 mem_cgroup_update_file_mapped(page
, -1);
985 * It would be tidy to reset the PageAnon mapping here,
986 * but that might overwrite a racing page_add_anon_rmap
987 * which increments mapcount after us but sets mapping
988 * before us: so leave the reset to free_hot_cold_page,
989 * and remember that it's only reliable while mapped.
990 * Leaving it set also helps swapoff to reinstate ptes
991 * faster for those pages still in swapcache.
996 * Subfunctions of try_to_unmap: try_to_unmap_one called
997 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
999 int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1000 unsigned long address
, enum ttu_flags flags
)
1002 struct mm_struct
*mm
= vma
->vm_mm
;
1006 int ret
= SWAP_AGAIN
;
1008 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1013 * If the page is mlock()d, we cannot swap it out.
1014 * If it's recently referenced (perhaps page_referenced
1015 * skipped over this mm) then we should reactivate it.
1017 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1018 if (vma
->vm_flags
& VM_LOCKED
)
1021 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1024 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1025 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1031 /* Nuke the page table entry. */
1032 flush_cache_page(vma
, address
, page_to_pfn(page
));
1033 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
1035 /* Move the dirty bit to the physical page now the pte is gone. */
1036 if (pte_dirty(pteval
))
1037 set_page_dirty(page
);
1039 /* Update high watermark before we lower rss */
1040 update_hiwater_rss(mm
);
1042 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1044 dec_mm_counter(mm
, MM_ANONPAGES
);
1046 dec_mm_counter(mm
, MM_FILEPAGES
);
1047 set_pte_at(mm
, address
, pte
,
1048 swp_entry_to_pte(make_hwpoison_entry(page
)));
1049 } else if (PageAnon(page
)) {
1050 swp_entry_t entry
= { .val
= page_private(page
) };
1052 if (PageSwapCache(page
)) {
1054 * Store the swap location in the pte.
1055 * See handle_pte_fault() ...
1057 if (swap_duplicate(entry
) < 0) {
1058 set_pte_at(mm
, address
, pte
, pteval
);
1062 if (list_empty(&mm
->mmlist
)) {
1063 spin_lock(&mmlist_lock
);
1064 if (list_empty(&mm
->mmlist
))
1065 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1066 spin_unlock(&mmlist_lock
);
1068 dec_mm_counter(mm
, MM_ANONPAGES
);
1069 inc_mm_counter(mm
, MM_SWAPENTS
);
1070 } else if (PAGE_MIGRATION
) {
1072 * Store the pfn of the page in a special migration
1073 * pte. do_swap_page() will wait until the migration
1074 * pte is removed and then restart fault handling.
1076 BUG_ON(TTU_ACTION(flags
) != TTU_MIGRATION
);
1077 entry
= make_migration_entry(page
, pte_write(pteval
));
1079 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1080 BUG_ON(pte_file(*pte
));
1081 } else if (PAGE_MIGRATION
&& (TTU_ACTION(flags
) == TTU_MIGRATION
)) {
1082 /* Establish migration entry for a file page */
1084 entry
= make_migration_entry(page
, pte_write(pteval
));
1085 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1087 dec_mm_counter(mm
, MM_FILEPAGES
);
1089 page_remove_rmap(page
);
1090 page_cache_release(page
);
1093 pte_unmap_unlock(pte
, ptl
);
1098 pte_unmap_unlock(pte
, ptl
);
1102 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1103 * unstable result and race. Plus, We can't wait here because
1104 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1105 * if trylock failed, the page remain in evictable lru and later
1106 * vmscan could retry to move the page to unevictable lru if the
1107 * page is actually mlocked.
1109 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1110 if (vma
->vm_flags
& VM_LOCKED
) {
1111 mlock_vma_page(page
);
1114 up_read(&vma
->vm_mm
->mmap_sem
);
1120 * objrmap doesn't work for nonlinear VMAs because the assumption that
1121 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1122 * Consequently, given a particular page and its ->index, we cannot locate the
1123 * ptes which are mapping that page without an exhaustive linear search.
1125 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1126 * maps the file to which the target page belongs. The ->vm_private_data field
1127 * holds the current cursor into that scan. Successive searches will circulate
1128 * around the vma's virtual address space.
1130 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1131 * more scanning pressure is placed against them as well. Eventually pages
1132 * will become fully unmapped and are eligible for eviction.
1134 * For very sparsely populated VMAs this is a little inefficient - chances are
1135 * there there won't be many ptes located within the scan cluster. In this case
1136 * maybe we could scan further - to the end of the pte page, perhaps.
