mmc: omap_hsmmc: context save after enabling runtime pm
[linux-2.6/cjktty.git] / fs / namei.c
blob1898198abc3d10ed4126c73ab24035f0c796a877
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
38 #include "internal.h"
39 #include "mount.h"
41 /* [Feb-1997 T. Schoebel-Theuer]
42 * Fundamental changes in the pathname lookup mechanisms (namei)
43 * were necessary because of omirr. The reason is that omirr needs
44 * to know the _real_ pathname, not the user-supplied one, in case
45 * of symlinks (and also when transname replacements occur).
47 * The new code replaces the old recursive symlink resolution with
48 * an iterative one (in case of non-nested symlink chains). It does
49 * this with calls to <fs>_follow_link().
50 * As a side effect, dir_namei(), _namei() and follow_link() are now
51 * replaced with a single function lookup_dentry() that can handle all
52 * the special cases of the former code.
54 * With the new dcache, the pathname is stored at each inode, at least as
55 * long as the refcount of the inode is positive. As a side effect, the
56 * size of the dcache depends on the inode cache and thus is dynamic.
58 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
59 * resolution to correspond with current state of the code.
61 * Note that the symlink resolution is not *completely* iterative.
62 * There is still a significant amount of tail- and mid- recursion in
63 * the algorithm. Also, note that <fs>_readlink() is not used in
64 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
65 * may return different results than <fs>_follow_link(). Many virtual
66 * filesystems (including /proc) exhibit this behavior.
69 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
70 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
71 * and the name already exists in form of a symlink, try to create the new
72 * name indicated by the symlink. The old code always complained that the
73 * name already exists, due to not following the symlink even if its target
74 * is nonexistent. The new semantics affects also mknod() and link() when
75 * the name is a symlink pointing to a non-existent name.
77 * I don't know which semantics is the right one, since I have no access
78 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
79 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
80 * "old" one. Personally, I think the new semantics is much more logical.
81 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
82 * file does succeed in both HP-UX and SunOs, but not in Solaris
83 * and in the old Linux semantics.
86 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
87 * semantics. See the comments in "open_namei" and "do_link" below.
89 * [10-Sep-98 Alan Modra] Another symlink change.
92 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
93 * inside the path - always follow.
94 * in the last component in creation/removal/renaming - never follow.
95 * if LOOKUP_FOLLOW passed - follow.
96 * if the pathname has trailing slashes - follow.
97 * otherwise - don't follow.
98 * (applied in that order).
100 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
101 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
102 * During the 2.4 we need to fix the userland stuff depending on it -
103 * hopefully we will be able to get rid of that wart in 2.5. So far only
104 * XEmacs seems to be relying on it...
107 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
108 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
109 * any extra contention...
112 /* In order to reduce some races, while at the same time doing additional
113 * checking and hopefully speeding things up, we copy filenames to the
114 * kernel data space before using them..
116 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117 * PATH_MAX includes the nul terminator --RR.
119 static int do_getname(const char __user *filename, char *page)
121 int retval;
122 unsigned long len = PATH_MAX;
124 if (!segment_eq(get_fs(), KERNEL_DS)) {
125 if ((unsigned long) filename >= TASK_SIZE)
126 return -EFAULT;
127 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 len = TASK_SIZE - (unsigned long) filename;
131 retval = strncpy_from_user(page, filename, len);
132 if (retval > 0) {
133 if (retval < len)
134 return 0;
135 return -ENAMETOOLONG;
136 } else if (!retval)
137 retval = -ENOENT;
138 return retval;
141 static char *getname_flags(const char __user *filename, int flags, int *empty)
143 char *result = __getname();
144 int retval;
146 if (!result)
147 return ERR_PTR(-ENOMEM);
149 retval = do_getname(filename, result);
150 if (retval < 0) {
151 if (retval == -ENOENT && empty)
152 *empty = 1;
153 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
154 __putname(result);
155 return ERR_PTR(retval);
158 audit_getname(result);
159 return result;
162 char *getname(const char __user * filename)
164 return getname_flags(filename, 0, NULL);
167 #ifdef CONFIG_AUDITSYSCALL
168 void putname(const char *name)
170 if (unlikely(!audit_dummy_context()))
171 audit_putname(name);
172 else
173 __putname(name);
175 EXPORT_SYMBOL(putname);
176 #endif
178 static int check_acl(struct inode *inode, int mask)
180 #ifdef CONFIG_FS_POSIX_ACL
181 struct posix_acl *acl;
183 if (mask & MAY_NOT_BLOCK) {
184 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
185 if (!acl)
186 return -EAGAIN;
187 /* no ->get_acl() calls in RCU mode... */
188 if (acl == ACL_NOT_CACHED)
189 return -ECHILD;
190 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
193 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
196 * A filesystem can force a ACL callback by just never filling the
197 * ACL cache. But normally you'd fill the cache either at inode
198 * instantiation time, or on the first ->get_acl call.
200 * If the filesystem doesn't have a get_acl() function at all, we'll
201 * just create the negative cache entry.
203 if (acl == ACL_NOT_CACHED) {
204 if (inode->i_op->get_acl) {
205 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
206 if (IS_ERR(acl))
207 return PTR_ERR(acl);
208 } else {
209 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
210 return -EAGAIN;
214 if (acl) {
215 int error = posix_acl_permission(inode, acl, mask);
216 posix_acl_release(acl);
217 return error;
219 #endif
221 return -EAGAIN;
225 * This does the basic permission checking
227 static int acl_permission_check(struct inode *inode, int mask)
229 unsigned int mode = inode->i_mode;
231 if (current_user_ns() != inode_userns(inode))
232 goto other_perms;
234 if (likely(current_fsuid() == inode->i_uid))
235 mode >>= 6;
236 else {
237 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
238 int error = check_acl(inode, mask);
239 if (error != -EAGAIN)
240 return error;
243 if (in_group_p(inode->i_gid))
244 mode >>= 3;
247 other_perms:
249 * If the DACs are ok we don't need any capability check.
251 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
252 return 0;
253 return -EACCES;
257 * generic_permission - check for access rights on a Posix-like filesystem
258 * @inode: inode to check access rights for
259 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
261 * Used to check for read/write/execute permissions on a file.
262 * We use "fsuid" for this, letting us set arbitrary permissions
263 * for filesystem access without changing the "normal" uids which
264 * are used for other things.
266 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
267 * request cannot be satisfied (eg. requires blocking or too much complexity).
268 * It would then be called again in ref-walk mode.
270 int generic_permission(struct inode *inode, int mask)
272 int ret;
275 * Do the basic permission checks.
277 ret = acl_permission_check(inode, mask);
278 if (ret != -EACCES)
279 return ret;
281 if (S_ISDIR(inode->i_mode)) {
282 /* DACs are overridable for directories */
283 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
284 return 0;
285 if (!(mask & MAY_WRITE))
286 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
287 return 0;
288 return -EACCES;
291 * Read/write DACs are always overridable.
292 * Executable DACs are overridable when there is
293 * at least one exec bit set.
295 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
296 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
297 return 0;
300 * Searching includes executable on directories, else just read.
302 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
303 if (mask == MAY_READ)
304 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
305 return 0;
307 return -EACCES;
311 * We _really_ want to just do "generic_permission()" without
312 * even looking at the inode->i_op values. So we keep a cache
313 * flag in inode->i_opflags, that says "this has not special
314 * permission function, use the fast case".
316 static inline int do_inode_permission(struct inode *inode, int mask)
318 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
319 if (likely(inode->i_op->permission))
320 return inode->i_op->permission(inode, mask);
322 /* This gets set once for the inode lifetime */
323 spin_lock(&inode->i_lock);
324 inode->i_opflags |= IOP_FASTPERM;
325 spin_unlock(&inode->i_lock);
327 return generic_permission(inode, mask);
331 * inode_permission - check for access rights to a given inode
332 * @inode: inode to check permission on
333 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
335 * Used to check for read/write/execute permissions on an inode.
336 * We use "fsuid" for this, letting us set arbitrary permissions
337 * for filesystem access without changing the "normal" uids which
338 * are used for other things.
340 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
342 int inode_permission(struct inode *inode, int mask)
344 int retval;
346 if (unlikely(mask & MAY_WRITE)) {
347 umode_t mode = inode->i_mode;
350 * Nobody gets write access to a read-only fs.
352 if (IS_RDONLY(inode) &&
353 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
354 return -EROFS;
357 * Nobody gets write access to an immutable file.
359 if (IS_IMMUTABLE(inode))
360 return -EACCES;
363 retval = do_inode_permission(inode, mask);
364 if (retval)
365 return retval;
367 retval = devcgroup_inode_permission(inode, mask);
368 if (retval)
369 return retval;
371 return security_inode_permission(inode, mask);
375 * path_get - get a reference to a path
376 * @path: path to get the reference to
378 * Given a path increment the reference count to the dentry and the vfsmount.
380 void path_get(struct path *path)
382 mntget(path->mnt);
383 dget(path->dentry);
385 EXPORT_SYMBOL(path_get);
388 * path_put - put a reference to a path
389 * @path: path to put the reference to
391 * Given a path decrement the reference count to the dentry and the vfsmount.
393 void path_put(struct path *path)
395 dput(path->dentry);
396 mntput(path->mnt);
398 EXPORT_SYMBOL(path_put);
401 * Path walking has 2 modes, rcu-walk and ref-walk (see
402 * Documentation/filesystems/path-lookup.txt). In situations when we can't
403 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
404 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
405 * mode. Refcounts are grabbed at the last known good point before rcu-walk
406 * got stuck, so ref-walk may continue from there. If this is not successful
407 * (eg. a seqcount has changed), then failure is returned and it's up to caller
408 * to restart the path walk from the beginning in ref-walk mode.
412 * unlazy_walk - try to switch to ref-walk mode.
413 * @nd: nameidata pathwalk data
414 * @dentry: child of nd->path.dentry or NULL
415 * Returns: 0 on success, -ECHILD on failure
417 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
418 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
419 * @nd or NULL. Must be called from rcu-walk context.
421 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
423 struct fs_struct *fs = current->fs;
424 struct dentry *parent = nd->path.dentry;
425 int want_root = 0;
427 BUG_ON(!(nd->flags & LOOKUP_RCU));
428 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
429 want_root = 1;
430 spin_lock(&fs->lock);
431 if (nd->root.mnt != fs->root.mnt ||
432 nd->root.dentry != fs->root.dentry)
433 goto err_root;
435 spin_lock(&parent->d_lock);
436 if (!dentry) {
437 if (!__d_rcu_to_refcount(parent, nd->seq))
438 goto err_parent;
439 BUG_ON(nd->inode != parent->d_inode);
440 } else {
441 if (dentry->d_parent != parent)
442 goto err_parent;
443 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
444 if (!__d_rcu_to_refcount(dentry, nd->seq))
445 goto err_child;
447 * If the sequence check on the child dentry passed, then
448 * the child has not been removed from its parent. This
449 * means the parent dentry must be valid and able to take
450 * a reference at this point.
452 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
453 BUG_ON(!parent->d_count);
454 parent->d_count++;
455 spin_unlock(&dentry->d_lock);
457 spin_unlock(&parent->d_lock);
458 if (want_root) {
459 path_get(&nd->root);
460 spin_unlock(&fs->lock);
462 mntget(nd->path.mnt);
464 rcu_read_unlock();
465 br_read_unlock(vfsmount_lock);
466 nd->flags &= ~LOOKUP_RCU;
467 return 0;
469 err_child:
470 spin_unlock(&dentry->d_lock);
471 err_parent:
472 spin_unlock(&parent->d_lock);
473 err_root:
474 if (want_root)
475 spin_unlock(&fs->lock);
476 return -ECHILD;
480 * release_open_intent - free up open intent resources
481 * @nd: pointer to nameidata
483 void release_open_intent(struct nameidata *nd)
485 struct file *file = nd->intent.open.file;
487 if (file && !IS_ERR(file)) {
488 if (file->f_path.dentry == NULL)
489 put_filp(file);
490 else
491 fput(file);
495 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
497 return dentry->d_op->d_revalidate(dentry, nd);
501 * complete_walk - successful completion of path walk
502 * @nd: pointer nameidata
504 * If we had been in RCU mode, drop out of it and legitimize nd->path.
