1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
71 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
72 * for saving names from getname(). */
73 #define AUDIT_NAMES 20
75 /* Indicates that audit should log the full pathname. */
76 #define AUDIT_NAME_FULL -1
78 /* no execve audit message should be longer than this (userspace limits) */
79 #define MAX_EXECVE_AUDIT_LEN 7500
81 /* number of audit rules */
84 /* determines whether we collect data for signals sent */
87 /* When fs/namei.c:getname() is called, we store the pointer in name and
88 * we don't let putname() free it (instead we free all of the saved
89 * pointers at syscall exit time).
91 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
94 int name_len
; /* number of name's characters to log */
95 unsigned name_put
; /* call __putname() for this name */
105 struct audit_aux_data
{
106 struct audit_aux_data
*next
;
110 #define AUDIT_AUX_IPCPERM 0
112 /* Number of target pids per aux struct. */
113 #define AUDIT_AUX_PIDS 16
115 struct audit_aux_data_mq_open
{
116 struct audit_aux_data d
;
122 struct audit_aux_data_mq_sendrecv
{
123 struct audit_aux_data d
;
126 unsigned int msg_prio
;
127 struct timespec abs_timeout
;
130 struct audit_aux_data_mq_notify
{
131 struct audit_aux_data d
;
133 struct sigevent notification
;
136 struct audit_aux_data_mq_getsetattr
{
137 struct audit_aux_data d
;
139 struct mq_attr mqstat
;
142 struct audit_aux_data_ipcctl
{
143 struct audit_aux_data d
;
145 unsigned long qbytes
;
152 struct audit_aux_data_execve
{
153 struct audit_aux_data d
;
156 struct mm_struct
*mm
;
159 struct audit_aux_data_socketcall
{
160 struct audit_aux_data d
;
162 unsigned long args
[0];
165 struct audit_aux_data_sockaddr
{
166 struct audit_aux_data d
;
171 struct audit_aux_data_fd_pair
{
172 struct audit_aux_data d
;
176 struct audit_aux_data_pids
{
177 struct audit_aux_data d
;
178 pid_t target_pid
[AUDIT_AUX_PIDS
];
179 uid_t target_auid
[AUDIT_AUX_PIDS
];
180 uid_t target_uid
[AUDIT_AUX_PIDS
];
181 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
182 u32 target_sid
[AUDIT_AUX_PIDS
];
183 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
187 struct audit_tree_refs
{
188 struct audit_tree_refs
*next
;
189 struct audit_chunk
*c
[31];
192 /* The per-task audit context. */
193 struct audit_context
{
194 int dummy
; /* must be the first element */
195 int in_syscall
; /* 1 if task is in a syscall */
196 enum audit_state state
;
197 unsigned int serial
; /* serial number for record */
198 struct timespec ctime
; /* time of syscall entry */
199 int major
; /* syscall number */
200 unsigned long argv
[4]; /* syscall arguments */
201 int return_valid
; /* return code is valid */
202 long return_code
;/* syscall return code */
203 int auditable
; /* 1 if record should be written */
205 struct audit_names names
[AUDIT_NAMES
];
206 char * filterkey
; /* key for rule that triggered record */
208 struct audit_context
*previous
; /* For nested syscalls */
209 struct audit_aux_data
*aux
;
210 struct audit_aux_data
*aux_pids
;
212 /* Save things to print about task_struct */
214 uid_t uid
, euid
, suid
, fsuid
;
215 gid_t gid
, egid
, sgid
, fsgid
;
216 unsigned long personality
;
222 unsigned int target_sessionid
;
224 char target_comm
[TASK_COMM_LEN
];
226 struct audit_tree_refs
*trees
, *first_trees
;
235 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
236 static inline int open_arg(int flags
, int mask
)
238 int n
= ACC_MODE(flags
);
239 if (flags
& (O_TRUNC
| O_CREAT
))
240 n
|= AUDIT_PERM_WRITE
;
244 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
246 unsigned n
= ctx
->major
;
247 switch (audit_classify_syscall(ctx
->arch
, n
)) {
249 if ((mask
& AUDIT_PERM_WRITE
) &&
250 audit_match_class(AUDIT_CLASS_WRITE
, n
))
252 if ((mask
& AUDIT_PERM_READ
) &&
253 audit_match_class(AUDIT_CLASS_READ
, n
))
255 if ((mask
& AUDIT_PERM_ATTR
) &&
256 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
259 case 1: /* 32bit on biarch */
