sfc: Add TX queues for high-priority traffic
[linux-2.6/cjktty.git] / drivers / net / sfc / nic.c
blob1d0b8b6f25c479ff49cfdbdea4d0f3a27722bc55
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include "net_driver.h"
17 #include "bitfield.h"
18 #include "efx.h"
19 #include "nic.h"
20 #include "regs.h"
21 #include "io.h"
22 #include "workarounds.h"
24 /**************************************************************************
26 * Configurable values
28 **************************************************************************
31 /* This is set to 16 for a good reason. In summary, if larger than
32 * 16, the descriptor cache holds more than a default socket
33 * buffer's worth of packets (for UDP we can only have at most one
34 * socket buffer's worth outstanding). This combined with the fact
35 * that we only get 1 TX event per descriptor cache means the NIC
36 * goes idle.
38 #define TX_DC_ENTRIES 16
39 #define TX_DC_ENTRIES_ORDER 1
41 #define RX_DC_ENTRIES 64
42 #define RX_DC_ENTRIES_ORDER 3
44 /* RX FIFO XOFF watermark
46 * When the amount of the RX FIFO increases used increases past this
47 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
48 * This also has an effect on RX/TX arbitration
50 int efx_nic_rx_xoff_thresh = -1;
51 module_param_named(rx_xoff_thresh_bytes, efx_nic_rx_xoff_thresh, int, 0644);
52 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
54 /* RX FIFO XON watermark
56 * When the amount of the RX FIFO used decreases below this
57 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
58 * This also has an effect on RX/TX arbitration
60 int efx_nic_rx_xon_thresh = -1;
61 module_param_named(rx_xon_thresh_bytes, efx_nic_rx_xon_thresh, int, 0644);
62 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
64 /* If EFX_MAX_INT_ERRORS internal errors occur within
65 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
66 * disable it.
68 #define EFX_INT_ERROR_EXPIRE 3600
69 #define EFX_MAX_INT_ERRORS 5
71 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
73 #define EFX_FLUSH_INTERVAL 10
74 #define EFX_FLUSH_POLL_COUNT 100
76 /* Size and alignment of special buffers (4KB) */
77 #define EFX_BUF_SIZE 4096
79 /* Depth of RX flush request fifo */
80 #define EFX_RX_FLUSH_COUNT 4
82 /* Generated event code for efx_generate_test_event() */
83 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
84 (0x00010100 + (_channel)->channel)
86 /* Generated event code for efx_generate_fill_event() */
87 #define EFX_CHANNEL_MAGIC_FILL(_channel) \
88 (0x00010200 + (_channel)->channel)
90 /**************************************************************************
92 * Solarstorm hardware access
94 **************************************************************************/
96 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
97 unsigned int index)
99 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
100 value, index);
103 /* Read the current event from the event queue */
104 static inline efx_qword_t *efx_event(struct efx_channel *channel,
105 unsigned int index)
107 return ((efx_qword_t *) (channel->eventq.addr)) + index;
110 /* See if an event is present
112 * We check both the high and low dword of the event for all ones. We
113 * wrote all ones when we cleared the event, and no valid event can
114 * have all ones in either its high or low dwords. This approach is
115 * robust against reordering.
117 * Note that using a single 64-bit comparison is incorrect; even
118 * though the CPU read will be atomic, the DMA write may not be.
120 static inline int efx_event_present(efx_qword_t *event)
122 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
123 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
126 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
127 const efx_oword_t *mask)
129 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
130 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
133 int efx_nic_test_registers(struct efx_nic *efx,
134 const struct efx_nic_register_test *regs,
135 size_t n_regs)
137 unsigned address = 0, i, j;
138 efx_oword_t mask, imask, original, reg, buf;
140 /* Falcon should be in loopback to isolate the XMAC from the PHY */
141 WARN_ON(!LOOPBACK_INTERNAL(efx));
143 for (i = 0; i < n_regs; ++i) {
144 address = regs[i].address;
145 mask = imask = regs[i].mask;
146 EFX_INVERT_OWORD(imask);
148 efx_reado(efx, &original, address);
150 /* bit sweep on and off */
151 for (j = 0; j < 128; j++) {
152 if (!EFX_EXTRACT_OWORD32(mask, j, j))
153 continue;
155 /* Test this testable bit can be set in isolation */
156 EFX_AND_OWORD(reg, original, mask);
157 EFX_SET_OWORD32(reg, j, j, 1);
159 efx_writeo(efx, &reg, address);
160 efx_reado(efx, &buf, address);
162 if (efx_masked_compare_oword(&reg, &buf, &mask))
163 goto fail;
165 /* Test this testable bit can be cleared in isolation */
166 EFX_OR_OWORD(reg, original, mask);
167 EFX_SET_OWORD32(reg, j, j, 0);
169 efx_writeo(efx, &reg, address);
170 efx_reado(efx, &buf, address);
172 if (efx_masked_compare_oword(&reg, &buf, &mask))
173 goto fail;
176 efx_writeo(efx, &original, address);
179 return 0;
181 fail:
182 netif_err(efx, hw, efx->net_dev,
183 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
184 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
185 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
186 return -EIO;
189 /**************************************************************************
191 * Special buffer handling
192 * Special buffers are used for event queues and the TX and RX
193 * descriptor rings.
195 *************************************************************************/
198 * Initialise a special buffer
200 * This will define a buffer (previously allocated via
201 * efx_alloc_special_buffer()) in the buffer table, allowing
202 * it to be used for event queues, descriptor rings etc.
204 static void
205 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
207 efx_qword_t buf_desc;
208 int index;
209 dma_addr_t dma_addr;
210 int i;
212 EFX_BUG_ON_PARANOID(!buffer->addr);
214 /* Write buffer descriptors to NIC */
215 for (i = 0; i < buffer->entries; i++) {
216 index = buffer->index + i;
217 dma_addr = buffer->dma_addr + (i * 4096);
218 netif_dbg(efx, probe, efx->net_dev,
219 "mapping special buffer %d at %llx\n",
220 index, (unsigned long long)dma_addr);
221 EFX_POPULATE_QWORD_3(buf_desc,
222 FRF_AZ_BUF_ADR_REGION, 0,
223 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
224 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
225 efx_write_buf_tbl(efx, &buf_desc, index);
229 /* Unmaps a buffer and clears the buffer table entries */
230 static void
231 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
233 efx_oword_t buf_tbl_upd;
234 unsigned int start = buffer->index;
235 unsigned int end = (buffer->index + buffer->entries - 1);
237 if (!buffer->entries)
238 return;
240 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
241 buffer->index, buffer->index + buffer->entries - 1);
243 EFX_POPULATE_OWORD_4(buf_tbl_upd,
244 FRF_AZ_BUF_UPD_CMD, 0,
245 FRF_AZ_BUF_CLR_CMD, 1,
246 FRF_AZ_BUF_CLR_END_ID, end,
247 FRF_AZ_BUF_CLR_START_ID, start);
248 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
252 * Allocate a new special buffer
254 * This allocates memory for a new buffer, clears it and allocates a
255 * new buffer ID range. It does not write into the buffer table.
257 * This call will allocate 4KB buffers, since 8KB buffers can't be
258 * used for event queues and descriptor rings.
