Merge branch 'for-2.6.33' of git://linux-nfs.org/~bfields/linux
[linux-2.6/cjktty.git] / net / sunrpc / svc_xprt.c
blob7d1f9e928f69b23ff640643c06c0b8b86f95b80b
1 /*
2 * linux/net/sunrpc/svc_xprt.c
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
7 #include <linux/sched.h>
8 #include <linux/smp_lock.h>
9 #include <linux/errno.h>
10 #include <linux/freezer.h>
11 #include <linux/kthread.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
17 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
19 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
20 static int svc_deferred_recv(struct svc_rqst *rqstp);
21 static struct cache_deferred_req *svc_defer(struct cache_req *req);
22 static void svc_age_temp_xprts(unsigned long closure);
24 /* apparently the "standard" is that clients close
25 * idle connections after 5 minutes, servers after
26 * 6 minutes
27 * http://www.connectathon.org/talks96/nfstcp.pdf
29 static int svc_conn_age_period = 6*60;
31 /* List of registered transport classes */
32 static DEFINE_SPINLOCK(svc_xprt_class_lock);
33 static LIST_HEAD(svc_xprt_class_list);
35 /* SMP locking strategy:
37 * svc_pool->sp_lock protects most of the fields of that pool.
38 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
39 * when both need to be taken (rare), svc_serv->sv_lock is first.
40 * BKL protects svc_serv->sv_nrthread.
41 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
42 * and the ->sk_info_authunix cache.
44 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
45 * enqueued multiply. During normal transport processing this bit
46 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
47 * Providers should not manipulate this bit directly.
49 * Some flags can be set to certain values at any time
50 * providing that certain rules are followed:
52 * XPT_CONN, XPT_DATA:
53 * - Can be set or cleared at any time.
54 * - After a set, svc_xprt_enqueue must be called to enqueue
55 * the transport for processing.
56 * - After a clear, the transport must be read/accepted.
57 * If this succeeds, it must be set again.
58 * XPT_CLOSE:
59 * - Can set at any time. It is never cleared.
60 * XPT_DEAD:
61 * - Can only be set while XPT_BUSY is held which ensures
62 * that no other thread will be using the transport or will
63 * try to set XPT_DEAD.
66 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
68 struct svc_xprt_class *cl;
69 int res = -EEXIST;
71 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
73 INIT_LIST_HEAD(&xcl->xcl_list);
74 spin_lock(&svc_xprt_class_lock);
75 /* Make sure there isn't already a class with the same name */
76 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
77 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
78 goto out;
80 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
81 res = 0;
82 out:
83 spin_unlock(&svc_xprt_class_lock);
84 return res;
86 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
88 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
90 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
91 spin_lock(&svc_xprt_class_lock);
92 list_del_init(&xcl->xcl_list);
93 spin_unlock(&svc_xprt_class_lock);
95 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
98 * Format the transport list for printing
100 int svc_print_xprts(char *buf, int maxlen)
102 struct list_head *le;
103 char tmpstr[80];
104 int len = 0;
105 buf[0] = '\0';
107 spin_lock(&svc_xprt_class_lock);
108 list_for_each(le, &svc_xprt_class_list) {
109 int slen;
110 struct svc_xprt_class *xcl =
111 list_entry(le, struct svc_xprt_class, xcl_list);
113 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
114 slen = strlen(tmpstr);
115 if (len + slen > maxlen)
116 break;
117 len += slen;
118 strcat(buf, tmpstr);
120 spin_unlock(&svc_xprt_class_lock);
122 return len;
125 static void svc_xprt_free(struct kref *kref)
127 struct svc_xprt *xprt =
128 container_of(kref, struct svc_xprt, xpt_ref);
129 struct module *owner = xprt->xpt_class->xcl_owner;
130 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags) &&
131 xprt->xpt_auth_cache != NULL)
132 svcauth_unix_info_release(xprt->xpt_auth_cache);
133 xprt->xpt_ops->xpo_free(xprt);
134 module_put(owner);
137 void svc_xprt_put(struct svc_xprt *xprt)
139 kref_put(&xprt->xpt_ref, svc_xprt_free);
141 EXPORT_SYMBOL_GPL(svc_xprt_put);
144 * Called by transport drivers to initialize the transport independent
145 * portion of the transport instance.