1138 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1139 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1140 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1141 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1143 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1144 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1146 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
1147 struct vm_area_struct
*vma
, struct page
*check_page
)
1149 struct mm_struct
*mm
= vma
->vm_mm
;
1157 unsigned long address
;
1159 int ret
= SWAP_AGAIN
;
1162 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
1163 end
= address
+ CLUSTER_SIZE
;
1164 if (address
< vma
->vm_start
)
1165 address
= vma
->vm_start
;
1166 if (end
> vma
->vm_end
)
1169 pgd
= pgd_offset(mm
, address
);
1170 if (!pgd_present(*pgd
))
1173 pud
= pud_offset(pgd
, address
);
1174 if (!pud_present(*pud
))
1177 pmd
= pmd_offset(pud
, address
);
1178 if (!pmd_present(*pmd
))
1182 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1183 * keep the sem while scanning the cluster for mlocking pages.
1185 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1186 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
1188 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
1191 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1193 /* Update high watermark before we lower rss */
1194 update_hiwater_rss(mm
);
1196 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
1197 if (!pte_present(*pte
))
1199 page
= vm_normal_page(vma
, address
, *pte
);
1200 BUG_ON(!page
|| PageAnon(page
));
1203 mlock_vma_page(page
); /* no-op if already mlocked */
1204 if (page
== check_page
)
1206 continue; /* don't unmap */
1209 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
1212 /* Nuke the page table entry. */
1213 flush_cache_page(vma
, address
, pte_pfn(*pte
));
1214 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
1216 /* If nonlinear, store the file page offset in the pte. */
1217 if (page
->index
!= linear_page_index(vma
, address
))
1218 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
1220 /* Move the dirty bit to the physical page now the pte is gone. */
1221 if (pte_dirty(pteval
))
1222 set_page_dirty(page
);
1224 page_remove_rmap(page
);
1225 page_cache_release(page
);
1226 dec_mm_counter(mm
, MM_FILEPAGES
);
1229 pte_unmap_unlock(pte
- 1, ptl
);
1231 up_read(&vma
->vm_mm
->mmap_sem
);
1235 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1237 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1242 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1243 VM_STACK_INCOMPLETE_SETUP
)
1250 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1252 * @page: the page to unmap/unlock
1253 * @flags: action and flags
1255 * Find all the mappings of a page using the mapping pointer and the vma chains
1256 * contained in the anon_vma struct it points to.
1258 * This function is only called from try_to_unmap/try_to_munlock for
1260 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1261 * where the page was found will be held for write. So, we won't recheck
1262 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1265 static int try_to_unmap_anon(struct page
*page
, enum ttu_flags flags
)
1267 struct anon_vma
*anon_vma
;
1268 struct anon_vma_chain
*avc
;
1269 int ret
= SWAP_AGAIN
;
1271 anon_vma
= page_lock_anon_vma(page
);
1275 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1276 struct vm_area_struct
*vma
= avc
->vma
;
1277 unsigned long address
;
1280 * During exec, a temporary VMA is setup and later moved.
1281 * The VMA is moved under the anon_vma lock but not the
1282 * page tables leading to a race where migration cannot
1283 * find the migration ptes. Rather than increasing the
1284 * locking requirements of exec(), migration skips
1285 * temporary VMAs until after exec() completes.
1287 if (PAGE_MIGRATION
&& (flags
& TTU_MIGRATION
) &&
1288 is_vma_temporary_stack(vma
))
1291 address
= vma_address(page
, vma
);
1292 if (address
== -EFAULT
)
1294 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1295 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1299 page_unlock_anon_vma(anon_vma
);
1304 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1305 * @page: the page to unmap/unlock
1306 * @flags: action and flags
1308 * Find all the mappings of a page using the mapping pointer and the vma chains
1309 * contained in the address_space struct it points to.
1311 * This function is only called from try_to_unmap/try_to_munlock for
1312 * object-based pages.
1313 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1314 * where the page was found will be held for write. So, we won't recheck
1315 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1318 static int try_to_unmap_file(struct page
*page
, enum ttu_flags flags
)
1320 struct address_space
*mapping
= page
->mapping
;
1321 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1322 struct vm_area_struct
*vma
;
1323 struct prio_tree_iter iter
;
1324 int ret
= SWAP_AGAIN
;
1325 unsigned long cursor
;
1326 unsigned long max_nl_cursor
= 0;
1327 unsigned long max_nl_size
= 0;
1328 unsigned int mapcount
;
1330 spin_lock(&mapping
->i_mmap_lock
);
1331 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1332 unsigned long address
= vma_address(page
, vma
);
1333 if (address
== -EFAULT
)
1335 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1336 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1340 if (list_empty(&mapping
->i_mmap_nonlinear
))
1344 * We don't bother to try to find the munlocked page in nonlinears.