260 static int efx_alloc_special_buffer(struct efx_nic *efx,
261 struct efx_special_buffer *buffer,
262 unsigned int len)
264 len = ALIGN(len, EFX_BUF_SIZE);
266 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
267 &buffer->dma_addr, GFP_KERNEL);
268 if (!buffer->addr)
269 return -ENOMEM;
270 buffer->len = len;
271 buffer->entries = len / EFX_BUF_SIZE;
272 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
274 /* All zeros is a potentially valid event so memset to 0xff */
275 memset(buffer->addr, 0xff, len);
277 /* Select new buffer ID */
278 buffer->index = efx->next_buffer_table;
279 efx->next_buffer_table += buffer->entries;
281 netif_dbg(efx, probe, efx->net_dev,
282 "allocating special buffers %d-%d at %llx+%x "
283 "(virt %p phys %llx)\n", buffer->index,
284 buffer->index + buffer->entries - 1,
285 (u64)buffer->dma_addr, len,
286 buffer->addr, (u64)virt_to_phys(buffer->addr));
288 return 0;
291 static void
292 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
294 if (!buffer->addr)
295 return;
297 netif_dbg(efx, hw, efx->net_dev,
298 "deallocating special buffers %d-%d at %llx+%x "
299 "(virt %p phys %llx)\n", buffer->index,
300 buffer->index + buffer->entries - 1,
301 (u64)buffer->dma_addr, buffer->len,
302 buffer->addr, (u64)virt_to_phys(buffer->addr));
304 dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
305 buffer->dma_addr);
306 buffer->addr = NULL;
307 buffer->entries = 0;
310 /**************************************************************************
312 * Generic buffer handling
313 * These buffers are used for interrupt status and MAC stats
315 **************************************************************************/
317 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
318 unsigned int len)
320 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
321 &buffer->dma_addr);
322 if (!buffer->addr)
323 return -ENOMEM;
324 buffer->len = len;
325 memset(buffer->addr, 0, len);
326 return 0;
329 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
331 if (buffer->addr) {
332 pci_free_consistent(efx->pci_dev, buffer->len,
333 buffer->addr, buffer->dma_addr);
334 buffer->addr = NULL;
338 /**************************************************************************
340 * TX path
342 **************************************************************************/
344 /* Returns a pointer to the specified transmit descriptor in the TX
345 * descriptor queue belonging to the specified channel.
347 static inline efx_qword_t *
348 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
350 return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
353 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
354 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
356 unsigned write_ptr;
357 efx_dword_t reg;
359 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
360 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
361 efx_writed_page(tx_queue->efx, &reg,
362 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
365 /* Write pointer and first descriptor for TX descriptor ring */
366 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
367 const efx_qword_t *txd)
369 unsigned write_ptr;
370 efx_oword_t reg;
372 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
373 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
375 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
376 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
377 FRF_AZ_TX_DESC_WPTR, write_ptr);
378 reg.qword[0] = *txd;
379 efx_writeo_page(tx_queue->efx, &reg,
380 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
383 static inline bool
384 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
386 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
388 if (empty_read_count == 0)
389 return false;
391 tx_queue->empty_read_count = 0;
392 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
395 /* For each entry inserted into the software descriptor ring, create a
396 * descriptor in the hardware TX descriptor ring (in host memory), and
397 * write a doorbell.
399 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
402 struct efx_tx_buffer *buffer;
403 efx_qword_t *txd;
404 unsigned write_ptr;
405 unsigned old_write_count = tx_queue->write_count;
407 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
409 do {
410 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
411 buffer = &tx_queue->buffer[write_ptr];
412 txd = efx_tx_desc(tx_queue, write_ptr);
413 ++tx_queue->write_count;
415 /* Create TX descriptor ring entry */
416 EFX_POPULATE_QWORD_4(*txd,
417 FSF_AZ_TX_KER_CONT, buffer->continuation,
418 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
419 FSF_AZ_TX_KER_BUF_REGION, 0,
420 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
421 } while (tx_queue->write_count != tx_queue->insert_count);
423 wmb(); /* Ensure descriptors are written before they are fetched */
425 if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
426 txd = efx_tx_desc(tx_queue,
427 old_write_count & tx_queue->ptr_mask);
428 efx_push_tx_desc(tx_queue, txd);
429 ++tx_queue->pushes;
430 } else {
431 efx_notify_tx_desc(tx_queue);
435 /* Allocate hardware resources for a TX queue */
436 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
438 struct efx_nic *efx = tx_queue->efx;
439 unsigned entries;
441 entries = tx_queue->ptr_mask + 1;
442 return efx_alloc_special_buffer(efx, &tx_queue->txd,
443 entries * sizeof(efx_qword_t));
446 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
448 struct efx_nic *efx = tx_queue->efx;
449 efx_oword_t reg;
451 tx_queue->flushed = FLUSH_NONE;
453 /* Pin TX descriptor ring */
454 efx_init_special_buffer(efx, &tx_queue->txd);
456 /* Push TX descriptor ring to card */
457 EFX_POPULATE_OWORD_10(reg,
458 FRF_AZ_TX_DESCQ_EN, 1,
459 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
460 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
461 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
462 FRF_AZ_TX_DESCQ_EVQ_ID,
463 tx_queue->channel->channel,
464 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
465 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
466 FRF_AZ_TX_DESCQ_SIZE,
467 __ffs(tx_queue->txd.entries),
468 FRF_AZ_TX_DESCQ_TYPE, 0,
469 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
471 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
472 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
473 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
474 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
475 !csum);
478 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
479 tx_queue->queue);
481 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
482 /* Only 128 bits in this register */
483 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
485 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
486 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
487 clear_bit_le(tx_queue->queue, (void *)&reg);
488 else
489 set_bit_le(tx_queue->queue, (void *)&reg);
490 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
493 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
494 EFX_POPULATE_OWORD_1(reg,
495 FRF_BZ_TX_PACE,
496 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
497 FFE_BZ_TX_PACE_OFF :
498 FFE_BZ_TX_PACE_RESERVED);
499 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
500 tx_queue->queue);
504 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
506 struct efx_nic *efx = tx_queue->efx;
507 efx_oword_t tx_flush_descq;
509 tx_queue->flushed = FLUSH_PENDING;
511 /* Post a flush command */
512 EFX_POPULATE_OWORD_2(tx_flush_descq,
513 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
514 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
515 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
518 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
520 struct efx_nic *efx = tx_queue->efx;
521 efx_oword_t tx_desc_ptr;
523 /* The queue should have been flushed */
524 WARN_ON(tx_queue->flushed != FLUSH_DONE);
526 /* Remove TX descriptor ring from card */
527 EFX_ZERO_OWORD(tx_desc_ptr);
528 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
529 tx_queue->queue);
531 /* Unpin TX descriptor ring */
532 efx_fini_special_buffer(efx, &tx_queue->txd);
535 /* Free buffers backing TX queue */
536 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
538 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
541 /**************************************************************************
543 * RX path
545 **************************************************************************/
547 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
548 static inline efx_qword_t *
549 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
551 return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
554 /* This creates an entry in the RX descriptor queue */
555 static inline void
556 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
558 struct efx_rx_buffer *rx_buf;
559 efx_qword_t *rxd;
561 rxd = efx_rx_desc(rx_queue, index);
562 rx_buf = efx_rx_buffer(rx_queue, index);
563 EFX_POPULATE_QWORD_3(*rxd,
564 FSF_AZ_RX_KER_BUF_SIZE,
565 rx_buf->len -
566 rx_queue->efx->type->rx_buffer_padding,
567 FSF_AZ_RX_KER_BUF_REGION, 0,
568 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
571 /* This writes to the RX_DESC_WPTR register for the specified receive
572 * descriptor ring.
