1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include "net_driver.h"
22 #include "workarounds.h"
24 /**************************************************************************
28 **************************************************************************
31 /* This is set to 16 for a good reason. In summary, if larger than
32 * 16, the descriptor cache holds more than a default socket
33 * buffer's worth of packets (for UDP we can only have at most one
34 * socket buffer's worth outstanding). This combined with the fact
35 * that we only get 1 TX event per descriptor cache means the NIC
38 #define TX_DC_ENTRIES 16
39 #define TX_DC_ENTRIES_ORDER 1
41 #define RX_DC_ENTRIES 64
42 #define RX_DC_ENTRIES_ORDER 3
44 /* RX FIFO XOFF watermark
46 * When the amount of the RX FIFO increases used increases past this
47 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
48 * This also has an effect on RX/TX arbitration
50 int efx_nic_rx_xoff_thresh
= -1;
51 module_param_named(rx_xoff_thresh_bytes
, efx_nic_rx_xoff_thresh
, int, 0644);
52 MODULE_PARM_DESC(rx_xoff_thresh_bytes
, "RX fifo XOFF threshold");
54 /* RX FIFO XON watermark
56 * When the amount of the RX FIFO used decreases below this
57 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
58 * This also has an effect on RX/TX arbitration
60 int efx_nic_rx_xon_thresh
= -1;
61 module_param_named(rx_xon_thresh_bytes
, efx_nic_rx_xon_thresh
, int, 0644);
62 MODULE_PARM_DESC(rx_xon_thresh_bytes
, "RX fifo XON threshold");
64 /* If EFX_MAX_INT_ERRORS internal errors occur within
65 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
68 #define EFX_INT_ERROR_EXPIRE 3600
69 #define EFX_MAX_INT_ERRORS 5
71 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
73 #define EFX_FLUSH_INTERVAL 10
74 #define EFX_FLUSH_POLL_COUNT 100
76 /* Size and alignment of special buffers (4KB) */
77 #define EFX_BUF_SIZE 4096
79 /* Depth of RX flush request fifo */
80 #define EFX_RX_FLUSH_COUNT 4
82 /* Generated event code for efx_generate_test_event() */
83 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
84 (0x00010100 + (_channel)->channel)
86 /* Generated event code for efx_generate_fill_event() */
87 #define EFX_CHANNEL_MAGIC_FILL(_channel) \
88 (0x00010200 + (_channel)->channel)
90 /**************************************************************************
92 * Solarstorm hardware access
94 **************************************************************************/
96 static inline void efx_write_buf_tbl(struct efx_nic
*efx
, efx_qword_t
*value
,
99 efx_sram_writeq(efx
, efx
->membase
+ efx
->type
->buf_tbl_base
,
103 /* Read the current event from the event queue */
104 static inline efx_qword_t
*efx_event(struct efx_channel
*channel
,
107 return ((efx_qword_t
*) (channel
->eventq
.addr
)) + index
;
110 /* See if an event is present
112 * We check both the high and low dword of the event for all ones. We
113 * wrote all ones when we cleared the event, and no valid event can
114 * have all ones in either its high or low dwords. This approach is
115 * robust against reordering.
117 * Note that using a single 64-bit comparison is incorrect; even
118 * though the CPU read will be atomic, the DMA write may not be.
120 static inline int efx_event_present(efx_qword_t
*event
)
122 return !(EFX_DWORD_IS_ALL_ONES(event
->dword
[0]) |
123 EFX_DWORD_IS_ALL_ONES(event
->dword
[1]));
126 static bool efx_masked_compare_oword(const efx_oword_t
*a
, const efx_oword_t
*b
,
127 const efx_oword_t
*mask
)
129 return ((a
->u64
[0] ^ b
->u64
[0]) & mask
->u64
[0]) ||
130 ((a
->u64
[1] ^ b
->u64
[1]) & mask
->u64
[1]);
133 int efx_nic_test_registers(struct efx_nic
*efx
,
134 const struct efx_nic_register_test
*regs
,
137 unsigned address
= 0, i
, j
;
138 efx_oword_t mask
, imask
, original
, reg
, buf
;
140 /* Falcon should be in loopback to isolate the XMAC from the PHY */
141 WARN_ON(!LOOPBACK_INTERNAL(efx
));
143 for (i
= 0; i
< n_regs
; ++i
) {
144 address
= regs
[i
].address
;
145 mask
= imask
= regs
[i
].mask
;
146 EFX_INVERT_OWORD(imask
);
148 efx_reado(efx
, &original
, address
);
150 /* bit sweep on and off */
151 for (j
= 0; j
< 128; j
++) {
152 if (!EFX_EXTRACT_OWORD32(mask
, j
, j
))
155 /* Test this testable bit can be set in isolation */
156 EFX_AND_OWORD(reg
, original
, mask
);
157 EFX_SET_OWORD32(reg
, j
, j
, 1);
159 efx_writeo(efx
, ®
, address
);
160 efx_reado(efx
, &buf
, address
);
162 if (efx_masked_compare_oword(®
, &buf
, &mask
))
165 /* Test this testable bit can be cleared in isolation */
166 EFX_OR_OWORD(reg
, original
, mask
);
167 EFX_SET_OWORD32(reg
, j
, j
, 0);
169 efx_writeo(efx
, ®
, address
);
170 efx_reado(efx
, &buf
, address
);
172 if (efx_masked_compare_oword(®
, &buf
, &mask
))
176 efx_writeo(efx
, &original
, address
);
182 netif_err(efx
, hw
, efx
->net_dev
,
183 "wrote "EFX_OWORD_FMT
" read "EFX_OWORD_FMT
184 " at address 0x%x mask "EFX_OWORD_FMT
"\n", EFX_OWORD_VAL(reg
),
185 EFX_OWORD_VAL(buf
), address
, EFX_OWORD_VAL(mask
));
189 /**************************************************************************
191 * Special buffer handling
192 * Special buffers are used for event queues and the TX and RX
195 *************************************************************************/
198 * Initialise a special buffer
200 * This will define a buffer (previously allocated via
201 * efx_alloc_special_buffer()) in the buffer table, allowing
202 * it to be used for event queues, descriptor rings etc.
205 efx_init_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
207 efx_qword_t buf_desc
;
212 EFX_BUG_ON_PARANOID(!buffer
->addr
);
214 /* Write buffer descriptors to NIC */
215 for (i
= 0; i
< buffer
->entries
; i
++) {
216 index
= buffer
->index
+ i
;
217 dma_addr
= buffer
->dma_addr
+ (i
* 4096);
218 netif_dbg(efx
, probe
, efx
->net_dev
,
219 "mapping special buffer %d at %llx\n",
220 index
, (unsigned long long)dma_addr
);
221 EFX_POPULATE_QWORD_3(buf_desc
,
222 FRF_AZ_BUF_ADR_REGION
, 0,
223 FRF_AZ_BUF_ADR_FBUF
, dma_addr
>> 12,
224 FRF_AZ_BUF_OWNER_ID_FBUF
, 0);
225 efx_write_buf_tbl(efx
, &buf_desc
, index
);
229 /* Unmaps a buffer and clears the buffer table entries */
231 efx_fini_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
233 efx_oword_t buf_tbl_upd
;
234 unsigned int start
= buffer
->index
;
235 unsigned int end
= (buffer
->index
+ buffer
->entries
- 1);
237 if (!buffer
->entries
)
240 netif_dbg(efx
, hw
, efx
->net_dev
, "unmapping special buffers %d-%d\n",
241 buffer
->index
, buffer
->index
+ buffer
->entries
- 1);
243 EFX_POPULATE_OWORD_4(buf_tbl_upd
,
244 FRF_AZ_BUF_UPD_CMD
, 0,
245 FRF_AZ_BUF_CLR_CMD
, 1,
246 FRF_AZ_BUF_CLR_END_ID
, end
,
247 FRF_AZ_BUF_CLR_START_ID
, start
);
248 efx_writeo(efx
, &buf_tbl_upd
, FR_AZ_BUF_TBL_UPD
);
252 * Allocate a new special buffer
254 * This allocates memory for a new buffer, clears it and allocates a
255 * new buffer ID range. It does not write into the buffer table.
257 * This call will allocate 4KB buffers, since 8KB buffers can't be
258 * used for event queues and descriptor rings.