505 * Revalidate the final result, unless we'd already done that during
506 * the path walk or the filesystem doesn't ask for it. Return 0 on
507 * success, -error on failure. In case of failure caller does not
508 * need to drop nd->path.
510 static int complete_walk(struct nameidata *nd)
512 struct dentry *dentry = nd->path.dentry;
513 int status;
515 if (nd->flags & LOOKUP_RCU) {
516 nd->flags &= ~LOOKUP_RCU;
517 if (!(nd->flags & LOOKUP_ROOT))
518 nd->root.mnt = NULL;
519 spin_lock(&dentry->d_lock);
520 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
521 spin_unlock(&dentry->d_lock);
522 rcu_read_unlock();
523 br_read_unlock(vfsmount_lock);
524 return -ECHILD;
526 BUG_ON(nd->inode != dentry->d_inode);
527 spin_unlock(&dentry->d_lock);
528 mntget(nd->path.mnt);
529 rcu_read_unlock();
530 br_read_unlock(vfsmount_lock);
533 if (likely(!(nd->flags & LOOKUP_JUMPED)))
534 return 0;
536 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
537 return 0;
539 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
540 return 0;
542 /* Note: we do not d_invalidate() */
543 status = d_revalidate(dentry, nd);
544 if (status > 0)
545 return 0;
547 if (!status)
548 status = -ESTALE;
550 path_put(&nd->path);
551 return status;
554 static __always_inline void set_root(struct nameidata *nd)
556 if (!nd->root.mnt)
557 get_fs_root(current->fs, &nd->root);
560 static int link_path_walk(const char *, struct nameidata *);
562 static __always_inline void set_root_rcu(struct nameidata *nd)
564 if (!nd->root.mnt) {
565 struct fs_struct *fs = current->fs;
566 unsigned seq;
568 do {
569 seq = read_seqcount_begin(&fs->seq);
570 nd->root = fs->root;
571 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
572 } while (read_seqcount_retry(&fs->seq, seq));
576 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
578 int ret;
580 if (IS_ERR(link))
581 goto fail;
583 if (*link == '/') {
584 set_root(nd);
585 path_put(&nd->path);
586 nd->path = nd->root;
587 path_get(&nd->root);
588 nd->flags |= LOOKUP_JUMPED;
590 nd->inode = nd->path.dentry->d_inode;
592 ret = link_path_walk(link, nd);
593 return ret;
594 fail:
595 path_put(&nd->path);
596 return PTR_ERR(link);
599 static void path_put_conditional(struct path *path, struct nameidata *nd)
601 dput(path->dentry);
602 if (path->mnt != nd->path.mnt)
603 mntput(path->mnt);
606 static inline void path_to_nameidata(const struct path *path,
607 struct nameidata *nd)
609 if (!(nd->flags & LOOKUP_RCU)) {
610 dput(nd->path.dentry);
611 if (nd->path.mnt != path->mnt)
612 mntput(nd->path.mnt);
614 nd->path.mnt = path->mnt;
615 nd->path.dentry = path->dentry;
618 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
620 struct inode *inode = link->dentry->d_inode;
621 if (!IS_ERR(cookie) && inode->i_op->put_link)
622 inode->i_op->put_link(link->dentry, nd, cookie);
623 path_put(link);
626 static __always_inline int
627 follow_link(struct path *link, struct nameidata *nd, void **p)
629 int error;
630 struct dentry *dentry = link->dentry;
632 BUG_ON(nd->flags & LOOKUP_RCU);
634 if (link->mnt == nd->path.mnt)
635 mntget(link->mnt);
637 if (unlikely(current->total_link_count >= 40)) {
638 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
639 path_put(&nd->path);
640 return -ELOOP;
642 cond_resched();
643 current->total_link_count++;
645 touch_atime(link);
646 nd_set_link(nd, NULL);
648 error = security_inode_follow_link(link->dentry, nd);
649 if (error) {
650 *p = ERR_PTR(error); /* no ->put_link(), please */
651 path_put(&nd->path);
652 return error;
655 nd->last_type = LAST_BIND;
656 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
657 error = PTR_ERR(*p);
658 if (!IS_ERR(*p)) {
659 char *s = nd_get_link(nd);
660 error = 0;
661 if (s)
662 error = __vfs_follow_link(nd, s);
663 else if (nd->last_type == LAST_BIND) {
664 nd->flags |= LOOKUP_JUMPED;
665 nd->inode = nd->path.dentry->d_inode;
666 if (nd->inode->i_op->follow_link) {
667 /* stepped on a _really_ weird one */
668 path_put(&nd->path);
669 error = -ELOOP;
673 return error;
676 static int follow_up_rcu(struct path *path)
678 struct mount *mnt = real_mount(path->mnt);
679 struct mount *parent;
680 struct dentry *mountpoint;
682 parent = mnt->mnt_parent;
683 if (&parent->mnt == path->mnt)
684 return 0;
685 mountpoint = mnt->mnt_mountpoint;
686 path->dentry = mountpoint;
687 path->mnt = &parent->mnt;
688 return 1;
691 int follow_up(struct path *path)
693 struct mount *mnt = real_mount(path->mnt);
694 struct mount *parent;
695 struct dentry *mountpoint;
697 br_read_lock(vfsmount_lock);
698 parent = mnt->mnt_parent;
699 if (&parent->mnt == path->mnt) {
700 br_read_unlock(vfsmount_lock);
701 return 0;
703 mntget(&parent->mnt);
704 mountpoint = dget(mnt->mnt_mountpoint);
705 br_read_unlock(vfsmount_lock);
706 dput(path->dentry);
707 path->dentry = mountpoint;
708 mntput(path->mnt);
709 path->mnt = &parent->mnt;
710 return 1;
714 * Perform an automount
715 * - return -EISDIR to tell follow_managed() to stop and return the path we
716 * were called with.
718 static int follow_automount(struct path *path, unsigned flags,
719 bool *need_mntput)
721 struct vfsmount *mnt;
722 int err;
724 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
725 return -EREMOTE;
727 /* We don't want to mount if someone's just doing a stat -
728 * unless they're stat'ing a directory and appended a '/' to
729 * the name.
731 * We do, however, want to mount if someone wants to open or
732 * create a file of any type under the mountpoint, wants to
733 * traverse through the mountpoint or wants to open the
734 * mounted directory. Also, autofs may mark negative dentries
735 * as being automount points. These will need the attentions
736 * of the daemon to instantiate them before they can be used.
738 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
739 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
740 path->dentry->d_inode)
741 return -EISDIR;
743 current->total_link_count++;
744 if (current->total_link_count >= 40)
745 return -ELOOP;
747 mnt = path->dentry->d_op->d_automount(path);
748 if (IS_ERR(mnt)) {
750 * The filesystem is allowed to return -EISDIR here to indicate
751 * it doesn't want to automount. For instance, autofs would do
752 * this so that its userspace daemon can mount on this dentry.
754 * However, we can only permit this if it's a terminal point in
755 * the path being looked up; if it wasn't then the remainder of
756 * the path is inaccessible and we should say so.
758 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
759 return -EREMOTE;
760 return PTR_ERR(mnt);
763 if (!mnt) /* mount collision */
764 return 0;
766 if (!*need_mntput) {
767 /* lock_mount() may release path->mnt on error */
768 mntget(path->mnt);
769 *need_mntput = true;
771 err = finish_automount(mnt, path);
773 switch (err) {
774 case -EBUSY:
775 /* Someone else made a mount here whilst we were busy */
776 return 0;
777 case 0:
778 path_put(path);
779 path->mnt = mnt;
780 path->dentry = dget(mnt->mnt_root);
781 return 0;
782 default:
783 return err;
789 * Handle a dentry that is managed in some way.
790 * - Flagged for transit management (autofs)
791 * - Flagged as mountpoint
792 * - Flagged as automount point
794 * This may only be called in refwalk mode.
796 * Serialization is taken care of in namespace.c
798 static int follow_managed(struct path *path, unsigned flags)
800 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
801 unsigned managed;
802 bool need_mntput = false;
803 int ret = 0;
805 /* Given that we're not holding a lock here, we retain the value in a
806 * local variable for each dentry as we look at it so that we don't see
807 * the components of that value change under us */
808 while (managed = ACCESS_ONCE(path->dentry->d_flags),
809 managed &= DCACHE_MANAGED_DENTRY,
810 unlikely(managed != 0)) {
811 /* Allow the filesystem to manage the transit without i_mutex
812 * being held. */
813 if (managed & DCACHE_MANAGE_TRANSIT) {
814 BUG_ON(!path->dentry->d_op);
815 BUG_ON(!path->dentry->d_op->d_manage);
816 ret = path->dentry->d_op->d_manage(path->dentry, false);
817 if (ret < 0)
818 break;
821 /* Transit to a mounted filesystem. */
822 if (managed & DCACHE_MOUNTED) {
823 struct vfsmount *mounted = lookup_mnt(path);
824 if (mounted) {
825 dput(path->dentry);
826 if (need_mntput)
827 mntput(path->mnt);
828 path->mnt = mounted;
829 path->dentry = dget(mounted->mnt_root);
830 need_mntput = true;
831 continue;
834 /* Something is mounted on this dentry in another
835 * namespace and/or whatever was mounted there in this
836 * namespace got unmounted before we managed to get the
837 * vfsmount_lock */
840 /* Handle an automount point */
841 if (managed & DCACHE_NEED_AUTOMOUNT) {
842 ret = follow_automount(path, flags, &need_mntput);
843 if (ret < 0)
844 break;
845 continue;
848 /* We didn't change the current path point */
849 break;
852 if (need_mntput && path->mnt == mnt)
853 mntput(path->mnt);
854 if (ret == -EISDIR)
855 ret = 0;
856 return ret < 0 ? ret : need_mntput;
859 int follow_down_one(struct path *path)
861 struct vfsmount *mounted;
863 mounted = lookup_mnt(path);
864 if (mounted) {
865 dput(path->dentry);
866 mntput(path->mnt);
867 path->mnt = mounted;
868 path->dentry = dget(mounted->mnt_root);
869 return 1;
871 return 0;
874 static inline bool managed_dentry_might_block(struct dentry *dentry)
876 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
877 dentry->d_op->d_manage(dentry, true) < 0);
881 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
882 * we meet a managed dentry that would need blocking.
884 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
885 struct inode **inode)
887 for (;;) {
888 struct mount *mounted;
890 * Don't forget we might have a non-mountpoint managed dentry
891 * that wants to block transit.
893 if (unlikely(managed_dentry_might_block(path->dentry)))
894 return false;
896 if (!d_mountpoint(path->dentry))
897 break;
899 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
900 if (!mounted)
901 break;
902 path->mnt = &mounted->mnt;
903 path->dentry = mounted->mnt.mnt_root;
904 nd->flags |= LOOKUP_JUMPED;
905 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
907 * Update the inode too. We don't need to re-check the
908 * dentry sequence number here after this d_inode read,
909 * because a mount-point is always pinned.