260 if ((mask
& AUDIT_PERM_WRITE
) &&
261 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
263 if ((mask
& AUDIT_PERM_READ
) &&
264 audit_match_class(AUDIT_CLASS_READ_32
, n
))
266 if ((mask
& AUDIT_PERM_ATTR
) &&
267 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
271 return mask
& ACC_MODE(ctx
->argv
[1]);
273 return mask
& ACC_MODE(ctx
->argv
[2]);
274 case 4: /* socketcall */
275 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
277 return mask
& AUDIT_PERM_EXEC
;
283 static int audit_match_filetype(struct audit_context
*ctx
, int which
)
285 unsigned index
= which
& ~S_IFMT
;
286 mode_t mode
= which
& S_IFMT
;
287 if (index
>= ctx
->name_count
)
289 if (ctx
->names
[index
].ino
== -1)
291 if ((ctx
->names
[index
].mode
^ mode
) & S_IFMT
)
297 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
298 * ->first_trees points to its beginning, ->trees - to the current end of data.
299 * ->tree_count is the number of free entries in array pointed to by ->trees.
300 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
301 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
302 * it's going to remain 1-element for almost any setup) until we free context itself.
303 * References in it _are_ dropped - at the same time we free/drop aux stuff.
306 #ifdef CONFIG_AUDIT_TREE
307 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
309 struct audit_tree_refs
*p
= ctx
->trees
;
310 int left
= ctx
->tree_count
;
312 p
->c
[--left
] = chunk
;
313 ctx
->tree_count
= left
;
322 ctx
->tree_count
= 30;
328 static int grow_tree_refs(struct audit_context
*ctx
)
330 struct audit_tree_refs
*p
= ctx
->trees
;
331 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
337 p
->next
= ctx
->trees
;
339 ctx
->first_trees
= ctx
->trees
;
340 ctx
->tree_count
= 31;
345 static void unroll_tree_refs(struct audit_context
*ctx
,
346 struct audit_tree_refs
*p
, int count
)
348 #ifdef CONFIG_AUDIT_TREE
349 struct audit_tree_refs
*q
;
352 /* we started with empty chain */
353 p
= ctx
->first_trees
;
355 /* if the very first allocation has failed, nothing to do */
360 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
362 audit_put_chunk(q
->c
[n
]);
366 while (n
-- > ctx
->tree_count
) {
367 audit_put_chunk(q
->c
[n
]);
371 ctx
->tree_count
= count
;
375 static void free_tree_refs(struct audit_context
*ctx
)
377 struct audit_tree_refs
*p
, *q
;
378 for (p
= ctx
->first_trees
; p
; p
= q
) {
384 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
386 #ifdef CONFIG_AUDIT_TREE
387 struct audit_tree_refs
*p
;
392 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
393 for (n
= 0; n
< 31; n
++)
394 if (audit_tree_match(p
->c
[n
], tree
))
399 for (n
= ctx
->tree_count
; n
< 31; n
++)
400 if (audit_tree_match(p
->c
[n
], tree
))
407 /* Determine if any context name data matches a rule's watch data */
408 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
410 static int audit_filter_rules(struct task_struct
*tsk
,
411 struct audit_krule
*rule
,
412 struct audit_context
*ctx
,
413 struct audit_names
*name
,
414 enum audit_state
*state
)
416 int i
, j
, need_sid
= 1;
419 for (i
= 0; i
< rule
->field_count
; i
++) {
420 struct audit_field
*f
= &rule
->fields
[i
];
425 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
430 ctx
->ppid
= sys_getppid();
431 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
435 result
= audit_comparator(tsk
->uid
, f
->op
, f
->val
);
438 result
= audit_comparator(tsk
->euid
, f
->op
, f
->val
);
441 result
= audit_comparator(tsk
->suid
, f
->op
, f
->val
);
444 result
= audit_comparator(tsk
->fsuid
, f
->op
, f
->val
);
447 result
= audit_comparator(tsk
->gid
, f
->op
, f
->val
);
450 result
= audit_comparator(tsk
->egid
, f
->op
, f
->val
);
453 result
= audit_comparator(tsk
->sgid
, f
->op
, f
->val
);
456 result
= audit_comparator(tsk
->fsgid
, f
->op
, f
->val
);
459 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
463 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
467 if (ctx