147 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
148 struct svc_serv *serv)
150 memset(xprt, 0, sizeof(*xprt));
151 xprt->xpt_class = xcl;
152 xprt->xpt_ops = xcl->xcl_ops;
153 kref_init(&xprt->xpt_ref);
154 xprt->xpt_server = serv;
155 INIT_LIST_HEAD(&xprt->xpt_list);
156 INIT_LIST_HEAD(&xprt->xpt_ready);
157 INIT_LIST_HEAD(&xprt->xpt_deferred);
158 mutex_init(&xprt->xpt_mutex);
159 spin_lock_init(&xprt->xpt_lock);
160 set_bit(XPT_BUSY, &xprt->xpt_flags);
161 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
163 EXPORT_SYMBOL_GPL(svc_xprt_init);
165 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
166 struct svc_serv *serv,
167 const int family,
168 const unsigned short port,
169 int flags)
171 struct sockaddr_in sin = {
172 .sin_family = AF_INET,
173 .sin_addr.s_addr = htonl(INADDR_ANY),
174 .sin_port = htons(port),
176 struct sockaddr_in6 sin6 = {
177 .sin6_family = AF_INET6,
178 .sin6_addr = IN6ADDR_ANY_INIT,
179 .sin6_port = htons(port),
181 struct sockaddr *sap;
182 size_t len;
184 switch (family) {
185 case PF_INET:
186 sap = (struct sockaddr *)&sin;
187 len = sizeof(sin);
188 break;
189 case PF_INET6:
190 sap = (struct sockaddr *)&sin6;
191 len = sizeof(sin6);
192 break;
193 default:
194 return ERR_PTR(-EAFNOSUPPORT);
197 return xcl->xcl_ops->xpo_create(serv, sap, len, flags);
200 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
201 const int family, const unsigned short port,
202 int flags)
204 struct svc_xprt_class *xcl;
206 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
207 spin_lock(&svc_xprt_class_lock);
208 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
209 struct svc_xprt *newxprt;
211 if (strcmp(xprt_name, xcl->xcl_name))
212 continue;
214 if (!try_module_get(xcl->xcl_owner))
215 goto err;
217 spin_unlock(&svc_xprt_class_lock);
218 newxprt = __svc_xpo_create(xcl, serv, family, port, flags);
219 if (IS_ERR(newxprt)) {
220 module_put(xcl->xcl_owner);
221 return PTR_ERR(newxprt);
224 clear_bit(XPT_TEMP, &newxprt->xpt_flags);
225 spin_lock_bh(&serv->sv_lock);
226 list_add(&newxprt->xpt_list, &serv->sv_permsocks);
227 spin_unlock_bh(&serv->sv_lock);
228 clear_bit(XPT_BUSY, &newxprt->xpt_flags);
229 return svc_xprt_local_port(newxprt);
231 err:
232 spin_unlock(&svc_xprt_class_lock);
233 dprintk("svc: transport %s not found\n", xprt_name);
234 return -ENOENT;
236 EXPORT_SYMBOL_GPL(svc_create_xprt);
239 * Copy the local and remote xprt addresses to the rqstp structure
241 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
243 struct sockaddr *sin;
245 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
246 rqstp->rq_addrlen = xprt->xpt_remotelen;
249 * Destination address in request is needed for binding the
250 * source address in RPC replies/callbacks later.
252 sin = (struct sockaddr *)&xprt->xpt_local;
253 switch (sin->sa_family) {
254 case AF_INET:
255 rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
256 break;
257 case AF_INET6:
258 rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
259 break;
262 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
265 * svc_print_addr - Format rq_addr field for printing
266 * @rqstp: svc_rqst struct containing address to print
267 * @buf: target buffer for formatted address
268 * @len: length of target buffer
271 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
273 return __svc_print_addr(svc_addr(rqstp), buf, len);
275 EXPORT_SYMBOL_GPL(svc_print_addr);
278 * Queue up an idle server thread. Must have pool->sp_lock held.
279 * Note: this is really a stack rather than a queue, so that we only
280 * use as many different threads as we need, and the rest don't pollute
281 * the cache.
283 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
285 list_add(&rqstp->rq_list, &pool->sp_threads);
289 * Dequeue an nfsd thread. Must have pool->sp_lock held.
291 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
293 list_del(&rqstp->rq_list);
297 * Queue up a transport with data pending. If there are idle nfsd
298 * processes, wake 'em up.