574 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
576 struct efx_nic *efx = rx_queue->efx;
577 efx_dword_t reg;
578 unsigned write_ptr;
580 while (rx_queue->notified_count != rx_queue->added_count) {
581 efx_build_rx_desc(
582 rx_queue,
583 rx_queue->notified_count & rx_queue->ptr_mask);
584 ++rx_queue->notified_count;
587 wmb();
588 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
589 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
590 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
591 efx_rx_queue_index(rx_queue));
594 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
596 struct efx_nic *efx = rx_queue->efx;
597 unsigned entries;
599 entries = rx_queue->ptr_mask + 1;
600 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
601 entries * sizeof(efx_qword_t));
604 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
606 efx_oword_t rx_desc_ptr;
607 struct efx_nic *efx = rx_queue->efx;
608 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
609 bool iscsi_digest_en = is_b0;
611 netif_dbg(efx, hw, efx->net_dev,
612 "RX queue %d ring in special buffers %d-%d\n",
613 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
614 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
616 rx_queue->flushed = FLUSH_NONE;
618 /* Pin RX descriptor ring */
619 efx_init_special_buffer(efx, &rx_queue->rxd);
621 /* Push RX descriptor ring to card */
622 EFX_POPULATE_OWORD_10(rx_desc_ptr,
623 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
624 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
625 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
626 FRF_AZ_RX_DESCQ_EVQ_ID,
627 efx_rx_queue_channel(rx_queue)->channel,
628 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
629 FRF_AZ_RX_DESCQ_LABEL,
630 efx_rx_queue_index(rx_queue),
631 FRF_AZ_RX_DESCQ_SIZE,
632 __ffs(rx_queue->rxd.entries),
633 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
634 /* For >=B0 this is scatter so disable */
635 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
636 FRF_AZ_RX_DESCQ_EN, 1);
637 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
638 efx_rx_queue_index(rx_queue));
641 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
643 struct efx_nic *efx = rx_queue->efx;
644 efx_oword_t rx_flush_descq;
646 rx_queue->flushed = FLUSH_PENDING;
648 /* Post a flush command */
649 EFX_POPULATE_OWORD_2(rx_flush_descq,
650 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
651 FRF_AZ_RX_FLUSH_DESCQ,
652 efx_rx_queue_index(rx_queue));
653 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
656 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
658 efx_oword_t rx_desc_ptr;
659 struct efx_nic *efx = rx_queue->efx;
661 /* The queue should already have been flushed */
662 WARN_ON(rx_queue->flushed != FLUSH_DONE);
664 /* Remove RX descriptor ring from card */
665 EFX_ZERO_OWORD(rx_desc_ptr);
666 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
667 efx_rx_queue_index(rx_queue));
669 /* Unpin RX descriptor ring */
670 efx_fini_special_buffer(efx, &rx_queue->rxd);
673 /* Free buffers backing RX queue */
674 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
676 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
679 /**************************************************************************
681 * Event queue processing
682 * Event queues are processed by per-channel tasklets.
684 **************************************************************************/
686 /* Update a channel's event queue's read pointer (RPTR) register
688 * This writes the EVQ_RPTR_REG register for the specified channel's
689 * event queue.
691 void efx_nic_eventq_read_ack(struct efx_channel *channel)
693 efx_dword_t reg;
694 struct efx_nic *efx = channel->efx;
696 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
697 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
698 channel->channel);
701 /* Use HW to insert a SW defined event */
702 static void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
704 efx_oword_t drv_ev_reg;
706 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
707 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
708 drv_ev_reg.u32[0] = event->u32[0];
709 drv_ev_reg.u32[1] = event->u32[1];
710 drv_ev_reg.u32[2] = 0;
711 drv_ev_reg.u32[3] = 0;
712 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
713 efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
716 /* Handle a transmit completion event
718 * The NIC batches TX completion events; the message we receive is of
719 * the form "complete all TX events up to this index".
721 static int
722 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
724 unsigned int tx_ev_desc_ptr;
725 unsigned int tx_ev_q_label;
726 struct efx_tx_queue *tx_queue;
727 struct efx_nic *efx = channel->efx;
728 int tx_packets = 0;
730 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
731 /* Transmit completion */
732 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
733 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
734 tx_queue = efx_channel_get_tx_queue(
735 channel, tx_ev_q_label % EFX_TXQ_TYPES);
736 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
737 tx_queue->ptr_mask);
738 channel->irq_mod_score += tx_packets;
739 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
740 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
741 /* Rewrite the FIFO write pointer */
742 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
743 tx_queue = efx_channel_get_tx_queue(
744 channel, tx_ev_q_label % EFX_TXQ_TYPES);
746 if (efx_dev_registered(efx))
747 netif_tx_lock(efx->net_dev);
748 efx_notify_tx_desc(tx_queue);
749 if (efx_dev_registered(efx))
750 netif_tx_unlock(efx->net_dev);
751 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
752 EFX_WORKAROUND_10727(efx)) {
753 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
754 } else {
755 netif_err(efx, tx_err, efx->net_dev,
756 "channel %d unexpected TX event "
757 EFX_QWORD_FMT"\n", channel->channel,
758 EFX_QWORD_VAL(*event));
761 return tx_packets;
764 /* Detect errors included in the rx_evt_pkt_ok bit. */
765 static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
766 const efx_qword_t *event,
767 bool *rx_ev_pkt_ok,
768 bool *discard)
770 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
771 struct efx_nic *efx = rx_queue->efx;
772 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
773 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
774 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
775 bool rx_ev_other_err, rx_ev_pause_frm;
776 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
777 unsigned rx_ev_pkt_type;
779 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
780 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
781 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
782 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
783 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
784 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
785 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
786 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
787 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
788 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
789 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
790 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
791 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
792 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
793 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
795 /* Every error apart from tobe_disc and pause_frm */
796 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
797 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
798 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
800 /* Count errors that are not in MAC stats. Ignore expected
801 * checksum errors during self-test. */
802 if (rx_ev_frm_trunc)
803 ++channel->n_rx_frm_trunc;
804 else if (rx_ev_tobe_disc)
805 ++channel->n_rx_tobe_disc;
806 else if (!efx->loopback_selftest) {
807 if (rx_ev_ip_hdr_chksum_err)
808 ++channel->n_rx_ip_hdr_chksum_err;
809 else if (rx_ev_tcp_udp_chksum_err)
810 ++channel->n_rx_tcp_udp_chksum_err;
813 /* The frame must be discarded if any of these are true. */
814 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
815 rx_ev_tobe_disc | rx_ev_pause_frm);
817 /* TOBE_DISC is expected on unicast mismatches; don't print out an
818 * error message. FRM_TRUNC indicates RXDP dropped the packet due
819 * to a FIFO overflow.