260 static int efx_alloc_special_buffer(struct efx_nic
*efx
,
261 struct efx_special_buffer
*buffer
,
264 len
= ALIGN(len
, EFX_BUF_SIZE
);
266 buffer
->addr
= dma_alloc_coherent(&efx
->pci_dev
->dev
, len
,
267 &buffer
->dma_addr
, GFP_KERNEL
);
271 buffer
->entries
= len
/ EFX_BUF_SIZE
;
272 BUG_ON(buffer
->dma_addr
& (EFX_BUF_SIZE
- 1));
274 /* All zeros is a potentially valid event so memset to 0xff */
275 memset(buffer
->addr
, 0xff, len
);
277 /* Select new buffer ID */
278 buffer
->index
= efx
->next_buffer_table
;
279 efx
->next_buffer_table
+= buffer
->entries
;
281 netif_dbg(efx
, probe
, efx
->net_dev
,
282 "allocating special buffers %d-%d at %llx+%x "
283 "(virt %p phys %llx)\n", buffer
->index
,
284 buffer
->index
+ buffer
->entries
- 1,
285 (u64
)buffer
->dma_addr
, len
,
286 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
292 efx_free_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
297 netif_dbg(efx
, hw
, efx
->net_dev
,
298 "deallocating special buffers %d-%d at %llx+%x "
299 "(virt %p phys %llx)\n", buffer
->index
,
300 buffer
->index
+ buffer
->entries
- 1,
301 (u64
)buffer
->dma_addr
, buffer
->len
,
302 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
304 dma_free_coherent(&efx
->pci_dev
->dev
, buffer
->len
, buffer
->addr
,
310 /**************************************************************************
312 * Generic buffer handling
313 * These buffers are used for interrupt status and MAC stats
315 **************************************************************************/
317 int efx_nic_alloc_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
,
320 buffer
->addr
= pci_alloc_consistent(efx
->pci_dev
, len
,
325 memset(buffer
->addr
, 0, len
);
329 void efx_nic_free_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
)
332 pci_free_consistent(efx
->pci_dev
, buffer
->len
,
333 buffer
->addr
, buffer
->dma_addr
);
338 /**************************************************************************
342 **************************************************************************/
344 /* Returns a pointer to the specified transmit descriptor in the TX
345 * descriptor queue belonging to the specified channel.
347 static inline efx_qword_t
*
348 efx_tx_desc(struct efx_tx_queue
*tx_queue
, unsigned int index
)
350 return ((efx_qword_t
*) (tx_queue
->txd
.addr
)) + index
;
353 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
354 static inline void efx_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
359 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
360 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_TX_DESC_WPTR_DWORD
, write_ptr
);
361 efx_writed_page(tx_queue
->efx
, ®
,
362 FR_AZ_TX_DESC_UPD_DWORD_P0
, tx_queue
->queue
);
365 /* Write pointer and first descriptor for TX descriptor ring */
366 static inline void efx_push_tx_desc(struct efx_tx_queue
*tx_queue
,
367 const efx_qword_t
*txd
)
372 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN
!= 0);
373 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER
!= FR_BZ_TX_DESC_UPD_P0
);
375 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
376 EFX_POPULATE_OWORD_2(reg
, FRF_AZ_TX_DESC_PUSH_CMD
, true,
377 FRF_AZ_TX_DESC_WPTR
, write_ptr
);
379 efx_writeo_page(tx_queue
->efx
, ®
,
380 FR_BZ_TX_DESC_UPD_P0
, tx_queue
->queue
);
384 efx_may_push_tx_desc(struct efx_tx_queue
*tx_queue
, unsigned int write_count
)
386 unsigned empty_read_count
= ACCESS_ONCE(tx_queue
->empty_read_count
);
388 if (empty_read_count
== 0)
391 tx_queue
->empty_read_count
= 0;
392 return ((empty_read_count
^ write_count
) & ~EFX_EMPTY_COUNT_VALID
) == 0;
395 /* For each entry inserted into the software descriptor ring, create a
396 * descriptor in the hardware TX descriptor ring (in host memory), and
399 void efx_nic_push_buffers(struct efx_tx_queue
*tx_queue
)
402 struct efx_tx_buffer
*buffer
;
405 unsigned old_write_count
= tx_queue
->write_count
;
407 BUG_ON(tx_queue
->write_count
== tx_queue
->insert_count
);
410 write_ptr
= tx_queue
->write_count
& tx_queue
->ptr_mask
;
411 buffer
= &tx_queue
->buffer
[write_ptr
];
412 txd
= efx_tx_desc(tx_queue
, write_ptr
);
413 ++tx_queue
->write_count
;
415 /* Create TX descriptor ring entry */
416 EFX_POPULATE_QWORD_4(*txd
,
417 FSF_AZ_TX_KER_CONT
, buffer
->continuation
,
418 FSF_AZ_TX_KER_BYTE_COUNT
, buffer
->len
,
419 FSF_AZ_TX_KER_BUF_REGION
, 0,
420 FSF_AZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
421 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
423 wmb(); /* Ensure descriptors are written before they are fetched */
425 if (efx_may_push_tx_desc(tx_queue
, old_write_count
)) {
426 txd
= efx_tx_desc(tx_queue
,
427 old_write_count
& tx_queue
->ptr_mask
);
428 efx_push_tx_desc(tx_queue
, txd
);
431 efx_notify_tx_desc(tx_queue
);
435 /* Allocate hardware resources for a TX queue */
436 int efx_nic_probe_tx(struct efx_tx_queue
*tx_queue
)
438 struct efx_nic
*efx
= tx_queue
->efx
;
441 entries
= tx_queue
->ptr_mask
+ 1;
442 return efx_alloc_special_buffer(efx
, &tx_queue
->txd
,
443 entries
* sizeof(efx_qword_t
));
446 void efx_nic_init_tx(struct efx_tx_queue
*tx_queue
)
448 struct efx_nic
*efx
= tx_queue
->efx
;
451 tx_queue
->flushed
= FLUSH_NONE
;
453 /* Pin TX descriptor ring */
454 efx_init_special_buffer(efx
, &tx_queue
->txd
);
456 /* Push TX descriptor ring to card */
457 EFX_POPULATE_OWORD_10(reg
,
458 FRF_AZ_TX_DESCQ_EN
, 1,
459 FRF_AZ_TX_ISCSI_DDIG_EN
, 0,
460 FRF_AZ_TX_ISCSI_HDIG_EN
, 0,
461 FRF_AZ_TX_DESCQ_BUF_BASE_ID
, tx_queue
->txd
.index
,
462 FRF_AZ_TX_DESCQ_EVQ_ID
,
463 tx_queue
->channel
->channel
,
464 FRF_AZ_TX_DESCQ_OWNER_ID
, 0,
465 FRF_AZ_TX_DESCQ_LABEL
, tx_queue
->queue
,
466 FRF_AZ_TX_DESCQ_SIZE
,
467 __ffs(tx_queue
->txd
.entries
),
468 FRF_AZ_TX_DESCQ_TYPE
, 0,
469 FRF_BZ_TX_NON_IP_DROP_DIS
, 1);
471 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
472 int csum
= tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
;
473 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_IP_CHKSM_DIS
, !csum
);
474 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_TX_TCP_CHKSM_DIS
,
478 efx_writeo_table(efx
, ®
, efx
->type
->txd_ptr_tbl_base
,
481 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) {
482 /* Only 128 bits in this register */
483 BUILD_BUG_ON(EFX_MAX_TX_QUEUES
> 128);
485 efx_reado(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
486 if (tx_queue
->queue
& EFX_TXQ_TYPE_OFFLOAD
)
487 clear_bit_le(tx_queue
->queue
, (void *)®
);
489 set_bit_le(tx_queue
->queue
, (void *)®
);
490 efx_writeo(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
493 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
494 EFX_POPULATE_OWORD_1(reg
,
496 (tx_queue
->queue
& EFX_TXQ_TYPE_HIGHPRI
) ?