&& ctx
->return_valid
)
468 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
471 if (ctx
&& ctx
->return_valid
) {
473 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
475 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
480 result
= audit_comparator(MAJOR(name
->dev
),
483 for (j
= 0; j
< ctx
->name_count
; j
++) {
484 if (audit_comparator(MAJOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
493 result
= audit_comparator(MINOR(name
->dev
),
496 for (j
= 0; j
< ctx
->name_count
; j
++) {
497 if (audit_comparator(MINOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
506 result
= (name
->ino
== f
->val
);
508 for (j
= 0; j
< ctx
->name_count
; j
++) {
509 if (audit_comparator(ctx
->names
[j
].ino
, f
->op
, f
->val
)) {
517 if (name
&& rule
->watch
->ino
!= (unsigned long)-1)
518 result
= (name
->dev
== rule
->watch
->dev
&&
519 name
->ino
== rule
->watch
->ino
);
523 result
= match_tree_refs(ctx
, rule
->tree
);
528 result
= audit_comparator(tsk
->loginuid
, f
->op
, f
->val
);
530 case AUDIT_SUBJ_USER
:
531 case AUDIT_SUBJ_ROLE
:
532 case AUDIT_SUBJ_TYPE
:
535 /* NOTE: this may return negative values indicating
536 a temporary error. We simply treat this as a
537 match for now to avoid losing information that
538 may be wanted. An error message will also be
542 security_task_getsecid(tsk
, &sid
);
545 result
= security_audit_rule_match(sid
, f
->type
,
554 case AUDIT_OBJ_LEV_LOW
:
555 case AUDIT_OBJ_LEV_HIGH
:
556 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
559 /* Find files that match */
561 result
= security_audit_rule_match(
562 name
->osid
, f
->type
, f
->op
,
565 for (j
= 0; j
< ctx
->name_count
; j
++) {
566 if (security_audit_rule_match(
575 /* Find ipc objects that match */
577 struct audit_aux_data
*aux
;
578 for (aux
= ctx
->aux
; aux
;
580 if (aux
->type
== AUDIT_IPC
) {
581 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
582 if (security_audit_rule_match(axi
->osid
, f
->type
, f
->op
, f
->lsm_rule
, ctx
)) {
596 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
598 case AUDIT_FILTERKEY
:
599 /* ignore this field for filtering */
603 result
= audit_match_perm(ctx
, f
->val
);
606 result
= audit_match_filetype(ctx
, f
->val
);
614 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
615 switch (rule
->action
) {
616 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
617 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
622 /* At process creation time, we can determine if system-call auditing is
623 * completely disabled for this task. Since we only have the task
624 * structure at this point, we can only check uid and gid.
626 static enum audit_state
audit_filter_task(struct task_struct
*tsk
)
628 struct audit_entry
*e
;
629 enum audit_state state
;
632 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
633 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
, &state
)) {
639 return AUDIT_BUILD_CONTEXT
;
642 /* At syscall entry and exit time, this filter is called if the
643 * audit_state is not low enough that auditing cannot take place, but is
644 * also not high enough that we already know we have to write an audit
645 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
647 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
648 struct audit_context
*ctx
,
649 struct list_head
*list
)
651 struct audit_entry
*e
;
652 enum audit_state state
;
654 if (audit_pid
&& tsk
->tgid
== audit_pid
)
655 return AUDIT_DISABLED
;
658 if (!list_empty(list
)) {
659 int word
= AUDIT_WORD(ctx
->major
);
660 int bit
= AUDIT_BIT(ctx
->major
);
662 list_for_each_entry_rcu(e
, list
, list
) {
663 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
664 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
672 return AUDIT_BUILD_CONTEXT
;
675 /* At syscall exit time, this filter is called if any audit_names[] have been
676 * collected during syscall processing. We only check rules in sublists at hash
677 * buckets applicable to the inode numbers in audit_names[].