821 #ifdef EFX_ENABLE_DEBUG
822 if (rx_ev_other_err && net_ratelimit()) {
823 netif_dbg(efx, rx_err, efx->net_dev,
824 " RX queue %d unexpected RX event "
825 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
826 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
827 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
828 rx_ev_ip_hdr_chksum_err ?
829 " [IP_HDR_CHKSUM_ERR]" : "",
830 rx_ev_tcp_udp_chksum_err ?
831 " [TCP_UDP_CHKSUM_ERR]" : "",
832 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
833 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
834 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
835 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
836 rx_ev_pause_frm ? " [PAUSE]" : "");
838 #endif
841 /* Handle receive events that are not in-order. */
842 static void
843 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
845 struct efx_nic *efx = rx_queue->efx;
846 unsigned expected, dropped;
848 expected = rx_queue->removed_count & rx_queue->ptr_mask;
849 dropped = (index - expected) & rx_queue->ptr_mask;
850 netif_info(efx, rx_err, efx->net_dev,
851 "dropped %d events (index=%d expected=%d)\n",
852 dropped, index, expected);
854 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
855 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
858 /* Handle a packet received event
860 * The NIC gives a "discard" flag if it's a unicast packet with the
861 * wrong destination address
862 * Also "is multicast" and "matches multicast filter" flags can be used to
863 * discard non-matching multicast packets.
865 static void
866 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
868 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
869 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
870 unsigned expected_ptr;
871 bool rx_ev_pkt_ok, discard = false, checksummed;
872 struct efx_rx_queue *rx_queue;
873 struct efx_nic *efx = channel->efx;
875 /* Basic packet information */
876 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
877 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
878 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
879 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
880 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
881 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
882 channel->channel);
884 rx_queue = efx_channel_get_rx_queue(channel);
886 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
887 expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
888 if (unlikely(rx_ev_desc_ptr != expected_ptr))
889 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
891 if (likely(rx_ev_pkt_ok)) {
892 /* If packet is marked as OK and packet type is TCP/IP or
893 * UDP/IP, then we can rely on the hardware checksum.
895 checksummed =
896 likely(efx->rx_checksum_enabled) &&
897 (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
898 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP);
899 } else {
900 efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
901 checksummed = false;
904 /* Detect multicast packets that didn't match the filter */
905 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
906 if (rx_ev_mcast_pkt) {
907 unsigned int rx_ev_mcast_hash_match =
908 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
910 if (unlikely(!rx_ev_mcast_hash_match)) {
911 ++channel->n_rx_mcast_mismatch;
912 discard = true;
916 channel->irq_mod_score += 2;
918 /* Handle received packet */
919 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
920 checksummed, discard);
923 static void
924 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
926 struct efx_nic *efx = channel->efx;
927 unsigned code;
929 code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
930 if (code == EFX_CHANNEL_MAGIC_TEST(channel))
931 ++channel->magic_count;
932 else if (code == EFX_CHANNEL_MAGIC_FILL(channel))
933 /* The queue must be empty, so we won't receive any rx
934 * events, so efx_process_channel() won't refill the
935 * queue. Refill it here */
936 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
937 else
938 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
939 "generated event "EFX_QWORD_FMT"\n",
940 channel->channel, EFX_QWORD_VAL(*event));
943 static void
944 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
946 struct efx_nic *efx = channel->efx;
947 unsigned int ev_sub_code;
948 unsigned int ev_sub_data;
950 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
951 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
953 switch (ev_sub_code) {
954 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
955 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
956 channel->channel, ev_sub_data);
957 break;
958 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
959 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
960 channel->channel, ev_sub_data);
961 break;
962 case FSE_AZ_EVQ_INIT_DONE_EV:
963 netif_dbg(efx, hw, efx->net_dev,
964 "channel %d EVQ %d initialised\n",
965 channel->channel, ev_sub_data);
966 break;
967 case FSE_AZ_SRM_UPD_DONE_EV:
968 netif_vdbg(efx, hw, efx->net_dev,
969 "channel %d SRAM update done\n", channel->channel);
970 break;
971 case FSE_AZ_WAKE_UP_EV:
972 netif_vdbg(efx, hw, efx->net_dev,
973 "channel %d RXQ %d wakeup event\n",
974 channel->channel, ev_sub_data);
975 break;
976 case FSE_AZ_TIMER_EV:
977 netif_vdbg(efx, hw, efx->net_dev,
978 "channel %d RX queue %d timer expired\n",
979 channel->channel, ev_sub_data);
980 break;
981 case FSE_AA_RX_RECOVER_EV:
982 netif_err(efx, rx_err, efx->net_dev,
983 "channel %d seen DRIVER RX_RESET event. "
984 "Resetting.\n", channel->channel);
985 atomic_inc(&efx->rx_reset);
986 efx_schedule_reset(efx,
987 EFX_WORKAROUND_6555(efx) ?
988 RESET_TYPE_RX_RECOVERY :
989 RESET_TYPE_DISABLE);
990 break;
991 case FSE_BZ_RX_DSC_ERROR_EV:
992 netif_err(efx, rx_err, efx->net_dev,
993 "RX DMA Q %d reports descriptor fetch error."
994 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
995 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
996 break;
997 case FSE_BZ_TX_DSC_ERROR_EV:
998 netif_err(efx, tx_err, efx->net_dev,
999 "TX DMA Q %d reports descriptor fetch error."