301 void svc_xprt_enqueue(struct svc_xprt *xprt)
303 struct svc_serv *serv = xprt->xpt_server;
304 struct svc_pool *pool;
305 struct svc_rqst *rqstp;
306 int cpu;
308 if (!(xprt->xpt_flags &
309 ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
310 return;
312 cpu = get_cpu();
313 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
314 put_cpu();
316 spin_lock_bh(&pool->sp_lock);
318 if (!list_empty(&pool->sp_threads) &&
319 !list_empty(&pool->sp_sockets))
320 printk(KERN_ERR
321 "svc_xprt_enqueue: "
322 "threads and transports both waiting??\n");
324 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
325 /* Don't enqueue dead transports */
326 dprintk("svc: transport %p is dead, not enqueued\n", xprt);
327 goto out_unlock;
330 pool->sp_stats.packets++;
332 /* Mark transport as busy. It will remain in this state until
333 * the provider calls svc_xprt_received. We update XPT_BUSY
334 * atomically because it also guards against trying to enqueue
335 * the transport twice.
337 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
338 /* Don't enqueue transport while already enqueued */
339 dprintk("svc: transport %p busy, not enqueued\n", xprt);
340 goto out_unlock;
342 BUG_ON(xprt->xpt_pool != NULL);
343 xprt->xpt_pool = pool;
345 /* Handle pending connection */
346 if (test_bit(XPT_CONN, &xprt->xpt_flags))
347 goto process;
349 /* Handle close in-progress */
350 if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
351 goto process;
353 /* Check if we have space to reply to a request */
354 if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
355 /* Don't enqueue while not enough space for reply */
356 dprintk("svc: no write space, transport %p not enqueued\n",
357 xprt);
358 xprt->xpt_pool = NULL;
359 clear_bit(XPT_BUSY, &xprt->xpt_flags);
360 goto out_unlock;
363 process:
364 if (!list_empty(&pool->sp_threads)) {
365 rqstp = list_entry(pool->sp_threads.next,
366 struct svc_rqst,
367 rq_list);
368 dprintk("svc: transport %p served by daemon %p\n",
369 xprt, rqstp);
370 svc_thread_dequeue(pool, rqstp);
371 if (rqstp->rq_xprt)
372 printk(KERN_ERR
373 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
374 rqstp, rqstp->rq_xprt);
375 rqstp->rq_xprt = xprt;
376 svc_xprt_get(xprt);
377 rqstp->rq_reserved = serv->sv_max_mesg;
378 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
379 pool->sp_stats.threads_woken++;
380 BUG_ON(xprt->xpt_pool != pool);
381 wake_up(&rqstp->rq_wait);
382 } else {
383 dprintk("svc: transport %p put into queue\n", xprt);
384 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
385 pool->sp_stats.sockets_queued++;
386 BUG_ON(xprt->xpt_pool != pool);
389 out_unlock:
390 spin_unlock_bh(&pool->sp_lock);
392 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
395 * Dequeue the first transport. Must be called with the pool->sp_lock held.
397 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
399 struct svc_xprt *xprt;
401 if (list_empty(&pool->sp_sockets))
402 return NULL;
404 xprt = list_entry(pool->sp_sockets.next,
405 struct svc_xprt, xpt_ready);
406 list_del_init(&xprt->xpt_ready);
408 dprintk("svc: transport %p dequeued, inuse=%d\n",
409 xprt, atomic_read(&xprt->xpt_ref.refcount));
411 return xprt;
415 * svc_xprt_received conditionally queues the transport for processing
416 * by another thread. The caller must hold the XPT_BUSY bit and must
417 * not thereafter touch transport data.
419 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
420 * insufficient) data.
422 void svc_xprt_received(struct svc_xprt *xprt)
424 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
425 xprt->xpt_pool = NULL;
426 clear_bit(XPT_BUSY, &xprt->xpt_flags);
427 svc_xprt_enqueue(xprt);
429 EXPORT_SYMBOL_GPL(svc_xprt_received);
432 * svc_reserve - change the space reserved for the reply to a request.
433 * @rqstp: The request in question
434 * @space: new max space to reserve
436 * Each request reserves some space on the output queue of the transport
437 * to make sure the reply fits. This function reduces that reserved
438 * space to be the amount of space used already, plus @space.
441 void svc_reserve(struct svc_rqst *rqstp, int space)
443 space += rqstp->rq_res.head[0].iov_len;
445 if (space < rqstp->rq_reserved) {
446 struct svc_xprt *xprt = rqstp->rq_xprt;
447 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
448 rqstp->rq_reserved = space;
450 svc_xprt_enqueue(xprt);
453 EXPORT_SYMBOL_GPL(svc_reserve);
455 static void svc_xprt_release(struct svc_rqst *rqstp)
457 struct svc_xprt *xprt = rqstp->rq_xprt;
459 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
461 kfree(rqstp->rq_deferred);
462 rqstp->rq_deferred = NULL;
464 svc_free_res_pages(rqstp);
465 rqstp->rq_res.page_len = 0;
466 rqstp->rq_res.page_base = 0;
468 /* Reset response buffer and release
469 * the reservation.