678 * Regarding audit_state, same rules apply as for audit_filter_syscall().
680 enum audit_state
audit_filter_inodes(struct task_struct
*tsk
,
681 struct audit_context
*ctx
)
684 struct audit_entry
*e
;
685 enum audit_state state
;
687 if (audit_pid
&& tsk
->tgid
== audit_pid
)
688 return AUDIT_DISABLED
;
691 for (i
= 0; i
< ctx
->name_count
; i
++) {
692 int word
= AUDIT_WORD(ctx
->major
);
693 int bit
= AUDIT_BIT(ctx
->major
);
694 struct audit_names
*n
= &ctx
->names
[i
];
695 int h
= audit_hash_ino((u32
)n
->ino
);
696 struct list_head
*list
= &audit_inode_hash
[h
];
698 if (list_empty(list
))
701 list_for_each_entry_rcu(e
, list
, list
) {
702 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
703 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
)) {
710 return AUDIT_BUILD_CONTEXT
;
713 void audit_set_auditable(struct audit_context
*ctx
)
718 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
722 struct audit_context
*context
= tsk
->audit_context
;
724 if (likely(!context
))
726 context
->return_valid
= return_valid
;
729 * we need to fix up the return code in the audit logs if the actual
730 * return codes are later going to be fixed up by the arch specific
733 * This is actually a test for:
734 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
735 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
737 * but is faster than a bunch of ||
739 if (unlikely(return_code
<= -ERESTARTSYS
) &&
740 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
741 (return_code
!= -ENOIOCTLCMD
))
742 context
->return_code
= -EINTR
;
744 context
->return_code
= return_code
;
746 if (context
->in_syscall
&& !context
->dummy
&& !context
->auditable
) {
747 enum audit_state state
;
749 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
750 if (state
== AUDIT_RECORD_CONTEXT
) {
751 context
->auditable
= 1;
755 state
= audit_filter_inodes(tsk
, context
);
756 if (state
== AUDIT_RECORD_CONTEXT
)
757 context
->auditable
= 1;
763 tsk
->audit_context
= NULL
;
767 static inline void audit_free_names(struct audit_context
*context
)
772 if (context
->auditable
773 ||context
->put_count
+ context
->ino_count
!= context
->name_count
) {
774 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
775 " name_count=%d put_count=%d"
776 " ino_count=%d [NOT freeing]\n",
778 context
->serial
, context
->major
, context
->in_syscall
,
779 context
->name_count
, context
->put_count
,
781 for (i
= 0; i
< context
->name_count
; i
++) {
782 printk(KERN_ERR
"names[%d] = %p = %s\n", i
,
783 context
->names
[i
].name
,
784 context
->names
[i
].name
?: "(null)");
791 context
->put_count
= 0;
792 context
->ino_count
= 0;
795 for (i
= 0; i
< context
->name_count
; i
++) {
796 if (context
->names
[i
].name
&& context
->names
[i
].name_put
)
797 __putname(context
->names
[i
].name
);
799 context
->name_count
= 0;
800 path_put(&context
->pwd
);
801 context
->pwd
.dentry
= NULL
;
802 context
->pwd
.mnt
= NULL
;
805 static inline void audit_free_aux(struct audit_context
*context
)
807 struct audit_aux_data
*aux
;
809 while ((aux
= context
->aux
)) {
810 context
->aux
= aux
->next
;
813 while ((aux
= context
->aux_pids
)) {
814 context
->aux_pids
= aux
->next
;
819 static inline void audit_zero_context(struct audit_context
*context
,
820 enum audit_state state
)
822 memset(context
, 0, sizeof(*context
));
823 context
->state
= state
;
826 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
828 struct audit_context