1345 * It's costly. Instead, later, page reclaim logic may call
1346 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1348 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1351 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1352 shared
.vm_set
.list
) {
1353 cursor
= (unsigned long) vma
->vm_private_data
;
1354 if (cursor
> max_nl_cursor
)
1355 max_nl_cursor
= cursor
;
1356 cursor
= vma
->vm_end
- vma
->vm_start
;
1357 if (cursor
> max_nl_size
)
1358 max_nl_size
= cursor
;
1361 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1367 * We don't try to search for this page in the nonlinear vmas,
1368 * and page_referenced wouldn't have found it anyway. Instead
1369 * just walk the nonlinear vmas trying to age and unmap some.
1370 * The mapcount of the page we came in with is irrelevant,
1371 * but even so use it as a guide to how hard we should try?
1373 mapcount
= page_mapcount(page
);
1376 cond_resched_lock(&mapping
->i_mmap_lock
);
1378 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1379 if (max_nl_cursor
== 0)
1380 max_nl_cursor
= CLUSTER_SIZE
;
1383 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1384 shared
.vm_set
.list
) {
1385 cursor
= (unsigned long) vma
->vm_private_data
;
1386 while ( cursor
< max_nl_cursor
&&
1387 cursor
< vma
->vm_end
- vma
->vm_start
) {
1388 if (try_to_unmap_cluster(cursor
, &mapcount
,
1389 vma
, page
) == SWAP_MLOCK
)
1391 cursor
+= CLUSTER_SIZE
;
1392 vma
->vm_private_data
= (void *) cursor
;
1393 if ((int)mapcount
<= 0)
1396 vma
->vm_private_data
= (void *) max_nl_cursor
;
1398 cond_resched_lock(&mapping
->i_mmap_lock
);
1399 max_nl_cursor
+= CLUSTER_SIZE
;
1400 } while (max_nl_cursor
<= max_nl_size
);
1403 * Don't loop forever (perhaps all the remaining pages are
1404 * in locked vmas). Reset cursor on all unreserved nonlinear
1405 * vmas, now forgetting on which ones it had fallen behind.
1407 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1408 vma
->vm_private_data
= NULL
;
1410 spin_unlock(&mapping
->i_mmap_lock
);
1415 * try_to_unmap - try to remove all page table mappings to a page
1416 * @page: the page to get unmapped
1417 * @flags: action and flags
1419 * Tries to remove all the page table entries which are mapping this
1420 * page, used in the pageout path. Caller must hold the page lock.
1421 * Return values are:
1423 * SWAP_SUCCESS - we succeeded in removing all mappings
1424 * SWAP_AGAIN - we missed a mapping, try again later
1425 * SWAP_FAIL - the page is unswappable
1426 * SWAP_MLOCK - page is mlocked.
1428 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1432 BUG_ON(!PageLocked(page
));
1433 BUG_ON(PageTransHuge(page
));
1435 if (unlikely(PageKsm(page
)))
1436 ret
= try_to_unmap_ksm(page
, flags
);
1437 else if (PageAnon(page
))
1438 ret
= try_to_unmap_anon(page
, flags
);
1440 ret
= try_to_unmap_file(page
, flags
);
1441 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1447 * try_to_munlock - try to munlock a page
1448 * @page: the page to be munlocked
1450 * Called from munlock code. Checks all of the VMAs mapping the page
1451 * to make sure nobody else has this page mlocked. The page will be
1452 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1454 * Return values are:
1456 * SWAP_AGAIN - no vma is holding page mlocked, or,
1457 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1458 * SWAP_FAIL - page cannot be located at present
1459 * SWAP_MLOCK - page is now mlocked.
1461 int try_to_munlock(struct page
*page
)
1463 VM_BUG_ON(!PageLocked(page
) || PageLRU(page
));
1465 if (unlikely(PageKsm(page
)))
1466 return try_to_unmap_ksm(page
, TTU_MUNLOCK
);
1467 else if (PageAnon(page
))
1468 return try_to_unmap_anon(page
, TTU_MUNLOCK
);
1470 return try_to_unmap_file(page
, TTU_MUNLOCK
);
1473 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1475 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1476 * if necessary. Be careful to do all the tests under the lock. Once
1477 * we know we are the last user, nobody else can get a reference and we
1478 * can do the freeing without the lock.
