sfc: Don't try to set filters with search depths we know won't work
[linux-2.6/cjktty.git] / net / core / skbuff.c
blob752c1972b3a79eb76f83f4906a7c9355622c8b08
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/mm.h>
44 #include <linux/interrupt.h>
45 #include <linux/in.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
61 #include <net/protocol.h>
62 #include <net/dst.h>
63 #include <net/sock.h>
64 #include <net/checksum.h>
65 #include <net/xfrm.h>
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
69 #include <trace/events/skb.h>
71 #include "kmap_skb.h"
73 static struct kmem_cache *skbuff_head_cache __read_mostly;
74 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
77 struct pipe_buffer *buf)
79 put_page(buf->page);
82 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
83 struct pipe_buffer *buf)
85 get_page(buf->page);
88 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
91 return 1;
95 /* Pipe buffer operations for a socket. */
96 static const struct pipe_buf_operations sock_pipe_buf_ops = {
97 .can_merge = 0,
98 .map = generic_pipe_buf_map,
99 .unmap = generic_pipe_buf_unmap,
100 .confirm = generic_pipe_buf_confirm,
101 .release = sock_pipe_buf_release,
102 .steal = sock_pipe_buf_steal,
103 .get = sock_pipe_buf_get,
107 * Keep out-of-line to prevent kernel bloat.
108 * __builtin_return_address is not used because it is not always
109 * reliable.
113 * skb_over_panic - private function
114 * @skb: buffer
115 * @sz: size
116 * @here: address
118 * Out of line support code for skb_put(). Not user callable.
120 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
123 "data:%p tail:%#lx end:%#lx dev:%s\n",
124 here, skb->len, sz, skb->head, skb->data,
125 (unsigned long)skb->tail, (unsigned long)skb->end,
126 skb->dev ? skb->dev->name : "<NULL>");
127 BUG();
131 * skb_under_panic - private function
132 * @skb: buffer
133 * @sz: size
134 * @here: address
136 * Out of line support code for skb_push(). Not user callable.
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
142 "data:%p tail:%#lx end:%#lx dev:%s\n",
143 here, skb->len, sz, skb->head, skb->data,
144 (unsigned long)skb->tail, (unsigned long)skb->end,
145 skb->dev ? skb->dev->name : "<NULL>");
146 BUG();
149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
150 * 'private' fields and also do memory statistics to find all the
151 * [BEEP] leaks.
156 * __alloc_skb - allocate a network buffer
157 * @size: size to allocate
158 * @gfp_mask: allocation mask
159 * @fclone: allocate from fclone cache instead of head cache
160 * and allocate a cloned (child) skb
161 * @node: numa node to allocate memory on
163 * Allocate a new &sk_buff. The returned buffer has no headroom and a
164 * tail room of size bytes. The object has a reference count of one.
165 * The return is the buffer. On a failure the return is %NULL.
167 * Buffers may only be allocated from interrupts using a @gfp_mask of
168 * %GFP_ATOMIC.
170 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
171 int fclone, int node)
173 struct kmem_cache *cache;
174 struct skb_shared_info *shinfo;
175 struct sk_buff *skb;
176 u8 *data;
178 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
180 /* Get the HEAD */
181 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
182 if (!skb)
183 goto out;
184 prefetchw(skb);
186 size = SKB_DATA_ALIGN(size);
187 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
188 gfp_mask, node);
189 if (!data)
190 goto nodata;
191 prefetchw(data + size);
194 * Only clear those fields we need to clear, not those that we will
195 * actually initialise below. Hence, don't put any more fields after
196 * the tail pointer in struct sk_buff!
198 memset(skb, 0, offsetof(struct sk_buff, tail));
199 skb->truesize = size + sizeof(struct sk_buff);
200 atomic_set(&skb->users, 1);
201 skb->head = data;
202 skb->data = data;
203 skb_reset_tail_pointer(skb);
204 skb->end = skb->tail + size;
205 #ifdef NET_SKBUFF_DATA_USES_OFFSET
206 skb->mac_header = ~0U;
207 #endif
209 /* make sure we initialize shinfo sequentially */
210 shinfo = skb_shinfo(skb);
211 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
212 atomic_set(&shinfo->dataref, 1);
214 if (fclone) {
215 struct sk_buff *child = skb + 1;
216 atomic_t *fclone_ref = (atomic_t *) (child + 1);
218 kmemcheck_annotate_bitfield(child, flags1);
219 kmemcheck_annotate_bitfield(child, flags2);
220 skb->fclone = SKB_FCLONE_ORIG;
221 atomic_set(fclone_ref, 1);
223 child->fclone = SKB_FCLONE_UNAVAILABLE;
225 out:
226 return skb;
227 nodata:
228 kmem_cache_free(cache, skb);
229 skb = NULL;
230 goto out;
232 EXPORT_SYMBOL(__alloc_skb);
235 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
236 * @dev: network device to receive on
237 * @length: length to allocate
238 * @gfp_mask: get_free_pages mask, passed to alloc_skb
240 * Allocate a new &sk_buff and assign it a usage count of one. The
241 * buffer has unspecified headroom built in. Users should allocate
242 * the headroom they think they need without accounting for the
243 * built in space. The built in space is used for optimisations.
245 * %NULL is returned if there is no free memory.
247 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
248 unsigned int length, gfp_t gfp_mask)
250 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
251 struct sk_buff *skb;
253 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
254 if (likely(skb)) {
255 skb_reserve(skb, NET_SKB_PAD);
256 skb->dev = dev;
258 return skb;
260 EXPORT_SYMBOL(__netdev_alloc_skb);
262 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
264 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
265 struct page *page;
267 page = alloc_pages_node(node, gfp_mask, 0);
268 return page;
270 EXPORT_SYMBOL(__netdev_alloc_page);
272 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
273 int size)
275 skb_fill_page_desc(skb, i, page, off, size);
276 skb->len += size;
277 skb->data_len += size;
278 skb->truesize += size;
280 EXPORT_SYMBOL(skb_add_rx_frag);
283 * dev_alloc_skb - allocate an skbuff for receiving
284 * @length: length to allocate
286 * Allocate a new &sk_buff and assign it a usage count of one. The
287 * buffer has unspecified headroom built in. Users should allocate
288 * the headroom they think they need without accounting for the
289 * built in space. The built in space is used for optimisations.
291 * %NULL is returned if there is no free memory. Although this function
292 * allocates memory it can be called from an interrupt.
294 struct sk_buff *dev_alloc_skb(unsigned int length)
297 * There is more code here than it seems:
298 * __dev_alloc_skb is an inline
300 return __dev_alloc_skb(length, GFP_ATOMIC);
302 EXPORT_SYMBOL(dev_alloc_skb);
304 static void skb_drop_list(struct sk_buff **listp)
306 struct sk_buff *list = *listp;
308 *listp = NULL;
310 do {
311 struct sk_buff *this = list;
312 list = list->next;
313 kfree_skb(this);
314 } while (list);
317 static inline void skb_drop_fraglist(struct sk_buff *skb)
319 skb_drop_list(&skb_shinfo(skb)->frag_list);
322 static void skb_clone_fraglist(struct sk_buff *skb)
324 struct sk_buff *list;
326 skb_walk_frags(skb, list)
327 skb_get(list);
330 static void skb_release_data(struct sk_buff *skb)
332 if (!skb->cloned ||
333 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
334 &skb_shinfo(skb)->dataref)) {
335 if (skb_shinfo(skb)->nr_frags) {
336 int i;
337 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
338 put_page(skb_shinfo(skb)->frags[i].page);
341 if (skb_has_frag_list(skb))
342 skb_drop_fraglist(skb);
344 kfree(skb->head);
349 * Free an skbuff by memory without cleaning the state.
351 static void kfree_skbmem(struct sk_buff *skb)
353 struct sk_buff *other;
354 atomic_t *fclone_ref;
356 switch (skb->fclone) {
357 case SKB_FCLONE_UNAVAILABLE:
358 kmem_cache_free(skbuff_head_cache, skb);
359 break;
361 case SKB_FCLONE_ORIG:
362 fclone_ref = (atomic_t *) (skb + 2);
363 if (atomic_dec_and_test(fclone_ref))
364 kmem_cache_free(skbuff_fclone_cache, skb);
365 break;
367 case SKB_FCLONE_CLONE:
368 fclone_ref = (atomic_t *) (skb + 1);
369 other = skb - 1;
371 /* The clone portion is available for
372 * fast-cloning again.
374 skb->fclone = SKB_FCLONE_UNAVAILABLE;
376 if (atomic_dec_and_test(fclone_ref))
377 kmem_cache_free(skbuff_fclone_cache, other);
378 break;
382 static void skb_release_head_state(struct sk_buff *skb)
384 skb_dst_drop(skb);
385 #ifdef CONFIG_XFRM
386 secpath_put(skb->sp);
387 #endif
388 if (skb->destructor) {
389 WARN_ON(in_irq());
390 skb->destructor(skb);
392 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
393 nf_conntrack_put(skb->nfct);
394 nf_conntrack_put_reasm(skb->nfct_reasm);
395 #endif
396 #ifdef CONFIG_BRIDGE_NETFILTER
397 nf_bridge_put(skb->nf_bridge);
398 #endif
399 /* XXX: IS this still necessary? - JHS */
400 #ifdef CONFIG_NET_SCHED
401 skb->tc_index = 0;
402 #ifdef CONFIG_NET_CLS_ACT
403 skb->tc_verd = 0;
404 #endif
405 #endif
408 /* Free everything but the sk_buff shell. */
409 static void skb_release_all(struct sk_buff *skb)
411 skb_release_head_state(skb);
412 skb_release_data(skb);
416 * __kfree_skb - private function
417 * @skb: buffer
419 * Free an sk_buff. Release anything attached to the buffer.
420 * Clean the state. This is an internal helper function. Users should
421 * always call kfree_skb
424 void __kfree_skb(struct sk_buff *skb)
426 skb_release_all(skb);
427 kfree_skbmem(skb);
429 EXPORT_SYMBOL(__kfree_skb);
432 * kfree_skb - free an sk_buff
433 * @skb: buffer to free
435 * Drop a reference to the buffer and free it if the usage count has
436 * hit zero.