*context
;
830 if (!(context
= kmalloc(sizeof(*context
), GFP_KERNEL
)))
832 audit_zero_context(context
, state
);
837 * audit_alloc - allocate an audit context block for a task
840 * Filter on the task information and allocate a per-task audit context
841 * if necessary. Doing so turns on system call auditing for the
842 * specified task. This is called from copy_process, so no lock is
845 int audit_alloc(struct task_struct
*tsk
)
847 struct audit_context
*context
;
848 enum audit_state state
;
850 if (likely(!audit_ever_enabled
))
851 return 0; /* Return if not auditing. */
853 state
= audit_filter_task(tsk
);
854 if (likely(state
== AUDIT_DISABLED
))
857 if (!(context
= audit_alloc_context(state
))) {
858 audit_log_lost("out of memory in audit_alloc");
862 tsk
->audit_context
= context
;
863 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
867 static inline void audit_free_context(struct audit_context
*context
)
869 struct audit_context
*previous
;
873 previous
= context
->previous
;
874 if (previous
|| (count
&& count
< 10)) {
876 printk(KERN_ERR
"audit(:%d): major=%d name_count=%d:"
877 " freeing multiple contexts (%d)\n",
878 context
->serial
, context
->major
,
879 context
->name_count
, count
);
881 audit_free_names(context
);
882 unroll_tree_refs(context
, NULL
, 0);
883 free_tree_refs(context
);
884 audit_free_aux(context
);
885 kfree(context
->filterkey
);
890 printk(KERN_ERR
"audit: freed %d contexts\n", count
);
893 void audit_log_task_context(struct audit_buffer
*ab
)
900 security_task_getsecid(current
, &sid
);
904 error
= security_secid_to_secctx(sid
, &ctx
, &len
);
906 if (error
!= -EINVAL
)
911 audit_log_format(ab
, " subj=%s", ctx
);
912 security_release_secctx(ctx
, len
);
916 audit_panic("error in audit_log_task_context");
920 EXPORT_SYMBOL(audit_log_task_context
);
922 static void audit_log_task_info(struct audit_buffer
*ab
, struct task_struct
*tsk
)
924 char name
[sizeof(tsk
->comm
)];
925 struct mm_struct
*mm
= tsk
->mm
;
926 struct vm_area_struct
*vma
;
930 get_task_comm(name
, tsk
);
931 audit_log_format(ab
, " comm=");
932 audit_log_untrustedstring(ab
, name
);
935 down_read(&mm
->mmap_sem
);
938 if ((vma
->vm_flags
& VM_EXECUTABLE
) &&
940 audit_log_d_path(ab
, "exe=",
941 &vma
->vm_file
->f_path
);
946 up_read(&mm
->mmap_sem
);
948 audit_log_task_context(ab
);
951 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
952 uid_t auid
, uid_t uid
, unsigned int sessionid
,
955 struct audit_buffer
*ab
;
960 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
964 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
, auid
,
966 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
967 audit_log_format(ab
, " obj=(none)");
970 audit_log_format(ab
, " obj=%s", ctx
);
971 security_release_secctx(ctx
, len
);
973 audit_log_format(ab
, " ocomm=");
974 audit_log_untrustedstring(ab
, comm
);
981 * to_send and len_sent accounting are very loose estimates. We aren't
982 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
983 * within about 500 bytes (next page boundry)
985 * why snprintf? an int is up to 12 digits long. if we just assumed when
986 * logging that a[%d]= was going to be 16 characters long we would be wasting
987 * space in every audit message. In one 7500 byte message we can log up to
988 * about 1000 min size arguments. That comes down to about 50% waste of space
989 * if we didn't do the snprintf to find out how long arg_num_len was.