498 FFE_BZ_TX_PACE_RESERVED
);
499 efx_writeo_table(efx
, ®
, FR_BZ_TX_PACE_TBL
,
504 static void efx_flush_tx_queue(struct efx_tx_queue
*tx_queue
)
506 struct efx_nic
*efx
= tx_queue
->efx
;
507 efx_oword_t tx_flush_descq
;
509 tx_queue
->flushed
= FLUSH_PENDING
;
511 /* Post a flush command */
512 EFX_POPULATE_OWORD_2(tx_flush_descq
,
513 FRF_AZ_TX_FLUSH_DESCQ_CMD
, 1,
514 FRF_AZ_TX_FLUSH_DESCQ
, tx_queue
->queue
);
515 efx_writeo(efx
, &tx_flush_descq
, FR_AZ_TX_FLUSH_DESCQ
);
518 void efx_nic_fini_tx(struct efx_tx_queue
*tx_queue
)
520 struct efx_nic
*efx
= tx_queue
->efx
;
521 efx_oword_t tx_desc_ptr
;
523 /* The queue should have been flushed */
524 WARN_ON(tx_queue
->flushed
!= FLUSH_DONE
);
526 /* Remove TX descriptor ring from card */
527 EFX_ZERO_OWORD(tx_desc_ptr
);
528 efx_writeo_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
531 /* Unpin TX descriptor ring */
532 efx_fini_special_buffer(efx
, &tx_queue
->txd
);
535 /* Free buffers backing TX queue */
536 void efx_nic_remove_tx(struct efx_tx_queue
*tx_queue
)
538 efx_free_special_buffer(tx_queue
->efx
, &tx_queue
->txd
);
541 /**************************************************************************
545 **************************************************************************/
547 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
548 static inline efx_qword_t
*
549 efx_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned int index
)
551 return ((efx_qword_t
*) (rx_queue
->rxd
.addr
)) + index
;
554 /* This creates an entry in the RX descriptor queue */
556 efx_build_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned index
)
558 struct efx_rx_buffer
*rx_buf
;
561 rxd
= efx_rx_desc(rx_queue
, index
);
562 rx_buf
= efx_rx_buffer(rx_queue
, index
);
563 EFX_POPULATE_QWORD_3(*rxd
,
564 FSF_AZ_RX_KER_BUF_SIZE
,
566 rx_queue
->efx
->type
->rx_buffer_padding
,
567 FSF_AZ_RX_KER_BUF_REGION
, 0,
568 FSF_AZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
571 /* This writes to the RX_DESC_WPTR register for the specified receive
574 void efx_nic_notify_rx_desc(struct efx_rx_queue
*rx_queue
)
576 struct efx_nic
*efx
= rx_queue
->efx
;
580 while (rx_queue
->notified_count
!= rx_queue
->added_count
) {
583 rx_queue
->notified_count
& rx_queue
->ptr_mask
);
584 ++rx_queue
->notified_count
;
588 write_ptr
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
589 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_RX_DESC_WPTR_DWORD
, write_ptr
);
590 efx_writed_page(efx
, ®
, FR_AZ_RX_DESC_UPD_DWORD_P0
,
591 efx_rx_queue_index(rx_queue
));
594 int efx_nic_probe_rx(struct efx_rx_queue
*rx_queue
)
596 struct efx_nic
*efx
= rx_queue
->efx
;
599 entries
= rx_queue
->ptr_mask
+ 1;
600 return efx_alloc_special_buffer(efx
, &rx_queue
->rxd
,
601 entries
* sizeof(efx_qword_t
));
604 void efx_nic_init_rx(struct efx_rx_queue
*rx_queue
)
606 efx_oword_t rx_desc_ptr
;
607 struct efx_nic
*efx
= rx_queue
->efx
;
608 bool is_b0
= efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
;
609 bool iscsi_digest_en
= is_b0
;
611 netif_dbg(efx
, hw
, efx
->net_dev
,
612 "RX queue %d ring in special buffers %d-%d\n",
613 efx_rx_queue_index(rx_queue
), rx_queue
->rxd
.index
,
614 rx_queue
->rxd
.index
+ rx_queue
->rxd
.entries
- 1);
616 rx_queue
->flushed
= FLUSH_NONE
;
618 /* Pin RX descriptor ring */
619 efx_init_special_buffer(efx
, &rx_queue
->rxd
);
621 /* Push RX descriptor ring to card */
622 EFX_POPULATE_OWORD_10(rx_desc_ptr
,
623 FRF_AZ_RX_ISCSI_DDIG_EN
, iscsi_digest_en
,
624 FRF_AZ_RX_ISCSI_HDIG_EN
, iscsi_digest_en
,
625 FRF_AZ_RX_DESCQ_BUF_BASE_ID
, rx_queue
->rxd
.index
,
626 FRF_AZ_RX_DESCQ_EVQ_ID
,
627 efx_rx_queue_channel(rx_queue
)->channel
,
628 FRF_AZ_RX_DESCQ_OWNER_ID
, 0,
629 FRF_AZ_RX_DESCQ_LABEL
,
630 efx_rx_queue_index(rx_queue
),
631 FRF_AZ_RX_DESCQ_SIZE
,
632 __ffs(rx_queue
->rxd
.entries
),
633 FRF_AZ_RX_DESCQ_TYPE
, 0 /* kernel queue */ ,
634 /* For >=B0 this is scatter so disable */
635 FRF_AZ_RX_DESCQ_JUMBO
, !is_b0
,
636 FRF_AZ_RX_DESCQ_EN
, 1);
637 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
638 efx_rx_queue_index(rx_queue
));
641 static void efx_flush_rx_queue(struct efx_rx_queue
*rx_queue
)
643 struct efx_nic
*efx
= rx_queue
->efx
;
644 efx_oword_t rx_flush_descq
;
646 rx_queue
->flushed
= FLUSH_PENDING
;
648 /* Post a flush command */
649 EFX_POPULATE_OWORD_2(rx_flush_descq
,
650 FRF_AZ_RX_FLUSH_DESCQ_CMD
, 1,
651 FRF_AZ_RX_FLUSH_DESCQ
,
652 efx_rx_queue_index(rx_queue
));
653 efx_writeo(efx
, &rx_flush_descq
, FR_AZ_RX_FLUSH_DESCQ
);
656 void efx_nic_fini_rx(struct efx_rx_queue
*rx_queue
)
658 efx_oword_t rx_desc_ptr
;
659 struct efx_nic
*efx
= rx_queue
->efx
;
661 /* The queue should already have been flushed */
662 WARN_ON(rx_queue
->flushed
!= FLUSH_DONE
);
664 /* Remove RX descriptor ring from card */
665 EFX_ZERO_OWORD(rx_desc_ptr
);
666 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
667 efx_rx_queue_index(rx_queue
));
669 /* Unpin RX descriptor ring */
670 efx_fini_special_buffer(efx
, &rx_queue
->rxd
);
673 /* Free buffers backing RX queue */
674 void efx_nic_remove_rx(struct efx_rx_queue
*rx_queue
)
676 efx_free_special_buffer(rx_queue
->efx
, &rx_queue
->rxd
);
679 /**************************************************************************
681 * Event queue processing
682 * Event queues are processed by per-channel tasklets.
684 **************************************************************************/
686 /* Update a channel's event queue's read pointer (RPTR) register
688 * This writes the EVQ_RPTR_REG register for the specified channel's
691 void efx_nic_eventq_read_ack(struct efx_channel
*channel
)
694 struct efx_nic
*efx
= channel
->efx
;
696 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_EVQ_RPTR
, channel
->eventq_read_ptr
);
697 efx_writed_table(efx
, ®
, efx
->type
->evq_rptr_tbl_base
,
701 /* Use HW to insert a SW defined event */
702 static void efx_generate_event(struct efx_channel
*channel
, efx_qword_t
*event
)
704 efx_oword_t drv_ev_reg
;
706 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN
!= 0 ||
707 FRF_AZ_DRV_EV_DATA_WIDTH
!= 64);
708 drv_ev_reg
.u32
[0] = event
->u32
[0];
709 drv_ev_reg
.u32
[1] = event
->u32
[1];
710 drv_ev_reg
.u32
[2] = 0;
711 drv_ev_reg
.u32
[3] = 0;
712 EFX_SET_OWORD_FIELD(drv_ev_reg
, FRF_AZ_DRV_EV_QID
, channel
->channel
);
713 efx_writeo(channel
->efx
, &drv_ev_reg
, FR_AZ_DRV_EV
);
716 /* Handle a transmit completion event
718 * The NIC batches TX completion events; the message we receive is of
719 * the form "complete all TX events up to this index".
722 efx_handle_tx_event(struct efx_channel
*channel
, efx_qword_t
*event
)
724 unsigned int tx_ev_desc_ptr
;
725 unsigned int tx_ev_q_label
;
726 struct efx_tx_queue
*tx_queue
;
727 struct efx_nic
*efx
= channel
->efx
;
730 if (likely(EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_COMP
))) {
731 /* Transmit completion */
732 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_DESC_PTR
);
733 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
734 tx_queue
= efx_channel_get_tx_queue(
735 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
736 tx_packets
= ((tx_ev_desc_ptr
- tx_queue
->read_count
) &
738 channel
->irq_mod_score
+= tx_packets
;
739 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
);
740 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_WQ_FF_FULL
)) {
741 /* Rewrite the FIFO write pointer */
742 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
743 tx_queue
= efx_channel_get_tx_queue(
744 channel
, tx_ev_q_label
% EFX_TXQ_TYPES
);
746 if (efx_dev_registered(efx
))
747 netif_tx_lock(efx
->net_dev
);
748 efx_notify_tx_desc(tx_queue
);
749 if (efx_dev_registered(efx
))
750 netif_tx_unlock(efx
->net_dev
);
751 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_PKT_ERR
) &&
752 EFX_WORKAROUND_10727(efx
)) {
753 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
755 netif_err(efx
, tx_err
, efx
->net_dev
,
756 "channel %d unexpected TX event "
757 EFX_QWORD_FMT
"\n", channel
->channel
,
758 EFX_QWORD_VAL(*event
));
764 /* Detect errors included in the rx_evt_pkt_ok bit. */
765 static void efx_handle_rx_not_ok(struct efx_rx_queue
*rx_queue
,
766 const efx_qword_t
*event
,
770 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
771 struct efx_nic
*efx
= rx_queue
->efx
;
772 bool rx_ev_buf_owner_id_err
, rx_ev_ip_hdr_chksum_err
;
773 bool rx_ev_tcp_udp_chksum_err
, rx_ev_eth_crc_err
;
774 bool rx_ev_frm_trunc
, rx_ev_drib_nib
, rx_ev_tobe_disc
;
775 bool rx_ev_other_err
, rx_ev_pause_frm
;
776 bool rx_ev_hdr_type
, rx_ev_mcast_pkt
;
777 unsigned rx_ev_pkt_type
;
779 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
780 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
781 rx_ev_tobe_disc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_TOBE_DISC
);
782 rx_ev_pkt_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_TYPE
);
783 rx_ev_buf_owner_id_err
= EFX_QWORD_FIELD(*event
,
784 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR
);
785 rx_ev_ip_hdr_chksum_err
= EFX_QWORD_FIELD(*event
,
786 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR
);
787 rx_ev_tcp_udp_chksum_err
= EFX_QWORD_FIELD(*event
,
788 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR
);
789 rx_ev_eth_crc_err
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_ETH_CRC_ERR
);
790 rx_ev_frm_trunc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_FRM_TRUNC
);
791 rx_ev_drib_nib
= ((efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) ?