470 * But first, check that enough space was reserved
471 * for the reply, otherwise we have a bug!
473 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
474 printk(KERN_ERR "RPC request reserved %d but used %d\n",
475 rqstp->rq_reserved,
476 rqstp->rq_res.len);
478 rqstp->rq_res.head[0].iov_len = 0;
479 svc_reserve(rqstp, 0);
480 rqstp->rq_xprt = NULL;
482 svc_xprt_put(xprt);
486 * External function to wake up a server waiting for data
487 * This really only makes sense for services like lockd
488 * which have exactly one thread anyway.
490 void svc_wake_up(struct svc_serv *serv)
492 struct svc_rqst *rqstp;
493 unsigned int i;
494 struct svc_pool *pool;
496 for (i = 0; i < serv->sv_nrpools; i++) {
497 pool = &serv->sv_pools[i];
499 spin_lock_bh(&pool->sp_lock);
500 if (!list_empty(&pool->sp_threads)) {
501 rqstp = list_entry(pool->sp_threads.next,
502 struct svc_rqst,
503 rq_list);
504 dprintk("svc: daemon %p woken up.\n", rqstp);
506 svc_thread_dequeue(pool, rqstp);
507 rqstp->rq_xprt = NULL;
509 wake_up(&rqstp->rq_wait);
511 spin_unlock_bh(&pool->sp_lock);
514 EXPORT_SYMBOL_GPL(svc_wake_up);
516 int svc_port_is_privileged(struct sockaddr *sin)
518 switch (sin->sa_family) {
519 case AF_INET:
520 return ntohs(((struct sockaddr_in *)sin)->sin_port)
521 < PROT_SOCK;
522 case AF_INET6:
523 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
524 < PROT_SOCK;
525 default:
526 return 0;
531 * Make sure that we don't have too many active connections. If we have,
532 * something must be dropped. It's not clear what will happen if we allow
533 * "too many" connections, but when dealing with network-facing software,
534 * we have to code defensively. Here we do that by imposing hard limits.
536 * There's no point in trying to do random drop here for DoS
537 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
538 * attacker can easily beat that.
540 * The only somewhat efficient mechanism would be if drop old
541 * connections from the same IP first. But right now we don't even
542 * record the client IP in svc_sock.
544 * single-threaded services that expect a lot of clients will probably
545 * need to set sv_maxconn to override the default value which is based
546 * on the number of threads
548 static void svc_check_conn_limits(struct svc_serv *serv)
550 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
551 (serv->sv_nrthreads+3) * 20;
553 if (serv->sv_tmpcnt > limit) {
554 struct svc_xprt *xprt = NULL;
555 spin_lock_bh(&serv->sv_lock);
556 if (!list_empty(&serv->sv_tempsocks)) {
557 if (net_ratelimit()) {
558 /* Try to help the admin */
559 printk(KERN_NOTICE "%s: too many open "
560 "connections, consider increasing %s\n",
561 serv->sv_name, serv->sv_maxconn ?
562 "the max number of connections." :
563 "the number of threads.");
566 * Always select the oldest connection. It's not fair,
567 * but so is life
569 xprt = list_entry(serv->sv_tempsocks.prev,
570 struct svc_xprt,
571 xpt_list);
572 set_bit(XPT_CLOSE, &xprt->xpt_flags);
573 svc_xprt_get(xprt);
575 spin_unlock_bh(&serv->sv_lock);
577 if (xprt) {
578 svc_xprt_enqueue(xprt);
579 svc_xprt_put(xprt);
585 * Receive the next request on any transport. This code is carefully
586 * organised not to touch any cachelines in the shared svc_serv
587 * structure, only cachelines in the local svc_pool.