1000 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1001 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1002 break;
1003 default:
1004 netif_vdbg(efx, hw, efx->net_dev,
1005 "channel %d unknown driver event code %d "
1006 "data %04x\n", channel->channel, ev_sub_code,
1007 ev_sub_data);
1008 break;
1012 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1014 struct efx_nic *efx = channel->efx;
1015 unsigned int read_ptr;
1016 efx_qword_t event, *p_event;
1017 int ev_code;
1018 int tx_packets = 0;
1019 int spent = 0;
1021 read_ptr = channel->eventq_read_ptr;
1023 for (;;) {
1024 p_event = efx_event(channel, read_ptr);
1025 event = *p_event;
1027 if (!efx_event_present(&event))
1028 /* End of events */
1029 break;
1031 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1032 "channel %d event is "EFX_QWORD_FMT"\n",
1033 channel->channel, EFX_QWORD_VAL(event));
1035 /* Clear this event by marking it all ones */
1036 EFX_SET_QWORD(*p_event);
1038 /* Increment read pointer */
1039 read_ptr = (read_ptr + 1) & channel->eventq_mask;
1041 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1043 switch (ev_code) {
1044 case FSE_AZ_EV_CODE_RX_EV:
1045 efx_handle_rx_event(channel, &event);
1046 if (++spent == budget)
1047 goto out;
1048 break;
1049 case FSE_AZ_EV_CODE_TX_EV:
1050 tx_packets += efx_handle_tx_event(channel, &event);
1051 if (tx_packets > efx->txq_entries) {
1052 spent = budget;
1053 goto out;
1055 break;
1056 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1057 efx_handle_generated_event(channel, &event);
1058 break;
1059 case FSE_AZ_EV_CODE_DRIVER_EV:
1060 efx_handle_driver_event(channel, &event);
1061 break;
1062 case FSE_CZ_EV_CODE_MCDI_EV:
1063 efx_mcdi_process_event(channel, &event);
1064 break;
1065 case FSE_AZ_EV_CODE_GLOBAL_EV:
1066 if (efx->type->handle_global_event &&
1067 efx->type->handle_global_event(channel, &event))
1068 break;
1069 /* else fall through */
1070 default:
1071 netif_err(channel->efx, hw, channel->efx->net_dev,
1072 "channel %d unknown event type %d (data "
1073 EFX_QWORD_FMT ")\n", channel->channel,
1074 ev_code, EFX_QWORD_VAL(event));
1078 out:
1079 channel->eventq_read_ptr = read_ptr;
1080 return spent;
1084 /* Allocate buffer table entries for event queue */
1085 int efx_nic_probe_eventq(struct efx_channel *channel)
1087 struct efx_nic *efx = channel->efx;
1088 unsigned entries;
1090 entries = channel->eventq_mask + 1;
1091 return efx_alloc_special_buffer(efx, &channel->eventq,
1092 entries * sizeof(efx_qword_t));
1095 void efx_nic_init_eventq(struct efx_channel *channel)
1097 efx_oword_t reg;
1098 struct efx_nic *efx = channel->efx;
1100 netif_dbg(efx, hw, efx->net_dev,
1101 "channel %d event queue in special buffers %d-%d\n",
1102 channel->channel, channel->eventq.index,
1103 channel->eventq.index + channel->eventq.entries - 1);
1105 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1106 EFX_POPULATE_OWORD_3(reg,
1107 FRF_CZ_TIMER_Q_EN, 1,
1108 FRF_CZ_HOST_NOTIFY_MODE, 0,
1109 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1110 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1113 /* Pin event queue buffer */
1114 efx_init_special_buffer(efx, &channel->eventq);
1116 /* Fill event queue with all ones (i.e. empty events) */
1117 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1119 /* Push event queue to card */
1120 EFX_POPULATE_OWORD_3(reg,
1121 FRF_AZ_EVQ_EN, 1,
1122 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1123 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1124 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1125 channel->channel);
1127 efx->type->push_irq_moderation(channel);
1130 void efx_nic_fini_eventq(struct efx_channel *channel)
1132 efx_oword_t reg;
1133 struct efx_nic *efx = channel->efx;
1135 /* Remove event queue from card */
1136 EFX_ZERO_OWORD(reg);
1137 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1138 channel->channel);
1139 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1140 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1142 /* Unpin event queue */
1143 efx_fini_special_buffer(efx, &channel->eventq);
1146 /* Free buffers backing event queue */
1147 void efx_nic_remove_eventq(struct efx_channel *channel)
1149 efx_free_special_buffer(channel->efx, &channel->eventq);
1153 void efx_nic_generate_test_event(struct efx_channel *channel)
1155 unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel);
1156 efx_qword_t test_event;
1158 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1159 FSE_AZ_EV_CODE_DRV_GEN_EV,
1160 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1161 efx_generate_event(channel, &test_event);
1164 void efx_nic_generate_fill_event(struct efx_channel *channel)
1166 unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel);
1167 efx_qword_t test_event;
1169 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1170 FSE_AZ_EV_CODE_DRV_GEN_EV,
1171 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1172 efx_generate_event(channel, &test_event);
1175 /**************************************************************************
1177 * Flush handling
1179 **************************************************************************/
1182 static void efx_poll_flush_events(struct efx_nic *efx)
1184 struct efx_channel *channel = efx_get_channel(efx, 0);
1185 struct efx_tx_queue *tx_queue;
1186 struct efx_rx_queue *rx_queue;
1187 unsigned int read_ptr = channel->eventq_read_ptr;
1188 unsigned int end_ptr = (read_ptr - 1) & channel->eventq_mask;
1190 do {
1191 efx_qword_t *event = efx_event(channel, read_ptr);
1192 int ev_code, ev_sub_code, ev_queue;
1193 bool ev_failed;
1195 if (!efx_event_present(event))
1196 break;
1198 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1199 ev_sub_code = EFX_QWORD_FIELD(*event,
1200 FSF_AZ_DRIVER_EV_SUBCODE);
1201 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1202 ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1203 ev_queue = EFX_QWORD_FIELD(*event,
1204 FSF_AZ_DRIVER_EV_SUBDATA);
1205 if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) {
1206 tx_queue = efx_get_tx_queue(
1207 efx, ev_queue / EFX_TXQ_TYPES,
1208 ev_queue % EFX_TXQ_TYPES);
1209 tx_queue->flushed = FLUSH_DONE;
1211 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1212 ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1213 ev_queue = EFX_QWORD_FIELD(
1214 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1215 ev_failed = EFX_QWORD_FIELD(
1216 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1217 if (ev_queue < efx->n_rx_channels) {
1218 rx_queue = efx_get_rx_queue(efx, ev_queue);
1219 rx_queue->flushed =
1220 ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1224 /* We're about to destroy the queue anyway, so
1225 * it's ok to throw away every non-flush event */
1226 EFX_SET_QWORD(*event);
1228 read_ptr = (read_ptr + 1) & channel->eventq_mask;
1229 } while (read_ptr != end_ptr);
1231 channel->eventq_read_ptr = read_ptr;
1234 /* Handle tx and rx flushes at the same time, since they run in
1235 * parallel in the hardware and there's no reason for us to
1236 * serialise them */
1237 int efx_nic_flush_queues(struct efx_nic *efx)
1239 struct efx_channel *channel;
1240 struct efx_rx_queue *rx_queue;
1241 struct efx_tx_queue *tx_queue;
1242 int i, tx_pending, rx_pending;
1244 /* If necessary prepare the hardware for flushing */
1245 efx->type->prepare_flush(efx);
1247 /* Flush all tx queues in parallel */
1248 efx_for_each_channel(channel, efx) {
1249 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1250 if (tx_queue->initialised)
1251 efx_flush_tx_queue(tx_queue);
1255 /* The hardware supports four concurrent rx flushes, each of which may
1256 * need to be retried if there is an outstanding descriptor fetch */
1257 for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
1258 rx_pending = tx_pending = 0;
1259 efx_for_each_channel(channel, efx) {
1260 efx_for_each_channel_rx_queue(rx_queue, channel) {
1261 if (rx_queue->flushed == FLUSH_PENDING)
1262 ++rx_pending;
1265 efx_for_each_channel(channel, efx) {
1266 efx_for_each_channel_rx_queue(rx_queue, channel) {
1267 if (rx_pending == EFX_RX_FLUSH_COUNT)
1268 break;
1269 if (rx_queue->flushed == FLUSH_FAILED ||
1270 rx_queue->flushed == FLUSH_NONE) {
1271 efx_flush_rx_queue(rx_queue);
1272 ++rx_pending;
1275 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1276 if (tx_queue->initialised &&
1277 tx_queue->flushed != FLUSH_DONE)
1278 ++tx_pending;
1282 if (rx_pending == 0 && tx_pending == 0)
1283 return 0;
1285 msleep(EFX_FLUSH_INTERVAL);
1286 efx_poll_flush_events(efx);
1289 /* Mark the queues as all flushed. We're going to return failure
1290 * leading to a reset, or fake up success anyway */
1291 efx_for_each_channel(channel, efx) {
1292 efx_for_each_possible_channel_tx_queue(tx_queue, channel) {
1293 if (tx_queue->initialised &&
1294 tx_queue->flushed != FLUSH_DONE)
1295 netif_err(efx, hw, efx->net_dev,
1296 "tx queue %d flush command timed out\n",
1297 tx_queue->queue);
1298 tx_queue->flushed = FLUSH_DONE;
1300 efx_for_each_channel_rx_queue(rx_queue, channel) {
1301 if (rx_queue->flushed != FLUSH_DONE)
1302 netif_err(efx, hw, efx->net_dev,
1303 "rx queue %d flush command timed out\n",
1304 efx_rx_queue_index(rx_queue));
1305 rx_queue->flushed = FLUSH_DONE;
1309 return -ETIMEDOUT;
1312 /**************************************************************************
1314 * Hardware interrupts
1315 * The hardware interrupt handler does very little work; all the event
1316 * queue processing is carried out by per-channel tasklets.