438 void kfree_skb(struct sk_buff *skb)
440 if (unlikely(!skb))
441 return;
442 if (likely(atomic_read(&skb->users) == 1))
443 smp_rmb();
444 else if (likely(!atomic_dec_and_test(&skb->users)))
445 return;
446 trace_kfree_skb(skb, __builtin_return_address(0));
447 __kfree_skb(skb);
449 EXPORT_SYMBOL(kfree_skb);
452 * consume_skb - free an skbuff
453 * @skb: buffer to free
455 * Drop a ref to the buffer and free it if the usage count has hit zero
456 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
457 * is being dropped after a failure and notes that
459 void consume_skb(struct sk_buff *skb)
461 if (unlikely(!skb))
462 return;
463 if (likely(atomic_read(&skb->users) == 1))
464 smp_rmb();
465 else if (likely(!atomic_dec_and_test(&skb->users)))
466 return;
467 __kfree_skb(skb);
469 EXPORT_SYMBOL(consume_skb);
472 * skb_recycle_check - check if skb can be reused for receive
473 * @skb: buffer
474 * @skb_size: minimum receive buffer size
476 * Checks that the skb passed in is not shared or cloned, and
477 * that it is linear and its head portion at least as large as
478 * skb_size so that it can be recycled as a receive buffer.
479 * If these conditions are met, this function does any necessary
480 * reference count dropping and cleans up the skbuff as if it
481 * just came from __alloc_skb().
483 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
485 struct skb_shared_info *shinfo;
487 if (irqs_disabled())
488 return false;
490 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
491 return false;
493 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
494 if (skb_end_pointer(skb) - skb->head < skb_size)
495 return false;
497 if (skb_shared(skb) || skb_cloned(skb))
498 return false;
500 skb_release_head_state(skb);
502 shinfo = skb_shinfo(skb);
503 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
504 atomic_set(&shinfo->dataref, 1);
506 memset(skb, 0, offsetof(struct sk_buff, tail));
507 skb->data = skb->head + NET_SKB_PAD;
508 skb_reset_tail_pointer(skb);
510 return true;
512 EXPORT_SYMBOL(skb_recycle_check);
514 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
516 new->tstamp = old->tstamp;
517 new->dev = old->dev;
518 new->transport_header = old->transport_header;
519 new->network_header = old->network_header;
520 new->mac_header = old->mac_header;
521 skb_dst_copy(new, old);
522 new->rxhash = old->rxhash;
523 #ifdef CONFIG_XFRM
524 new->sp = secpath_get(old->sp);
525 #endif
526 memcpy(new->cb, old->cb, sizeof(old->cb));
527 new->csum = old->csum;
528 new->local_df = old->local_df;
529 new->pkt_type = old->pkt_type;
530 new->ip_summed = old->ip_summed;
531 skb_copy_queue_mapping(new, old);
532 new->priority = old->priority;
533 new->deliver_no_wcard = old->deliver_no_wcard;
534 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
535 new->ipvs_property = old->ipvs_property;
536 #endif
537 new->protocol = old->protocol;
538 new->mark = old->mark;
539 new->skb_iif = old->skb_iif;
540 __nf_copy(new, old);
541 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
542 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
543 new->nf_trace = old->nf_trace;
544 #endif
545 #ifdef CONFIG_NET_SCHED
546 new->tc_index = old->tc_index;
547 #ifdef CONFIG_NET_CLS_ACT
548 new->tc_verd = old->tc_verd;
549 #endif
550 #endif
551 new->vlan_tci = old->vlan_tci;
553 skb_copy_secmark(new, old);
557 * You should not add any new code to this function. Add it to
558 * __copy_skb_header above instead.
560 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
562 #define C(x) n->x = skb->x
564 n->next = n->prev = NULL;
565 n->sk = NULL;
566 __copy_skb_header(n, skb);
568 C(len);
569 C(data_len);
570 C(mac_len);
571 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
572 n->cloned = 1;
573 n->nohdr = 0;
574 n->destructor = NULL;
575 C(tail);
576 C(end);
577 C(head);
578 C(data);
579 C(truesize);
580 atomic_set(&n->users, 1);
582 atomic_inc(&(skb_shinfo(skb)->dataref));
583 skb->cloned = 1;
585 return n;
586 #undef C
590 * skb_morph - morph one skb into another
591 * @dst: the skb to receive the contents
592 * @src: the skb to supply the contents
594 * This is identical to skb_clone except that the target skb is
595 * supplied by the user.
597 * The target skb is returned upon exit.
599 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
601 skb_release_all(dst);
602 return __skb_clone(dst, src);
604 EXPORT_SYMBOL_GPL(skb_morph);
607 * skb_clone - duplicate an sk_buff
608 * @skb: buffer to clone
609 * @gfp_mask: allocation priority
611 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
612 * copies share the same packet data but not structure. The new
613 * buffer has a reference count of 1. If the allocation fails the
614 * function returns %NULL otherwise the new buffer is returned.
616 * If this function is called from an interrupt gfp_mask() must be
617 * %GFP_ATOMIC.
620 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
622 struct sk_buff *n;
624 n = skb + 1;
625 if (skb->fclone == SKB_FCLONE_ORIG &&
626 n->fclone == SKB_FCLONE_UNAVAILABLE) {
627 atomic_t *fclone_ref = (atomic_t *) (n + 1);
628 n->fclone = SKB_FCLONE_CLONE;
629 atomic_inc(fclone_ref);
630 } else {
631 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
632 if (!n)
633 return NULL;
635 kmemcheck_annotate_bitfield(n, flags1);
636 kmemcheck_annotate_bitfield(n, flags2);
637 n->fclone = SKB_FCLONE_UNAVAILABLE;
640 return __skb_clone(n, skb);
642 EXPORT_SYMBOL(skb_clone);
644 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
646 #ifndef NET_SKBUFF_DATA_USES_OFFSET
648 * Shift between the two data areas in bytes
650 unsigned long offset = new->data - old->data;
651 #endif
653 __copy_skb_header(new, old);
655 #ifndef NET_SKBUFF_DATA_USES_OFFSET
656 /* {transport,network,mac}_header are relative to skb->head */
657 new->transport_header += offset;
658 new->network_header += offset;
659 if (skb_mac_header_was_set(new))
660 new->mac_header += offset;
661 #endif
662 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
663 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
664 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
668 * skb_copy - create private copy of an sk_buff
669 * @skb: buffer to copy
670 * @gfp_mask: allocation priority
672 * Make a copy of both an &sk_buff and its data. This is used when the
673 * caller wishes to modify the data and needs a private copy of the
674 * data to alter. Returns %NULL on failure or the pointer to the buffer
675 * on success. The returned buffer has a reference count of 1.
677 * As by-product this function converts non-linear &sk_buff to linear
678 * one, so that &sk_buff becomes completely private and caller is allowed
679 * to modify all the data of returned buffer. This means that this
680 * function is not recommended for use in circumstances when only
681 * header is going to be modified. Use pskb_copy() instead.
684 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
686 int headerlen = skb_headroom(skb);
687 unsigned int size = (skb_end_pointer(skb) - skb->head) + skb->data_len;
688 struct sk_buff *n = alloc_skb(size, gfp_mask);
690 if (!n)
691 return NULL;
693 /* Set the data pointer */
694 skb_reserve(n, headerlen);
695 /* Set the tail pointer and length */
696 skb_put(n, skb->len);
698 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
699 BUG();
701 copy_skb_header(n, skb);
702 return n;
704 EXPORT_SYMBOL(skb_copy);
707 * pskb_copy - create copy of an sk_buff with private head.
708 * @skb: buffer to copy
709 * @gfp_mask: allocation priority
711 * Make a copy of both an &sk_buff and part of its data, located
712 * in header. Fragmented data remain shared. This is used when
713 * the caller wishes to modify only header of &sk_buff and needs
714 * private copy of the header to alter. Returns %NULL on failure
715 * or the pointer to the buffer on success.
716 * The returned buffer has a reference count of 1.
719 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
721 unsigned int size = skb_end_pointer(skb) - skb->head;
722 struct sk_buff *n = alloc_skb(size, gfp_mask);
724 if (!n)
725 goto out;
727 /* Set the data pointer */
728 skb_reserve(n, skb_headroom(skb));
729 /* Set the tail pointer and length */
730 skb_put(n, skb_headlen(skb));
731 /* Copy the bytes */
732 skb_copy_from_linear_data(skb, n->data, n->len);
734 n->truesize += skb->data_len;
735 n->data_len = skb->data_len;
736 n->len = skb->len;
738 if (skb_shinfo(skb)->nr_frags) {
739 int i;
741 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
742 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
743 get_page(skb_shinfo(n)->frags[i].page);
745 skb_shinfo(n)->nr_frags = i;
748 if (skb_has_frag_list(skb)) {
749 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
750 skb_clone_fraglist(n);
753 copy_skb_header(n, skb);
754 out:
755 return n;
757 EXPORT_SYMBOL(pskb_copy);
760 * pskb_expand_head - reallocate header of &sk_buff
761 * @skb: buffer to reallocate
762 * @nhead: room to add at head
763 * @ntail: room to add at tail
764 * @gfp_mask: allocation priority
766 * Expands (or creates identical copy, if &nhead and &ntail are zero)
767 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
768 * reference count of 1. Returns zero in the case of success or error,
769 * if expansion failed. In the last case, &sk_buff is not changed.
771 * All the pointers pointing into skb header may change and must be
772 * reloaded after call to this function.
775 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
776 gfp_t gfp_mask)
778 int i;
779 u8 *data;
780 int size = nhead + (skb_end_pointer(skb) - skb->head) + ntail;
781 long off;
782 bool fastpath;
784 BUG_ON(nhead < 0);
786 if (skb_shared(skb))
787 BUG();
789 size = SKB_DATA_ALIGN(size);
791 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
792 if (!data)
793 goto nodata;
795 /* Copy only real data... and, alas, header. This should be
796 * optimized for the cases when header is void.