991 static int audit_log_single_execve_arg(struct audit_context
*context
,
992 struct audit_buffer
**ab
,
995 const char __user
*p
,
998 char arg_num_len_buf
[12];
999 const char __user
*tmp_p
= p
;
1000 /* how many digits are in arg_num? 3 is the length of a=\n */
1001 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 3;
1002 size_t len
, len_left
, to_send
;
1003 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
1004 unsigned int i
, has_cntl
= 0, too_long
= 0;
1007 /* strnlen_user includes the null we don't want to send */
1008 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1011 * We just created this mm, if we can't find the strings
1012 * we just copied into it something is _very_ wrong. Similar
1013 * for strings that are too long, we should not have created
1016 if (unlikely((len
== -1) || len
> MAX_ARG_STRLEN
- 1)) {
1018 send_sig(SIGKILL
, current
, 0);
1022 /* walk the whole argument looking for non-ascii chars */
1024 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1025 to_send
= MAX_EXECVE_AUDIT_LEN
;
1028 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1030 * There is no reason for this copy to be short. We just
1031 * copied them here, and the mm hasn't been exposed to user-
1036 send_sig(SIGKILL
, current
, 0);
1039 buf
[to_send
] = '\0';
1040 has_cntl
= audit_string_contains_control(buf
, to_send
);
1043 * hex messages get logged as 2 bytes, so we can only
1044 * send half as much in each message
1046 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1049 len_left
-= to_send
;
1051 } while (len_left
> 0);
1055 if (len
> max_execve_audit_len
)
1058 /* rewalk the argument actually logging the message */
1059 for (i
= 0; len_left
> 0; i
++) {
1062 if (len_left
> max_execve_audit_len
)
1063 to_send
= max_execve_audit_len
;
1067 /* do we have space left to send this argument in this ab? */
1068 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1070 room_left
-= (to_send
* 2);
1072 room_left
-= to_send
;
1073 if (room_left
< 0) {
1076 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1082 * first record needs to say how long the original string was
1083 * so we can be sure nothing was lost.
1085 if ((i
== 0) && (too_long
))
1086 audit_log_format(*ab
, "a%d_len=%zu ", arg_num
,
1087 has_cntl
? 2*len
: len
);
1090 * normally arguments are small enough to fit and we already
1091 * filled buf above when we checked for control characters
1092 * so don't bother with another copy_from_user
1094 if (len
>= max_execve_audit_len
)
1095 ret
= copy_from_user(buf
, p
, to_send
);
1100 send_sig(SIGKILL
, current
, 0);
1103 buf
[to_send
] = '\0';
1105 /* actually log it */
1106 audit_log_format(*ab
, "a%d", arg_num
);
1108 audit_log_format(*ab
, "[%d]", i
);
1109 audit_log_format(*ab
, "=");
1111 audit_log_n_hex(*ab
, buf
, to_send
);
1113 audit_log_format(*ab
, "\"%s\"", buf
);
1114 audit_log_format(*ab
, "\n");
1117 len_left
-= to_send
;
1118 *len_sent
+= arg_num_len
;
1120 *len_sent
+= to_send
* 2;
1122 *len_sent
+= to_send
;
1124 /* include the null we didn't log */
1128 static void audit_log_execve_info(struct audit_context
*context
,
1129 struct audit_buffer
**ab
,
1130 struct audit_aux_data_execve
*axi
)
1133 size_t len
, len_sent
= 0;
1134 const char __user
*p
;
1137 if (axi
->mm
!= current
->mm
)
1138 return; /* execve failed, no additional info */
1140 p
= (const char __user
*)axi
->mm
->arg_start
;
1142 audit_log_format(*ab
, "argc=%d ", axi
->argc
);
1145 * we need some kernel buffer to hold the userspace args. Just
1146 * allocate one big one rather than allocating one of the right size
1147 * for every single argument inside audit_log_single_execve_arg()
1148 * should be <8k allocation so should be pretty safe.