792 0 : EFX_QWORD_FIELD(*event
, FSF_AA_RX_EV_DRIB_NIB
));
793 rx_ev_pause_frm
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PAUSE_FRM_ERR
);
795 /* Every error apart from tobe_disc and pause_frm */
796 rx_ev_other_err
= (rx_ev_drib_nib
| rx_ev_tcp_udp_chksum_err
|
797 rx_ev_buf_owner_id_err
| rx_ev_eth_crc_err
|
798 rx_ev_frm_trunc
| rx_ev_ip_hdr_chksum_err
);
800 /* Count errors that are not in MAC stats. Ignore expected
801 * checksum errors during self-test. */
803 ++channel
->n_rx_frm_trunc
;
804 else if (rx_ev_tobe_disc
)
805 ++channel
->n_rx_tobe_disc
;
806 else if (!efx
->loopback_selftest
) {
807 if (rx_ev_ip_hdr_chksum_err
)
808 ++channel
->n_rx_ip_hdr_chksum_err
;
809 else if (rx_ev_tcp_udp_chksum_err
)
810 ++channel
->n_rx_tcp_udp_chksum_err
;
813 /* The frame must be discarded if any of these are true. */
814 *discard
= (rx_ev_eth_crc_err
| rx_ev_frm_trunc
| rx_ev_drib_nib
|
815 rx_ev_tobe_disc
| rx_ev_pause_frm
);
817 /* TOBE_DISC is expected on unicast mismatches; don't print out an
818 * error message. FRM_TRUNC indicates RXDP dropped the packet due
819 * to a FIFO overflow.
821 #ifdef EFX_ENABLE_DEBUG
822 if (rx_ev_other_err
&& net_ratelimit()) {
823 netif_dbg(efx
, rx_err
, efx
->net_dev
,
824 " RX queue %d unexpected RX event "
825 EFX_QWORD_FMT
"%s%s%s%s%s%s%s%s\n",
826 efx_rx_queue_index(rx_queue
), EFX_QWORD_VAL(*event
),
827 rx_ev_buf_owner_id_err
? " [OWNER_ID_ERR]" : "",
828 rx_ev_ip_hdr_chksum_err
?
829 " [IP_HDR_CHKSUM_ERR]" : "",
830 rx_ev_tcp_udp_chksum_err
?
831 " [TCP_UDP_CHKSUM_ERR]" : "",
832 rx_ev_eth_crc_err
? " [ETH_CRC_ERR]" : "",
833 rx_ev_frm_trunc
? " [FRM_TRUNC]" : "",
834 rx_ev_drib_nib
? " [DRIB_NIB]" : "",
835 rx_ev_tobe_disc
? " [TOBE_DISC]" : "",
836 rx_ev_pause_frm
? " [PAUSE]" : "");
841 /* Handle receive events that are not in-order. */
843 efx_handle_rx_bad_index(struct efx_rx_queue
*rx_queue
, unsigned index
)
845 struct efx_nic
*efx
= rx_queue
->efx
;
846 unsigned expected
, dropped
;
848 expected
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
849 dropped
= (index
- expected
) & rx_queue
->ptr_mask
;
850 netif_info(efx
, rx_err
, efx
->net_dev
,
851 "dropped %d events (index=%d expected=%d)\n",
852 dropped
, index
, expected
);
854 efx_schedule_reset(efx
, EFX_WORKAROUND_5676(efx
) ?
855 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
858 /* Handle a packet received event
860 * The NIC gives a "discard" flag if it's a unicast packet with the
861 * wrong destination address
862 * Also "is multicast" and "matches multicast filter" flags can be used to
863 * discard non-matching multicast packets.
866 efx_handle_rx_event(struct efx_channel
*channel
, const efx_qword_t
*event
)
868 unsigned int rx_ev_desc_ptr
, rx_ev_byte_cnt
;
869 unsigned int rx_ev_hdr_type
, rx_ev_mcast_pkt
;
870 unsigned expected_ptr
;
871 bool rx_ev_pkt_ok
, discard
= false, checksummed
;
872 struct efx_rx_queue
*rx_queue
;
873 struct efx_nic
*efx
= channel
->efx
;
875 /* Basic packet information */
876 rx_ev_byte_cnt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_BYTE_CNT
);
877 rx_ev_pkt_ok
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_OK
);
878 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
879 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_JUMBO_CONT
));
880 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_SOP
) != 1);
881 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_Q_LABEL
) !=
884 rx_queue
= efx_channel_get_rx_queue(channel
);
886 rx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_DESC_PTR
);
887 expected_ptr
= rx_queue
->removed_count
& rx_queue
->ptr_mask
;
888 if (unlikely(rx_ev_desc_ptr
!= expected_ptr
))
889 efx_handle_rx_bad_index(rx_queue
, rx_ev_desc_ptr
);
891 if (likely(rx_ev_pkt_ok
)) {
892 /* If packet is marked as OK and packet type is TCP/IP or
893 * UDP/IP, then we can rely on the hardware checksum.
896 likely(efx
->rx_checksum_enabled
) &&
897 (rx_ev_hdr_type
== FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP
||
898 rx_ev_hdr_type
== FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP
);
900 efx_handle_rx_not_ok(rx_queue
, event
, &rx_ev_pkt_ok
, &discard
);
904 /* Detect multicast packets that didn't match the filter */
905 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
906 if (rx_ev_mcast_pkt
) {
907 unsigned int rx_ev_mcast_hash_match
=
908 EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_HASH_MATCH
);
910 if (unlikely(!rx_ev_mcast_hash_match
)) {
911 ++channel
->n_rx_mcast_mismatch
;
916 channel
->irq_mod_score
+= 2;
918 /* Handle received packet */
919 efx_rx_packet(rx_queue
, rx_ev_desc_ptr
, rx_ev_byte_cnt
,
920 checksummed
, discard
);
924 efx_handle_generated_event(struct efx_channel
*channel
, efx_qword_t
*event
)
926 struct efx_nic
*efx
= channel
->efx
;
929 code
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRV_GEN_EV_MAGIC
);
930 if (code
== EFX_CHANNEL_MAGIC_TEST(channel
))
931 ++channel
->magic_count
;
932 else if (code
== EFX_CHANNEL_MAGIC_FILL(channel
))
933 /* The queue must be empty, so we won't receive any rx
934 * events, so efx_process_channel() won't refill the
935 * queue. Refill it here */
936 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel
));
938 netif_dbg(efx
, hw
, efx
->net_dev
, "channel %d received "
939 "generated event "EFX_QWORD_FMT
"\n",
940 channel
->channel
, EFX_QWORD_VAL(*event
));
944 efx_handle_driver_event(struct efx_channel
*channel
, efx_qword_t
*event
)
946 struct efx_nic
*efx
= channel
->efx
;
947 unsigned int ev_sub_code
;
948 unsigned int ev_sub_data
;
950 ev_sub_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBCODE
);
951 ev_sub_data
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
953 switch (ev_sub_code
) {
954 case FSE_AZ_TX_DESCQ_FLS_DONE_EV
:
955 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d TXQ %d flushed\n",
956 channel
->channel
, ev_sub_data
);
958 case FSE_AZ_RX_DESCQ_FLS_DONE_EV
:
959 netif_vdbg(efx
, hw
, efx
->net_dev
, "channel %d RXQ %d flushed\n",
960 channel
->channel
, ev_sub_data
);
962 case FSE_AZ_EVQ_INIT_DONE_EV
:
963 netif_dbg(efx
, hw
, efx
->net_dev
,
964 "channel %d EVQ %d initialised\n",
965 channel
->channel
, ev_sub_data
);
967 case FSE_AZ_SRM_UPD_DONE_EV
:
968 netif_vdbg(efx
, hw
, efx
->net_dev
,
969 "channel %d SRAM update done\n", channel
->channel
);
971 case FSE_AZ_WAKE_UP_EV
:
972 netif_vdbg(efx
, hw
, efx
->net_dev
,
973 "channel %d RXQ %d wakeup event\n",
974 channel
->channel
, ev_sub_data
);
976 case FSE_AZ_TIMER_EV
:
977 netif_vdbg(efx
, hw
, efx
->net_dev
,
978 "channel %d RX queue %d timer expired\n",
979 channel
->channel
, ev_sub_data
);
981 case FSE_AA_RX_RECOVER_EV
:
982 netif_err(efx
, rx_err
, efx
->net_dev
,
983 "channel %d seen DRIVER RX_RESET event. "
984 "Resetting.\n", channel
->channel
);
985 atomic_inc(&efx
->rx_reset
);
986 efx_schedule_reset(efx
,
987 EFX_WORKAROUND_6555(efx
) ?
988 RESET_TYPE_RX_RECOVERY
:
991 case FSE_BZ_RX_DSC_ERROR_EV
:
992 netif_err(efx
, rx_err
, efx
->net_dev
,
993 "RX DMA Q %d reports descriptor fetch error."
994 " RX Q %d is disabled.\n", ev_sub_data
, ev_sub_data
);
995 efx_schedule_reset(efx
, RESET_TYPE_RX_DESC_FETCH
);
997 case FSE_BZ_TX_DSC_ERROR_EV
:
998 netif_err(efx
, tx_err
, efx
->net_dev
,
999 "TX DMA Q %d reports descriptor fetch error."