798 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
800 memcpy((struct skb_shared_info *)(data + size),
801 skb_shinfo(skb),
802 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
804 /* Check if we can avoid taking references on fragments if we own
805 * the last reference on skb->head. (see skb_release_data())
807 if (!skb->cloned)
808 fastpath = true;
809 else {
810 int delta = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
812 fastpath = atomic_read(&skb_shinfo(skb)->dataref) == delta;
815 if (fastpath) {
816 kfree(skb->head);
817 } else {
818 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
819 get_page(skb_shinfo(skb)->frags[i].page);
821 if (skb_has_frag_list(skb))
822 skb_clone_fraglist(skb);
824 skb_release_data(skb);
826 off = (data + nhead) - skb->head;
828 skb->head = data;
829 skb->data += off;
830 #ifdef NET_SKBUFF_DATA_USES_OFFSET
831 skb->end = size;
832 off = nhead;
833 #else
834 skb->end = skb->head + size;
835 #endif
836 /* {transport,network,mac}_header and tail are relative to skb->head */
837 skb->tail += off;
838 skb->transport_header += off;
839 skb->network_header += off;
840 if (skb_mac_header_was_set(skb))
841 skb->mac_header += off;
842 /* Only adjust this if it actually is csum_start rather than csum */
843 if (skb->ip_summed == CHECKSUM_PARTIAL)
844 skb->csum_start += nhead;
845 skb->cloned = 0;
846 skb->hdr_len = 0;
847 skb->nohdr = 0;
848 atomic_set(&skb_shinfo(skb)->dataref, 1);
849 return 0;
851 nodata:
852 return -ENOMEM;
854 EXPORT_SYMBOL(pskb_expand_head);
856 /* Make private copy of skb with writable head and some headroom */
858 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
860 struct sk_buff *skb2;
861 int delta = headroom - skb_headroom(skb);
863 if (delta <= 0)
864 skb2 = pskb_copy(skb, GFP_ATOMIC);
865 else {
866 skb2 = skb_clone(skb, GFP_ATOMIC);
867 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
868 GFP_ATOMIC)) {
869 kfree_skb(skb2);
870 skb2 = NULL;
873 return skb2;
875 EXPORT_SYMBOL(skb_realloc_headroom);
878 * skb_copy_expand - copy and expand sk_buff
879 * @skb: buffer to copy
880 * @newheadroom: new free bytes at head
881 * @newtailroom: new free bytes at tail
882 * @gfp_mask: allocation priority
884 * Make a copy of both an &sk_buff and its data and while doing so
885 * allocate additional space.
887 * This is used when the caller wishes to modify the data and needs a
888 * private copy of the data to alter as well as more space for new fields.
889 * Returns %NULL on failure or the pointer to the buffer
890 * on success. The returned buffer has a reference count of 1.
892 * You must pass %GFP_ATOMIC as the allocation priority if this function
893 * is called from an interrupt.
895 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
896 int newheadroom, int newtailroom,
897 gfp_t gfp_mask)
900 * Allocate the copy buffer
902 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
903 gfp_mask);
904 int oldheadroom = skb_headroom(skb);
905 int head_copy_len, head_copy_off;
906 int off;
908 if (!n)
909 return NULL;
911 skb_reserve(n, newheadroom);
913 /* Set the tail pointer and length */
914 skb_put(n, skb->len);
916 head_copy_len = oldheadroom;
917 head_copy_off = 0;
918 if (newheadroom <= head_copy_len)
919 head_copy_len = newheadroom;
920 else
921 head_copy_off = newheadroom - head_copy_len;
923 /* Copy the linear header and data. */
924 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
925 skb->len + head_copy_len))
926 BUG();
928 copy_skb_header(n, skb);
930 off = newheadroom - oldheadroom;
931 if (n->ip_summed == CHECKSUM_PARTIAL)
932 n->csum_start += off;
933 #ifdef NET_SKBUFF_DATA_USES_OFFSET
934 n->transport_header += off;
935 n->network_header += off;
936 if (skb_mac_header_was_set(skb))
937 n->mac_header += off;
938 #endif
940 return n;
942 EXPORT_SYMBOL(skb_copy_expand);
945 * skb_pad - zero pad the tail of an skb
946 * @skb: buffer to pad
947 * @pad: space to pad
949 * Ensure that a buffer is followed by a padding area that is zero
950 * filled. Used by network drivers which may DMA or transfer data
951 * beyond the buffer end onto the wire.
953 * May return error in out of memory cases. The skb is freed on error.
956 int skb_pad(struct sk_buff *skb, int pad)
958 int err;
959 int ntail;
961 /* If the skbuff is non linear tailroom is always zero.. */
962 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
963 memset(skb->data+skb->len, 0, pad);
964 return 0;
967 ntail = skb->data_len + pad - (skb->end - skb->tail);
968 if (likely(skb_cloned(skb) || ntail > 0)) {
969 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
970 if (unlikely(err))
971 goto free_skb;
974 /* FIXME: The use of this function with non-linear skb's really needs
975 * to be audited.
977 err = skb_linearize(skb);
978 if (unlikely(err))
979 goto free_skb;
981 memset(skb->data + skb->len, 0, pad);
982 return 0;
984 free_skb:
985 kfree_skb(skb);
986 return err;
988 EXPORT_SYMBOL(skb_pad);
991 * skb_put - add data to a buffer
992 * @skb: buffer to use
993 * @len: amount of data to add
995 * This function extends the used data area of the buffer. If this would
996 * exceed the total buffer size the kernel will panic. A pointer to the
997 * first byte of the extra data is returned.
999 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1001 unsigned char *tmp = skb_tail_pointer(skb);
1002 SKB_LINEAR_ASSERT(skb);
1003 skb->tail += len;
1004 skb->len += len;
1005 if (unlikely(skb->tail > skb->end))
1006 skb_over_panic(skb, len, __builtin_return_address(0));
1007 return tmp;
1009 EXPORT_SYMBOL(skb_put);
1012 * skb_push - add data to the start of a buffer
1013 * @skb: buffer to use
1014 * @len: amount of data to add
1016 * This function extends the used data area of the buffer at the buffer
1017 * start. If this would exceed the total buffer headroom the kernel will
1018 * panic. A pointer to the first byte of the extra data is returned.
1020 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1022 skb->data -= len;
1023 skb->len += len;
1024 if (unlikely(skb->data<skb->head))
1025 skb_under_panic(skb, len, __builtin_return_address(0));
1026 return skb->data;
1028 EXPORT_SYMBOL(skb_push);
1031 * skb_pull - remove data from the start of a buffer
1032 * @skb: buffer to use
1033 * @len: amount of data to remove
1035 * This function removes data from the start of a buffer, returning
1036 * the memory to the headroom. A pointer to the next data in the buffer
1037 * is returned. Once the data has been pulled future pushes will overwrite
1038 * the old data.
1040 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1042 return skb_pull_inline(skb, len);
1044 EXPORT_SYMBOL(skb_pull);
1047 * skb_trim - remove end from a buffer
1048 * @skb: buffer to alter
1049 * @len: new length
1051 * Cut the length of a buffer down by removing data from the tail. If
1052 * the buffer is already under the length specified it is not modified.
1053 * The skb must be linear.
1055 void skb_trim(struct sk_buff *skb, unsigned int len)
1057 if (skb->len > len)
1058 __skb_trim(skb, len);
1060 EXPORT_SYMBOL(skb_trim);
1062 /* Trims skb to length len. It can change skb pointers.
1065 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1067 struct sk_buff **fragp;
1068 struct sk_buff *frag;
1069 int offset = skb_headlen(skb);
1070 int nfrags = skb_shinfo(skb)->nr_frags;
1071 int i;
1072 int err;
1074 if (skb_cloned(skb) &&
1075 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1076 return err;
1078 i = 0;
1079 if (offset >= len)
1080 goto drop_pages;
1082 for (; i < nfrags; i++) {
1083 int end = offset + skb_shinfo(skb)->frags[i].size;
1085 if (end < len) {
1086 offset = end;
1087 continue;
1090 skb_shinfo(skb)->frags[i++].size = len - offset;
1092 drop_pages:
1093 skb_shinfo(skb)->nr_frags = i;
1095 for (; i < nfrags; i++)
1096 put_page(skb_shinfo(skb)->frags[i].page);
1098 if (skb_has_frag_list(skb))
1099 skb_drop_fraglist(skb);
1100 goto done;
1103 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1104 fragp = &frag->next) {
1105 int end = offset + frag->len;
1107 if (skb_shared(frag)) {
1108 struct sk_buff *nfrag;
1110 nfrag = skb_clone(frag, GFP_ATOMIC);
1111 if (unlikely(!nfrag))
1112 return -ENOMEM;
1114 nfrag->next = frag->next;
1115 kfree_skb(frag);
1116 frag = nfrag;
1117 *fragp = frag;
1120 if (end < len) {
1121 offset = end;
1122 continue;
1125 if (end > len &&
1126 unlikely((err = pskb_trim(frag, len - offset))))
1127 return err;
1129 if (frag->next)
1130 skb_drop_list(&frag->next);
1131 break;
1134 done:
1135 if (len > skb_headlen(skb)) {
1136 skb->data_len -= skb->len - len;
1137 skb->len = len;
1138 } else {
1139 skb->len = len;
1140 skb->data_len = 0;
1141 skb_set_tail_pointer(skb, len);
1144 return 0;
1146 EXPORT_SYMBOL(___pskb_trim);
1149 * __pskb_pull_tail - advance tail of skb header
1150 * @skb: buffer to reallocate
1151 * @delta: number of bytes to advance tail
1153 * The function makes a sense only on a fragmented &sk_buff,
1154 * it expands header moving its tail forward and copying necessary
1155 * data from fragmented part.
1157 * &sk_buff MUST have reference count of 1.
1159 * Returns %NULL (and &sk_buff does not change) if pull failed
1160 * or value of new tail of skb in the case of success.
1162 * All the pointers pointing into skb header may change and must be
1163 * reloaded after call to this function.
1166 /* Moves tail of skb head forward, copying data from fragmented part,
1167 * when it is necessary.
1168 * 1. It may fail due to malloc failure.
1169 * 2. It may change skb pointers.
1171 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1173 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1175 /* If skb has not enough free space at tail, get new one
1176 * plus 128 bytes for future expansions. If we have enough
1177 * room at tail, reallocate without expansion only if skb is cloned.
1179 int i, k, eat = (skb->tail + delta) - skb->end;
1181 if (eat > 0 || skb_cloned(skb)) {
1182 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1183 GFP_ATOMIC))
1184 return NULL;
1187 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1188 BUG();
1190 /* Optimization: no fragments, no reasons to preestimate
1191 * size of pulled pages. Superb.