1318 **************************************************************************/
1320 /* Enable/disable/generate interrupts */
1321 static inline void efx_nic_interrupts(struct efx_nic *efx,
1322 bool enabled, bool force)
1324 efx_oword_t int_en_reg_ker;
1326 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1327 FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level,
1328 FRF_AZ_KER_INT_KER, force,
1329 FRF_AZ_DRV_INT_EN_KER, enabled);
1330 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1333 void efx_nic_enable_interrupts(struct efx_nic *efx)
1335 struct efx_channel *channel;
1337 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1338 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1340 /* Enable interrupts */
1341 efx_nic_interrupts(efx, true, false);
1343 /* Force processing of all the channels to get the EVQ RPTRs up to
1344 date */
1345 efx_for_each_channel(channel, efx)
1346 efx_schedule_channel(channel);
1349 void efx_nic_disable_interrupts(struct efx_nic *efx)
1351 /* Disable interrupts */
1352 efx_nic_interrupts(efx, false, false);
1355 /* Generate a test interrupt
1356 * Interrupt must already have been enabled, otherwise nasty things
1357 * may happen.
1359 void efx_nic_generate_interrupt(struct efx_nic *efx)
1361 efx_nic_interrupts(efx, true, true);
1364 /* Process a fatal interrupt
1365 * Disable bus mastering ASAP and schedule a reset
1367 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1369 struct falcon_nic_data *nic_data = efx->nic_data;
1370 efx_oword_t *int_ker = efx->irq_status.addr;
1371 efx_oword_t fatal_intr;
1372 int error, mem_perr;
1374 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1375 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1377 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1378 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1379 EFX_OWORD_VAL(fatal_intr),
1380 error ? "disabling bus mastering" : "no recognised error");
1382 /* If this is a memory parity error dump which blocks are offending */
1383 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1384 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1385 if (mem_perr) {
1386 efx_oword_t reg;
1387 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1388 netif_err(efx, hw, efx->net_dev,
1389 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1390 EFX_OWORD_VAL(reg));
1393 /* Disable both devices */
1394 pci_clear_master(efx->pci_dev);
1395 if (efx_nic_is_dual_func(efx))
1396 pci_clear_master(nic_data->pci_dev2);
1397 efx_nic_disable_interrupts(efx);
1399 /* Count errors and reset or disable the NIC accordingly */
1400 if (efx->int_error_count == 0 ||
1401 time_after(jiffies, efx->int_error_expire)) {
1402 efx->int_error_count = 0;
1403 efx->int_error_expire =
1404 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1406 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1407 netif_err(efx, hw, efx->net_dev,
1408 "SYSTEM ERROR - reset scheduled\n");
1409 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1410 } else {
1411 netif_err(efx, hw, efx->net_dev,
1412 "SYSTEM ERROR - max number of errors seen."
1413 "NIC will be disabled\n");
1414 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1417 return IRQ_HANDLED;
1420 /* Handle a legacy interrupt
1421 * Acknowledges the interrupt and schedule event queue processing.
1423 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1425 struct efx_nic *efx = dev_id;
1426 efx_oword_t *int_ker = efx->irq_status.addr;
1427 irqreturn_t result = IRQ_NONE;
1428 struct efx_channel *channel;
1429 efx_dword_t reg;
1430 u32 queues;
1431 int syserr;
1433 /* Could this be ours? If interrupts are disabled then the
1434 * channel state may not be valid.
1436 if (!efx->legacy_irq_enabled)
1437 return result;
1439 /* Read the ISR which also ACKs the interrupts */
1440 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1441 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1443 /* Check to see if we have a serious error condition */
1444 if (queues & (1U << efx->fatal_irq_level)) {
1445 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1446 if (unlikely(syserr))
1447 return efx_nic_fatal_interrupt(efx);
1450 if (queues != 0) {
1451 if (EFX_WORKAROUND_15783(efx))
1452 efx->irq_zero_count = 0;
1454 /* Schedule processing of any interrupting queues */
1455 efx_for_each_channel(channel, efx) {
1456 if (queues & 1)
1457 efx_schedule_channel(channel);
1458 queues >>= 1;
1460 result = IRQ_HANDLED;
1462 } else if (EFX_WORKAROUND_15783(efx)) {
1463 efx_qword_t *event;
1465 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1466 * because this might be a shared interrupt. */
1467 if (efx->irq_zero_count++ == 0)
1468 result = IRQ_HANDLED;
1470 /* Ensure we schedule or rearm all event queues */
1471 efx_for_each_channel(channel, efx) {
1472 event = efx_event(channel, channel->eventq_read_ptr);
1473 if (efx_event_present(event))
1474 efx_schedule_channel(channel);
1475 else
1476 efx_nic_eventq_read_ack(channel);
1480 if (result == IRQ_HANDLED) {
1481 efx->last_irq_cpu = raw_smp_processor_id();
1482 netif_vdbg(efx, intr, efx->net_dev,
1483 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1484 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1487 return result;
1490 /* Handle an MSI interrupt
1492 * Handle an MSI hardware interrupt. This routine schedules event
1493 * queue processing. No interrupt acknowledgement cycle is necessary.
1494 * Also, we never need to check that the interrupt is for us, since
1495 * MSI interrupts cannot be shared.
1497 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1499 struct efx_channel *channel = *(struct efx_channel **)dev_id;
1500 struct efx_nic *efx = channel->efx;
1501 efx_oword_t *int_ker = efx->irq_status.addr;
1502 int syserr;
1504 efx->last_irq_cpu = raw_smp_processor_id();
1505 netif_vdbg(efx, intr, efx->net_dev,
1506 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1507 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1509 /* Check to see if we have a serious error condition */
1510 if (channel->channel == efx->fatal_irq_level) {
1511 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1512 if (unlikely(syserr))
1513 return efx_nic_fatal_interrupt(efx);
1516 /* Schedule processing of the channel */
1517 efx_schedule_channel(channel);
1519 return IRQ_HANDLED;
1523 /* Setup RSS indirection table.
1524 * This maps from the hash value of the packet to RXQ
1526 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1528 size_t i = 0;
1529 efx_dword_t dword;
1531 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1532 return;
1534 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1535 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1537 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1538 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1539 efx->rx_indir_table[i]);
1540 efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1544 /* Hook interrupt handler(s)
1545 * Try MSI and then legacy interrupts.