1000 " TX Q %d is disabled.\n", ev_sub_data
, ev_sub_data
);
1001 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
1004 netif_vdbg(efx
, hw
, efx
->net_dev
,
1005 "channel %d unknown driver event code %d "
1006 "data %04x\n", channel
->channel
, ev_sub_code
,
1012 int efx_nic_process_eventq(struct efx_channel
*channel
, int budget
)
1014 struct efx_nic
*efx
= channel
->efx
;
1015 unsigned int read_ptr
;
1016 efx_qword_t event
, *p_event
;
1021 read_ptr
= channel
->eventq_read_ptr
;
1024 p_event
= efx_event(channel
, read_ptr
);
1027 if (!efx_event_present(&event
))
1031 netif_vdbg(channel
->efx
, intr
, channel
->efx
->net_dev
,
1032 "channel %d event is "EFX_QWORD_FMT
"\n",
1033 channel
->channel
, EFX_QWORD_VAL(event
));
1035 /* Clear this event by marking it all ones */
1036 EFX_SET_QWORD(*p_event
);
1038 /* Increment read pointer */
1039 read_ptr
= (read_ptr
+ 1) & channel
->eventq_mask
;
1041 ev_code
= EFX_QWORD_FIELD(event
, FSF_AZ_EV_CODE
);
1044 case FSE_AZ_EV_CODE_RX_EV
:
1045 efx_handle_rx_event(channel
, &event
);
1046 if (++spent
== budget
)
1049 case FSE_AZ_EV_CODE_TX_EV
:
1050 tx_packets
+= efx_handle_tx_event(channel
, &event
);
1051 if (tx_packets
> efx
->txq_entries
) {
1056 case FSE_AZ_EV_CODE_DRV_GEN_EV
:
1057 efx_handle_generated_event(channel
, &event
);
1059 case FSE_AZ_EV_CODE_DRIVER_EV
:
1060 efx_handle_driver_event(channel
, &event
);
1062 case FSE_CZ_EV_CODE_MCDI_EV
:
1063 efx_mcdi_process_event(channel
, &event
);
1065 case FSE_AZ_EV_CODE_GLOBAL_EV
:
1066 if (efx
->type
->handle_global_event
&&
1067 efx
->type
->handle_global_event(channel
, &event
))
1069 /* else fall through */
1071 netif_err(channel
->efx
, hw
, channel
->efx
->net_dev
,
1072 "channel %d unknown event type %d (data "
1073 EFX_QWORD_FMT
")\n", channel
->channel
,
1074 ev_code
, EFX_QWORD_VAL(event
));
1079 channel
->eventq_read_ptr
= read_ptr
;
1084 /* Allocate buffer table entries for event queue */
1085 int efx_nic_probe_eventq(struct efx_channel
*channel
)
1087 struct efx_nic
*efx
= channel
->efx
;
1090 entries
= channel
->eventq_mask
+ 1;
1091 return efx_alloc_special_buffer(efx
, &channel
->eventq
,
1092 entries
* sizeof(efx_qword_t
));
1095 void efx_nic_init_eventq(struct efx_channel
*channel
)
1098 struct efx_nic
*efx
= channel
->efx
;
1100 netif_dbg(efx
, hw
, efx
->net_dev
,
1101 "channel %d event queue in special buffers %d-%d\n",
1102 channel
->channel
, channel
->eventq
.index
,
1103 channel
->eventq
.index
+ channel
->eventq
.entries
- 1);
1105 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
) {
1106 EFX_POPULATE_OWORD_3(reg
,
1107 FRF_CZ_TIMER_Q_EN
, 1,
1108 FRF_CZ_HOST_NOTIFY_MODE
, 0,
1109 FRF_CZ_TIMER_MODE
, FFE_CZ_TIMER_MODE_DIS
);
1110 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1113 /* Pin event queue buffer */
1114 efx_init_special_buffer(efx
, &channel
->eventq
);
1116 /* Fill event queue with all ones (i.e. empty events) */
1117 memset(channel
->eventq
.addr
, 0xff, channel
->eventq
.len
);
1119 /* Push event queue to card */
1120 EFX_POPULATE_OWORD_3(reg
,
1122 FRF_AZ_EVQ_SIZE
, __ffs(channel
->eventq
.entries
),
1123 FRF_AZ_EVQ_BUF_BASE_ID
, channel
->eventq
.index
);
1124 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1127 efx
->type
->push_irq_moderation(channel
);
1130 void efx_nic_fini_eventq(struct efx_channel
*channel
)
1133 struct efx_nic
*efx
= channel
->efx
;
1135 /* Remove event queue from card */
1136 EFX_ZERO_OWORD(reg
);
1137 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1139 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
)
1140 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1142 /* Unpin event queue */
1143 efx_fini_special_buffer(efx
, &channel
->eventq
);
1146 /* Free buffers backing event queue */
1147 void efx_nic_remove_eventq(struct efx_channel
*channel
)
1149 efx_free_special_buffer(channel
->efx
, &channel
->eventq
);
1153 void efx_nic_generate_test_event(struct efx_channel
*channel
)
1155 unsigned int magic
= EFX_CHANNEL_MAGIC_TEST(channel
);
1156 efx_qword_t test_event
;
1158 EFX_POPULATE_QWORD_2(test_event
, FSF_AZ_EV_CODE
,
1159 FSE_AZ_EV_CODE_DRV_GEN_EV
,
1160 FSF_AZ_DRV_GEN_EV_MAGIC
, magic
);
1161 efx_generate_event(channel
, &test_event
);
1164 void efx_nic_generate_fill_event(struct efx_channel
*channel
)
1166 unsigned int magic
= EFX_CHANNEL_MAGIC_FILL(channel
);
1167 efx_qword_t test_event
;
1169 EFX_POPULATE_QWORD_2(test_event
, FSF_AZ_EV_CODE
,
1170 FSE_AZ_EV_CODE_DRV_GEN_EV
,
1171 FSF_AZ_DRV_GEN_EV_MAGIC
, magic
);
1172 efx_generate_event(channel
, &test_event
);
1175 /**************************************************************************
1179 **************************************************************************/
1182 static void efx_poll_flush_events(struct efx_nic
*efx
)
1184 struct efx_channel
*channel
= efx_get_channel(efx
, 0);
1185 struct efx_tx_queue
*tx_queue
;
1186 struct efx_rx_queue
*rx_queue
;
1187 unsigned int read_ptr
= channel
->eventq_read_ptr
;
1188 unsigned int end_ptr
= (read_ptr
- 1) & channel
->eventq_mask
;
1191 efx_qword_t
*event
= efx_event(channel
, read_ptr
);
1192 int ev_code
, ev_sub_code
, ev_queue
;
1195 if (!efx_event_present(event
))
1198 ev_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_EV_CODE
);
1199 ev_sub_code
= EFX_QWORD_FIELD(*event
,
1200 FSF_AZ_DRIVER_EV_SUBCODE
);
1201 if (ev_code
== FSE_AZ_EV_CODE_DRIVER_EV
&&
1202 ev_sub_code
== FSE_AZ_TX_DESCQ_FLS_DONE_EV
) {
1203 ev_queue
= EFX_QWORD_FIELD(*event
,
1204 FSF_AZ_DRIVER_EV_SUBDATA
);
1205 if (ev_queue
< EFX_TXQ_TYPES
* efx
->n_tx_channels
) {
1206 tx_queue
= efx_get_tx_queue(
1207 efx
, ev_queue
/ EFX_TXQ_TYPES
,
1208 ev_queue
% EFX_TXQ_TYPES
);
1209 tx_queue
->flushed
= FLUSH_DONE
;
1211 } else if (ev_code
== FSE_AZ_EV_CODE_DRIVER_EV
&&
1212 ev_sub_code
== FSE_AZ_RX_DESCQ_FLS_DONE_EV
) {
1213 ev_queue
= EFX_QWORD_FIELD(
1214 *event
, FSF_AZ_DRIVER_EV_RX_DESCQ_ID
);
1215 ev_failed
= EFX_QWORD_FIELD(
1216 *event
, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL
);
1217 if (ev_queue
< efx
->n_rx_channels
) {
1218 rx_queue
= efx_get_rx_queue(efx
, ev_queue
);
1220 ev_failed
? FLUSH_FAILED
: FLUSH_DONE
;
1224 /* We're about to destroy the queue anyway, so
1225 * it's ok to throw away every non-flush event */
1226 EFX_SET_QWORD(*event
);
1228 read_ptr
= (read_ptr
+ 1) & channel
->eventq_mask
;
1229 } while (read_ptr
!= end_ptr
);
1231 channel
->eventq_read_ptr
= read_ptr
;
1234 /* Handle tx and rx flushes at the same time, since they run in
1235 * parallel in the hardware and there's no reason for us to
1237 int efx_nic_flush_queues(struct efx_nic
*efx
)
1239 struct efx_channel
*channel
;
1240 struct efx_rx_queue
*rx_queue
;
1241 struct efx_tx_queue
*tx_queue
;
1242 int i
, tx_pending
, rx_pending
;
1244 /* If necessary prepare the hardware for flushing */
1245 efx
->type
->prepare_flush(efx
);
1247 /* Flush all tx queues in parallel */
1248 efx_for_each_channel(channel
, efx
) {
1249 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
) {
1250 if (tx_queue
->initialised
)
1251 efx_flush_tx_queue(tx_queue
);
1255 /* The hardware supports four concurrent rx flushes, each of which may
1256 * need to be retried if there is an outstanding descriptor fetch */
1257 for (i
= 0; i
< EFX_FLUSH_POLL_COUNT
; ++i
) {
1258 rx_pending
= tx_pending
= 0;
1259 efx_for_each_channel(channel
, efx
) {
1260 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
1261 if (rx_queue
->flushed
== FLUSH_PENDING
)
1265 efx_for_each_channel(channel
, efx
) {
1266 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
1267 if (rx_pending
== EFX_RX_FLUSH_COUNT
)
1269 if (rx_queue
->flushed
== FLUSH_FAILED
||
1270 rx_queue
->flushed
== FLUSH_NONE
) {
1271 efx_flush_rx_queue(rx_queue
);
1275 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
) {
1276 if (tx_queue
->initialised
&&
1277 tx_queue
->flushed
!= FLUSH_DONE
)
1282 if (rx_pending
== 0 && tx_pending
== 0)
1285 msleep(EFX_FLUSH_INTERVAL
);
1286 efx_poll_flush_events(efx
);
1289 /* Mark the queues as all flushed. We're going to return failure
1290 * leading to a reset, or fake up success anyway */
1291 efx_for_each_channel(channel
, efx
) {
1292 efx_for_each_possible_channel_tx_queue(tx_queue
, channel
) {
1293 if (tx_queue
->initialised
&&
1294 tx_queue
->flushed
!= FLUSH_DONE
)
1295 netif_err(efx
, hw
, efx
->net_dev
,
1296 "tx queue %d flush command timed out\n",
1298 tx_queue
->flushed
= FLUSH_DONE
;
1300 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
1301 if (rx_queue
->flushed
!= FLUSH_DONE
)
1302 netif_err(efx
, hw
, efx
->net_dev
,
1303 "rx queue %d flush command timed out\n",
1304 efx_rx_queue_index(rx_queue
));
1305 rx_queue
->flushed
= FLUSH_DONE
;
1312 /**************************************************************************
1314 * Hardware interrupts
1315 * The hardware interrupt handler does very little work; all the event
1316 * queue processing is carried out by per-channel tasklets.