1193 if (!skb_has_frag_list(skb))
1194 goto pull_pages;
1196 /* Estimate size of pulled pages. */
1197 eat = delta;
1198 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1199 if (skb_shinfo(skb)->frags[i].size >= eat)
1200 goto pull_pages;
1201 eat -= skb_shinfo(skb)->frags[i].size;
1204 /* If we need update frag list, we are in troubles.
1205 * Certainly, it possible to add an offset to skb data,
1206 * but taking into account that pulling is expected to
1207 * be very rare operation, it is worth to fight against
1208 * further bloating skb head and crucify ourselves here instead.
1209 * Pure masohism, indeed. 8)8)
1211 if (eat) {
1212 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1213 struct sk_buff *clone = NULL;
1214 struct sk_buff *insp = NULL;
1216 do {
1217 BUG_ON(!list);
1219 if (list->len <= eat) {
1220 /* Eaten as whole. */
1221 eat -= list->len;
1222 list = list->next;
1223 insp = list;
1224 } else {
1225 /* Eaten partially. */
1227 if (skb_shared(list)) {
1228 /* Sucks! We need to fork list. :-( */
1229 clone = skb_clone(list, GFP_ATOMIC);
1230 if (!clone)
1231 return NULL;
1232 insp = list->next;
1233 list = clone;
1234 } else {
1235 /* This may be pulled without
1236 * problems. */
1237 insp = list;
1239 if (!pskb_pull(list, eat)) {
1240 kfree_skb(clone);
1241 return NULL;
1243 break;
1245 } while (eat);
1247 /* Free pulled out fragments. */
1248 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1249 skb_shinfo(skb)->frag_list = list->next;
1250 kfree_skb(list);
1252 /* And insert new clone at head. */
1253 if (clone) {
1254 clone->next = list;
1255 skb_shinfo(skb)->frag_list = clone;
1258 /* Success! Now we may commit changes to skb data. */
1260 pull_pages:
1261 eat = delta;
1262 k = 0;
1263 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1264 if (skb_shinfo(skb)->frags[i].size <= eat) {
1265 put_page(skb_shinfo(skb)->frags[i].page);
1266 eat -= skb_shinfo(skb)->frags[i].size;
1267 } else {
1268 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1269 if (eat) {
1270 skb_shinfo(skb)->frags[k].page_offset += eat;
1271 skb_shinfo(skb)->frags[k].size -= eat;
1272 eat = 0;
1274 k++;
1277 skb_shinfo(skb)->nr_frags = k;
1279 skb->tail += delta;
1280 skb->data_len -= delta;
1282 return skb_tail_pointer(skb);
1284 EXPORT_SYMBOL(__pskb_pull_tail);
1286 /* Copy some data bits from skb to kernel buffer. */
1288 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1290 int start = skb_headlen(skb);
1291 struct sk_buff *frag_iter;
1292 int i, copy;
1294 if (offset > (int)skb->len - len)
1295 goto fault;
1297 /* Copy header. */
1298 if ((copy = start - offset) > 0) {
1299 if (copy > len)
1300 copy = len;
1301 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1302 if ((len -= copy) == 0)
1303 return 0;
1304 offset += copy;
1305 to += copy;
1308 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1309 int end;
1311 WARN_ON(start > offset + len);
1313 end = start + skb_shinfo(skb)->frags[i].size;
1314 if ((copy = end - offset) > 0) {
1315 u8 *vaddr;
1317 if (copy > len)
1318 copy = len;
1320 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1321 memcpy(to,
1322 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1323 offset - start, copy);
1324 kunmap_skb_frag(vaddr);
1326 if ((len -= copy) == 0)
1327 return 0;
1328 offset += copy;
1329 to += copy;
1331 start = end;
1334 skb_walk_frags(skb, frag_iter) {
1335 int end;
1337 WARN_ON(start > offset + len);
1339 end = start + frag_iter->len;
1340 if ((copy = end - offset) > 0) {
1341 if (copy > len)
1342 copy = len;
1343 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1344 goto fault;
1345 if ((len -= copy) == 0)
1346 return 0;
1347 offset += copy;
1348 to += copy;
1350 start = end;
1352 if (!len)
1353 return 0;
1355 fault:
1356 return -EFAULT;
1358 EXPORT_SYMBOL(skb_copy_bits);
1361 * Callback from splice_to_pipe(), if we need to release some pages
1362 * at the end of the spd in case we error'ed out in filling the pipe.
1364 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1366 put_page(spd->pages[i]);
1369 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1370 unsigned int *offset,
1371 struct sk_buff *skb, struct sock *sk)
1373 struct page *p = sk->sk_sndmsg_page;
1374 unsigned int off;
1376 if (!p) {
1377 new_page:
1378 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1379 if (!p)
1380 return NULL;
1382 off = sk->sk_sndmsg_off = 0;
1383 /* hold one ref to this page until it's full */
1384 } else {
1385 unsigned int mlen;
1387 off = sk->sk_sndmsg_off;
1388 mlen = PAGE_SIZE - off;
1389 if (mlen < 64 && mlen < *len) {
1390 put_page(p);
1391 goto new_page;
1394 *len = min_t(unsigned int, *len, mlen);
1397 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1398 sk->sk_sndmsg_off += *len;
1399 *offset = off;
1400 get_page(p);
1402 return p;
1406 * Fill page/offset/length into spd, if it can hold more pages.
1408 static inline int spd_fill_page(struct splice_pipe_desc *spd,
1409 struct pipe_inode_info *pipe, struct page *page,
1410 unsigned int *len, unsigned int offset,
1411 struct sk_buff *skb, int linear,
1412 struct sock *sk)
1414 if (unlikely(spd->nr_pages == pipe->buffers))
1415 return 1;
1417 if (linear) {
1418 page = linear_to_page(page, len, &offset, skb, sk);
1419 if (!page)
1420 return 1;
1421 } else
1422 get_page(page);
1424 spd->pages[spd->nr_pages] = page;
1425 spd->partial[spd->nr_pages].len = *len;
1426 spd->partial[spd->nr_pages].offset = offset;
1427 spd->nr_pages++;
1429 return 0;
1432 static inline void __segment_seek(struct page **page, unsigned int *poff,
1433 unsigned int *plen, unsigned int off)
1435 unsigned long n;
1437 *poff += off;
1438 n = *poff / PAGE_SIZE;
1439 if (n)
1440 *page = nth_page(*page, n);
1442 *poff = *poff % PAGE_SIZE;
1443 *plen -= off;
1446 static inline int __splice_segment(struct page *page, unsigned int poff,
1447 unsigned int plen, unsigned int *off,
1448 unsigned int *len, struct sk_buff *skb,
1449 struct splice_pipe_desc *spd, int linear,
1450 struct sock *sk,
1451 struct pipe_inode_info *pipe)
1453 if (!*len)
1454 return 1;
1456 /* skip this segment if already processed */
1457 if (*off >= plen) {
1458 *off -= plen;
1459 return 0;
1462 /* ignore any bits we already processed */
1463 if (*off) {
1464 __segment_seek(&page, &poff, &plen, *off);
1465 *off = 0;
1468 do {
1469 unsigned int flen = min(*len, plen);
1471 /* the linear region may spread across several pages */
1472 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1474 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1475 return 1;
1477 __segment_seek(&page, &poff, &plen, flen);
1478 *len -= flen;
1480 } while (*len && plen);
1482 return 0;
1486 * Map linear and fragment data from the skb to spd. It reports failure if the
1487 * pipe is full or if we already spliced the requested length.
1489 static int __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1490 unsigned int *offset, unsigned int *len,
1491 struct splice_pipe_desc *spd, struct sock *sk)
1493 int seg;
1496 * map the linear part
1498 if (__splice_segment(virt_to_page(skb->data),
1499 (unsigned long) skb->data & (PAGE_SIZE - 1),
1500 skb_headlen(skb),
1501 offset, len, skb, spd, 1, sk, pipe))
1502 return 1;
1505 * then map the fragments
1507 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1508 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1510 if (__splice_segment(f->page, f->page_offset, f->size,
1511 offset, len, skb, spd, 0, sk, pipe))
1512 return 1;
1515 return 0;
1519 * Map data from the skb to a pipe. Should handle both the linear part,
1520 * the fragments, and the frag list. It does NOT handle frag lists within
1521 * the frag list, if such a thing exists. We'd probably need to recurse to
1522 * handle that cleanly.
1524 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1525 struct pipe_inode_info *pipe, unsigned int tlen,
1526 unsigned int flags)
1528 struct partial_page partial[PIPE_DEF_BUFFERS];
1529 struct page *pages[PIPE_DEF_BUFFERS];
1530 struct splice_pipe_desc spd = {
1531 .pages = pages,
1532 .partial = partial,
1533 .flags = flags,
1534 .ops = &sock_pipe_buf_ops,
1535 .spd_release = sock_spd_release,
1537 struct sk_buff *frag_iter;
1538 struct sock *sk = skb->sk;
1539 int ret = 0;
1541 if (splice_grow_spd(pipe, &spd))
1542 return -ENOMEM;
1545 * __skb_splice_bits() only fails if the output has no room left,
1546 * so no point in going over the frag_list for the error case.
1548 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1549 goto done;
1550 else if (!tlen)
1551 goto done;
1554 * now see if we have a frag_list to map
1556 skb_walk_frags(skb, frag_iter) {
1557 if (!tlen)
1558 break;
1559 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1560 break;
1563 done:
1564 if (spd.nr_pages) {
1566 * Drop the socket lock, otherwise we have reverse
1567 * locking dependencies between sk_lock and i_mutex
1568 * here as compared to sendfile(). We enter here
1569 * with the socket lock held, and splice_to_pipe() will
1570 * grab the pipe inode lock. For sendfile() emulation,
1571 * we call into ->sendpage() with the i_mutex lock held
1572 * and networking will grab the socket lock.
1574 release_sock(sk);
1575 ret = splice_to_pipe(pipe, &spd);
1576 lock_sock(sk);
1579 splice_shrink_spd(pipe, &spd);
1580 return ret;
1584 * skb_store_bits - store bits from kernel buffer to skb
1585 * @skb: destination buffer
1586 * @offset: offset in destination
1587 * @from: source buffer
1588 * @len: number of bytes to copy
1590 * Copy the specified number of bytes from the source buffer to the
1591 * destination skb. This function handles all the messy bits of
1592 * traversing fragment lists and such.