911 *inode = path->dentry->d_inode;
913 return true;
916 static void follow_mount_rcu(struct nameidata *nd)
918 while (d_mountpoint(nd->path.dentry)) {
919 struct mount *mounted;
920 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
921 if (!mounted)
922 break;
923 nd->path.mnt = &mounted->mnt;
924 nd->path.dentry = mounted->mnt.mnt_root;
925 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
929 static int follow_dotdot_rcu(struct nameidata *nd)
931 set_root_rcu(nd);
933 while (1) {
934 if (nd->path.dentry == nd->root.dentry &&
935 nd->path.mnt == nd->root.mnt) {
936 break;
938 if (nd->path.dentry != nd->path.mnt->mnt_root) {
939 struct dentry *old = nd->path.dentry;
940 struct dentry *parent = old->d_parent;
941 unsigned seq;
943 seq = read_seqcount_begin(&parent->d_seq);
944 if (read_seqcount_retry(&old->d_seq, nd->seq))
945 goto failed;
946 nd->path.dentry = parent;
947 nd->seq = seq;
948 break;
950 if (!follow_up_rcu(&nd->path))
951 break;
952 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
954 follow_mount_rcu(nd);
955 nd->inode = nd->path.dentry->d_inode;
956 return 0;
958 failed:
959 nd->flags &= ~LOOKUP_RCU;
960 if (!(nd->flags & LOOKUP_ROOT))
961 nd->root.mnt = NULL;
962 rcu_read_unlock();
963 br_read_unlock(vfsmount_lock);
964 return -ECHILD;
968 * Follow down to the covering mount currently visible to userspace. At each
969 * point, the filesystem owning that dentry may be queried as to whether the
970 * caller is permitted to proceed or not.
972 int follow_down(struct path *path)
974 unsigned managed;
975 int ret;
977 while (managed = ACCESS_ONCE(path->dentry->d_flags),
978 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
979 /* Allow the filesystem to manage the transit without i_mutex
980 * being held.
982 * We indicate to the filesystem if someone is trying to mount
983 * something here. This gives autofs the chance to deny anyone
984 * other than its daemon the right to mount on its
985 * superstructure.
987 * The filesystem may sleep at this point.
989 if (managed & DCACHE_MANAGE_TRANSIT) {
990 BUG_ON(!path->dentry->d_op);
991 BUG_ON(!path->dentry->d_op->d_manage);
992 ret = path->dentry->d_op->d_manage(
993 path->dentry, false);
994 if (ret < 0)
995 return ret == -EISDIR ? 0 : ret;
998 /* Transit to a mounted filesystem. */
999 if (managed & DCACHE_MOUNTED) {
1000 struct vfsmount *mounted = lookup_mnt(path);
1001 if (!mounted)
1002 break;
1003 dput(path->dentry);
1004 mntput(path->mnt);
1005 path->mnt = mounted;
1006 path->dentry = dget(mounted->mnt_root);
1007 continue;
1010 /* Don't handle automount points here */
1011 break;
1013 return 0;
1017 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1019 static void follow_mount(struct path *path)
1021 while (d_mountpoint(path->dentry)) {
1022 struct vfsmount *mounted = lookup_mnt(path);
1023 if (!mounted)
1024 break;
1025 dput(path->dentry);
1026 mntput(path->mnt);
1027 path->mnt = mounted;
1028 path->dentry = dget(mounted->mnt_root);
1032 static void follow_dotdot(struct nameidata *nd)
1034 set_root(nd);
1036 while(1) {
1037 struct dentry *old = nd->path.dentry;
1039 if (nd->path.dentry == nd->root.dentry &&
1040 nd->path.mnt == nd->root.mnt) {
1041 break;
1043 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1044 /* rare case of legitimate dget_parent()... */
1045 nd->path.dentry = dget_parent(nd->path.dentry);
1046 dput(old);
1047 break;
1049 if (!follow_up(&nd->path))
1050 break;
1052 follow_mount(&nd->path);
1053 nd->inode = nd->path.dentry->d_inode;
1057 * This looks up the name in dcache, possibly revalidates the old dentry and
1058 * allocates a new one if not found or not valid. In the need_lookup argument
1059 * returns whether i_op->lookup is necessary.
1061 * dir->d_inode->i_mutex must be held
1063 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1064 struct nameidata *nd, bool *need_lookup)
1066 struct dentry *dentry;
1067 int error;
1069 *need_lookup = false;
1070 dentry = d_lookup(dir, name);
1071 if (dentry) {
1072 if (d_need_lookup(dentry)) {
1073 *need_lookup = true;
1074 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1075 error = d_revalidate(dentry, nd);
1076 if (unlikely(error <= 0)) {
1077 if (error < 0) {
1078 dput(dentry);
1079 return ERR_PTR(error);
1080 } else if (!d_invalidate(dentry)) {
1081 dput(dentry);
1082 dentry = NULL;
1088 if (!dentry) {
1089 dentry = d_alloc(dir, name);
1090 if (unlikely(!dentry))
1091 return ERR_PTR(-ENOMEM);
1093 *need_lookup = true;
1095 return dentry;
1099 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1100 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1102 * dir->d_inode->i_mutex must be held
1104 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1105 struct nameidata *nd)
1107 struct dentry *old;
1109 /* Don't create child dentry for a dead directory. */
1110 if (unlikely(IS_DEADDIR(dir))) {
1111 dput(dentry);
1112 return ERR_PTR(-ENOENT);
1115 old = dir->i_op->lookup(dir, dentry, nd);
1116 if (unlikely(old)) {
1117 dput(dentry);
1118 dentry = old;
1120 return dentry;
1123 static struct dentry *__lookup_hash(struct qstr *name,
1124 struct dentry *base, struct nameidata *nd)
1126 bool need_lookup;
1127 struct dentry *dentry;
1129 dentry = lookup_dcache(name, base, nd, &need_lookup);
1130 if (!need_lookup)
1131 return dentry;
1133 return lookup_real(base->d_inode, dentry, nd);
1137 * It's more convoluted than I'd like it to be, but... it's still fairly
1138 * small and for now I'd prefer to have fast path as straight as possible.
1139 * It _is_ time-critical.
1141 static int do_lookup(struct nameidata *nd, struct qstr *name,
1142 struct path *path, struct inode **inode)
1144 struct vfsmount *mnt = nd->path.mnt;
1145 struct dentry *dentry, *parent = nd->path.dentry;
1146 int need_reval = 1;
1147 int status = 1;
1148 int err;
1151 * Rename seqlock is not required here because in the off chance
1152 * of a false negative due to a concurrent rename, we're going to
1153 * do the non-racy lookup, below.
1155 if (nd->flags & LOOKUP_RCU) {
1156 unsigned seq;
1157 *inode = nd->inode;
1158 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1159 if (!dentry)
1160 goto unlazy;
1162 /* Memory barrier in read_seqcount_begin of child is enough */
1163 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1164 return -ECHILD;
1165 nd->seq = seq;
1167 if (unlikely(d_need_lookup(dentry)))
1168 goto unlazy;
1169 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1170 status = d_revalidate(dentry, nd);
1171 if (unlikely(status <= 0)) {
1172 if (status != -ECHILD)
1173 need_reval = 0;
1174 goto unlazy;
1177 path->mnt = mnt;
1178 path->dentry = dentry;
1179 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1180 goto unlazy;
1181 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1182 goto unlazy;
1183 return 0;
1184 unlazy:
1185 if (unlazy_walk(nd, dentry))
1186 return -ECHILD;
1187 } else {
1188 dentry = __d_lookup(parent, name);
1191 if (unlikely(!dentry))
1192 goto need_lookup;
1194 if (unlikely(d_need_lookup(dentry))) {
1195 dput(dentry);
1196 goto need_lookup;
1199 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1200 status = d_revalidate(dentry, nd);
1201 if (unlikely(status <= 0)) {
1202 if (status < 0) {
1203 dput(dentry);
1204 return status;
1206 if (!d_invalidate(dentry)) {
1207 dput(dentry);
1208 goto need_lookup;
1211 done:
1212 path->mnt = mnt;
1213 path->dentry = dentry;
1214 err = follow_managed(path, nd->flags);
1215 if (unlikely(err < 0)) {
1216 path_put_conditional(path, nd);
1217 return err;
1219 if (err)
1220 nd->flags |= LOOKUP_JUMPED;
1221 *inode = path->dentry->d_inode;
1222 return 0;
1224 need_lookup:
1225 BUG_ON(nd->inode != parent->d_inode);
1227 mutex_lock(&parent->d_inode->i_mutex);
1228 dentry = __lookup_hash(name, parent, nd);
1229 mutex_unlock(&parent->d_inode->i_mutex);
1230 if (IS_ERR(dentry))
1231 return PTR_ERR(dentry);
1232 goto done;
1235 static inline int may_lookup(struct nameidata *nd)
1237 if (nd->flags & LOOKUP_RCU) {
1238 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1239 if (err != -ECHILD)
1240 return err;
1241 if (unlazy_walk(nd, NULL))
1242 return -ECHILD;
1244 return inode_permission(nd->inode, MAY_EXEC);
1247 static inline int handle_dots(struct nameidata *nd, int type)
1249 if (type == LAST_DOTDOT) {
1250 if (nd->flags & LOOKUP_RCU) {
1251 if (follow_dotdot_rcu(nd))
1252 return -ECHILD;
1253 } else
1254 follow_dotdot(nd);
1256 return 0;
1259 static void terminate_walk(struct nameidata *nd)
1261 if (!(nd->flags & LOOKUP_RCU)) {
1262 path_put(&nd->path);
1263 } else {
1264 nd->flags &= ~LOOKUP_RCU;
1265 if (!(nd->flags & LOOKUP_ROOT))
1266 nd->root.mnt = NULL;
1267 rcu_read_unlock();
1268 br_read_unlock(vfsmount_lock);
1273 * Do we need to follow links? We _really_ want to be able
1274 * to do this check without having to look at inode->i_op,
1275 * so we keep a cache of "no, this doesn't need follow_link"
1276 * for the common case.
1278 static inline int should_follow_link(struct inode *inode, int follow)
1280 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1281 if (likely(inode->i_op->follow_link))
1282 return follow;
1284 /* This gets set once for the inode lifetime */
1285 spin_lock(&inode->i_lock);
1286 inode->i_opflags |= IOP_NOFOLLOW;
1287 spin_unlock(&inode->i_lock);
1289 return 0;
1292 static inline int walk_component(struct nameidata *nd, struct path *path,
1293 struct qstr *name, int type, int follow)
1295 struct inode *inode;
1296 int err;
1298 * "." and ".." are special - ".." especially so because it has
1299 * to be able to know about the current root directory and
1300 * parent relationships.
1302 if (unlikely(type != LAST_NORM))
1303 return handle_dots(nd, type);
1304 err = do_lookup(nd, name, path, &inode);
1305 if (unlikely(err)) {
1306 terminate_walk(nd);
1307 return err;
1309 if (!inode) {
1310 path_to_nameidata(path, nd);
1311 terminate_walk(nd);
1312 return -ENOENT;
1314 if (should_follow_link(inode, follow)) {
1315 if (nd->flags & LOOKUP_RCU) {
1316 if (unlikely(unlazy_walk(nd, path->dentry))) {
1317 terminate_walk(nd);
1318 return -ECHILD;
1321 BUG_ON(inode != path->dentry->d_inode);
1322 return 1;
1324 path_to_nameidata(path, nd);
1325 nd->inode = inode;
1326 return 0;
1330 * This limits recursive symlink follows to 8, while
1331 * limiting consecutive symlinks to 40.
1333 * Without that kind of total limit, nasty chains of consecutive
1334 * symlinks can cause almost arbitrarily long lookups.