1318 **************************************************************************/
1320 /* Enable/disable/generate interrupts */
1321 static inline void efx_nic_interrupts(struct efx_nic
*efx
,
1322 bool enabled
, bool force
)
1324 efx_oword_t int_en_reg_ker
;
1326 EFX_POPULATE_OWORD_3(int_en_reg_ker
,
1327 FRF_AZ_KER_INT_LEVE_SEL
, efx
->fatal_irq_level
,
1328 FRF_AZ_KER_INT_KER
, force
,
1329 FRF_AZ_DRV_INT_EN_KER
, enabled
);
1330 efx_writeo(efx
, &int_en_reg_ker
, FR_AZ_INT_EN_KER
);
1333 void efx_nic_enable_interrupts(struct efx_nic
*efx
)
1335 struct efx_channel
*channel
;
1337 EFX_ZERO_OWORD(*((efx_oword_t
*) efx
->irq_status
.addr
));
1338 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1340 /* Enable interrupts */
1341 efx_nic_interrupts(efx
, true, false);
1343 /* Force processing of all the channels to get the EVQ RPTRs up to
1345 efx_for_each_channel(channel
, efx
)
1346 efx_schedule_channel(channel
);
1349 void efx_nic_disable_interrupts(struct efx_nic
*efx
)
1351 /* Disable interrupts */
1352 efx_nic_interrupts(efx
, false, false);
1355 /* Generate a test interrupt
1356 * Interrupt must already have been enabled, otherwise nasty things
1359 void efx_nic_generate_interrupt(struct efx_nic
*efx
)
1361 efx_nic_interrupts(efx
, true, true);
1364 /* Process a fatal interrupt
1365 * Disable bus mastering ASAP and schedule a reset
1367 irqreturn_t
efx_nic_fatal_interrupt(struct efx_nic
*efx
)
1369 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1370 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1371 efx_oword_t fatal_intr
;
1372 int error
, mem_perr
;
1374 efx_reado(efx
, &fatal_intr
, FR_AZ_FATAL_INTR_KER
);
1375 error
= EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_FATAL_INTR
);
1377 netif_err(efx
, hw
, efx
->net_dev
, "SYSTEM ERROR "EFX_OWORD_FMT
" status "
1378 EFX_OWORD_FMT
": %s\n", EFX_OWORD_VAL(*int_ker
),
1379 EFX_OWORD_VAL(fatal_intr
),
1380 error
? "disabling bus mastering" : "no recognised error");
1382 /* If this is a memory parity error dump which blocks are offending */
1383 mem_perr
= (EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_MEM_PERR_INT_KER
) ||
1384 EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_SRM_PERR_INT_KER
));
1387 efx_reado(efx
, ®
, FR_AZ_MEM_STAT
);
1388 netif_err(efx
, hw
, efx
->net_dev
,
1389 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT
"\n",
1390 EFX_OWORD_VAL(reg
));
1393 /* Disable both devices */
1394 pci_clear_master(efx
->pci_dev
);
1395 if (efx_nic_is_dual_func(efx
))
1396 pci_clear_master(nic_data
->pci_dev2
);
1397 efx_nic_disable_interrupts(efx
);
1399 /* Count errors and reset or disable the NIC accordingly */
1400 if (efx
->int_error_count
== 0 ||
1401 time_after(jiffies
, efx
->int_error_expire
)) {
1402 efx
->int_error_count
= 0;
1403 efx
->int_error_expire
=
1404 jiffies
+ EFX_INT_ERROR_EXPIRE
* HZ
;
1406 if (++efx
->int_error_count
< EFX_MAX_INT_ERRORS
) {
1407 netif_err(efx
, hw
, efx
->net_dev
,
1408 "SYSTEM ERROR - reset scheduled\n");
1409 efx_schedule_reset(efx
, RESET_TYPE_INT_ERROR
);
1411 netif_err(efx
, hw
, efx
->net_dev
,
1412 "SYSTEM ERROR - max number of errors seen."
1413 "NIC will be disabled\n");
1414 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1420 /* Handle a legacy interrupt
1421 * Acknowledges the interrupt and schedule event queue processing.
1423 static irqreturn_t
efx_legacy_interrupt(int irq
, void *dev_id
)
1425 struct efx_nic
*efx
= dev_id
;
1426 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1427 irqreturn_t result
= IRQ_NONE
;
1428 struct efx_channel
*channel
;
1433 /* Could this be ours? If interrupts are disabled then the
1434 * channel state may not be valid.
1436 if (!efx
->legacy_irq_enabled
)
1439 /* Read the ISR which also ACKs the interrupts */
1440 efx_readd(efx
, ®
, FR_BZ_INT_ISR0
);
1441 queues
= EFX_EXTRACT_DWORD(reg
, 0, 31);
1443 /* Check to see if we have a serious error condition */
1444 if (queues
& (1U << efx
->fatal_irq_level
)) {
1445 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1446 if (unlikely(syserr
))
1447 return efx_nic_fatal_interrupt(efx
);
1451 if (EFX_WORKAROUND_15783(efx
))
1452 efx
->irq_zero_count
= 0;
1454 /* Schedule processing of any interrupting queues */
1455 efx_for_each_channel(channel
, efx
) {
1457 efx_schedule_channel(channel
);
1460 result
= IRQ_HANDLED
;
1462 } else if (EFX_WORKAROUND_15783(efx
)) {
1465 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1466 * because this might be a shared interrupt. */
1467 if (efx
->irq_zero_count
++ == 0)
1468 result
= IRQ_HANDLED
;
1470 /* Ensure we schedule or rearm all event queues */
1471 efx_for_each_channel(channel
, efx
) {
1472 event
= efx_event(channel
, channel
->eventq_read_ptr
);
1473 if (efx_event_present(event
))
1474 efx_schedule_channel(channel
);
1476 efx_nic_eventq_read_ack(channel
);
1480 if (result
== IRQ_HANDLED
) {
1481 efx
->last_irq_cpu
= raw_smp_processor_id();
1482 netif_vdbg(efx
, intr
, efx
->net_dev
,
1483 "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
1484 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
1490 /* Handle an MSI interrupt
1492 * Handle an MSI hardware interrupt. This routine schedules event
1493 * queue processing. No interrupt acknowledgement cycle is necessary.
1494 * Also, we never need to check that the interrupt is for us, since
1495 * MSI interrupts cannot be shared.
1497 static irqreturn_t
efx_msi_interrupt(int irq
, void *dev_id
)
1499 struct efx_channel
*channel
= *(struct efx_channel
**)dev_id
;
1500 struct efx_nic
*efx
= channel
->efx
;
1501 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1504 efx
->last_irq_cpu
= raw_smp_processor_id();
1505 netif_vdbg(efx
, intr
, efx
->net_dev
,
1506 "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
1507 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
1509 /* Check to see if we have a serious error condition */
1510 if (channel
->channel
== efx
->fatal_irq_level
) {
1511 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1512 if (unlikely(syserr
))
1513 return efx_nic_fatal_interrupt(efx
);
1516 /* Schedule processing of the channel */
1517 efx_schedule_channel(channel
);
1523 /* Setup RSS indirection table.