1595 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1597 int start = skb_headlen(skb);
1598 struct sk_buff *frag_iter;
1599 int i, copy;
1601 if (offset > (int)skb->len - len)
1602 goto fault;
1604 if ((copy = start - offset) > 0) {
1605 if (copy > len)
1606 copy = len;
1607 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1608 if ((len -= copy) == 0)
1609 return 0;
1610 offset += copy;
1611 from += copy;
1614 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1615 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1616 int end;
1618 WARN_ON(start > offset + len);
1620 end = start + frag->size;
1621 if ((copy = end - offset) > 0) {
1622 u8 *vaddr;
1624 if (copy > len)
1625 copy = len;
1627 vaddr = kmap_skb_frag(frag);
1628 memcpy(vaddr + frag->page_offset + offset - start,
1629 from, copy);
1630 kunmap_skb_frag(vaddr);
1632 if ((len -= copy) == 0)
1633 return 0;
1634 offset += copy;
1635 from += copy;
1637 start = end;
1640 skb_walk_frags(skb, frag_iter) {
1641 int end;
1643 WARN_ON(start > offset + len);
1645 end = start + frag_iter->len;
1646 if ((copy = end - offset) > 0) {
1647 if (copy > len)
1648 copy = len;
1649 if (skb_store_bits(frag_iter, offset - start,
1650 from, copy))
1651 goto fault;
1652 if ((len -= copy) == 0)
1653 return 0;
1654 offset += copy;
1655 from += copy;
1657 start = end;
1659 if (!len)
1660 return 0;
1662 fault:
1663 return -EFAULT;
1665 EXPORT_SYMBOL(skb_store_bits);
1667 /* Checksum skb data. */
1669 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1670 int len, __wsum csum)
1672 int start = skb_headlen(skb);
1673 int i, copy = start - offset;
1674 struct sk_buff *frag_iter;
1675 int pos = 0;
1677 /* Checksum header. */
1678 if (copy > 0) {
1679 if (copy > len)
1680 copy = len;
1681 csum = csum_partial(skb->data + offset, copy, csum);
1682 if ((len -= copy) == 0)
1683 return csum;
1684 offset += copy;
1685 pos = copy;
1688 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1689 int end;
1691 WARN_ON(start > offset + len);
1693 end = start + skb_shinfo(skb)->frags[i].size;
1694 if ((copy = end - offset) > 0) {
1695 __wsum csum2;
1696 u8 *vaddr;
1697 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1699 if (copy > len)
1700 copy = len;
1701 vaddr = kmap_skb_frag(frag);
1702 csum2 = csum_partial(vaddr + frag->page_offset +
1703 offset - start, copy, 0);
1704 kunmap_skb_frag(vaddr);
1705 csum = csum_block_add(csum, csum2, pos);
1706 if (!(len -= copy))
1707 return csum;
1708 offset += copy;
1709 pos += copy;
1711 start = end;
1714 skb_walk_frags(skb, frag_iter) {
1715 int end;
1717 WARN_ON(start > offset + len);
1719 end = start + frag_iter->len;
1720 if ((copy = end - offset) > 0) {
1721 __wsum csum2;
1722 if (copy > len)
1723 copy = len;
1724 csum2 = skb_checksum(frag_iter, offset - start,
1725 copy, 0);
1726 csum = csum_block_add(csum, csum2, pos);
1727 if ((len -= copy) == 0)
1728 return csum;
1729 offset += copy;
1730 pos += copy;
1732 start = end;
1734 BUG_ON(len);
1736 return csum;
1738 EXPORT_SYMBOL(skb_checksum);
1740 /* Both of above in one bottle. */
1742 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1743 u8 *to, int len, __wsum csum)
1745 int start = skb_headlen(skb);
1746 int i, copy = start - offset;
1747 struct sk_buff *frag_iter;
1748 int pos = 0;
1750 /* Copy header. */
1751 if (copy > 0) {
1752 if (copy > len)
1753 copy = len;
1754 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1755 copy, csum);
1756 if ((len -= copy) == 0)
1757 return csum;
1758 offset += copy;
1759 to += copy;
1760 pos = copy;
1763 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1764 int end;
1766 WARN_ON(start > offset + len);
1768 end = start + skb_shinfo(skb)->frags[i].size;
1769 if ((copy = end - offset) > 0) {
1770 __wsum csum2;
1771 u8 *vaddr;
1772 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1774 if (copy > len)
1775 copy = len;
1776 vaddr = kmap_skb_frag(frag);
1777 csum2 = csum_partial_copy_nocheck(vaddr +
1778 frag->page_offset +
1779 offset - start, to,
1780 copy, 0);
1781 kunmap_skb_frag(vaddr);
1782 csum = csum_block_add(csum, csum2, pos);
1783 if (!(len -= copy))
1784 return csum;
1785 offset += copy;
1786 to += copy;
1787 pos += copy;
1789 start = end;
1792 skb_walk_frags(skb, frag_iter) {
1793 __wsum csum2;
1794 int end;
1796 WARN_ON(start > offset + len);
1798 end = start + frag_iter->len;
1799 if ((copy = end - offset) > 0) {
1800 if (copy > len)
1801 copy = len;
1802 csum2 = skb_copy_and_csum_bits(frag_iter,
1803 offset - start,
1804 to, copy, 0);
1805 csum = csum_block_add(csum, csum2, pos);
1806 if ((len -= copy) == 0)
1807 return csum;
1808 offset += copy;
1809 to += copy;
1810 pos += copy;
1812 start = end;
1814 BUG_ON(len);
1815 return csum;
1817 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1819 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1821 __wsum csum;
1822 long csstart;
1824 if (skb->ip_summed == CHECKSUM_PARTIAL)
1825 csstart = skb->csum_start - skb_headroom(skb);
1826 else
1827 csstart = skb_headlen(skb);
1829 BUG_ON(csstart > skb_headlen(skb));
1831 skb_copy_from_linear_data(skb, to, csstart);
1833 csum = 0;
1834 if (csstart != skb->len)
1835 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1836 skb->len - csstart, 0);
1838 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1839 long csstuff = csstart + skb->csum_offset;
1841 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1844 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1847 * skb_dequeue - remove from the head of the queue
1848 * @list: list to dequeue from
1850 * Remove the head of the list. The list lock is taken so the function
1851 * may be used safely with other locking list functions. The head item is
1852 * returned or %NULL if the list is empty.
1855 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1857 unsigned long flags;
1858 struct sk_buff *result;
1860 spin_lock_irqsave(&list->lock, flags);
1861 result = __skb_dequeue(list);
1862 spin_unlock_irqrestore(&list->lock, flags);
1863 return result;
1865 EXPORT_SYMBOL(skb_dequeue);
1868 * skb_dequeue_tail - remove from the tail of the queue
1869 * @list: list to dequeue from
1871 * Remove the tail of the list. The list lock is taken so the function
1872 * may be used safely with other locking list functions. The tail item is
1873 * returned or %NULL if the list is empty.
1875 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1877 unsigned long flags;
1878 struct sk_buff *result;
1880 spin_lock_irqsave(&list->lock, flags);
1881 result = __skb_dequeue_tail(list);
1882 spin_unlock_irqrestore(&list->lock, flags);
1883 return result;
1885 EXPORT_SYMBOL(skb_dequeue_tail);
1888 * skb_queue_purge - empty a list
1889 * @list: list to empty
1891 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1892 * the list and one reference dropped. This function takes the list
1893 * lock and is atomic with respect to other list locking functions.
1895 void skb_queue_purge(struct sk_buff_head *list)
1897 struct sk_buff *skb;
1898 while ((skb = skb_dequeue(list)) != NULL)
1899 kfree_skb(skb);
1901 EXPORT_SYMBOL(skb_queue_purge);
1904 * skb_queue_head - queue a buffer at the list head
1905 * @list: list to use
1906 * @newsk: buffer to queue
1908 * Queue a buffer at the start of the list. This function takes the
1909 * list lock and can be used safely with other locking &sk_buff functions
1910 * safely.
1912 * A buffer cannot be placed on two lists at the same time.
1914 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1916 unsigned long flags;
1918 spin_lock_irqsave(&list->lock, flags);
1919 __skb_queue_head(list, newsk);
1920 spin_unlock_irqrestore(&list->lock, flags);
1922 EXPORT_SYMBOL(skb_queue_head);
1925 * skb_queue_tail - queue a buffer at the list tail
1926 * @list: list to use
1927 * @newsk: buffer to queue
1929 * Queue a buffer at the tail of the list. This function takes the
1930 * list lock and can be used safely with other locking &sk_buff functions
1931 * safely.
1933 * A buffer cannot be placed on two lists at the same time.
1935 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1937 unsigned long flags;
1939 spin_lock_irqsave(&list->lock, flags);
1940 __skb_queue_tail(list, newsk);
1941 spin_unlock_irqrestore(&list->lock, flags);
1943 EXPORT_SYMBOL(skb_queue_tail);
1946 * skb_unlink - remove a buffer from a list
1947 * @skb: buffer to remove
1948 * @list: list to use
1950 * Remove a packet from a list. The list locks are taken and this
1951 * function is atomic with respect to other list locked calls
1953 * You must know what list the SKB is on.
1955 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1957 unsigned long flags;
1959 spin_lock_irqsave(&list->lock, flags);
1960 __skb_unlink(skb, list);
1961 spin_unlock_irqrestore(&list->lock, flags);
1963 EXPORT_SYMBOL(skb_unlink);
1966 * skb_append - append a buffer
1967 * @old: buffer to insert after
1968 * @newsk: buffer to insert
1969 * @list: list to use
1971 * Place a packet after a given packet in a list. The list locks are taken
1972 * and this function is atomic with respect to other list locked calls.
1973 * A buffer cannot be placed on two lists at the same time.
1975 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1977 unsigned long flags;
1979 spin_lock_irqsave(&list->lock, flags);
1980 __skb_queue_after(list, old, newsk);
1981 spin_unlock_irqrestore(&list->lock, flags);
1983 EXPORT_SYMBOL(skb_append);
1986 * skb_insert - insert a buffer
1987 * @old: buffer to insert before
1988 * @newsk: buffer to insert
1989 * @list: list to use
1991 * Place a packet before a given packet in a list. The list locks are
1992 * taken and this function is atomic with respect to other list locked
1993 * calls.
