[PATCH] ZVC: Support NR_SLAB_RECLAIMABLE / NR_SLAB_UNRECLAIMABLE
[linux-2.6/cjktty.git] / arch / i386 / mm / pgtable.c
bloba9f4910a22f8ca2587df09e1d8fded42d9b63d6e
1 /*
2 * linux/arch/i386/mm/pgtable.c
3 */
5 #include <linux/sched.h>
6 #include <linux/kernel.h>
7 #include <linux/errno.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/smp.h>
11 #include <linux/highmem.h>
12 #include <linux/slab.h>
13 #include <linux/pagemap.h>
14 #include <linux/spinlock.h>
16 #include <asm/system.h>
17 #include <asm/pgtable.h>
18 #include <asm/pgalloc.h>
19 #include <asm/fixmap.h>
20 #include <asm/e820.h>
21 #include <asm/tlb.h>
22 #include <asm/tlbflush.h>
24 void show_mem(void)
26 int total = 0, reserved = 0;
27 int shared = 0, cached = 0;
28 int highmem = 0;
29 struct page *page;
30 pg_data_t *pgdat;
31 unsigned long i;
32 unsigned long flags;
34 printk(KERN_INFO "Mem-info:\n");
35 show_free_areas();
36 printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
37 for_each_online_pgdat(pgdat) {
38 pgdat_resize_lock(pgdat, &flags);
39 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
40 page = pgdat_page_nr(pgdat, i);
41 total++;
42 if (PageHighMem(page))
43 highmem++;
44 if (PageReserved(page))
45 reserved++;
46 else if (PageSwapCache(page))
47 cached++;
48 else if (page_count(page))
49 shared += page_count(page) - 1;
51 pgdat_resize_unlock(pgdat, &flags);
53 printk(KERN_INFO "%d pages of RAM\n", total);
54 printk(KERN_INFO "%d pages of HIGHMEM\n", highmem);
55 printk(KERN_INFO "%d reserved pages\n", reserved);
56 printk(KERN_INFO "%d pages shared\n", shared);
57 printk(KERN_INFO "%d pages swap cached\n", cached);
59 printk(KERN_INFO "%lu pages dirty\n", global_page_state(NR_FILE_DIRTY));
60 printk(KERN_INFO "%lu pages writeback\n",
61 global_page_state(NR_WRITEBACK));
62 printk(KERN_INFO "%lu pages mapped\n", global_page_state(NR_FILE_MAPPED));
63 printk(KERN_INFO "%lu pages slab\n",
64 global_page_state(NR_SLAB_RECLAIMABLE) +
65 global_page_state(NR_SLAB_UNRECLAIMABLE));
66 printk(KERN_INFO "%lu pages pagetables\n",
67 global_page_state(NR_PAGETABLE));
71 * Associate a virtual page frame with a given physical page frame
72 * and protection flags for that frame.
73 */
74 static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
76 pgd_t *pgd;
77 pud_t *pud;
78 pmd_t *pmd;
79 pte_t *pte;
81 pgd = swapper_pg_dir + pgd_index(vaddr);
82 if (pgd_none(*pgd)) {
83 BUG();
84 return;
86 pud = pud_offset(pgd, vaddr);
87 if (pud_none(*pud)) {
88 BUG();
89 return;
91 pmd = pmd_offset(pud, vaddr);
92 if (pmd_none(*pmd)) {
93 BUG();
94 return;
96 pte = pte_offset_kernel(pmd, vaddr);
97 /* <pfn,flags> stored as-is, to permit clearing entries */
98 set_pte(pte, pfn_pte(pfn, flags));
101 * It's enough to flush this one mapping.
102 * (PGE mappings get flushed as well)
104 __flush_tlb_one(vaddr);
108 * Associate a large virtual page frame with a given physical page frame
109 * and protection flags for that frame. pfn is for the base of the page,
110 * vaddr is what the page gets mapped to - both must be properly aligned.
111 * The pmd must already be instantiated. Assumes PAE mode.
113 void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
115 pgd_t *pgd;
116 pud_t *pud;
117 pmd_t *pmd;
119 if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */
120 printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n");
121 return; /* BUG(); */
123 if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */
124 printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n");
125 return; /* BUG(); */
127 pgd = swapper_pg_dir + pgd_index(vaddr);
128 if (pgd_none(*pgd)) {
129 printk(KERN_WARNING "set_pmd_pfn: pgd_none\n");
130 return; /* BUG(); */
132 pud = pud_offset(pgd, vaddr);
133 pmd = pmd_offset(pud, vaddr);
134 set_pmd(pmd, pfn_pmd(pfn, flags));
136 * It's enough to flush this one mapping.