1336 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1338 int res;
1340 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1341 path_put_conditional(path, nd);
1342 path_put(&nd->path);
1343 return -ELOOP;
1345 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1347 nd->depth++;
1348 current->link_count++;
1350 do {
1351 struct path link = *path;
1352 void *cookie;
1354 res = follow_link(&link, nd, &cookie);
1355 if (!res)
1356 res = walk_component(nd, path, &nd->last,
1357 nd->last_type, LOOKUP_FOLLOW);
1358 put_link(nd, &link, cookie);
1359 } while (res > 0);
1361 current->link_count--;
1362 nd->depth--;
1363 return res;
1367 * We really don't want to look at inode->i_op->lookup
1368 * when we don't have to. So we keep a cache bit in
1369 * the inode ->i_opflags field that says "yes, we can
1370 * do lookup on this inode".
1372 static inline int can_lookup(struct inode *inode)
1374 if (likely(inode->i_opflags & IOP_LOOKUP))
1375 return 1;
1376 if (likely(!inode->i_op->lookup))
1377 return 0;
1379 /* We do this once for the lifetime of the inode */
1380 spin_lock(&inode->i_lock);
1381 inode->i_opflags |= IOP_LOOKUP;
1382 spin_unlock(&inode->i_lock);
1383 return 1;
1387 * We can do the critical dentry name comparison and hashing
1388 * operations one word at a time, but we are limited to:
1390 * - Architectures with fast unaligned word accesses. We could
1391 * do a "get_unaligned()" if this helps and is sufficiently
1392 * fast.
1394 * - Little-endian machines (so that we can generate the mask
1395 * of low bytes efficiently). Again, we *could* do a byte
1396 * swapping load on big-endian architectures if that is not
1397 * expensive enough to make the optimization worthless.
1399 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1400 * do not trap on the (extremely unlikely) case of a page
1401 * crossing operation.
1403 * - Furthermore, we need an efficient 64-bit compile for the
1404 * 64-bit case in order to generate the "number of bytes in
1405 * the final mask". Again, that could be replaced with a
1406 * efficient population count instruction or similar.
1408 #ifdef CONFIG_DCACHE_WORD_ACCESS
1410 #ifdef CONFIG_64BIT
1413 * Jan Achrenius on G+: microoptimized version of
1414 * the simpler "(mask & ONEBYTES) * ONEBYTES >> 56"
1415 * that works for the bytemasks without having to
1416 * mask them first.
1418 static inline long count_masked_bytes(unsigned long mask)
1420 return mask*0x0001020304050608ul >> 56;
1423 static inline unsigned int fold_hash(unsigned long hash)
1425 hash += hash >> (8*sizeof(int));
1426 return hash;
1429 #else /* 32-bit case */
1431 /* Carl Chatfield / Jan Achrenius G+ version for 32-bit */
1432 static inline long count_masked_bytes(long mask)
1434 /* (000000 0000ff 00ffff ffffff) -> ( 1 1 2 3 ) */
1435 long a = (0x0ff0001+mask) >> 23;
1436 /* Fix the 1 for 00 case */
1437 return a & mask;
1440 #define fold_hash(x) (x)
1442 #endif
1444 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1446 unsigned long a, mask;
1447 unsigned long hash = 0;
1449 for (;;) {
1450 a = *(unsigned long *)name;
1451 if (len < sizeof(unsigned long))
1452 break;
1453 hash += a;
1454 hash *= 9;
1455 name += sizeof(unsigned long);
1456 len -= sizeof(unsigned long);
1457 if (!len)
1458 goto done;
1460 mask = ~(~0ul << len*8);
1461 hash += mask & a;
1462 done:
1463 return fold_hash(hash);
1465 EXPORT_SYMBOL(full_name_hash);
1467 #define REPEAT_BYTE(x) ((~0ul / 0xff) * (x))
1468 #define ONEBYTES REPEAT_BYTE(0x01)
1469 #define SLASHBYTES REPEAT_BYTE('/')
1470 #define HIGHBITS REPEAT_BYTE(0x80)
1472 /* Return the high bit set in the first byte that is a zero */
1473 static inline unsigned long has_zero(unsigned long a)
1475 return ((a - ONEBYTES) & ~a) & HIGHBITS;
1479 * Calculate the length and hash of the path component, and
1480 * return the length of the component;
1482 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1484 unsigned long a, mask, hash, len;
1486 hash = a = 0;
1487 len = -sizeof(unsigned long);
1488 do {
1489 hash = (hash + a) * 9;
1490 len += sizeof(unsigned long);
1491 a = *(unsigned long *)(name+len);
1492 /* Do we have any NUL or '/' bytes in this word? */
1493 mask = has_zero(a) | has_zero(a ^ SLASHBYTES);
1494 } while (!mask);
1496 /* The mask *below* the first high bit set */
1497 mask = (mask - 1) & ~mask;
1498 mask >>= 7;
1499 hash += a & mask;
1500 *hashp = fold_hash(hash);
1502 return len + count_masked_bytes(mask);
1505 #else
1507 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1509 unsigned long hash = init_name_hash();
1510 while (len--)
1511 hash = partial_name_hash(*name++, hash);
1512 return end_name_hash(hash);
1514 EXPORT_SYMBOL(full_name_hash);
1517 * We know there's a real path component here of at least
1518 * one character.
1520 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1522 unsigned long hash = init_name_hash();
1523 unsigned long len = 0, c;
1525 c = (unsigned char)*name;
1526 do {
1527 len++;
1528 hash = partial_name_hash(c, hash);
1529 c = (unsigned char)name[len];
1530 } while (c && c != '/');
1531 *hashp = end_name_hash(hash);
1532 return len;
1535 #endif
1538 * Name resolution.
1539 * This is the basic name resolution function, turning a pathname into
1540 * the final dentry. We expect 'base' to be positive and a directory.
1542 * Returns 0 and nd will have valid dentry and mnt on success.
1543 * Returns error and drops reference to input namei data on failure.
1545 static int link_path_walk(const char *name, struct nameidata *nd)
1547 struct path next;
1548 int err;
1550 while (*name=='/')
1551 name++;
1552 if (!*name)
1553 return 0;
1555 /* At this point we know we have a real path component. */
1556 for(;;) {
1557 struct qstr this;
1558 long len;
1559 int type;
1561 err = may_lookup(nd);
1562 if (err)
1563 break;
1565 len = hash_name(name, &this.hash);
1566 this.name = name;
1567 this.len = len;
1569 type = LAST_NORM;
1570 if (name[0] == '.') switch (len) {
1571 case 2:
1572 if (name[1] == '.') {
1573 type = LAST_DOTDOT;
1574 nd->flags |= LOOKUP_JUMPED;
1576 break;
1577 case 1:
1578 type = LAST_DOT;
1580 if (likely(type == LAST_NORM)) {
1581 struct dentry *parent = nd->path.dentry;
1582 nd->flags &= ~LOOKUP_JUMPED;
1583 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1584 err = parent->d_op->d_hash(parent, nd->inode,
1585 &this);
1586 if (err < 0)
1587 break;
1591 if (!name[len])
1592 goto last_component;
1594 * If it wasn't NUL, we know it was '/'. Skip that
1595 * slash, and continue until no more slashes.
1597 do {
1598 len++;
1599 } while (unlikely(name[len] == '/'));
1600 if (!name[len])
1601 goto last_component;
1602 name += len;
1604 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1605 if (err < 0)
1606 return err;
1608 if (err) {
1609 err = nested_symlink(&next, nd);
1610 if (err)
1611 return err;
1613 if (can_lookup(nd->inode))
1614 continue;
1615 err = -ENOTDIR;
1616 break;
1617 /* here ends the main loop */
1619 last_component:
1620 nd->last = this;
1621 nd->last_type = type;
1622 return 0;
1624 terminate_walk(nd);
1625 return err;
1628 static int path_init(int dfd, const char *name, unsigned int flags,
1629 struct nameidata *nd, struct file **fp)
1631 int retval = 0;
1632 int fput_needed;
1633 struct file *file;
1635 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1636 nd->flags = flags | LOOKUP_JUMPED;
1637 nd->depth = 0;
1638 if (flags & LOOKUP_ROOT) {
1639 struct inode *inode = nd->root.dentry->d_inode;
1640 if (*name) {
1641 if (!inode->i_op->lookup)
1642 return -ENOTDIR;
1643 retval = inode_permission(inode, MAY_EXEC);
1644 if (retval)
1645 return retval;
1647 nd->path = nd->root;
1648 nd->inode = inode;
1649 if (flags & LOOKUP_RCU) {
1650 br_read_lock(vfsmount_lock);
1651 rcu_read_lock();
1652 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1653 } else {
1654 path_get(&nd->path);
1656 return 0;
1659 nd->root.mnt = NULL;
1661 if (*name=='/') {
1662 if (flags & LOOKUP_RCU) {
1663 br_read_lock(vfsmount_lock);
1664 rcu_read_lock();
1665 set_root_rcu(nd);
1666 } else {
1667 set_root(nd);
1668 path_get(&nd->root);
1670 nd->path = nd->root;
1671 } else if (dfd == AT_FDCWD) {
1672 if (flags & LOOKUP_RCU) {
1673 struct fs_struct *fs = current->fs;
1674 unsigned seq;
1676 br_read_lock(vfsmount_lock);
1677 rcu_read_lock();
1679 do {
1680 seq = read_seqcount_begin(&fs->seq);
1681 nd->path = fs->pwd;
1682 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1683 } while (read_seqcount_retry(&fs->seq, seq));
1684 } else {
1685 get_fs_pwd(current->fs, &nd->path);
1687 } else {
1688 struct dentry *dentry;
1690 file = fget_raw_light(dfd, &fput_needed);
1691 retval = -EBADF;
1692 if (!file)
1693 goto out_fail;
1695 dentry = file->f_path.dentry;
1697 if (*name) {
1698 retval = -ENOTDIR;
1699 if (!S_ISDIR(dentry->d_inode->i_mode))
1700 goto fput_fail;
1702 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1703 if (retval)
1704 goto fput_fail;
1707 nd->path = file->f_path;
1708 if (flags & LOOKUP_RCU) {
1709 if (fput_needed)
1710 *fp = file;
1711 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1712 br_read_lock(vfsmount_lock);
1713 rcu_read_lock();
1714 } else {
1715 path_get(&file->f_path);
1716 fput_light(file, fput_needed);
1720 nd->inode = nd->path.dentry->d_inode;
1721 return 0;
1723 fput_fail:
1724 fput_light(file, fput_needed);
1725 out_fail:
1726 return retval;
1729 static inline int lookup_last(struct nameidata *nd, struct path *path)
1731 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1732 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1734 nd->flags &= ~LOOKUP_PARENT;
1735 return walk_component(nd, path, &nd->last, nd->last_type,
1736 nd->flags & LOOKUP_FOLLOW);
1739 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1740 static int path_lookupat(int dfd, const char *name,
1741 unsigned int flags, struct nameidata *nd)
1743 struct file *base = NULL;
1744 struct path path;
1745 int err;
1748 * Path walking is largely split up into 2 different synchronisation
1749 * schemes, rcu-walk and ref-walk (explained in
1750 * Documentation/filesystems/path-lookup.txt). These share much of the
1751 * path walk code, but some things particularly setup, cleanup, and
1752 * following mounts are sufficiently divergent that functions are
1753 * duplicated. Typically there is a function foo(), and its RCU
1754 * analogue, foo_rcu().
1756 * -ECHILD is the error number of choice (just to avoid clashes) that
1757 * is returned if some aspect of an rcu-walk fails. Such an error must
1758 * be handled by restarting a traditional ref-walk (which will always
1759 * be able to complete).