589 int svc_recv(struct svc_rqst *rqstp, long timeout)
591 struct svc_xprt *xprt = NULL;
592 struct svc_serv *serv = rqstp->rq_server;
593 struct svc_pool *pool = rqstp->rq_pool;
594 int len, i;
595 int pages;
596 struct xdr_buf *arg;
597 DECLARE_WAITQUEUE(wait, current);
598 long time_left;
600 dprintk("svc: server %p waiting for data (to = %ld)\n",
601 rqstp, timeout);
603 if (rqstp->rq_xprt)
604 printk(KERN_ERR
605 "svc_recv: service %p, transport not NULL!\n",
606 rqstp);
607 if (waitqueue_active(&rqstp->rq_wait))
608 printk(KERN_ERR
609 "svc_recv: service %p, wait queue active!\n",
610 rqstp);
612 /* now allocate needed pages. If we get a failure, sleep briefly */
613 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
614 for (i = 0; i < pages ; i++)
615 while (rqstp->rq_pages[i] == NULL) {
616 struct page *p = alloc_page(GFP_KERNEL);
617 if (!p) {
618 set_current_state(TASK_INTERRUPTIBLE);
619 if (signalled() || kthread_should_stop()) {
620 set_current_state(TASK_RUNNING);
621 return -EINTR;
623 schedule_timeout(msecs_to_jiffies(500));
625 rqstp->rq_pages[i] = p;
627 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
628 BUG_ON(pages >= RPCSVC_MAXPAGES);
630 /* Make arg->head point to first page and arg->pages point to rest */
631 arg = &rqstp->rq_arg;
632 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
633 arg->head[0].iov_len = PAGE_SIZE;
634 arg->pages = rqstp->rq_pages + 1;
635 arg->page_base = 0;
636 /* save at least one page for response */
637 arg->page_len = (pages-2)*PAGE_SIZE;
638 arg->len = (pages-1)*PAGE_SIZE;
639 arg->tail[0].iov_len = 0;
641 try_to_freeze();
642 cond_resched();
643 if (signalled() || kthread_should_stop())
644 return -EINTR;
646 spin_lock_bh(&pool->sp_lock);
647 xprt = svc_xprt_dequeue(pool);
648 if (xprt) {
649 rqstp->rq_xprt = xprt;
650 svc_xprt_get(xprt);
651 rqstp->rq_reserved = serv->sv_max_mesg;
652 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
653 } else {
654 /* No data pending. Go to sleep */
655 svc_thread_enqueue(pool, rqstp);
658 * We have to be able to interrupt this wait
659 * to bring down the daemons ...
661 set_current_state(TASK_INTERRUPTIBLE);
664 * checking kthread_should_stop() here allows us to avoid
665 * locking and signalling when stopping kthreads that call
666 * svc_recv. If the thread has already been woken up, then
667 * we can exit here without sleeping. If not, then it
668 * it'll be woken up quickly during the schedule_timeout
670 if (kthread_should_stop()) {
671 set_current_state(TASK_RUNNING);
672 spin_unlock_bh(&pool->sp_lock);
673 return -EINTR;
676 add_wait_queue(&rqstp->rq_wait, &wait);
677 spin_unlock_bh(&pool->sp_lock);
679 time_left = schedule_timeout(timeout);
681 try_to_freeze();
683 spin_lock_bh(&pool->sp_lock);
684 remove_wait_queue(&rqstp->rq_wait, &wait);
685 if (!time_left)
686 pool->sp_stats.threads_timedout++;
688 xprt = rqstp->rq_xprt;
689 if (!xprt) {
690 svc_thread_dequeue(pool, rqstp);
691 spin_unlock_bh(&pool->sp_lock);
692 dprintk("svc: server %p, no data yet\n", rqstp);
693 if (signalled() || kthread_should_stop())
694 return -EINTR;
695 else
696 return -EAGAIN;
699 spin_unlock_bh(&pool->sp_lock);
701 len = 0;
702 if (test_bit(XPT_LISTENER, &xprt->xpt_flags) &&
703 !test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
704 struct svc_xprt *newxpt;
705 newxpt = xprt->xpt_ops->xpo_accept(xprt);
706 if (newxpt) {
708 * We know this module_get will succeed because the
709 * listener holds a reference too
711 __module_get(newxpt->xpt_class->xcl_owner);
712 svc_check_conn_limits(xprt->xpt_server);
713 spin_lock_bh(&serv->sv_lock);
714 set_bit(XPT_TEMP, &newxpt->xpt_flags);
715 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
716 serv->sv_tmpcnt++;
717 if (serv->sv_temptimer.function == NULL) {
718 /* setup timer to age temp transports */
719 setup_timer(&serv->sv_temptimer,
720 svc_age_temp_xprts,
721 (unsigned long)serv);
722 mod_timer(&serv->sv_temptimer,
723 jiffies + svc_conn_age_period * HZ);
725 spin_unlock_bh(&serv->sv_lock);
726 svc_xprt_received(newxpt);
728 svc_xprt_received(xprt);
729 } else if (!test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
730 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
731 rqstp, pool->sp_id, xprt,
732 atomic_read(&xprt->xpt_ref.refcount));
733 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
734 if (rqstp->rq_deferred) {
735 svc_xprt_received(xprt);
736 len = svc_deferred_recv(rqstp);
737 } else
738 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
739 dprintk("svc: got len=%d\n", len);
742 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
743 dprintk("svc_recv: found XPT_CLOSE\n");
744 svc_delete_xprt(xprt);
747 /* No data, incomplete (TCP) read, or accept() */
748 if (len == 0 || len == -EAGAIN) {
749 rqstp->rq_res.len = 0;
750 svc_xprt_release(rqstp);
751 return -EAGAIN;
753 clear_bit(XPT_OLD, &xprt->xpt_flags);
755 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
756 rqstp->rq_chandle.defer = svc_defer;
758 if (serv->sv_stats)
759 serv->sv_stats->netcnt++;
760 return len;
762 EXPORT_SYMBOL_GPL(svc_recv);
765 * Drop request
767 void svc_drop(struct svc_rqst *rqstp)
769 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
770 svc_xprt_release(rqstp);
772 EXPORT_SYMBOL_GPL(svc_drop);
775 * Return reply to client.