1524 * This maps from the hash value of the packet to RXQ
1526 void efx_nic_push_rx_indir_table(struct efx_nic
*efx
)
1531 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
)
1534 BUILD_BUG_ON(ARRAY_SIZE(efx
->rx_indir_table
) !=
1535 FR_BZ_RX_INDIRECTION_TBL_ROWS
);
1537 for (i
= 0; i
< FR_BZ_RX_INDIRECTION_TBL_ROWS
; i
++) {
1538 EFX_POPULATE_DWORD_1(dword
, FRF_BZ_IT_QUEUE
,
1539 efx
->rx_indir_table
[i
]);
1540 efx_writed_table(efx
, &dword
, FR_BZ_RX_INDIRECTION_TBL
, i
);
1544 /* Hook interrupt handler(s)
1545 * Try MSI and then legacy interrupts.
1547 int efx_nic_init_interrupt(struct efx_nic
*efx
)
1549 struct efx_channel
*channel
;
1552 if (!EFX_INT_MODE_USE_MSI(efx
)) {
1553 irq_handler_t handler
;
1554 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1555 handler
= efx_legacy_interrupt
;
1557 handler
= falcon_legacy_interrupt_a1
;
1559 rc
= request_irq(efx
->legacy_irq
, handler
, IRQF_SHARED
,
1562 netif_err(efx
, drv
, efx
->net_dev
,
1563 "failed to hook legacy IRQ %d\n",
1570 /* Hook MSI or MSI-X interrupt */
1571 efx_for_each_channel(channel
, efx
) {
1572 rc
= request_irq(channel
->irq
, efx_msi_interrupt
,
1573 IRQF_PROBE_SHARED
, /* Not shared */
1574 efx
->channel_name
[channel
->channel
],
1575 &efx
->channel
[channel
->channel
]);
1577 netif_err(efx
, drv
, efx
->net_dev
,
1578 "failed to hook IRQ %d\n", channel
->irq
);
1586 efx_for_each_channel(channel
, efx
)
1587 free_irq(channel
->irq
, &efx
->channel
[channel
->channel
]);
1592 void efx_nic_fini_interrupt(struct efx_nic
*efx
)
1594 struct efx_channel
*channel
;
1597 /* Disable MSI/MSI-X interrupts */
1598 efx_for_each_channel(channel
, efx
) {
1600 free_irq(channel
->irq
, &efx
->channel
[channel
->channel
]);
1603 /* ACK legacy interrupt */
1604 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1605 efx_reado(efx
, ®
, FR_BZ_INT_ISR0
);
1607 falcon_irq_ack_a1(efx
);
1609 /* Disable legacy interrupt */
1610 if (efx
->legacy_irq
)
1611 free_irq(efx
->legacy_irq
, efx
);
1614 u32
efx_nic_fpga_ver(struct efx_nic
*efx
)
1616 efx_oword_t altera_build
;
1617 efx_reado(efx
, &altera_build
, FR_AZ_ALTERA_BUILD
);
1618 return EFX_OWORD_FIELD(altera_build
, FRF_AZ_ALTERA_BUILD_VER
);
1621 void efx_nic_init_common(struct efx_nic
*efx
)
1625 /* Set positions of descriptor caches in SRAM. */
1626 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_TX_DC_BASE_ADR
,
1627 efx
->type
->tx_dc_base
/ 8);
1628 efx_writeo(efx
, &temp
, FR_AZ_SRM_TX_DC_CFG
);
1629 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_RX_DC_BASE_ADR
,
1630 efx
->type
->rx_dc_base
/ 8);
1631 efx_writeo(efx
, &temp
, FR_AZ_SRM_RX_DC_CFG
);
1633 /* Set TX descriptor cache size. */
1634 BUILD_BUG_ON(TX_DC_ENTRIES
!= (8 << TX_DC_ENTRIES_ORDER
));
1635 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_TX_DC_SIZE
, TX_DC_ENTRIES_ORDER
);
1636 efx_writeo(efx
, &temp
, FR_AZ_TX_DC_CFG
);
1638 /* Set RX descriptor cache size. Set low watermark to size-8, as
1639 * this allows most efficient prefetching.
1641 BUILD_BUG_ON(RX_DC_ENTRIES
!= (8 << RX_DC_ENTRIES_ORDER
));
1642 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_SIZE
, RX_DC_ENTRIES_ORDER
);
1643 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_CFG
);
1644 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_PF_LWM
, RX_DC_ENTRIES
- 8);
1645 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_PF_WM
);
1647 /* Program INT_KER address */
1648 EFX_POPULATE_OWORD_2(temp
,
1649 FRF_AZ_NORM_INT_VEC_DIS_KER
,
1650 EFX_INT_MODE_USE_MSI(efx
),
1651 FRF_AZ_INT_ADR_KER
, efx
->irq_status
.dma_addr
);
1652 efx_writeo(efx
, &temp
, FR_AZ_INT_ADR_KER
);
1654 if (EFX_WORKAROUND_17213(efx
) && !EFX_INT_MODE_USE_MSI(efx
))
1655 /* Use an interrupt level unused by event queues */
1656 efx
->fatal_irq_level
= 0x1f;
1658 /* Use a valid MSI-X vector */
1659 efx
->fatal_irq_level
= 0;
1661 /* Enable all the genuinely fatal interrupts. (They are still
1662 * masked by the overall interrupt mask, controlled by
1663 * falcon_interrupts()).
1665 * Note: All other fatal interrupts are enabled
1667 EFX_POPULATE_OWORD_3(temp
,
1668 FRF_AZ_ILL_ADR_INT_KER_EN
, 1,
1669 FRF_AZ_RBUF_OWN_INT_KER_EN
, 1,
1670 FRF_AZ_TBUF_OWN_INT_KER_EN
, 1);
1671 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
)
1672 EFX_SET_OWORD_FIELD(temp
, FRF_CZ_SRAM_PERR_INT_P_KER_EN
, 1);
1673 EFX_INVERT_OWORD(temp
);
1674 efx_writeo(efx
, &temp
, FR_AZ_FATAL_INTR_KER
);
1676 efx_nic_push_rx_indir_table(efx
);
1678 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1679 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1681 efx_reado(efx
, &temp
, FR_AZ_TX_RESERVED
);
1682 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER
, 0xfe);
1683 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER_EN
, 1);
1684 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_ONE_PKT_PER_Q
, 1);
1685 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PUSH_EN
, 1);
1686 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_DIS_NON_IP_EV
, 1);
1687 /* Enable SW_EV to inherit in char driver - assume harmless here */
1688 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_SOFT_EVT_EN
, 1);
1689 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1690 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_THRESHOLD
, 2);
1691 /* Disable hardware watchdog which can misfire */
1692 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_WD_TMR
, 0x3fffff);
1693 /* Squash TX of packets of 16 bytes or less */
1694 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1695 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TX_FLUSH_MIN_LEN_EN
, 1);
1696 efx_writeo(efx
, &temp
, FR_AZ_TX_RESERVED
);
1698 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
1699 EFX_POPULATE_OWORD_4(temp
,
1700 /* Default values */
1701 FRF_BZ_TX_PACE_SB_NOT_AF
, 0x15,
1702 FRF_BZ_TX_PACE_SB_AF
, 0xb,
1703 FRF_BZ_TX_PACE_FB_BASE
, 0,
1704 /* Allow large pace values in the
1706 FRF_BZ_TX_PACE_BIN_TH
,
1707 FFE_BZ_TX_PACE_RESERVED
);
1708 efx_writeo(efx
, &temp
, FR_BZ_TX_PACE
);
1714 #define REGISTER_REVISION_A 1
1715 #define REGISTER_REVISION_B 2
1716 #define REGISTER_REVISION_C 3
1717 #define REGISTER_REVISION_Z 3 /* latest revision */
1719 struct efx_nic_reg
{
1721 u32 min_revision
:2, max_revision
:2;
1724 #define REGISTER(name, min_rev, max_rev) { \
1725 FR_ ## min_rev ## max_rev ## _ ## name, \
1726 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1728 #define REGISTER_AA(name) REGISTER(name, A, A)
1729 #define REGISTER_AB(name) REGISTER(name, A, B)
1730 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1731 #define REGISTER_BB(name) REGISTER(name, B, B)
1732 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1733 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1735 static const struct efx_nic_reg efx_nic_regs
[] = {
1736 REGISTER_AZ(ADR_REGION
),
1737 REGISTER_AZ(INT_EN_KER
),
1738 REGISTER_BZ(INT_EN_CHAR
),
1739 REGISTER_AZ(INT_ADR_KER
),
1740 REGISTER_BZ(INT_ADR_CHAR
),
1741 /* INT_ACK_KER is WO */
1742 /* INT_ISR0 is RC */
1743 REGISTER_AZ(HW_INIT
),
1744 REGISTER_CZ(USR_EV_CFG
),
1745 REGISTER_AB(EE_SPI_HCMD
),
1746 REGISTER_AB(EE_SPI_HADR
),
1747 REGISTER_AB(EE_SPI_HDATA
),
1748 REGISTER_AB(EE_BASE_PAGE
),
1749 REGISTER_AB(EE_VPD_CFG0