1995 * A buffer cannot be placed on two lists at the same time.
1997 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1999 unsigned long flags;
2001 spin_lock_irqsave(&list->lock, flags);
2002 __skb_insert(newsk, old->prev, old, list);
2003 spin_unlock_irqrestore(&list->lock, flags);
2005 EXPORT_SYMBOL(skb_insert);
2007 static inline void skb_split_inside_header(struct sk_buff *skb,
2008 struct sk_buff* skb1,
2009 const u32 len, const int pos)
2011 int i;
2013 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2014 pos - len);
2015 /* And move data appendix as is. */
2016 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2017 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2019 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2020 skb_shinfo(skb)->nr_frags = 0;
2021 skb1->data_len = skb->data_len;
2022 skb1->len += skb1->data_len;
2023 skb->data_len = 0;
2024 skb->len = len;
2025 skb_set_tail_pointer(skb, len);
2028 static inline void skb_split_no_header(struct sk_buff *skb,
2029 struct sk_buff* skb1,
2030 const u32 len, int pos)
2032 int i, k = 0;
2033 const int nfrags = skb_shinfo(skb)->nr_frags;
2035 skb_shinfo(skb)->nr_frags = 0;
2036 skb1->len = skb1->data_len = skb->len - len;
2037 skb->len = len;
2038 skb->data_len = len - pos;
2040 for (i = 0; i < nfrags; i++) {
2041 int size = skb_shinfo(skb)->frags[i].size;
2043 if (pos + size > len) {
2044 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2046 if (pos < len) {
2047 /* Split frag.
2048 * We have two variants in this case:
2049 * 1. Move all the frag to the second
2050 * part, if it is possible. F.e.
2051 * this approach is mandatory for TUX,
2052 * where splitting is expensive.
2053 * 2. Split is accurately. We make this.
2055 get_page(skb_shinfo(skb)->frags[i].page);
2056 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2057 skb_shinfo(skb1)->frags[0].size -= len - pos;
2058 skb_shinfo(skb)->frags[i].size = len - pos;
2059 skb_shinfo(skb)->nr_frags++;
2061 k++;
2062 } else
2063 skb_shinfo(skb)->nr_frags++;
2064 pos += size;
2066 skb_shinfo(skb1)->nr_frags = k;
2070 * skb_split - Split fragmented skb to two parts at length len.
2071 * @skb: the buffer to split
2072 * @skb1: the buffer to receive the second part
2073 * @len: new length for skb
2075 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2077 int pos = skb_headlen(skb);
2079 if (len < pos) /* Split line is inside header. */
2080 skb_split_inside_header(skb, skb1, len, pos);
2081 else /* Second chunk has no header, nothing to copy. */
2082 skb_split_no_header(skb, skb1, len, pos);
2084 EXPORT_SYMBOL(skb_split);
2086 /* Shifting from/to a cloned skb is a no-go.
2088 * Caller cannot keep skb_shinfo related pointers past calling here!
2090 static int skb_prepare_for_shift(struct sk_buff *skb)
2092 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2096 * skb_shift - Shifts paged data partially from skb to another
2097 * @tgt: buffer into which tail data gets added
2098 * @skb: buffer from which the paged data comes from
2099 * @shiftlen: shift up to this many bytes
2101 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2102 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2103 * It's up to caller to free skb if everything was shifted.
2105 * If @tgt runs out of frags, the whole operation is aborted.
2107 * Skb cannot include anything else but paged data while tgt is allowed
2108 * to have non-paged data as well.
2110 * TODO: full sized shift could be optimized but that would need
2111 * specialized skb free'er to handle frags without up-to-date nr_frags.
2113 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2115 int from, to, merge, todo;
2116 struct skb_frag_struct *fragfrom, *fragto;
2118 BUG_ON(shiftlen > skb->len);
2119 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2121 todo = shiftlen;
2122 from = 0;
2123 to = skb_shinfo(tgt)->nr_frags;
2124 fragfrom = &skb_shinfo(skb)->frags[from];
2126 /* Actual merge is delayed until the point when we know we can
2127 * commit all, so that we don't have to undo partial changes
2129 if (!to ||
2130 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2131 merge = -1;
2132 } else {
2133 merge = to - 1;
2135 todo -= fragfrom->size;
2136 if (todo < 0) {
2137 if (skb_prepare_for_shift(skb) ||
2138 skb_prepare_for_shift(tgt))
2139 return 0;
2141 /* All previous frag pointers might be stale! */
2142 fragfrom = &skb_shinfo(skb)->frags[from];
2143 fragto = &skb_shinfo(tgt)->frags[merge];
2145 fragto->size += shiftlen;
2146 fragfrom->size -= shiftlen;
2147 fragfrom->page_offset += shiftlen;
2149 goto onlymerged;
2152 from++;
2155 /* Skip full, not-fitting skb to avoid expensive operations */
2156 if ((shiftlen == skb->len) &&
2157 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2158 return 0;
2160 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2161 return 0;
2163 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2164 if (to == MAX_SKB_FRAGS)
2165 return 0;
2167 fragfrom = &skb_shinfo(skb)->frags[from];
2168 fragto = &skb_shinfo(tgt)->frags[to];
2170 if (todo >= fragfrom->size) {
2171 *fragto = *fragfrom;
2172 todo -= fragfrom->size;
2173 from++;
2174 to++;
2176 } else {
2177 get_page(fragfrom->page);
2178 fragto->page = fragfrom->page;
2179 fragto->page_offset = fragfrom->page_offset;
2180 fragto->size = todo;
2182 fragfrom->page_offset += todo;
2183 fragfrom->size -= todo;
2184 todo = 0;
2186 to++;
2187 break;
2191 /* Ready to "commit" this state change to tgt */
2192 skb_shinfo(tgt)->nr_frags = to;
2194 if (merge >= 0) {
2195 fragfrom = &skb_shinfo(skb)->frags[0];
2196 fragto = &skb_shinfo(tgt)->frags[merge];
2198 fragto->size += fragfrom->size;
2199 put_page(fragfrom->page);
2202 /* Reposition in the original skb */
2203 to = 0;
2204 while (from < skb_shinfo(skb)->nr_frags)
2205 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2206 skb_shinfo(skb)->nr_frags = to;
2208 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2210 onlymerged:
2211 /* Most likely the tgt won't ever need its checksum anymore, skb on
2212 * the other hand might need it if it needs to be resent
2214 tgt->ip_summed = CHECKSUM_PARTIAL;
2215 skb->ip_summed = CHECKSUM_PARTIAL;
2217 /* Yak, is it really working this way? Some helper please? */
2218 skb->len -= shiftlen;
2219 skb->data_len -= shiftlen;
2220 skb->truesize -= shiftlen;
2221 tgt->len += shiftlen;
2222 tgt->data_len += shiftlen;
2223 tgt->truesize += shiftlen;
2225 return shiftlen;
2229 * skb_prepare_seq_read - Prepare a sequential read of skb data
2230 * @skb: the buffer to read
2231 * @from: lower offset of data to be read
2232 * @to: upper offset of data to be read
2233 * @st: state variable
2235 * Initializes the specified state variable. Must be called before
2236 * invoking skb_seq_read() for the first time.
2238 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2239 unsigned int to, struct skb_seq_state *st)
2241 st->lower_offset = from;
2242 st->upper_offset = to;
2243 st->root_skb = st->cur_skb = skb;
2244 st->frag_idx = st->stepped_offset = 0;
2245 st->frag_data = NULL;
2247 EXPORT_SYMBOL(skb_prepare_seq_read);
2250 * skb_seq_read - Sequentially read skb data
2251 * @consumed: number of bytes consumed by the caller so far
2252 * @data: destination pointer for data to be returned
2253 * @st: state variable
2255 * Reads a block of skb data at &consumed relative to the
2256 * lower offset specified to skb_prepare_seq_read(). Assigns
2257 * the head of the data block to &data and returns the length
2258 * of the block or 0 if the end of the skb data or the upper
2259 * offset has been reached.
2261 * The caller is not required to consume all of the data
2262 * returned, i.e. &consumed is typically set to the number
2263 * of bytes already consumed and the next call to
2264 * skb_seq_read() will return the remaining part of the block.
2266 * Note 1: The size of each block of data returned can be arbitary,
2267 * this limitation is the cost for zerocopy seqeuental
2268 * reads of potentially non linear data.
2270 * Note 2: Fragment lists within fragments are not implemented
2271 * at the moment, state->root_skb could be replaced with
2272 * a stack for this purpose.
2274 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2275 struct skb_seq_state *st)
2277 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2278 skb_frag_t *frag;
2280 if (unlikely(abs_offset >= st->upper_offset))
2281 return 0;
2283 next_skb:
2284 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2286 if (abs_offset < block_limit && !st->frag_data) {
2287 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2288 return block_limit - abs_offset;
2291 if (st->frag_idx == 0 && !st->frag_data)
2292 st->stepped_offset += skb_headlen(st->cur_skb);
2294 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2295 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2296 block_limit = frag->size + st->stepped_offset;
2298 if (abs_offset < block_limit) {
2299 if (!st->frag_data)
2300 st->frag_data = kmap_skb_frag(frag);
2302 *data = (u8 *) st->frag_data + frag->page_offset +
2303 (abs_offset - st->stepped_offset);
2305 return block_limit - abs_offset;
2308 if (st->frag_data) {
2309 kunmap_skb_frag(st->frag_data);
2310 st->frag_data = NULL;
2313 st->frag_idx++;
2314 st->stepped_offset += frag->size;
2317 if (st->frag_data) {
2318 kunmap_skb_frag(st->frag_data);
2319 st->frag_data = NULL;
2322 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2323 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2324 st->frag_idx = 0;
2325 goto next_skb;
2326 } else if (st->cur_skb->next) {
2327 st->cur_skb = st->cur_skb->next;
2328 st->frag_idx = 0;
2329 goto next_skb;
2332 return 0;
2334 EXPORT_SYMBOL(skb_seq_read);
2337 * skb_abort_seq_read - Abort a sequential read of skb data
2338 * @st: state variable
2340 * Must be called if skb_seq_read() was not called until it
2341 * returned 0.