1761 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1763 if (unlikely(err))
1764 return err;
1766 current->total_link_count = 0;
1767 err = link_path_walk(name, nd);
1769 if (!err && !(flags & LOOKUP_PARENT)) {
1770 err = lookup_last(nd, &path);
1771 while (err > 0) {
1772 void *cookie;
1773 struct path link = path;
1774 nd->flags |= LOOKUP_PARENT;
1775 err = follow_link(&link, nd, &cookie);
1776 if (!err)
1777 err = lookup_last(nd, &path);
1778 put_link(nd, &link, cookie);
1782 if (!err)
1783 err = complete_walk(nd);
1785 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1786 if (!nd->inode->i_op->lookup) {
1787 path_put(&nd->path);
1788 err = -ENOTDIR;
1792 if (base)
1793 fput(base);
1795 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1796 path_put(&nd->root);
1797 nd->root.mnt = NULL;
1799 return err;
1802 static int do_path_lookup(int dfd, const char *name,
1803 unsigned int flags, struct nameidata *nd)
1805 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1806 if (unlikely(retval == -ECHILD))
1807 retval = path_lookupat(dfd, name, flags, nd);
1808 if (unlikely(retval == -ESTALE))
1809 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1811 if (likely(!retval)) {
1812 if (unlikely(!audit_dummy_context())) {
1813 if (nd->path.dentry && nd->inode)
1814 audit_inode(name, nd->path.dentry);
1817 return retval;
1820 int kern_path_parent(const char *name, struct nameidata *nd)
1822 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1825 int kern_path(const char *name, unsigned int flags, struct path *path)
1827 struct nameidata nd;
1828 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1829 if (!res)
1830 *path = nd.path;
1831 return res;
1835 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1836 * @dentry: pointer to dentry of the base directory
1837 * @mnt: pointer to vfs mount of the base directory
1838 * @name: pointer to file name
1839 * @flags: lookup flags
1840 * @path: pointer to struct path to fill
1842 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1843 const char *name, unsigned int flags,
1844 struct path *path)
1846 struct nameidata nd;
1847 int err;
1848 nd.root.dentry = dentry;
1849 nd.root.mnt = mnt;
1850 BUG_ON(flags & LOOKUP_PARENT);
1851 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1852 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1853 if (!err)
1854 *path = nd.path;
1855 return err;
1859 * Restricted form of lookup. Doesn't follow links, single-component only,
1860 * needs parent already locked. Doesn't follow mounts.
1861 * SMP-safe.
1863 static struct dentry *lookup_hash(struct nameidata *nd)
1865 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1869 * lookup_one_len - filesystem helper to lookup single pathname component
1870 * @name: pathname component to lookup
1871 * @base: base directory to lookup from
1872 * @len: maximum length @len should be interpreted to
1874 * Note that this routine is purely a helper for filesystem usage and should
1875 * not be called by generic code. Also note that by using this function the
1876 * nameidata argument is passed to the filesystem methods and a filesystem
1877 * using this helper needs to be prepared for that.
1879 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1881 struct qstr this;
1882 unsigned int c;
1883 int err;
1885 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1887 this.name = name;
1888 this.len = len;
1889 this.hash = full_name_hash(name, len);
1890 if (!len)
1891 return ERR_PTR(-EACCES);
1893 while (len--) {
1894 c = *(const unsigned char *)name++;
1895 if (c == '/' || c == '\0')
1896 return ERR_PTR(-EACCES);
1899 * See if the low-level filesystem might want
1900 * to use its own hash..
1902 if (base->d_flags & DCACHE_OP_HASH) {
1903 int err = base->d_op->d_hash(base, base->d_inode, &this);
1904 if (err < 0)
1905 return ERR_PTR(err);
1908 err = inode_permission(base->d_inode, MAY_EXEC);
1909 if (err)
1910 return ERR_PTR(err);
1912 return __lookup_hash(&this, base, NULL);
1915 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1916 struct path *path, int *empty)
1918 struct nameidata nd;
1919 char *tmp = getname_flags(name, flags, empty);
1920 int err = PTR_ERR(tmp);
1921 if (!IS_ERR(tmp)) {
1923 BUG_ON(flags & LOOKUP_PARENT);
1925 err = do_path_lookup(dfd, tmp, flags, &nd);
1926 putname(tmp);
1927 if (!err)
1928 *path = nd.path;
1930 return err;
1933 int user_path_at(int dfd, const char __user *name, unsigned flags,
1934 struct path *path)
1936 return user_path_at_empty(dfd, name, flags, path, NULL);
1939 static int user_path_parent(int dfd, const char __user *path,
1940 struct nameidata *nd, char **name)
1942 char *s = getname(path);
1943 int error;
1945 if (IS_ERR(s))
1946 return PTR_ERR(s);
1948 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1949 if (error)
1950 putname(s);
1951 else
1952 *name = s;
1954 return error;
1958 * It's inline, so penalty for filesystems that don't use sticky bit is
1959 * minimal.
1961 static inline int check_sticky(struct inode *dir, struct inode *inode)
1963 uid_t fsuid = current_fsuid();
1965 if (!(dir->i_mode & S_ISVTX))
1966 return 0;
1967 if (current_user_ns() != inode_userns(inode))
1968 goto other_userns;
1969 if (inode->i_uid == fsuid)
1970 return 0;
1971 if (dir->i_uid == fsuid)
1972 return 0;
1974 other_userns:
1975 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1979 * Check whether we can remove a link victim from directory dir, check
1980 * whether the type of victim is right.
1981 * 1. We can't do it if dir is read-only (done in permission())
1982 * 2. We should have write and exec permissions on dir
1983 * 3. We can't remove anything from append-only dir
1984 * 4. We can't do anything with immutable dir (done in permission())
1985 * 5. If the sticky bit on dir is set we should either
1986 * a. be owner of dir, or
1987 * b. be owner of victim, or
1988 * c. have CAP_FOWNER capability
1989 * 6. If the victim is append-only or immutable we can't do antyhing with
1990 * links pointing to it.
1991 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1992 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1993 * 9. We can't remove a root or mountpoint.
1994 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1995 * nfs_async_unlink().
1997 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1999 int error;
2001 if (!victim->d_inode)
2002 return -ENOENT;
2004 BUG_ON(victim->d_parent->d_inode != dir);
2005 audit_inode_child(victim, dir);
2007 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2008 if (error)
2009 return error;
2010 if (IS_APPEND(dir))
2011 return -EPERM;
2012 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2013 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2014 return -EPERM;
2015 if (isdir) {
2016 if (!S_ISDIR(victim->d_inode->i_mode))
2017 return -ENOTDIR;
2018 if (IS_ROOT(victim))
2019 return -EBUSY;
2020 } else if (S_ISDIR(victim->d_inode->i_mode))
2021 return -EISDIR;
2022 if (IS_DEADDIR(dir))
2023 return -ENOENT;
2024 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2025 return -EBUSY;
2026 return 0;
2029 /* Check whether we can create an object with dentry child in directory
2030 * dir.
2031 * 1. We can't do it if child already exists (open has special treatment for
2032 * this case, but since we are inlined it's OK)
2033 * 2. We can't do it if dir is read-only (done in permission())
2034 * 3. We should have write and exec permissions on dir
2035 * 4. We can't do it if dir is immutable (done in permission())
2037 static inline int may_create(struct inode *dir, struct dentry *child)
2039 if (child->d_inode)
2040 return -EEXIST;
2041 if (IS_DEADDIR(dir))
2042 return -ENOENT;
2043 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2047 * p1 and p2 should be directories on the same fs.
2049 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2051 struct dentry *p;
2053 if (p1 == p2) {
2054 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2055 return NULL;
2058 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2060 p = d_ancestor(p2, p1);
2061 if (p) {
2062 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2063 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2064 return p;
2067 p = d_ancestor(p1, p2);
2068 if (p) {
2069 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2070 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2071 return p;
2074 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2075 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2076 return NULL;
2079 void unlock_rename(struct dentry *p1, struct dentry *p2)
2081 mutex_unlock(&p1->d_inode->i_mutex);
2082 if (p1 != p2) {
2083 mutex_unlock(&p2->d_inode->i_mutex);
2084 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2088 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2089 struct nameidata *nd)
2091 int error = may_create(dir, dentry);
2093 if (error)
2094 return error;
2096 if (!dir->i_op->create)
2097 return -EACCES; /* shouldn't it be ENOSYS? */
2098 mode &= S_IALLUGO;
2099 mode |= S_IFREG;
2100 error = security_inode_create(dir, dentry, mode);
2101 if (error)
2102 return error;
2103 error = dir->i_op->create(dir, dentry, mode, nd);
2104 if (!error)
2105 fsnotify_create(dir, dentry);
2106 return error;
2109 static int may_open(struct path *path, int acc_mode, int flag)
2111 struct dentry *dentry = path->dentry;
2112 struct inode *inode = dentry->d_inode;
2113 int error;
2115 /* O_PATH? */
2116 if (!acc_mode)
2117 return 0;
2119 if (!inode)
2120 return -ENOENT;
2122 switch (inode->i_mode & S_IFMT) {
2123 case S_IFLNK:
2124 return -ELOOP;
2125 case S_IFDIR:
2126 if (acc_mode & MAY_WRITE)
2127 return -EISDIR;
2128 break;
2129 case S_IFBLK:
2130 case S_IFCHR:
2131 if (path->mnt->mnt_flags & MNT_NODEV)
2132 return -EACCES;
2133 /*FALLTHRU*/
2134 case S_IFIFO:
2135 case S_IFSOCK:
2136 flag &= ~O_TRUNC;
2137 break;
2140 error = inode_permission(inode, acc_mode);
2141 if (error)
2142 return error;
2145 * An append-only file must be opened in append mode for writing.
2147 if (IS_APPEND(inode)) {
2148 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2149 return -EPERM;
2150 if (flag & O_TRUNC)
2151 return -EPERM;
2154 /* O_NOATIME can only be set by the owner or superuser */
2155 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2156 return -EPERM;
2158 return 0;
2161 static int handle_truncate(struct file *filp)
2163 struct path *path = &filp->f_path;
2164 struct inode *inode = path->dentry->d_inode;
2165 int error = get_write_access(inode);
2166 if (error)
2167 return error;
2169 * Refuse to truncate files with mandatory locks held on them.