1547 int efx_nic_init_interrupt(struct efx_nic *efx)
1549 struct efx_channel *channel;
1550 int rc;
1552 if (!EFX_INT_MODE_USE_MSI(efx)) {
1553 irq_handler_t handler;
1554 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1555 handler = efx_legacy_interrupt;
1556 else
1557 handler = falcon_legacy_interrupt_a1;
1559 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1560 efx->name, efx);
1561 if (rc) {
1562 netif_err(efx, drv, efx->net_dev,
1563 "failed to hook legacy IRQ %d\n",
1564 efx->pci_dev->irq);
1565 goto fail1;
1567 return 0;
1570 /* Hook MSI or MSI-X interrupt */
1571 efx_for_each_channel(channel, efx) {
1572 rc = request_irq(channel->irq, efx_msi_interrupt,
1573 IRQF_PROBE_SHARED, /* Not shared */
1574 efx->channel_name[channel->channel],
1575 &efx->channel[channel->channel]);
1576 if (rc) {
1577 netif_err(efx, drv, efx->net_dev,
1578 "failed to hook IRQ %d\n", channel->irq);
1579 goto fail2;
1583 return 0;
1585 fail2:
1586 efx_for_each_channel(channel, efx)
1587 free_irq(channel->irq, &efx->channel[channel->channel]);
1588 fail1:
1589 return rc;
1592 void efx_nic_fini_interrupt(struct efx_nic *efx)
1594 struct efx_channel *channel;
1595 efx_oword_t reg;
1597 /* Disable MSI/MSI-X interrupts */
1598 efx_for_each_channel(channel, efx) {
1599 if (channel->irq)
1600 free_irq(channel->irq, &efx->channel[channel->channel]);
1603 /* ACK legacy interrupt */
1604 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1605 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1606 else
1607 falcon_irq_ack_a1(efx);
1609 /* Disable legacy interrupt */
1610 if (efx->legacy_irq)
1611 free_irq(efx->legacy_irq, efx);
1614 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1616 efx_oword_t altera_build;
1617 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1618 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1621 void efx_nic_init_common(struct efx_nic *efx)
1623 efx_oword_t temp;
1625 /* Set positions of descriptor caches in SRAM. */
1626 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
1627 efx->type->tx_dc_base / 8);
1628 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1629 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
1630 efx->type->rx_dc_base / 8);
1631 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1633 /* Set TX descriptor cache size. */
1634 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1635 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1636 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1638 /* Set RX descriptor cache size. Set low watermark to size-8, as
1639 * this allows most efficient prefetching.
1641 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1642 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1643 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1644 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1645 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1647 /* Program INT_KER address */
1648 EFX_POPULATE_OWORD_2(temp,
1649 FRF_AZ_NORM_INT_VEC_DIS_KER,
1650 EFX_INT_MODE_USE_MSI(efx),
1651 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1652 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1654 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1655 /* Use an interrupt level unused by event queues */
1656 efx->fatal_irq_level = 0x1f;
1657 else
1658 /* Use a valid MSI-X vector */
1659 efx->fatal_irq_level = 0;
1661 /* Enable all the genuinely fatal interrupts. (They are still
1662 * masked by the overall interrupt mask, controlled by
1663 * falcon_interrupts()).
1665 * Note: All other fatal interrupts are enabled
1667 EFX_POPULATE_OWORD_3(temp,
1668 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1669 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1670 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1671 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1672 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1673 EFX_INVERT_OWORD(temp);
1674 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1676 efx_nic_push_rx_indir_table(efx);
1678 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1679 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1681 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1682 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1683 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1684 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1685 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1686 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1687 /* Enable SW_EV to inherit in char driver - assume harmless here */
1688 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1689 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1690 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1691 /* Disable hardware watchdog which can misfire */
1692 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1693 /* Squash TX of packets of 16 bytes or less */
1694 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1695 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1696 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1698 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1699 EFX_POPULATE_OWORD_4(temp,
1700 /* Default values */
1701 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1702 FRF_BZ_TX_PACE_SB_AF, 0xb,
1703 FRF_BZ_TX_PACE_FB_BASE, 0,
1704 /* Allow large pace values in the
1705 * fast bin. */
1706 FRF_BZ_TX_PACE_BIN_TH,
1707 FFE_BZ_TX_PACE_RESERVED);
1708 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1712 /* Register dump */
1714 #define REGISTER_REVISION_A 1
1715 #define REGISTER_REVISION_B 2
1716 #define REGISTER_REVISION_C 3
1717 #define REGISTER_REVISION_Z 3 /* latest revision */
1719 struct efx_nic_reg {
1720 u32 offset:24;
1721 u32 min_revision:2, max_revision:2;
1724 #define REGISTER(name, min_rev, max_rev) { \
1725 FR_ ## min_rev ## max_rev ## _ ## name, \
1726 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1728 #define REGISTER_AA(name) REGISTER(name, A, A)
1729 #define REGISTER_AB(name) REGISTER(name, A, B)
1730 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1731 #define REGISTER_BB(name) REGISTER(name, B, B)
1732 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1733 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1735 static const struct efx_nic_reg efx_nic_regs[] = {
1736 REGISTER_AZ(ADR_REGION),
1737 REGISTER_AZ(INT_EN_KER),
1738 REGISTER_BZ(INT_EN_CHAR),
1739 REGISTER_AZ(INT_ADR_KER),
1740 REGISTER_BZ(INT_ADR_CHAR),
1741 /* INT_ACK_KER is WO */
1742 /* INT_ISR0 is RC */
1743 REGISTER_AZ(HW_INIT),
1744 REGISTER_CZ(USR_EV_CFG),
1745 REGISTER_AB(EE_SPI_HCMD),
1746 REGISTER_AB(EE_SPI_HADR),
1747 REGISTER_AB(EE_SPI_HDATA),
1748 REGISTER_AB(EE_BASE_PAGE),
1749 REGISTER_AB(EE_VPD_CFG0),
1750 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1751 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1752 /* PCIE_CORE_INDIRECT is indirect */
1753 REGISTER_AB(NIC_STAT),
1754 REGISTER_AB(GPIO_CTL),
1755 REGISTER_AB(GLB_CTL),
1756 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1757 REGISTER_BZ(DP_CTRL),
1758 REGISTER_AZ(MEM_STAT),
1759 REGISTER_AZ(CS_DEBUG),