2343 void skb_abort_seq_read(struct skb_seq_state *st)
2345 if (st->frag_data)
2346 kunmap_skb_frag(st->frag_data);
2348 EXPORT_SYMBOL(skb_abort_seq_read);
2350 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2352 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2353 struct ts_config *conf,
2354 struct ts_state *state)
2356 return skb_seq_read(offset, text, TS_SKB_CB(state));
2359 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2361 skb_abort_seq_read(TS_SKB_CB(state));
2365 * skb_find_text - Find a text pattern in skb data
2366 * @skb: the buffer to look in
2367 * @from: search offset
2368 * @to: search limit
2369 * @config: textsearch configuration
2370 * @state: uninitialized textsearch state variable
2372 * Finds a pattern in the skb data according to the specified
2373 * textsearch configuration. Use textsearch_next() to retrieve
2374 * subsequent occurrences of the pattern. Returns the offset
2375 * to the first occurrence or UINT_MAX if no match was found.
2377 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2378 unsigned int to, struct ts_config *config,
2379 struct ts_state *state)
2381 unsigned int ret;
2383 config->get_next_block = skb_ts_get_next_block;
2384 config->finish = skb_ts_finish;
2386 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2388 ret = textsearch_find(config, state);
2389 return (ret <= to - from ? ret : UINT_MAX);
2391 EXPORT_SYMBOL(skb_find_text);
2394 * skb_append_datato_frags: - append the user data to a skb
2395 * @sk: sock structure
2396 * @skb: skb structure to be appened with user data.
2397 * @getfrag: call back function to be used for getting the user data
2398 * @from: pointer to user message iov
2399 * @length: length of the iov message
2401 * Description: This procedure append the user data in the fragment part
2402 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2404 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2405 int (*getfrag)(void *from, char *to, int offset,
2406 int len, int odd, struct sk_buff *skb),
2407 void *from, int length)
2409 int frg_cnt = 0;
2410 skb_frag_t *frag = NULL;
2411 struct page *page = NULL;
2412 int copy, left;
2413 int offset = 0;
2414 int ret;
2416 do {
2417 /* Return error if we don't have space for new frag */
2418 frg_cnt = skb_shinfo(skb)->nr_frags;
2419 if (frg_cnt >= MAX_SKB_FRAGS)
2420 return -EFAULT;
2422 /* allocate a new page for next frag */
2423 page = alloc_pages(sk->sk_allocation, 0);
2425 /* If alloc_page fails just return failure and caller will
2426 * free previous allocated pages by doing kfree_skb()
2428 if (page == NULL)
2429 return -ENOMEM;
2431 /* initialize the next frag */
2432 sk->sk_sndmsg_page = page;
2433 sk->sk_sndmsg_off = 0;
2434 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2435 skb->truesize += PAGE_SIZE;
2436 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2438 /* get the new initialized frag */
2439 frg_cnt = skb_shinfo(skb)->nr_frags;
2440 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2442 /* copy the user data to page */
2443 left = PAGE_SIZE - frag->page_offset;
2444 copy = (length > left)? left : length;
2446 ret = getfrag(from, (page_address(frag->page) +
2447 frag->page_offset + frag->size),
2448 offset, copy, 0, skb);
2449 if (ret < 0)
2450 return -EFAULT;
2452 /* copy was successful so update the size parameters */
2453 sk->sk_sndmsg_off += copy;
2454 frag->size += copy;
2455 skb->len += copy;
2456 skb->data_len += copy;
2457 offset += copy;
2458 length -= copy;
2460 } while (length > 0);
2462 return 0;
2464 EXPORT_SYMBOL(skb_append_datato_frags);
2467 * skb_pull_rcsum - pull skb and update receive checksum
2468 * @skb: buffer to update
2469 * @len: length of data pulled
2471 * This function performs an skb_pull on the packet and updates
2472 * the CHECKSUM_COMPLETE checksum. It should be used on
2473 * receive path processing instead of skb_pull unless you know
2474 * that the checksum difference is zero (e.g., a valid IP header)
2475 * or you are setting ip_summed to CHECKSUM_NONE.
2477 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2479 BUG_ON(len > skb->len);
2480 skb->len -= len;
2481 BUG_ON(skb->len < skb->data_len);
2482 skb_postpull_rcsum(skb, skb->data, len);
2483 return skb->data += len;
2485 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2488 * skb_segment - Perform protocol segmentation on skb.
2489 * @skb: buffer to segment
2490 * @features: features for the output path (see dev->features)
2492 * This function performs segmentation on the given skb. It returns
2493 * a pointer to the first in a list of new skbs for the segments.
2494 * In case of error it returns ERR_PTR(err).
2496 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2498 struct sk_buff *segs = NULL;
2499 struct sk_buff *tail = NULL;
2500 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2501 unsigned int mss = skb_shinfo(skb)->gso_size;
2502 unsigned int doffset = skb->data - skb_mac_header(skb);
2503 unsigned int offset = doffset;
2504 unsigned int headroom;
2505 unsigned int len;
2506 int sg = features & NETIF_F_SG;
2507 int nfrags = skb_shinfo(skb)->nr_frags;
2508 int err = -ENOMEM;
2509 int i = 0;
2510 int pos;
2512 __skb_push(skb, doffset);
2513 headroom = skb_headroom(skb);
2514 pos = skb_headlen(skb);
2516 do {
2517 struct sk_buff *nskb;
2518 skb_frag_t *frag;
2519 int hsize;
2520 int size;
2522 len = skb->len - offset;
2523 if (len > mss)
2524 len = mss;
2526 hsize = skb_headlen(skb) - offset;
2527 if (hsize < 0)
2528 hsize = 0;
2529 if (hsize > len || !sg)
2530 hsize = len;
2532 if (!hsize && i >= nfrags) {
2533 BUG_ON(fskb->len != len);
2535 pos += len;
2536 nskb = skb_clone(fskb, GFP_ATOMIC);
2537 fskb = fskb->next;
2539 if (unlikely(!nskb))
2540 goto err;
2542 hsize = skb_end_pointer(nskb) - nskb->head;
2543 if (skb_cow_head(nskb, doffset + headroom)) {
2544 kfree_skb(nskb);
2545 goto err;
2548 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2549 hsize;
2550 skb_release_head_state(nskb);
2551 __skb_push(nskb, doffset);
2552 } else {
2553 nskb = alloc_skb(hsize + doffset + headroom,
2554 GFP_ATOMIC);
2556 if (unlikely(!nskb))
2557 goto err;
2559 skb_reserve(nskb, headroom);
2560 __skb_put(nskb, doffset);
2563 if (segs)
2564 tail->next = nskb;
2565 else
2566 segs = nskb;
2567 tail = nskb;
2569 __copy_skb_header(nskb, skb);
2570 nskb->mac_len = skb->mac_len;
2572 /* nskb and skb might have different headroom */
2573 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2574 nskb->csum_start += skb_headroom(nskb) - headroom;
2576 skb_reset_mac_header(nskb);
2577 skb_set_network_header(nskb, skb->mac_len);
2578 nskb->transport_header = (nskb->network_header +
2579 skb_network_header_len(skb));
2580 skb_copy_from_linear_data(skb, nskb->data, doffset);
2582 if (fskb != skb_shinfo(skb)->frag_list)
2583 continue;
2585 if (!sg) {
2586 nskb->ip_summed = CHECKSUM_NONE;
2587 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2588 skb_put(nskb, len),
2589 len, 0);
2590 continue;
2593 frag = skb_shinfo(nskb)->frags;
2595 skb_copy_from_linear_data_offset(skb, offset,
2596 skb_put(nskb, hsize), hsize);
2598 while (pos < offset + len && i < nfrags) {
2599 *frag = skb_shinfo(skb)->frags[i];
2600 get_page(frag->page);
2601 size = frag->size;
2603 if (pos < offset) {
2604 frag->page_offset += offset - pos;
2605 frag->size -= offset - pos;
2608 skb_shinfo(nskb)->nr_frags++;
2610 if (pos + size <= offset + len) {
2611 i++;
2612 pos += size;
2613 } else {
2614 frag->size -= pos + size - (offset + len);
2615 goto skip_fraglist;
2618 frag++;
2621 if (pos < offset + len) {
2622 struct sk_buff *fskb2 = fskb;
2624 BUG_ON(pos + fskb->len != offset + len);
2626 pos += fskb->len;
2627 fskb = fskb->next;
2629 if (fskb2->next) {
2630 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2631 if (!fskb2)
2632 goto err;
2633 } else
2634 skb_get(fskb2);
2636 SKB_FRAG_ASSERT(nskb);
2637 skb_shinfo(nskb)->frag_list = fskb2;
2640 skip_fraglist:
2641 nskb->data_len = len - hsize;
2642 nskb->len += nskb->data_len;
2643 nskb->truesize += nskb->data_len;
2644 } while ((offset += len) < skb->len);
2646 return segs;
2648 err:
2649 while ((skb = segs)) {
2650 segs = skb->next;
2651 kfree_skb(skb);
2653 return ERR_PTR(err);
2655 EXPORT_SYMBOL_GPL(skb_segment);
2657 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2659 struct sk_buff *p = *head;
2660 struct sk_buff *nskb;
2661 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2662 struct skb_shared_info *pinfo = skb_shinfo(p);
2663 unsigned int headroom;
2664 unsigned int len = skb_gro_len(skb);
2665 unsigned int offset = skb_gro_offset(skb);
2666 unsigned int headlen = skb_headlen(skb);
2668 if (p->len + len >= 65536)
2669 return -E2BIG;
2671 if (pinfo->frag_list)
2672 goto merge;
2673 else if (headlen <= offset) {
2674 skb_frag_t *frag;
2675 skb_frag_t *frag2;
2676 int i = skbinfo->nr_frags;
2677 int nr_frags = pinfo->nr_frags + i;
2679 offset -= headlen;
2681 if (nr_frags > MAX_SKB_FRAGS)
2682 return -E2BIG;
2684 pinfo->nr_frags = nr_frags;
2685 skbinfo->nr_frags = 0;
2687 frag = pinfo->frags + nr_frags;
2688 frag2 = skbinfo->frags + i;
2689 do {
2690 *--frag = *--frag2;
2691 } while (--i);
2693 frag->page_offset += offset;
2694 frag->size -= offset;
2696 skb->truesize -= skb->data_len;
2697 skb->len -= skb->data_len;
2698 skb->data_len = 0;
2700 NAPI_GRO_CB(skb)->free = 1;
2701 goto done;
2702 } else if (skb_gro_len(p) != pinfo->gso_size)
2703 return -E2BIG;
2705 headroom = skb_headroom(p);
2706 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2707 if (unlikely(!nskb))
2708 return -ENOMEM;
2710 __copy_skb_header(nskb, p);
2711 nskb->mac_len = p->mac_len;
2713 skb_reserve(nskb, headroom);
2714 __skb_put(nskb, skb_gro_offset(p));
2716 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2717 skb_set_network_header(nskb, skb_network_offset(p));
2718 skb_set_transport_header(nskb, skb_transport_offset(p));
2720 __skb_pull(p, skb_gro_offset(p));
2721 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2722 p->data - skb_mac_header(p));
2724 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2725 skb_shinfo(nskb)->frag_list = p;
2726 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2727 pinfo->gso_size = 0;
2728 skb_header_release(p);
2729 nskb->prev = p;
2731 nskb->data_len += p->len;
2732 nskb->truesize += p->len;
2733 nskb->len += p->len;
2735 *head = nskb;
2736 nskb->next = p->next;
2737 p->next = NULL;
2739 p = nskb;
2741 merge:
2742 if (offset > headlen) {
2743 skbinfo->frags[0].page_offset += offset - headlen;
2744 skbinfo->frags[0].size -= offset - headlen;
2745 offset = headlen;
2748 __skb_pull(skb, offset);
2750 p->prev->next = skb;
2751 p->prev = skb;
2752 skb_header_release(skb);
2754 done:
2755 NAPI_GRO_CB(p)->count++;
2756 p->data_len += len;
2757 p->truesize += len;
2758 p->len += len;
2760 NAPI_GRO_CB(skb)->same_flow = 1;
2761 return 0;
2763 EXPORT_SYMBOL_GPL(skb_gro_receive);
2765 void __init skb_init(void)
2767 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2768 sizeof(struct sk_buff),
2770 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2771 NULL);
2772 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2773 (2*sizeof(struct sk_buff)) +
2774 sizeof(atomic_t),
2776 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2777 NULL);
2781 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2782 * @skb: Socket buffer containing the buffers to be mapped
2783 * @sg: The scatter-gather list to map into
2784 * @offset: The offset into the buffer's contents to start mapping
2785 * @len: Length of buffer space to be mapped
2787 * Fill the specified scatter-gather list with mappings/pointers into a
2788 * region of the buffer space attached to a socket buffer.