2171 error = locks_verify_locked(inode);
2172 if (!error)
2173 error = security_path_truncate(path);
2174 if (!error) {
2175 error = do_truncate(path->dentry, 0,
2176 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2177 filp);
2179 put_write_access(inode);
2180 return error;
2183 static inline int open_to_namei_flags(int flag)
2185 if ((flag & O_ACCMODE) == 3)
2186 flag--;
2187 return flag;
2191 * Handle the last step of open()
2193 static struct file *do_last(struct nameidata *nd, struct path *path,
2194 const struct open_flags *op, const char *pathname)
2196 struct dentry *dir = nd->path.dentry;
2197 struct dentry *dentry;
2198 int open_flag = op->open_flag;
2199 int will_truncate = open_flag & O_TRUNC;
2200 int want_write = 0;
2201 int acc_mode = op->acc_mode;
2202 struct file *filp;
2203 int error;
2205 nd->flags &= ~LOOKUP_PARENT;
2206 nd->flags |= op->intent;
2208 switch (nd->last_type) {
2209 case LAST_DOTDOT:
2210 case LAST_DOT:
2211 error = handle_dots(nd, nd->last_type);
2212 if (error)
2213 return ERR_PTR(error);
2214 /* fallthrough */
2215 case LAST_ROOT:
2216 error = complete_walk(nd);
2217 if (error)
2218 return ERR_PTR(error);
2219 audit_inode(pathname, nd->path.dentry);
2220 if (open_flag & O_CREAT) {
2221 error = -EISDIR;
2222 goto exit;
2224 goto ok;
2225 case LAST_BIND:
2226 error = complete_walk(nd);
2227 if (error)
2228 return ERR_PTR(error);
2229 audit_inode(pathname, dir);
2230 goto ok;
2233 if (!(open_flag & O_CREAT)) {
2234 int symlink_ok = 0;
2235 if (nd->last.name[nd->last.len])
2236 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2237 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2238 symlink_ok = 1;
2239 /* we _can_ be in RCU mode here */
2240 error = walk_component(nd, path, &nd->last, LAST_NORM,
2241 !symlink_ok);
2242 if (error < 0)
2243 return ERR_PTR(error);
2244 if (error) /* symlink */
2245 return NULL;
2246 /* sayonara */
2247 error = complete_walk(nd);
2248 if (error)
2249 return ERR_PTR(error);
2251 error = -ENOTDIR;
2252 if (nd->flags & LOOKUP_DIRECTORY) {
2253 if (!nd->inode->i_op->lookup)
2254 goto exit;
2256 audit_inode(pathname, nd->path.dentry);
2257 goto ok;
2260 /* create side of things */
2262 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2263 * cleared when we got to the last component we are about to look up
2265 error = complete_walk(nd);
2266 if (error)
2267 return ERR_PTR(error);
2269 audit_inode(pathname, dir);
2270 error = -EISDIR;
2271 /* trailing slashes? */
2272 if (nd->last.name[nd->last.len])
2273 goto exit;
2275 mutex_lock(&dir->d_inode->i_mutex);
2277 dentry = lookup_hash(nd);
2278 error = PTR_ERR(dentry);
2279 if (IS_ERR(dentry)) {
2280 mutex_unlock(&dir->d_inode->i_mutex);
2281 goto exit;
2284 path->dentry = dentry;
2285 path->mnt = nd->path.mnt;
2287 /* Negative dentry, just create the file */
2288 if (!dentry->d_inode) {
2289 umode_t mode = op->mode;
2290 if (!IS_POSIXACL(dir->d_inode))
2291 mode &= ~current_umask();
2293 * This write is needed to ensure that a
2294 * rw->ro transition does not occur between
2295 * the time when the file is created and when
2296 * a permanent write count is taken through
2297 * the 'struct file' in nameidata_to_filp().
2299 error = mnt_want_write(nd->path.mnt);
2300 if (error)
2301 goto exit_mutex_unlock;
2302 want_write = 1;
2303 /* Don't check for write permission, don't truncate */
2304 open_flag &= ~O_TRUNC;
2305 will_truncate = 0;
2306 acc_mode = MAY_OPEN;
2307 error = security_path_mknod(&nd->path, dentry, mode, 0);
2308 if (error)
2309 goto exit_mutex_unlock;
2310 error = vfs_create(dir->d_inode, dentry, mode, nd);
2311 if (error)
2312 goto exit_mutex_unlock;
2313 mutex_unlock(&dir->d_inode->i_mutex);
2314 dput(nd->path.dentry);
2315 nd->path.dentry = dentry;
2316 goto common;
2320 * It already exists.
2322 mutex_unlock(&dir->d_inode->i_mutex);
2323 audit_inode(pathname, path->dentry);
2325 error = -EEXIST;
2326 if (open_flag & O_EXCL)
2327 goto exit_dput;
2329 error = follow_managed(path, nd->flags);
2330 if (error < 0)
2331 goto exit_dput;
2333 if (error)
2334 nd->flags |= LOOKUP_JUMPED;
2336 error = -ENOENT;
2337 if (!path->dentry->d_inode)
2338 goto exit_dput;
2340 if (path->dentry->d_inode->i_op->follow_link)
2341 return NULL;
2343 path_to_nameidata(path, nd);
2344 nd->inode = path->dentry->d_inode;
2345 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2346 error = complete_walk(nd);
2347 if (error)
2348 return ERR_PTR(error);
2349 error = -EISDIR;
2350 if (S_ISDIR(nd->inode->i_mode))
2351 goto exit;
2353 if (!S_ISREG(nd->inode->i_mode))
2354 will_truncate = 0;
2356 if (will_truncate) {
2357 error = mnt_want_write(nd->path.mnt);
2358 if (error)
2359 goto exit;
2360 want_write = 1;
2362 common:
2363 error = may_open(&nd->path, acc_mode, open_flag);
2364 if (error)
2365 goto exit;
2366 filp = nameidata_to_filp(nd);
2367 if (!IS_ERR(filp)) {
2368 error = ima_file_check(filp, op->acc_mode);
2369 if (error) {
2370 fput(filp);
2371 filp = ERR_PTR(error);
2374 if (!IS_ERR(filp)) {
2375 if (will_truncate) {
2376 error = handle_truncate(filp);
2377 if (error) {
2378 fput(filp);
2379 filp = ERR_PTR(error);
2383 out:
2384 if (want_write)
2385 mnt_drop_write(nd->path.mnt);
2386 path_put(&nd->path);
2387 return filp;
2389 exit_mutex_unlock:
2390 mutex_unlock(&dir->d_inode->i_mutex);
2391 exit_dput:
2392 path_put_conditional(path, nd);
2393 exit:
2394 filp = ERR_PTR(error);
2395 goto out;
2398 static struct file *path_openat(int dfd, const char *pathname,
2399 struct nameidata *nd, const struct open_flags *op, int flags)
2401 struct file *base = NULL;
2402 struct file *filp;
2403 struct path path;
2404 int error;
2406 filp = get_empty_filp();
2407 if (!filp)
2408 return ERR_PTR(-ENFILE);
2410 filp->f_flags = op->open_flag;
2411 nd->intent.open.file = filp;
2412 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2413 nd->intent.open.create_mode = op->mode;
2415 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2416 if (unlikely(error))
2417 goto out_filp;
2419 current->total_link_count = 0;
2420 error = link_path_walk(pathname, nd);
2421 if (unlikely(error))
2422 goto out_filp;
2424 filp = do_last(nd, &path, op, pathname);
2425 while (unlikely(!filp)) { /* trailing symlink */
2426 struct path link = path;
2427 void *cookie;
2428 if (!(nd->flags & LOOKUP_FOLLOW)) {
2429 path_put_conditional(&path, nd);
2430 path_put(&nd->path);
2431 filp = ERR_PTR(-ELOOP);
2432 break;
2434 nd->flags |= LOOKUP_PARENT;
2435 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2436 error = follow_link(&link, nd, &cookie);
2437 if (unlikely(error))
2438 filp = ERR_PTR(error);
2439 else
2440 filp = do_last(nd, &path, op, pathname);
2441 put_link(nd, &link, cookie);
2443 out:
2444 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2445 path_put(&nd->root);
2446 if (base)
2447 fput(base);
2448 release_open_intent(nd);
2449 return filp;
2451 out_filp:
2452 filp = ERR_PTR(error);
2453 goto out;
2456 struct file *do_filp_open(int dfd, const char *pathname,
2457 const struct open_flags *op, int flags)
2459 struct nameidata nd;
2460 struct file *filp;
2462 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2463 if (unlikely(filp == ERR_PTR(-ECHILD)))
2464 filp = path_openat(dfd, pathname, &nd, op, flags);
2465 if (unlikely(filp == ERR_PTR(-ESTALE)))
2466 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2467 return filp;
2470 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2471 const char *name, const struct open_flags *op, int flags)
2473 struct nameidata nd;
2474 struct file *file;
2476 nd.root.mnt = mnt;
2477 nd.root.dentry = dentry;
2479 flags |= LOOKUP_ROOT;
2481 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2482 return ERR_PTR(-ELOOP);
2484 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2485 if (unlikely(file == ERR_PTR(-ECHILD)))
2486 file = path_openat(-1, name, &nd, op, flags);
2487 if (unlikely(file == ERR_PTR(-ESTALE)))
2488 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2489 return file;
2492 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2494 struct dentry *dentry = ERR_PTR(-EEXIST);
2495 struct nameidata nd;
2496 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2497 if (error)
2498 return ERR_PTR(error);
2501 * Yucky last component or no last component at all?
2502 * (foo/., foo/.., /////)
2504 if (nd.last_type != LAST_NORM)
2505 goto out;
2506 nd.flags &= ~LOOKUP_PARENT;
2507 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2508 nd.intent.open.flags = O_EXCL;
2511 * Do the final lookup.
2513 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2514 dentry = lookup_hash(&nd);
2515 if (IS_ERR(dentry))
2516 goto fail;
2518 if (dentry->d_inode)
2519 goto eexist;
2521 * Special case - lookup gave negative, but... we had foo/bar/
2522 * From the vfs_mknod() POV we just have a negative dentry -
2523 * all is fine. Let's be bastards - you had / on the end, you've
2524 * been asking for (non-existent) directory. -ENOENT for you.
2526 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2527 dput(dentry);
2528 dentry = ERR_PTR(-ENOENT);
2529 goto fail;
2531 *path = nd.path;
2532 return dentry;
2533 eexist:
2534 dput(dentry);
2535 dentry = ERR_PTR(-EEXIST);
2536 fail:
2537 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2538 out:
2539 path_put(&nd.path);
2540 return dentry;
2542 EXPORT_SYMBOL(kern_path_create);
2544 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2546 char *tmp = getname(pathname);
2547 struct dentry *res;
2548 if (IS_ERR(tmp))
2549 return ERR_CAST(tmp);
2550 res = kern_path_create(dfd, tmp, path, is_dir);
2551 putname(tmp);
2552 return res;
2554 EXPORT_SYMBOL(user_path_create);
2556 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2558 int error = may_create(dir, dentry);
2560 if (error)
2561 return error;
2563 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2564 !ns_capable(inode_userns(dir), CAP_MKNOD))
2565 return -EPERM;
2567 if (!dir->i_op->mknod)
2568 return -EPERM;
2570 error = devcgroup_inode_mknod(mode, dev);
2571 if (error)
2572 return error;
2574 error = security_inode_mknod(dir, dentry, mode, dev);
2575 if (error)
2576 return error;
2578 error = dir->i_op->mknod(dir, dentry, mode, dev);
2579 if (!error)
2580 fsnotify_create(dir, dentry);
2581 return error;
2584 static int may_mknod(umode_t mode)
2586 switch (mode & S_IFMT) {
2587 case S_IFREG:
2588 case S_IFCHR:
2589 case S_IFBLK:
2590 case S_IFIFO:
2591 case S_IFSOCK:
2592 case 0: /* zero mode translates to S_IFREG */
2593 return 0;
2594 case S_IFDIR:
2595 return -EPERM;
2596 default:
2597 return -EINVAL;
2601 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2602 unsigned, dev)
2604 struct dentry *dentry;
2605 struct path path;
2606 int error;
2608 if (S_ISDIR(mode))
2609 return -EPERM;
2611 dentry = user_path_create(dfd, filename, &path, 0);
2612 if (IS_ERR(dentry))
2613 return PTR_ERR(dentry);
2615 if (!IS_POSIXACL(path.dentry->d_inode))
2616 mode &= ~current_umask();
2617 error = may_mknod(mode);
2618 if (error)
2619 goto out_dput;
2620 error = mnt_want_write(path.mnt);
2621 if (error)
2622 goto out_dput;
2623 error = security_path_mknod(&path, dentry, mode, dev);
2624 if (error)
2625 goto out_drop_write;
2626 switch (mode & S_IFMT) {
2627 case 0: case S_IFREG:
2628 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2629 break;
2630 case S_IFCHR: case S_IFBLK:
2631 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2632 new_decode_dev(dev));
2633 break;
2634 case S_IFIFO: case S_IFSOCK:
2635 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2636 break;
2638 out_drop_write:
2639 mnt_drop_write(path.mnt);
2640 out_dput:
2641 dput(dentry);
2642 mutex_unlock(&path.dentry->d_inode->i_mutex);
2643 path_put(&path);
2645 return error;
2648 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2650 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2653 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2655 int error = may_create(dir, dentry);
2656 unsigned max_links = dir->i_sb->s_max_links;
2658 if (error)
2659 return error;
2661 if (!dir->i_op->mkdir)
2662 return -EPERM;
2664 mode &= (S_IRWXUGO|S_ISVTX);
2665 error = security_inode_mkdir(dir, dentry, mode);
2666 if (error)
2667 return error;
2669 if (max_links && dir->i_nlink >= max_links)
2670 return -EMLINK;
2672 error = dir->i_op->mkdir(dir, dentry, mode);
2673 if (!error)
2674 fsnotify_mkdir(dir, dentry);
2675 return error;
2678 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2680 struct dentry *dentry;
2681 struct path path;
2682 int error;
2684 dentry = user_path_create(dfd, pathname, &path, 1);
2685 if (IS_ERR(dentry))
2686 return PTR_ERR(dentry);
2688 if (!IS_POSIXACL(path.dentry->d_inode))
2689 mode &= ~current_umask();
2690 error = mnt_want_write(path.mnt);
2691 if (error)
2692 goto out_dput;
2693 error = security_path_mkdir(&path, dentry, mode);
2694 if (error)
2695 goto out_drop_write;
2696 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2697 out_drop_write:
2698 mnt_drop_write(path.mnt);
2699 out_dput:
2700 dput(dentry);
2701 mutex_unlock(&path.dentry->d_inode->i_mutex);
2702 path_put(&path);
2703 return error;
2706 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2708 return sys_mkdirat(AT_FDCWD, pathname, mode);
2712 * The dentry_unhash() helper will try to drop the dentry early: we
2713 * should have a usage count of 1 if we're the only user of this
2714 * dentry, and if that is true (possibly after pruning the dcache),
2715 * then we drop the dentry now.