777 int svc_send(struct svc_rqst *rqstp)
779 struct svc_xprt *xprt;
780 int len;
781 struct xdr_buf *xb;
783 xprt = rqstp->rq_xprt;
784 if (!xprt)
785 return -EFAULT;
787 /* release the receive skb before sending the reply */
788 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
790 /* calculate over-all length */
791 xb = &rqstp->rq_res;
792 xb->len = xb->head[0].iov_len +
793 xb->page_len +
794 xb->tail[0].iov_len;
796 /* Grab mutex to serialize outgoing data. */
797 mutex_lock(&xprt->xpt_mutex);
798 if (test_bit(XPT_DEAD, &xprt->xpt_flags))
799 len = -ENOTCONN;
800 else
801 len = xprt->xpt_ops->xpo_sendto(rqstp);
802 mutex_unlock(&xprt->xpt_mutex);
803 rpc_wake_up(&xprt->xpt_bc_pending);
804 svc_xprt_release(rqstp);
806 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
807 return 0;
808 return len;
812 * Timer function to close old temporary transports, using
813 * a mark-and-sweep algorithm.
815 static void svc_age_temp_xprts(unsigned long closure)
817 struct svc_serv *serv = (struct svc_serv *)closure;
818 struct svc_xprt *xprt;
819 struct list_head *le, *next;
820 LIST_HEAD(to_be_aged);
822 dprintk("svc_age_temp_xprts\n");
824 if (!spin_trylock_bh(&serv->sv_lock)) {
825 /* busy, try again 1 sec later */
826 dprintk("svc_age_temp_xprts: busy\n");
827 mod_timer(&serv->sv_temptimer, jiffies + HZ);
828 return;
831 list_for_each_safe(le, next, &serv->sv_tempsocks) {
832 xprt = list_entry(le, struct svc_xprt, xpt_list);
834 /* First time through, just mark it OLD. Second time
835 * through, close it. */
836 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
837 continue;
838 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
839 test_bit(XPT_BUSY, &xprt->xpt_flags))
840 continue;
841 svc_xprt_get(xprt);
842 list_move(le, &to_be_aged);
843 set_bit(XPT_CLOSE, &xprt->xpt_flags);
844 set_bit(XPT_DETACHED, &xprt->xpt_flags);
846 spin_unlock_bh(&serv->sv_lock);
848 while (!list_empty(&to_be_aged)) {
849 le = to_be_aged.next;
850 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
851 list_del_init(le);
852 xprt = list_entry(le, struct svc_xprt, xpt_list);
854 dprintk("queuing xprt %p for closing\n", xprt);
856 /* a thread will dequeue and close it soon */
857 svc_xprt_enqueue(xprt);
858 svc_xprt_put(xprt);
861 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
865 * Remove a dead transport
867 void svc_delete_xprt(struct svc_xprt *xprt)
869 struct svc_serv *serv = xprt->xpt_server;
870 struct svc_deferred_req *dr;
872 /* Only do this once */
873 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
874 return;
876 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
877 xprt->xpt_ops->xpo_detach(xprt);
879 spin_lock_bh(&serv->sv_lock);
880 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
881 list_del_init(&xprt->xpt_list);
883 * We used to delete the transport from whichever list
884 * it's sk_xprt.xpt_ready node was on, but we don't actually
885 * need to. This is because the only time we're called
886 * while still attached to a queue, the queue itself
887 * is about to be destroyed (in svc_destroy).