137 * (PGE mappings get flushed as well)
139 __flush_tlb_one(vaddr);
142 void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
144 unsigned long address = __fix_to_virt(idx);
146 if (idx >= __end_of_fixed_addresses) {
147 BUG();
148 return;
150 set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
153 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
155 return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
158 struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
160 struct page *pte;
162 #ifdef CONFIG_HIGHPTE
163 pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
164 #else
165 pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
166 #endif
167 return pte;
170 void pmd_ctor(void *pmd, kmem_cache_t *cache, unsigned long flags)
172 memset(pmd, 0, PTRS_PER_PMD*sizeof(pmd_t));
176 * List of all pgd's needed for non-PAE so it can invalidate entries
177 * in both cached and uncached pgd's; not needed for PAE since the
178 * kernel pmd is shared. If PAE were not to share the pmd a similar
179 * tactic would be needed. This is essentially codepath-based locking
180 * against pageattr.c; it is the unique case in which a valid change
181 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
182 * vmalloc faults work because attached pagetables are never freed.
183 * The locking scheme was chosen on the basis of manfred's
184 * recommendations and having no core impact whatsoever.
185 * -- wli
187 DEFINE_SPINLOCK(pgd_lock);
188 struct page *pgd_list;
190 static inline void pgd_list_add(pgd_t *pgd)
192 struct page *page = virt_to_page(pgd);
193 page->index = (unsigned long)pgd_list;
194 if (pgd_list)
195 set_page_private(pgd_list, (unsigned long)&page->index);
196 pgd_list = page;
197 set_page_private(page, (unsigned long)&pgd_list);
200 static inline void pgd_list_del(pgd_t *pgd)
202 struct page *next, **pprev, *page = virt_to_page(pgd);
203 next = (struct page *)page->index;
204 pprev = (struct page **)page_private(page);
205 *pprev = next;
206 if (next)
207 set_page_private(next, (unsigned long)pprev);
210 void pgd_ctor(void *pgd, kmem_cache_t *cache, unsigned long unused)
212 unsigned long flags;
214 if (PTRS_PER_PMD == 1) {
215 memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
216 spin_lock_irqsave(&pgd_lock, flags);
219 clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD,
220 swapper_pg_dir + USER_PTRS_PER_PGD,
221 KERNEL_PGD_PTRS);
222 if (PTRS_PER_PMD > 1)
223 return;
225 pgd_list_add(pgd);
226 spin_unlock_irqrestore(&pgd_lock, flags);
229 /* never called when PTRS_PER_PMD > 1 */
230 void pgd_dtor(void *pgd, kmem_cache_t *cache, unsigned long unused)
232 unsigned long flags; /* can be called from interrupt context */
234 spin_lock_irqsave(&pgd_lock, flags);
235 pgd_list_del(pgd);
236 spin_unlock_irqrestore(&pgd_lock, flags);
239 pgd_t *pgd_alloc(struct mm_struct *mm)
241 int i;
242 pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
244 if (PTRS_PER_PMD == 1 || !pgd)
245 return pgd;
247 for (i = 0; i < USER_PTRS_PER_PGD; ++i) {
248 pmd_t *pmd = kmem_cache_alloc(pmd_cache, GFP_KERNEL);
249 if (!pmd)
250 goto out_oom;
251 set_pgd(&pgd[i], __pgd(1 + __pa(pmd)));
253 return pgd;
255 out_oom:
256 for (i--; i >= 0; i--)
257 kmem_cache_free(pmd_cache, (void *)__va(pgd_val(pgd[i])-1));
258 kmem_cache_free(pgd_cache, pgd);
259 return NULL;
262 void pgd_free(pgd_t *pgd)
264 int i;
266 /* in the PAE case user pgd entries are overwritten before usage */
267 if (PTRS_PER_PMD > 1)
268 for (i = 0; i < USER_PTRS_PER_PGD; ++i)
269 kmem_cache_free(pmd_cache, (void *)__va(pgd_val(pgd[i])-1));
270 /* in the non-PAE case, free_pgtables() clears user pgd entries */
271 kmem_cache_free(pgd_cache, pgd);