2717 * A low-level filesystem can, if it choses, legally
2718 * do a
2720 * if (!d_unhashed(dentry))
2721 * return -EBUSY;
2723 * if it cannot handle the case of removing a directory
2724 * that is still in use by something else..
2726 void dentry_unhash(struct dentry *dentry)
2728 shrink_dcache_parent(dentry);
2729 spin_lock(&dentry->d_lock);
2730 if (dentry->d_count == 1)
2731 __d_drop(dentry);
2732 spin_unlock(&dentry->d_lock);
2735 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2737 int error = may_delete(dir, dentry, 1);
2739 if (error)
2740 return error;
2742 if (!dir->i_op->rmdir)
2743 return -EPERM;
2745 dget(dentry);
2746 mutex_lock(&dentry->d_inode->i_mutex);
2748 error = -EBUSY;
2749 if (d_mountpoint(dentry))
2750 goto out;
2752 error = security_inode_rmdir(dir, dentry);
2753 if (error)
2754 goto out;
2756 shrink_dcache_parent(dentry);
2757 error = dir->i_op->rmdir(dir, dentry);
2758 if (error)
2759 goto out;
2761 dentry->d_inode->i_flags |= S_DEAD;
2762 dont_mount(dentry);
2764 out:
2765 mutex_unlock(&dentry->d_inode->i_mutex);
2766 dput(dentry);
2767 if (!error)
2768 d_delete(dentry);
2769 return error;
2772 static long do_rmdir(int dfd, const char __user *pathname)
2774 int error = 0;
2775 char * name;
2776 struct dentry *dentry;
2777 struct nameidata nd;
2779 error = user_path_parent(dfd, pathname, &nd, &name);
2780 if (error)
2781 return error;
2783 switch(nd.last_type) {
2784 case LAST_DOTDOT:
2785 error = -ENOTEMPTY;
2786 goto exit1;
2787 case LAST_DOT:
2788 error = -EINVAL;
2789 goto exit1;
2790 case LAST_ROOT:
2791 error = -EBUSY;
2792 goto exit1;
2795 nd.flags &= ~LOOKUP_PARENT;
2797 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2798 dentry = lookup_hash(&nd);
2799 error = PTR_ERR(dentry);
2800 if (IS_ERR(dentry))
2801 goto exit2;
2802 if (!dentry->d_inode) {
2803 error = -ENOENT;
2804 goto exit3;
2806 error = mnt_want_write(nd.path.mnt);
2807 if (error)
2808 goto exit3;
2809 error = security_path_rmdir(&nd.path, dentry);
2810 if (error)
2811 goto exit4;
2812 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2813 exit4:
2814 mnt_drop_write(nd.path.mnt);
2815 exit3:
2816 dput(dentry);
2817 exit2:
2818 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2819 exit1:
2820 path_put(&nd.path);
2821 putname(name);
2822 return error;
2825 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2827 return do_rmdir(AT_FDCWD, pathname);
2830 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2832 int error = may_delete(dir, dentry, 0);
2834 if (error)
2835 return error;
2837 if (!dir->i_op->unlink)
2838 return -EPERM;
2840 mutex_lock(&dentry->d_inode->i_mutex);
2841 if (d_mountpoint(dentry))
2842 error = -EBUSY;
2843 else {
2844 error = security_inode_unlink(dir, dentry);
2845 if (!error) {
2846 error = dir->i_op->unlink(dir, dentry);
2847 if (!error)
2848 dont_mount(dentry);
2851 mutex_unlock(&dentry->d_inode->i_mutex);
2853 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2854 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2855 fsnotify_link_count(dentry->d_inode);
2856 d_delete(dentry);
2859 return error;
2863 * Make sure that the actual truncation of the file will occur outside its
2864 * directory's i_mutex. Truncate can take a long time if there is a lot of
2865 * writeout happening, and we don't want to prevent access to the directory
2866 * while waiting on the I/O.
2868 static long do_unlinkat(int dfd, const char __user *pathname)
2870 int error;
2871 char *name;
2872 struct dentry *dentry;
2873 struct nameidata nd;
2874 struct inode *inode = NULL;
2876 error = user_path_parent(dfd, pathname, &nd, &name);
2877 if (error)
2878 return error;
2880 error = -EISDIR;
2881 if (nd.last_type != LAST_NORM)
2882 goto exit1;
2884 nd.flags &= ~LOOKUP_PARENT;
2886 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2887 dentry = lookup_hash(&nd);
2888 error = PTR_ERR(dentry);
2889 if (!IS_ERR(dentry)) {
2890 /* Why not before? Because we want correct error value */
2891 if (nd.last.name[nd.last.len])
2892 goto slashes;
2893 inode = dentry->d_inode;
2894 if (!inode)
2895 goto slashes;
2896 ihold(inode);
2897 error = mnt_want_write(nd.path.mnt);
2898 if (error)
2899 goto exit2;
2900 error = security_path_unlink(&nd.path, dentry);
2901 if (error)
2902 goto exit3;
2903 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2904 exit3:
2905 mnt_drop_write(nd.path.mnt);
2906 exit2:
2907 dput(dentry);
2909 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2910 if (inode)
2911 iput(inode); /* truncate the inode here */
2912 exit1:
2913 path_put(&nd.path);
2914 putname(name);
2915 return error;
2917 slashes:
2918 error = !dentry->d_inode ? -ENOENT :
2919 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2920 goto exit2;
2923 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2925 if ((flag & ~AT_REMOVEDIR) != 0)
2926 return -EINVAL;
2928 if (flag & AT_REMOVEDIR)
2929 return do_rmdir(dfd, pathname);
2931 return do_unlinkat(dfd, pathname);
2934 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2936 return do_unlinkat(AT_FDCWD, pathname);
2939 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2941 int error = may_create(dir, dentry);
2943 if (error)
2944 return error;
2946 if (!dir->i_op->symlink)
2947 return -EPERM;
2949 error = security_inode_symlink(dir, dentry, oldname);
2950 if (error)
2951 return error;
2953 error = dir->i_op->symlink(dir, dentry, oldname);
2954 if (!error)
2955 fsnotify_create(dir, dentry);
2956 return error;
2959 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2960 int, newdfd, const char __user *, newname)
2962 int error;
2963 char *from;
2964 struct dentry *dentry;
2965 struct path path;
2967 from = getname(oldname);
2968 if (IS_ERR(from))
2969 return PTR_ERR(from);
2971 dentry = user_path_create(newdfd, newname, &path, 0);
2972 error = PTR_ERR(dentry);
2973 if (IS_ERR(dentry))
2974 goto out_putname;
2976 error = mnt_want_write(path.mnt);
2977 if (error)
2978 goto out_dput;
2979 error = security_path_symlink(&path, dentry, from);
2980 if (error)
2981 goto out_drop_write;
2982 error = vfs_symlink(path.dentry->d_inode, dentry, from);
2983 out_drop_write:
2984 mnt_drop_write(path.mnt);
2985 out_dput:
2986 dput(dentry);
2987 mutex_unlock(&path.dentry->d_inode->i_mutex);
2988 path_put(&path);
2989 out_putname:
2990 putname(from);
2991 return error;
2994 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2996 return sys_symlinkat(oldname, AT_FDCWD, newname);
2999 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3001 struct inode *inode = old_dentry->d_inode;
3002 unsigned max_links = dir->i_sb->s_max_links;
3003 int error;
3005 if (!inode)
3006 return -ENOENT;
3008 error = may_create(dir, new_dentry);
3009 if (error)
3010 return error;
3012 if (dir->i_sb != inode->i_sb)
3013 return -EXDEV;
3016 * A link to an append-only or immutable file cannot be created.
3018 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3019 return -EPERM;
3020 if (!dir->i_op->link)
3021 return -EPERM;
3022 if (S_ISDIR(inode->i_mode))
3023 return -EPERM;
3025 error = security_inode_link(old_dentry, dir, new_dentry);
3026 if (error)
3027 return error;
3029 mutex_lock(&inode->i_mutex);
3030 /* Make sure we don't allow creating hardlink to an unlinked file */
3031 if (inode->i_nlink == 0)
3032 error = -ENOENT;
3033 else if (max_links && inode->i_nlink >= max_links)
3034 error = -EMLINK;
3035 else
3036 error = dir->i_op->link(old_dentry, dir, new_dentry);
3037 mutex_unlock(&inode->i_mutex);
3038 if (!error)
3039 fsnotify_link(dir, inode, new_dentry);
3040 return error;
3044 * Hardlinks are often used in delicate situations. We avoid
3045 * security-related surprises by not following symlinks on the
3046 * newname. --KAB
3048 * We don't follow them on the oldname either to be compatible
3049 * with linux 2.0, and to avoid hard-linking to directories
3050 * and other special files. --ADM
3052 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3053 int, newdfd, const char __user *, newname, int, flags)
3055 struct dentry *new_dentry;
3056 struct path old_path, new_path;
3057 int how = 0;
3058 int error;
3060 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3061 return -EINVAL;
3063 * To use null names we require CAP_DAC_READ_SEARCH
3064 * This ensures that not everyone will be able to create
3065 * handlink using the passed filedescriptor.
3067 if (flags & AT_EMPTY_PATH) {
3068 if (!capable(CAP_DAC_READ_SEARCH))
3069 return -ENOENT;
3070 how = LOOKUP_EMPTY;
3073 if (flags & AT_SYMLINK_FOLLOW)
3074 how |= LOOKUP_FOLLOW;
3076 error = user_path_at(olddfd, oldname, how, &old_path);
3077 if (error)
3078 return error;
3080 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3081 error = PTR_ERR(new_dentry);
3082 if (IS_ERR(new_dentry))
3083 goto out;
3085 error = -EXDEV;
3086 if (old_path.mnt != new_path.mnt)
3087 goto out_dput;
3088 error = mnt_want_write(new_path.mnt);
3089 if (error)
3090 goto out_dput;
3091 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3092 if (error)
3093 goto out_drop_write;
3094 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3095 out_drop_write:
3096 mnt_drop_write(new_path.mnt);
3097 out_dput:
3098 dput(new_dentry);
3099 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3100 path_put(&new_path);
3101 out:
3102 path_put(&old_path);
3104 return error;
3107 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3109 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3113 * The worst of all namespace operations - renaming directory. "Perverted"
3114 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3115 * Problems:
3116 * a) we can get into loop creation. Check is done in is_subdir().