1480 void drop_anon_vma(struct anon_vma
*anon_vma
)
1482 BUG_ON(atomic_read(&anon_vma
->external_refcount
) <= 0);
1483 if (atomic_dec_and_lock(&anon_vma
->external_refcount
, &anon_vma
->root
->lock
)) {
1484 struct anon_vma
*root
= anon_vma
->root
;
1485 int empty
= list_empty(&anon_vma
->head
);
1486 int last_root_user
= 0;
1490 * The refcount on a non-root anon_vma got dropped. Drop
1491 * the refcount on the root and check if we need to free it.
1493 if (empty
&& anon_vma
!= root
) {
1494 BUG_ON(atomic_read(&root
->external_refcount
) <= 0);
1495 last_root_user
= atomic_dec_and_test(&root
->external_refcount
);
1496 root_empty
= list_empty(&root
->head
);
1498 anon_vma_unlock(anon_vma
);
1501 anon_vma_free(anon_vma
);
1502 if (root_empty
&& last_root_user
)
1503 anon_vma_free(root
);
1509 #ifdef CONFIG_MIGRATION
1511 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1512 * Called by migrate.c to remove migration ptes, but might be used more later.
1514 static int rmap_walk_anon(struct page
*page
, int (*rmap_one
)(struct page
*,
1515 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1517 struct anon_vma
*anon_vma
;
1518 struct anon_vma_chain
*avc
;
1519 int ret
= SWAP_AGAIN
;
1522 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1523 * because that depends on page_mapped(); but not all its usages
1524 * are holding mmap_sem. Users without mmap_sem are required to
1525 * take a reference count to prevent the anon_vma disappearing
1527 anon_vma
= page_anon_vma(page
);
1530 anon_vma_lock(anon_vma
);
1531 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1532 struct vm_area_struct
*vma
= avc
->vma
;
1533 unsigned long address
= vma_address(page
, vma
);
1534 if (address
== -EFAULT
)
1536 ret
= rmap_one(page
, vma
, address
, arg
);
1537 if (ret
!= SWAP_AGAIN
)
1540 anon_vma_unlock(anon_vma
);
1544 static int rmap_walk_file(struct page
*page
, int (*rmap_one
)(struct page
*,
1545 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1547 struct address_space
*mapping
= page
->mapping
;
1548 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1549 struct vm_area_struct
*vma
;
1550 struct prio_tree_iter iter
;
1551 int ret
= SWAP_AGAIN
;
1555 spin_lock(&mapping
->i_mmap_lock
);
1556 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1557 unsigned long address
= vma_address(page
, vma
);
1558 if (address
== -EFAULT
)
1560 ret
= rmap_one(page
, vma
, address
, arg
);
1561 if (ret
!= SWAP_AGAIN
)
1565 * No nonlinear handling: being always shared, nonlinear vmas
1566 * never contain migration ptes. Decide what to do about this
1567 * limitation to linear when we need rmap_walk() on nonlinear.
1569 spin_unlock(&mapping
->i_mmap_lock
);
1573 int rmap_walk(struct page
*page
, int (*rmap_one
)(struct page
*,
1574 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1576 VM_BUG_ON(!PageLocked(page
));
1578 if (unlikely(PageKsm(page
)))
1579 return rmap_walk_ksm(page
, rmap_one
, arg
);
1580 else if (PageAnon(page
))
1581 return rmap_walk_anon(page
, rmap_one
, arg
);
1583 return rmap_walk_file(page
, rmap_one
, arg
);
1585 #endif /* CONFIG_MIGRATION */
1587 #ifdef CONFIG_HUGETLB_PAGE
1589 * The following three functions are for anonymous (private mapped) hugepages.
1590 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1591 * and no lru code, because we handle hugepages differently from common pages.
1593 static void __hugepage_set_anon_rmap(struct page
*page
,
1594 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1596 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1603 anon_vma
= anon_vma
->root
;
1605 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1606 page
->mapping
= (struct address_space
*) anon_vma
;
1607 page
->index
= linear_page_index(vma
, address
);
1610 void hugepage_add_anon_rmap(struct page
*page
,
1611 struct vm_area_struct
*vma
, unsigned long address
)
1613 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1616 BUG_ON(!PageLocked(page
));
1618 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1619 first
= atomic_inc_and_test(&page
->_mapcount
);
1621 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1624 void hugepage_add_new_anon_rmap(struct page
*page
,
1625 struct vm_area_struct
*vma
, unsigned long address
)
1627 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1628 atomic_set(&page
->_mapcount
, 0);
1629 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1631 #endif /* CONFIG_HUGETLB_PAGE */