1760 REGISTER_AZ(ALTERA_BUILD),
1761 REGISTER_AZ(CSR_SPARE),
1762 REGISTER_AB(PCIE_SD_CTL0123),
1763 REGISTER_AB(PCIE_SD_CTL45),
1764 REGISTER_AB(PCIE_PCS_CTL_STAT),
1765 /* DEBUG_DATA_OUT is not used */
1766 /* DRV_EV is WO */
1767 REGISTER_AZ(EVQ_CTL),
1768 REGISTER_AZ(EVQ_CNT1),
1769 REGISTER_AZ(EVQ_CNT2),
1770 REGISTER_AZ(BUF_TBL_CFG),
1771 REGISTER_AZ(SRM_RX_DC_CFG),
1772 REGISTER_AZ(SRM_TX_DC_CFG),
1773 REGISTER_AZ(SRM_CFG),
1774 /* BUF_TBL_UPD is WO */
1775 REGISTER_AZ(SRM_UPD_EVQ),
1776 REGISTER_AZ(SRAM_PARITY),
1777 REGISTER_AZ(RX_CFG),
1778 REGISTER_BZ(RX_FILTER_CTL),
1779 /* RX_FLUSH_DESCQ is WO */
1780 REGISTER_AZ(RX_DC_CFG),
1781 REGISTER_AZ(RX_DC_PF_WM),
1782 REGISTER_BZ(RX_RSS_TKEY),
1783 /* RX_NODESC_DROP is RC */
1784 REGISTER_AA(RX_SELF_RST),
1785 /* RX_DEBUG, RX_PUSH_DROP are not used */
1786 REGISTER_CZ(RX_RSS_IPV6_REG1),
1787 REGISTER_CZ(RX_RSS_IPV6_REG2),
1788 REGISTER_CZ(RX_RSS_IPV6_REG3),
1789 /* TX_FLUSH_DESCQ is WO */
1790 REGISTER_AZ(TX_DC_CFG),
1791 REGISTER_AA(TX_CHKSM_CFG),
1792 REGISTER_AZ(TX_CFG),
1793 /* TX_PUSH_DROP is not used */
1794 REGISTER_AZ(TX_RESERVED),
1795 REGISTER_BZ(TX_PACE),
1796 /* TX_PACE_DROP_QID is RC */
1797 REGISTER_BB(TX_VLAN),
1798 REGISTER_BZ(TX_IPFIL_PORTEN),
1799 REGISTER_AB(MD_TXD),
1800 REGISTER_AB(MD_RXD),
1801 REGISTER_AB(MD_CS),
1802 REGISTER_AB(MD_PHY_ADR),
1803 REGISTER_AB(MD_ID),
1804 /* MD_STAT is RC */
1805 REGISTER_AB(MAC_STAT_DMA),
1806 REGISTER_AB(MAC_CTRL),
1807 REGISTER_BB(GEN_MODE),
1808 REGISTER_AB(MAC_MC_HASH_REG0),
1809 REGISTER_AB(MAC_MC_HASH_REG1),
1810 REGISTER_AB(GM_CFG1),
1811 REGISTER_AB(GM_CFG2),
1812 /* GM_IPG and GM_HD are not used */
1813 REGISTER_AB(GM_MAX_FLEN),
1814 /* GM_TEST is not used */
1815 REGISTER_AB(GM_ADR1),
1816 REGISTER_AB(GM_ADR2),
1817 REGISTER_AB(GMF_CFG0),
1818 REGISTER_AB(GMF_CFG1),
1819 REGISTER_AB(GMF_CFG2),
1820 REGISTER_AB(GMF_CFG3),
1821 REGISTER_AB(GMF_CFG4),
1822 REGISTER_AB(GMF_CFG5),
1823 REGISTER_BB(TX_SRC_MAC_CTL),
1824 REGISTER_AB(XM_ADR_LO),
1825 REGISTER_AB(XM_ADR_HI),
1826 REGISTER_AB(XM_GLB_CFG),
1827 REGISTER_AB(XM_TX_CFG),
1828 REGISTER_AB(XM_RX_CFG),
1829 REGISTER_AB(XM_MGT_INT_MASK),
1830 REGISTER_AB(XM_FC),
1831 REGISTER_AB(XM_PAUSE_TIME),
1832 REGISTER_AB(XM_TX_PARAM),
1833 REGISTER_AB(XM_RX_PARAM),
1834 /* XM_MGT_INT_MSK (note no 'A') is RC */
1835 REGISTER_AB(XX_PWR_RST),
1836 REGISTER_AB(XX_SD_CTL),
1837 REGISTER_AB(XX_TXDRV_CTL),
1838 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1839 /* XX_CORE_STAT is partly RC */
1842 struct efx_nic_reg_table {
1843 u32 offset:24;
1844 u32 min_revision:2, max_revision:2;
1845 u32 step:6, rows:21;
1848 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1849 offset, \
1850 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1851 step, rows \
1853 #define REGISTER_TABLE(name, min_rev, max_rev) \
1854 REGISTER_TABLE_DIMENSIONS( \
1855 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1856 min_rev, max_rev, \
1857 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1858 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1859 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1860 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1861 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1862 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1863 #define REGISTER_TABLE_BB_CZ(name) \
1864 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1865 FR_BZ_ ## name ## _STEP, \
1866 FR_BB_ ## name ## _ROWS), \
1867 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1868 FR_BZ_ ## name ## _STEP, \
1869 FR_CZ_ ## name ## _ROWS)
1870 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1872 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1873 /* DRIVER is not used */
1874 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1875 REGISTER_TABLE_BB(TX_IPFIL_TBL),
1876 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1877 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1878 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1879 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1880 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1881 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1882 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1883 /* We can't reasonably read all of the buffer table (up to 8MB!).
1884 * However this driver will only use a few entries. Reading
1885 * 1K entries allows for some expansion of queue count and
1886 * size before we need to change the version. */
1887 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
1888 A, A, 8, 1024),
1889 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
1890 B, Z, 8, 1024),
1891 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1892 REGISTER_TABLE_BB_CZ(TIMER_TBL),
1893 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1894 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1895 /* TX_FILTER_TBL0 is huge and not used by this driver */
1896 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1897 REGISTER_TABLE_CZ(MC_TREG_SMEM),
1898 /* MSIX_PBA_TABLE is not mapped */
1899 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1900 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
1903 size_t efx_nic_get_regs_len(struct efx_nic *efx)
1905 const struct efx_nic_reg *reg;
1906 const struct efx_nic_reg_table *table;
1907 size_t len = 0;
1909 for (reg = efx_nic_regs;
1910 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1911 reg++)
1912 if (efx->type->revision >= reg->min_revision &&
1913 efx->type->revision <= reg->max_revision)
1914 len += sizeof(efx_oword_t);
1916 for (table = efx_nic_reg_tables;
1917 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1918 table++)
1919 if (efx->type->revision >= table->min_revision &&
1920 efx->type->revision <= table->max_revision)
1921 len += table->rows * min_t(size_t, table->step, 16);
1923 return len;
1926 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
1928 const struct efx_nic_reg *reg;
1929 const struct efx_nic_reg_table *table;
1931 for (reg = efx_nic_regs;
1932 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1933 reg++) {
1934 if (efx->type->revision >= reg->min_revision &&
1935 efx->type->revision <= reg->max_revision) {
1936 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
1937 buf += sizeof(efx_oword_t);
1941 for (table = efx_nic_reg_tables;
1942 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1943 table++) {
1944 size_t size, i;
1946 if (!(efx->type->revision >= table->min_revision &&
1947 efx->type->revision <= table->max_revision))
1948 continue;
1950 size = min_t(size_t, table->step, 16);
1952 for (i = 0; i < table->rows; i++) {
1953 switch (table->step) {
1954 case 4: /* 32-bit register or SRAM */
1955 efx_readd_table(efx, buf, table->offset, i);
1956 break;
1957 case 8: /* 64-bit SRAM */
1958 efx_sram_readq(efx,
1959 efx->membase + table->offset,
1960 buf, i);
1961 break;
1962 case 16: /* 128-bit register */
1963 efx_reado_table(efx, buf, table->offset, i);
1964 break;
1965 case 32: /* 128-bit register, interleaved */
1966 efx_reado_table(efx, buf, table->offset, 2 * i);
1967 break;
1968 default:
1969 WARN_ON(1);
1970 return;
1972 buf += size;