3117 * b) race potential - two innocent renames can create a loop together.
3118 * That's where 4.4 screws up. Current fix: serialization on
3119 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3120 * story.
3121 * c) we have to lock _three_ objects - parents and victim (if it exists).
3122 * And that - after we got ->i_mutex on parents (until then we don't know
3123 * whether the target exists). Solution: try to be smart with locking
3124 * order for inodes. We rely on the fact that tree topology may change
3125 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3126 * move will be locked. Thus we can rank directories by the tree
3127 * (ancestors first) and rank all non-directories after them.
3128 * That works since everybody except rename does "lock parent, lookup,
3129 * lock child" and rename is under ->s_vfs_rename_mutex.
3130 * HOWEVER, it relies on the assumption that any object with ->lookup()
3131 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3132 * we'd better make sure that there's no link(2) for them.
3133 * d) conversion from fhandle to dentry may come in the wrong moment - when
3134 * we are removing the target. Solution: we will have to grab ->i_mutex
3135 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3136 * ->i_mutex on parents, which works but leads to some truly excessive
3137 * locking].
3139 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3140 struct inode *new_dir, struct dentry *new_dentry)
3142 int error = 0;
3143 struct inode *target = new_dentry->d_inode;
3144 unsigned max_links = new_dir->i_sb->s_max_links;
3147 * If we are going to change the parent - check write permissions,
3148 * we'll need to flip '..'.
3150 if (new_dir != old_dir) {
3151 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3152 if (error)
3153 return error;
3156 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3157 if (error)
3158 return error;
3160 dget(new_dentry);
3161 if (target)
3162 mutex_lock(&target->i_mutex);
3164 error = -EBUSY;
3165 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3166 goto out;
3168 error = -EMLINK;
3169 if (max_links && !target && new_dir != old_dir &&
3170 new_dir->i_nlink >= max_links)
3171 goto out;
3173 if (target)
3174 shrink_dcache_parent(new_dentry);
3175 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3176 if (error)
3177 goto out;
3179 if (target) {
3180 target->i_flags |= S_DEAD;
3181 dont_mount(new_dentry);
3183 out:
3184 if (target)
3185 mutex_unlock(&target->i_mutex);
3186 dput(new_dentry);
3187 if (!error)
3188 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3189 d_move(old_dentry,new_dentry);
3190 return error;
3193 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3194 struct inode *new_dir, struct dentry *new_dentry)
3196 struct inode *target = new_dentry->d_inode;
3197 int error;
3199 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3200 if (error)
3201 return error;
3203 dget(new_dentry);
3204 if (target)
3205 mutex_lock(&target->i_mutex);
3207 error = -EBUSY;
3208 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3209 goto out;
3211 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3212 if (error)
3213 goto out;
3215 if (target)
3216 dont_mount(new_dentry);
3217 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3218 d_move(old_dentry, new_dentry);
3219 out:
3220 if (target)
3221 mutex_unlock(&target->i_mutex);
3222 dput(new_dentry);
3223 return error;
3226 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3227 struct inode *new_dir, struct dentry *new_dentry)
3229 int error;
3230 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3231 const unsigned char *old_name;
3233 if (old_dentry->d_inode == new_dentry->d_inode)
3234 return 0;
3236 error = may_delete(old_dir, old_dentry, is_dir);
3237 if (error)
3238 return error;
3240 if (!new_dentry->d_inode)
3241 error = may_create(new_dir, new_dentry);
3242 else
3243 error = may_delete(new_dir, new_dentry, is_dir);
3244 if (error)
3245 return error;
3247 if (!old_dir->i_op->rename)
3248 return -EPERM;
3250 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3252 if (is_dir)
3253 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3254 else
3255 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3256 if (!error)
3257 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3258 new_dentry->d_inode, old_dentry);
3259 fsnotify_oldname_free(old_name);
3261 return error;
3264 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3265 int, newdfd, const char __user *, newname)
3267 struct dentry *old_dir, *new_dir;
3268 struct dentry *old_dentry, *new_dentry;
3269 struct dentry *trap;
3270 struct nameidata oldnd, newnd;
3271 char *from;
3272 char *to;
3273 int error;
3275 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3276 if (error)
3277 goto exit;
3279 error = user_path_parent(newdfd, newname, &newnd, &to);
3280 if (error)
3281 goto exit1;
3283 error = -EXDEV;
3284 if (oldnd.path.mnt != newnd.path.mnt)
3285 goto exit2;
3287 old_dir = oldnd.path.dentry;
3288 error = -EBUSY;
3289 if (oldnd.last_type != LAST_NORM)
3290 goto exit2;
3292 new_dir = newnd.path.dentry;
3293 if (newnd.last_type != LAST_NORM)
3294 goto exit2;
3296 oldnd.flags &= ~LOOKUP_PARENT;
3297 newnd.flags &= ~LOOKUP_PARENT;
3298 newnd.flags |= LOOKUP_RENAME_TARGET;
3300 trap = lock_rename(new_dir, old_dir);
3302 old_dentry = lookup_hash(&oldnd);
3303 error = PTR_ERR(old_dentry);
3304 if (IS_ERR(old_dentry))
3305 goto exit3;
3306 /* source must exist */
3307 error = -ENOENT;
3308 if (!old_dentry->d_inode)
3309 goto exit4;
3310 /* unless the source is a directory trailing slashes give -ENOTDIR */
3311 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3312 error = -ENOTDIR;
3313 if (oldnd.last.name[oldnd.last.len])
3314 goto exit4;
3315 if (newnd.last.name[newnd.last.len])
3316 goto exit4;
3318 /* source should not be ancestor of target */
3319 error = -EINVAL;
3320 if (old_dentry == trap)
3321 goto exit4;
3322 new_dentry = lookup_hash(&newnd);
3323 error = PTR_ERR(new_dentry);
3324 if (IS_ERR(new_dentry))
3325 goto exit4;
3326 /* target should not be an ancestor of source */
3327 error = -ENOTEMPTY;
3328 if (new_dentry == trap)
3329 goto exit5;
3331 error = mnt_want_write(oldnd.path.mnt);
3332 if (error)
3333 goto exit5;
3334 error = security_path_rename(&oldnd.path, old_dentry,
3335 &newnd.path, new_dentry);
3336 if (error)
3337 goto exit6;
3338 error = vfs_rename(old_dir->d_inode, old_dentry,
3339 new_dir->d_inode, new_dentry);
3340 exit6:
3341 mnt_drop_write(oldnd.path.mnt);
3342 exit5:
3343 dput(new_dentry);
3344 exit4:
3345 dput(old_dentry);
3346 exit3:
3347 unlock_rename(new_dir, old_dir);
3348 exit2:
3349 path_put(&newnd.path);
3350 putname(to);
3351 exit1:
3352 path_put(&oldnd.path);
3353 putname(from);
3354 exit:
3355 return error;
3358 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3360 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3363 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3365 int len;
3367 len = PTR_ERR(link);
3368 if (IS_ERR(link))
3369 goto out;
3371 len = strlen(link);
3372 if (len > (unsigned) buflen)
3373 len = buflen;
3374 if (copy_to_user(buffer, link, len))
3375 len = -EFAULT;
3376 out:
3377 return len;
3381 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3382 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3383 * using) it for any given inode is up to filesystem.
3385 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3387 struct nameidata nd;
3388 void *cookie;
3389 int res;
3391 nd.depth = 0;
3392 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3393 if (IS_ERR(cookie))
3394 return PTR_ERR(cookie);
3396 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3397 if (dentry->d_inode->i_op->put_link)
3398 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3399 return res;
3402 int vfs_follow_link(struct nameidata *nd, const char *link)
3404 return __vfs_follow_link(nd, link);
3407 /* get the link contents into pagecache */
3408 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3410 char *kaddr;
3411 struct page *page;
3412 struct address_space *mapping = dentry->d_inode->i_mapping;
3413 page = read_mapping_page(mapping, 0, NULL);
3414 if (IS_ERR(page))
3415 return (char*)page;
3416 *ppage = page;
3417 kaddr = kmap(page);
3418 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3419 return kaddr;
3422 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3424 struct page *page = NULL;
3425 char *s = page_getlink(dentry, &page);
3426 int res = vfs_readlink(dentry,buffer,buflen,s);
3427 if (page) {
3428 kunmap(page);
3429 page_cache_release(page);
3431 return res;
3434 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3436 struct page *page = NULL;
3437 nd_set_link(nd, page_getlink(dentry, &page));
3438 return page;
3441 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3443 struct page *page = cookie;
3445 if (page) {
3446 kunmap(page);
3447 page_cache_release(page);
3452 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3454 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3456 struct address_space *mapping = inode->i_mapping;
3457 struct page *page;
3458 void *fsdata;
3459 int err;
3460 char *kaddr;
3461 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3462 if (nofs)
3463 flags |= AOP_FLAG_NOFS;
3465 retry:
3466 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3467 flags, &page, &fsdata);
3468 if (err)
3469 goto fail;
3471 kaddr = kmap_atomic(page);
3472 memcpy(kaddr, symname, len-1);
3473 kunmap_atomic(kaddr);
3475 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3476 page, fsdata);
3477 if (err < 0)
3478 goto fail;
3479 if (err < len-1)
3480 goto retry;
3482 mark_inode_dirty(inode);
3483 return 0;
3484 fail:
3485 return err;
3488 int page_symlink(struct inode *inode, const char *symname, int len)
3490 return __page_symlink(inode, symname, len,
3491 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3494 const struct inode_operations page_symlink_inode_operations = {
3495 .readlink = generic_readlink,
3496 .follow_link = page_follow_link_light,
3497 .put_link = page_put_link,
3500 EXPORT_SYMBOL(user_path_at);
3501 EXPORT_SYMBOL(follow_down_one);
3502 EXPORT_SYMBOL(follow_down);
3503 EXPORT_SYMBOL(follow_up);
3504 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3505 EXPORT_SYMBOL(getname);
3506 EXPORT_SYMBOL(lock_rename);
3507 EXPORT_SYMBOL(lookup_one_len);
3508 EXPORT_SYMBOL(page_follow_link_light);
3509 EXPORT_SYMBOL(page_put_link);
3510 EXPORT_SYMBOL(page_readlink);
3511 EXPORT_SYMBOL(__page_symlink);
3512 EXPORT_SYMBOL(page_symlink);
3513 EXPORT_SYMBOL(page_symlink_inode_operations);
3514 EXPORT_SYMBOL(kern_path);
3515 EXPORT_SYMBOL(vfs_path_lookup);
3516 EXPORT_SYMBOL(inode_permission);
3517 EXPORT_SYMBOL(unlock_rename);
3518 EXPORT_SYMBOL(vfs_create);
3519 EXPORT_SYMBOL(vfs_follow_link);
3520 EXPORT_SYMBOL(vfs_link);
3521 EXPORT_SYMBOL(vfs_mkdir);
3522 EXPORT_SYMBOL(vfs_mknod);
3523 EXPORT_SYMBOL(generic_permission);
3524 EXPORT_SYMBOL(vfs_readlink);
3525 EXPORT_SYMBOL(vfs_rename);
3526 EXPORT_SYMBOL(vfs_rmdir);
3527 EXPORT_SYMBOL(vfs_symlink);
3528 EXPORT_SYMBOL(vfs_unlink);
3529 EXPORT_SYMBOL(dentry_unhash);
3530 EXPORT_SYMBOL(generic_readlink);