2790 static int
2791 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2793 int start = skb_headlen(skb);
2794 int i, copy = start - offset;
2795 struct sk_buff *frag_iter;
2796 int elt = 0;
2798 if (copy > 0) {
2799 if (copy > len)
2800 copy = len;
2801 sg_set_buf(sg, skb->data + offset, copy);
2802 elt++;
2803 if ((len -= copy) == 0)
2804 return elt;
2805 offset += copy;
2808 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2809 int end;
2811 WARN_ON(start > offset + len);
2813 end = start + skb_shinfo(skb)->frags[i].size;
2814 if ((copy = end - offset) > 0) {
2815 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2817 if (copy > len)
2818 copy = len;
2819 sg_set_page(&sg[elt], frag->page, copy,
2820 frag->page_offset+offset-start);
2821 elt++;
2822 if (!(len -= copy))
2823 return elt;
2824 offset += copy;
2826 start = end;
2829 skb_walk_frags(skb, frag_iter) {
2830 int end;
2832 WARN_ON(start > offset + len);
2834 end = start + frag_iter->len;
2835 if ((copy = end - offset) > 0) {
2836 if (copy > len)
2837 copy = len;
2838 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
2839 copy);
2840 if ((len -= copy) == 0)
2841 return elt;
2842 offset += copy;
2844 start = end;
2846 BUG_ON(len);
2847 return elt;
2850 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2852 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2854 sg_mark_end(&sg[nsg - 1]);
2856 return nsg;
2858 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2861 * skb_cow_data - Check that a socket buffer's data buffers are writable
2862 * @skb: The socket buffer to check.
2863 * @tailbits: Amount of trailing space to be added
2864 * @trailer: Returned pointer to the skb where the @tailbits space begins
2866 * Make sure that the data buffers attached to a socket buffer are
2867 * writable. If they are not, private copies are made of the data buffers
2868 * and the socket buffer is set to use these instead.
2870 * If @tailbits is given, make sure that there is space to write @tailbits
2871 * bytes of data beyond current end of socket buffer. @trailer will be
2872 * set to point to the skb in which this space begins.
2874 * The number of scatterlist elements required to completely map the
2875 * COW'd and extended socket buffer will be returned.
2877 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2879 int copyflag;
2880 int elt;
2881 struct sk_buff *skb1, **skb_p;
2883 /* If skb is cloned or its head is paged, reallocate
2884 * head pulling out all the pages (pages are considered not writable
2885 * at the moment even if they are anonymous).
2887 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2888 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2889 return -ENOMEM;
2891 /* Easy case. Most of packets will go this way. */
2892 if (!skb_has_frag_list(skb)) {
2893 /* A little of trouble, not enough of space for trailer.
2894 * This should not happen, when stack is tuned to generate
2895 * good frames. OK, on miss we reallocate and reserve even more
2896 * space, 128 bytes is fair. */
2898 if (skb_tailroom(skb) < tailbits &&
2899 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2900 return -ENOMEM;
2902 /* Voila! */
2903 *trailer = skb;
2904 return 1;
2907 /* Misery. We are in troubles, going to mincer fragments... */
2909 elt = 1;
2910 skb_p = &skb_shinfo(skb)->frag_list;
2911 copyflag = 0;
2913 while ((skb1 = *skb_p) != NULL) {
2914 int ntail = 0;
2916 /* The fragment is partially pulled by someone,
2917 * this can happen on input. Copy it and everything
2918 * after it. */
2920 if (skb_shared(skb1))
2921 copyflag = 1;
2923 /* If the skb is the last, worry about trailer. */
2925 if (skb1->next == NULL && tailbits) {
2926 if (skb_shinfo(skb1)->nr_frags ||
2927 skb_has_frag_list(skb1) ||
2928 skb_tailroom(skb1) < tailbits)
2929 ntail = tailbits + 128;
2932 if (copyflag ||
2933 skb_cloned(skb1) ||
2934 ntail ||
2935 skb_shinfo(skb1)->nr_frags ||
2936 skb_has_frag_list(skb1)) {
2937 struct sk_buff *skb2;
2939 /* Fuck, we are miserable poor guys... */
2940 if (ntail == 0)
2941 skb2 = skb_copy(skb1, GFP_ATOMIC);
2942 else
2943 skb2 = skb_copy_expand(skb1,
2944 skb_headroom(skb1),
2945 ntail,
2946 GFP_ATOMIC);
2947 if (unlikely(skb2 == NULL))
2948 return -ENOMEM;
2950 if (skb1->sk)
2951 skb_set_owner_w(skb2, skb1->sk);
2953 /* Looking around. Are we still alive?
2954 * OK, link new skb, drop old one */
2956 skb2->next = skb1->next;
2957 *skb_p = skb2;
2958 kfree_skb(skb1);
2959 skb1 = skb2;
2961 elt++;
2962 *trailer = skb1;
2963 skb_p = &skb1->next;
2966 return elt;
2968 EXPORT_SYMBOL_GPL(skb_cow_data);
2970 static void sock_rmem_free(struct sk_buff *skb)
2972 struct sock *sk = skb->sk;
2974 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
2978 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
2980 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
2982 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
2983 (unsigned)sk->sk_rcvbuf)
2984 return -ENOMEM;
2986 skb_orphan(skb);
2987 skb->sk = sk;
2988 skb->destructor = sock_rmem_free;
2989 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2991 skb_queue_tail(&sk->sk_error_queue, skb);
2992 if (!sock_flag(sk, SOCK_DEAD))
2993 sk->sk_data_ready(sk, skb->len);
2994 return 0;
2996 EXPORT_SYMBOL(sock_queue_err_skb);
2998 void skb_tstamp_tx(struct sk_buff *orig_skb,
2999 struct skb_shared_hwtstamps *hwtstamps)
3001 struct sock *sk = orig_skb->sk;
3002 struct sock_exterr_skb *serr;
3003 struct sk_buff *skb;
3004 int err;
3006 if (!sk)
3007 return;
3009 skb = skb_clone(orig_skb, GFP_ATOMIC);
3010 if (!skb)
3011 return;
3013 if (hwtstamps) {
3014 *skb_hwtstamps(skb) =
3015 *hwtstamps;
3016 } else {
3018 * no hardware time stamps available,
3019 * so keep the shared tx_flags and only
3020 * store software time stamp
3022 skb->tstamp = ktime_get_real();
3025 serr = SKB_EXT_ERR(skb);
3026 memset(serr, 0, sizeof(*serr));
3027 serr->ee.ee_errno = ENOMSG;
3028 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3030 err = sock_queue_err_skb(sk, skb);
3032 if (err)
3033 kfree_skb(skb);
3035 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3039 * skb_partial_csum_set - set up and verify partial csum values for packet
3040 * @skb: the skb to set
3041 * @start: the number of bytes after skb->data to start checksumming.
3042 * @off: the offset from start to place the checksum.
3044 * For untrusted partially-checksummed packets, we need to make sure the values
3045 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3047 * This function checks and sets those values and skb->ip_summed: if this
3048 * returns false you should drop the packet.
3050 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3052 if (unlikely(start > skb_headlen(skb)) ||
3053 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3054 if (net_ratelimit())
3055 printk(KERN_WARNING
3056 "bad partial csum: csum=%u/%u len=%u\n",
3057 start, off, skb_headlen(skb));
3058 return false;
3060 skb->ip_summed = CHECKSUM_PARTIAL;
3061 skb->csum_start = skb_headroom(skb) + start;
3062 skb->csum_offset = off;
3063 return true;
3065 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3067 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3069 if (net_ratelimit())
3070 pr_warning("%s: received packets cannot be forwarded"
3071 " while LRO is enabled\n", skb->dev->name);
3073 EXPORT_SYMBOL(__skb_warn_lro_forwarding);