889 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
890 serv->sv_tmpcnt--;
892 for (dr = svc_deferred_dequeue(xprt); dr;
893 dr = svc_deferred_dequeue(xprt)) {
894 svc_xprt_put(xprt);
895 kfree(dr);
898 svc_xprt_put(xprt);
899 spin_unlock_bh(&serv->sv_lock);
902 void svc_close_xprt(struct svc_xprt *xprt)
904 set_bit(XPT_CLOSE, &xprt->xpt_flags);
905 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
906 /* someone else will have to effect the close */
907 return;
909 svc_xprt_get(xprt);
910 svc_delete_xprt(xprt);
911 clear_bit(XPT_BUSY, &xprt->xpt_flags);
912 svc_xprt_put(xprt);
914 EXPORT_SYMBOL_GPL(svc_close_xprt);
916 void svc_close_all(struct list_head *xprt_list)
918 struct svc_xprt *xprt;
919 struct svc_xprt *tmp;
921 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
922 set_bit(XPT_CLOSE, &xprt->xpt_flags);
923 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
924 /* Waiting to be processed, but no threads left,
925 * So just remove it from the waiting list
927 list_del_init(&xprt->xpt_ready);
928 clear_bit(XPT_BUSY, &xprt->xpt_flags);
930 svc_close_xprt(xprt);
935 * Handle defer and revisit of requests
938 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
940 struct svc_deferred_req *dr =
941 container_of(dreq, struct svc_deferred_req, handle);
942 struct svc_xprt *xprt = dr->xprt;
944 spin_lock(&xprt->xpt_lock);
945 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
946 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
947 spin_unlock(&xprt->xpt_lock);
948 dprintk("revisit canceled\n");
949 svc_xprt_put(xprt);
950 kfree(dr);
951 return;
953 dprintk("revisit queued\n");
954 dr->xprt = NULL;
955 list_add(&dr->handle.recent, &xprt->xpt_deferred);
956 spin_unlock(&xprt->xpt_lock);
957 svc_xprt_enqueue(xprt);
958 svc_xprt_put(xprt);
962 * Save the request off for later processing. The request buffer looks
963 * like this:
965 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
967 * This code can only handle requests that consist of an xprt-header
968 * and rpc-header.
970 static struct cache_deferred_req *svc_defer(struct cache_req *req)
972 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
973 struct svc_deferred_req *dr;
975 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
976 return NULL; /* if more than a page, give up FIXME */
977 if (rqstp->rq_deferred) {
978 dr = rqstp->rq_deferred;
979 rqstp->rq_deferred = NULL;
980 } else {
981 size_t skip;
982 size_t size;
983 /* FIXME maybe discard if size too large */
984 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
985 dr = kmalloc(size, GFP_KERNEL);
986 if (dr == NULL)
987 return NULL;
989 dr->handle.owner = rqstp->rq_server;
990 dr->prot = rqstp->rq_prot;
991 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
992 dr->addrlen = rqstp->rq_addrlen;
993 dr->daddr = rqstp->rq_daddr;
994 dr->argslen = rqstp->rq_arg.len >> 2;
995 dr->xprt_hlen = rqstp->rq_xprt_hlen;
997 /* back up head to the start of the buffer and copy */
998 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
999 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1000 dr->argslen << 2);
1002 svc_xprt_get(rqstp->rq_xprt);
1003 dr->xprt = rqstp->rq_xprt;
1005 dr->handle.revisit = svc_revisit;
1006 return &dr->handle;
1010 * recv data from a deferred request into an active one
1012 static int svc_deferred_recv(struct svc_rqst *rqstp)
1014 struct svc_deferred_req *dr = rqstp->rq_deferred;
1016 /* setup iov_base past transport header */
1017 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1018 /* The iov_len does not include the transport header bytes */
1019 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1020 rqstp->rq_arg.page_len = 0;
1021 /* The rq_arg.len includes the transport header bytes */
1022 rqstp->rq_arg.len = dr->argslen<<2;
1023 rqstp->rq_prot = dr->prot;
1024 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1025 rqstp->rq_addrlen = dr->addrlen;
1026 /* Save off transport header len in case we get deferred again */
1027 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1028 rqstp->rq_daddr = dr->daddr;
1029 rqstp->rq_respages = rqstp->rq_pages;
1030 return (dr->argslen<<2) - dr->xprt_hlen;
1034 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1036 struct svc_deferred_req *dr = NULL;
1038 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1039 return NULL;
1040 spin_lock(&xprt->xpt_lock);
1041 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1042 if (!list_empty(&xprt->xpt_deferred)) {
1043 dr = list_entry(xprt->xpt_deferred.next,
1044 struct svc_deferred_req,
1045 handle.recent);
1046 list_del_init(&dr->handle.recent);
1047 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1049 spin_unlock(&xprt->xpt_lock);
1050 return dr;
1054 * svc_find_xprt - find an RPC transport instance
1055 * @serv: pointer to svc_serv to search
1056 * @xcl_name: C string containing transport's class name
1057 * @af: Address family of transport's local address
1058 * @port: transport's IP port number
1060 * Return the transport instance pointer for the endpoint accepting
1061 * connections/peer traffic from the specified transport class,
1062 * address family and port.