),
1750 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1751 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1752 /* PCIE_CORE_INDIRECT is indirect */
1753 REGISTER_AB(NIC_STAT
),
1754 REGISTER_AB(GPIO_CTL
),
1755 REGISTER_AB(GLB_CTL
),
1756 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1757 REGISTER_BZ(DP_CTRL
),
1758 REGISTER_AZ(MEM_STAT
),
1759 REGISTER_AZ(CS_DEBUG
),
1760 REGISTER_AZ(ALTERA_BUILD
),
1761 REGISTER_AZ(CSR_SPARE
),
1762 REGISTER_AB(PCIE_SD_CTL0123
),
1763 REGISTER_AB(PCIE_SD_CTL45
),
1764 REGISTER_AB(PCIE_PCS_CTL_STAT
),
1765 /* DEBUG_DATA_OUT is not used */
1767 REGISTER_AZ(EVQ_CTL
),
1768 REGISTER_AZ(EVQ_CNT1
),
1769 REGISTER_AZ(EVQ_CNT2
),
1770 REGISTER_AZ(BUF_TBL_CFG
),
1771 REGISTER_AZ(SRM_RX_DC_CFG
),
1772 REGISTER_AZ(SRM_TX_DC_CFG
),
1773 REGISTER_AZ(SRM_CFG
),
1774 /* BUF_TBL_UPD is WO */
1775 REGISTER_AZ(SRM_UPD_EVQ
),
1776 REGISTER_AZ(SRAM_PARITY
),
1777 REGISTER_AZ(RX_CFG
),
1778 REGISTER_BZ(RX_FILTER_CTL
),
1779 /* RX_FLUSH_DESCQ is WO */
1780 REGISTER_AZ(RX_DC_CFG
),
1781 REGISTER_AZ(RX_DC_PF_WM
),
1782 REGISTER_BZ(RX_RSS_TKEY
),
1783 /* RX_NODESC_DROP is RC */
1784 REGISTER_AA(RX_SELF_RST
),
1785 /* RX_DEBUG, RX_PUSH_DROP are not used */
1786 REGISTER_CZ(RX_RSS_IPV6_REG1
),
1787 REGISTER_CZ(RX_RSS_IPV6_REG2
),
1788 REGISTER_CZ(RX_RSS_IPV6_REG3
),
1789 /* TX_FLUSH_DESCQ is WO */
1790 REGISTER_AZ(TX_DC_CFG
),
1791 REGISTER_AA(TX_CHKSM_CFG
),
1792 REGISTER_AZ(TX_CFG
),
1793 /* TX_PUSH_DROP is not used */
1794 REGISTER_AZ(TX_RESERVED
),
1795 REGISTER_BZ(TX_PACE
),
1796 /* TX_PACE_DROP_QID is RC */
1797 REGISTER_BB(TX_VLAN
),
1798 REGISTER_BZ(TX_IPFIL_PORTEN
),
1799 REGISTER_AB(MD_TXD
),
1800 REGISTER_AB(MD_RXD
),
1802 REGISTER_AB(MD_PHY_ADR
),
1805 REGISTER_AB(MAC_STAT_DMA
),
1806 REGISTER_AB(MAC_CTRL
),
1807 REGISTER_BB(GEN_MODE
),
1808 REGISTER_AB(MAC_MC_HASH_REG0
),
1809 REGISTER_AB(MAC_MC_HASH_REG1
),
1810 REGISTER_AB(GM_CFG1
),
1811 REGISTER_AB(GM_CFG2
),
1812 /* GM_IPG and GM_HD are not used */
1813 REGISTER_AB(GM_MAX_FLEN
),
1814 /* GM_TEST is not used */
1815 REGISTER_AB(GM_ADR1
),
1816 REGISTER_AB(GM_ADR2
),
1817 REGISTER_AB(GMF_CFG0
),
1818 REGISTER_AB(GMF_CFG1
),
1819 REGISTER_AB(GMF_CFG2
),
1820 REGISTER_AB(GMF_CFG3
),
1821 REGISTER_AB(GMF_CFG4
),
1822 REGISTER_AB(GMF_CFG5
),
1823 REGISTER_BB(TX_SRC_MAC_CTL
),
1824 REGISTER_AB(XM_ADR_LO
),
1825 REGISTER_AB(XM_ADR_HI
),
1826 REGISTER_AB(XM_GLB_CFG
),
1827 REGISTER_AB(XM_TX_CFG
),
1828 REGISTER_AB(XM_RX_CFG
),
1829 REGISTER_AB(XM_MGT_INT_MASK
),
1831 REGISTER_AB(XM_PAUSE_TIME
),
1832 REGISTER_AB(XM_TX_PARAM
),
1833 REGISTER_AB(XM_RX_PARAM
),
1834 /* XM_MGT_INT_MSK (note no 'A') is RC */
1835 REGISTER_AB(XX_PWR_RST
),
1836 REGISTER_AB(XX_SD_CTL
),
1837 REGISTER_AB(XX_TXDRV_CTL
),
1838 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1839 /* XX_CORE_STAT is partly RC */
1842 struct efx_nic_reg_table
{
1844 u32 min_revision
:2, max_revision
:2;
1845 u32 step
:6, rows
:21;
1848 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1850 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1853 #define REGISTER_TABLE(name, min_rev, max_rev) \
1854 REGISTER_TABLE_DIMENSIONS( \
1855 name, FR_ ## min_rev ## max_rev ## _ ## name, \
1857 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1858 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1859 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1860 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1861 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1862 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1863 #define REGISTER_TABLE_BB_CZ(name) \
1864 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1865 FR_BZ_ ## name ## _STEP, \
1866 FR_BB_ ## name ## _ROWS), \
1867 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1868 FR_BZ_ ## name ## _STEP, \
1869 FR_CZ_ ## name ## _ROWS)
1870 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1872 static const struct efx_nic_reg_table efx_nic_reg_tables
[] = {
1873 /* DRIVER is not used */
1874 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1875 REGISTER_TABLE_BB(TX_IPFIL_TBL
),
1876 REGISTER_TABLE_BB(TX_SRC_MAC_TBL
),
1877 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER
),
1878 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL
),
1879 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER
),
1880 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL
),
1881 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER
),
1882 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL
),
1883 /* We can't reasonably read all of the buffer table (up to 8MB!).
1884 * However this driver will only use a few entries. Reading
1885 * 1K entries allows for some expansion of queue count and
1886 * size before we need to change the version. */
1887 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER
, FR_AA_BUF_FULL_TBL_KER
,
1889 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL
, FR_BZ_BUF_FULL_TBL
,
1891 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0
),
1892 REGISTER_TABLE_BB_CZ(TIMER_TBL
),
1893 REGISTER_TABLE_BB_CZ(TX_PACE_TBL
),
1894 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL
),
1895 /* TX_FILTER_TBL0 is huge and not used by this driver */
1896 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0
),
1897 REGISTER_TABLE_CZ(MC_TREG_SMEM
),
1898 /* MSIX_PBA_TABLE is not mapped */
1899 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1900 REGISTER_TABLE_BZ(RX_FILTER_TBL0
),
1903 size_t efx_nic_get_regs_len(struct efx_nic
*efx
)
1905 const struct efx_nic_reg
*reg
;
1906 const struct efx_nic_reg_table
*table
;
1909 for (reg
= efx_nic_regs
;
1910 reg
< efx_nic_regs
+ ARRAY_SIZE(efx_nic_regs
);
1912 if (efx
->type
->revision
>= reg
->min_revision
&&
1913 efx
->type
->revision
<= reg
->max_revision
)
1914 len
+= sizeof(efx_oword_t
);
1916 for (table
= efx_nic_reg_tables
;
1917 table
< efx_nic_reg_tables
+ ARRAY_SIZE(efx_nic_reg_tables
);
1919 if (efx
->type
->revision
>= table
->min_revision
&&
1920 efx
->type
->revision
<= table
->max_revision
)
1921 len
+= table
->rows
* min_t(size_t, table
->step
, 16);
1926 void efx_nic_get_regs(struct efx_nic
*efx
, void *buf
)
1928 const struct efx_nic_reg
*reg
;
1929 const struct efx_nic_reg_table
*table
;
1931 for (reg
= efx_nic_regs
;
1932 reg
< efx_nic_regs
+ ARRAY_SIZE(efx_nic_regs
);
1934 if (efx
->type
->revision
>= reg
->min_revision
&&
1935 efx
->type
->revision
<= reg
->max_revision
) {
1936 efx_reado(efx
, (efx_oword_t
*)buf
, reg
->offset
);
1937 buf
+= sizeof(efx_oword_t
);
1941 for (table
= efx_nic_reg_tables
;
1942 table
< efx_nic_reg_tables
+ ARRAY_SIZE(efx_nic_reg_tables
);
1946 if (!(efx
->type
->revision
>= table
->min_revision
&&
1947 efx
->type
->revision
<= table
->max_revision
))
1950 size
= min_t(size_t, table
->step
, 16);
1952 for (i
= 0; i
< table
->rows
; i
++) {
1953 switch (table
->step
) {
1954 case 4: /* 32-bit register or SRAM */
1955 efx_readd_table(efx
, buf
, table
->offset
, i
);
1957 case 8: /* 64-bit SRAM */
1959 efx
->membase
+ table
->offset
,
1962 case 16: /* 128-bit register */
1963 efx_reado_table(efx
, buf
, table
->offset
, i
);
1965 case 32: /* 128-bit register, interleaved */
1966 efx_reado_table(efx
, buf
, table
->offset
, 2 * i
);