1064 * Specifying 0 for the address family or port is effectively a
1065 * wild-card, and will result in matching the first transport in the
1066 * service's list that has a matching class name.
1068 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1069 const sa_family_t af, const unsigned short port)
1071 struct svc_xprt *xprt;
1072 struct svc_xprt *found = NULL;
1074 /* Sanity check the args */
1075 if (serv == NULL || xcl_name == NULL)
1076 return found;
1078 spin_lock_bh(&serv->sv_lock);
1079 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1080 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1081 continue;
1082 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1083 continue;
1084 if (port != 0 && port != svc_xprt_local_port(xprt))
1085 continue;
1086 found = xprt;
1087 svc_xprt_get(xprt);
1088 break;
1090 spin_unlock_bh(&serv->sv_lock);
1091 return found;
1093 EXPORT_SYMBOL_GPL(svc_find_xprt);
1095 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1096 char *pos, int remaining)
1098 int len;
1100 len = snprintf(pos, remaining, "%s %u\n",
1101 xprt->xpt_class->xcl_name,
1102 svc_xprt_local_port(xprt));
1103 if (len >= remaining)
1104 return -ENAMETOOLONG;
1105 return len;
1109 * svc_xprt_names - format a buffer with a list of transport names
1110 * @serv: pointer to an RPC service
1111 * @buf: pointer to a buffer to be filled in
1112 * @buflen: length of buffer to be filled in
1114 * Fills in @buf with a string containing a list of transport names,
1115 * each name terminated with '\n'.
1117 * Returns positive length of the filled-in string on success; otherwise
1118 * a negative errno value is returned if an error occurs.
1120 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1122 struct svc_xprt *xprt;
1123 int len, totlen;
1124 char *pos;
1126 /* Sanity check args */
1127 if (!serv)
1128 return 0;
1130 spin_lock_bh(&serv->sv_lock);
1132 pos = buf;
1133 totlen = 0;
1134 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1135 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1136 if (len < 0) {
1137 *buf = '\0';
1138 totlen = len;
1140 if (len <= 0)
1141 break;
1143 pos += len;
1144 totlen += len;
1147 spin_unlock_bh(&serv->sv_lock);
1148 return totlen;
1150 EXPORT_SYMBOL_GPL(svc_xprt_names);
1153 /*----------------------------------------------------------------------------*/
1155 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1157 unsigned int pidx = (unsigned int)*pos;
1158 struct svc_serv *serv = m->private;
1160 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1162 if (!pidx)
1163 return SEQ_START_TOKEN;
1164 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1167 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1169 struct svc_pool *pool = p;
1170 struct svc_serv *serv = m->private;
1172 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1174 if (p == SEQ_START_TOKEN) {
1175 pool = &serv->sv_pools[0];
1176 } else {
1177 unsigned int pidx = (pool - &serv->sv_pools[0]);
1178 if (pidx < serv->sv_nrpools-1)
1179 pool = &serv->sv_pools[pidx+1];
1180 else
1181 pool = NULL;
1183 ++*pos;
1184 return pool;
1187 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1191 static int svc_pool_stats_show(struct seq_file *m, void *p)
1193 struct svc_pool *pool = p;
1195 if (p == SEQ_START_TOKEN) {
1196 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1197 return 0;
1200 seq_printf(m, "%u %lu %lu %lu %lu\n",
1201 pool->sp_id,
1202 pool->sp_stats.packets,
1203 pool->sp_stats.sockets_queued,
1204 pool->sp_stats.threads_woken,
1205 pool->sp_stats.threads_timedout);
1207 return 0;
1210 static const struct seq_operations svc_pool_stats_seq_ops = {
1211 .start = svc_pool_stats_start,
1212 .next = svc_pool_stats_next,
1213 .stop = svc_pool_stats_stop,
1214 .show = svc_pool_stats_show,
1217 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1219 int err;
1221 err = seq_open(file, &svc_pool_stats_seq_ops);
1222 if (!err)
1223 ((struct seq_file *) file->private_data)->private = serv;
1224 return err;
1226 EXPORT_SYMBOL(svc_pool_stats_open);
1228 /*----------------------------------------------------------------------------*/