1150 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1152 audit_panic("out of memory for argv string\n");
1156 for (i
= 0; i
< axi
->argc
; i
++) {
1157 len
= audit_log_single_execve_arg(context
, ab
, i
,
1166 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1168 int i
, call_panic
= 0;
1169 struct audit_buffer
*ab
;
1170 struct audit_aux_data
*aux
;
1173 /* tsk == current */
1174 context
->pid
= tsk
->pid
;
1176 context
->ppid
= sys_getppid();
1177 context
->uid
= tsk
->uid
;
1178 context
->gid
= tsk
->gid
;
1179 context
->euid
= tsk
->euid
;
1180 context
->suid
= tsk
->suid
;
1181 context
->fsuid
= tsk
->fsuid
;
1182 context
->egid
= tsk
->egid
;
1183 context
->sgid
= tsk
->sgid
;
1184 context
->fsgid
= tsk
->fsgid
;
1185 context
->personality
= tsk
->personality
;
1187 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1189 return; /* audit_panic has been called */
1190 audit_log_format(ab
, "arch=%x syscall=%d",
1191 context
->arch
, context
->major
);
1192 if (context
->personality
!= PER_LINUX
)
1193 audit_log_format(ab
, " per=%lx", context
->personality
);
1194 if (context
->return_valid
)
1195 audit_log_format(ab
, " success=%s exit=%ld",
1196 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1197 context
->return_code
);
1199 mutex_lock(&tty_mutex
);
1200 read_lock(&tasklist_lock
);
1201 if (tsk
->signal
&& tsk
->signal
->tty
&& tsk
->signal
->tty
->name
)
1202 tty
= tsk
->signal
->tty
->name
;
1205 read_unlock(&tasklist_lock
);
1206 audit_log_format(ab
,
1207 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1208 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1209 " euid=%u suid=%u fsuid=%u"
1210 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1215 context
->name_count
,
1221 context
->euid
, context
->suid
, context
->fsuid
,
1222 context
->egid
, context
->sgid
, context
->fsgid
, tty
,
1225 mutex_unlock(&tty_mutex
);
1227 audit_log_task_info(ab
, tsk
);
1228 if (context
->filterkey
) {
1229 audit_log_format(ab
, " key=");
1230 audit_log_untrustedstring(ab
, context
->filterkey
);
1232 audit_log_format(ab
, " key=(null)");
1235 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1237 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1239 continue; /* audit_panic has been called */
1241 switch (aux
->type
) {
1242 case AUDIT_MQ_OPEN
: {
1243 struct audit_aux_data_mq_open
*axi
= (void *)aux
;
1244 audit_log_format(ab
,
1245 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1246 "mq_msgsize=%ld mq_curmsgs=%ld",
1247 axi
->oflag
, axi
->mode
, axi
->attr
.mq_flags
,
1248 axi
->attr
.mq_maxmsg
, axi
->attr
.mq_msgsize
,
1249 axi
->attr
.mq_curmsgs
);
1252 case AUDIT_MQ_SENDRECV
: {
1253 struct audit_aux_data_mq_sendrecv
*axi
= (void *)aux
;
1254 audit_log_format(ab
,
1255 "mqdes=%d msg_len=%zd msg_prio=%u "
1256 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1257 axi
->mqdes
, axi
->msg_len
, axi
->msg_prio
,
1258 axi
->abs_timeout
.tv_sec
, axi
->abs_timeout
.tv_nsec
);
1261 case AUDIT_MQ_NOTIFY
: {
1262 struct audit_aux_data_mq_notify
*axi
= (void *)aux
;
1263 audit_log_format(ab
,
1264 "mqdes=%d sigev_signo=%d",
1266 axi
->notification
.sigev_signo
);
1269 case AUDIT_MQ_GETSETATTR
: {
1270 struct audit_aux_data_mq_getsetattr
*axi
= (void *)aux
;
1271 audit_log_format(ab
,
1272 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1275 axi
->mqstat
.mq_flags
, axi
->mqstat
.mq_maxmsg
,
1276 axi
->mqstat
.mq_msgsize
, axi
->mqstat
.mq_curmsgs
);
1280 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
1281 audit_log_format(ab
,
1282 "ouid=%u ogid=%u mode=%#o",
1283 axi
->uid
, axi
->gid
, axi
->mode
);
1284 if (axi
->osid
!= 0) {
1287 if (security_secid_to_secctx(
1288 axi
->osid
, &ctx
, &len
)) {
1289 audit_log_format(ab
, " osid=%u",
1293 audit_log_format(ab
, " obj=%s", ctx
);
1294 security_release_secctx(ctx
, len
);
1299 case AUDIT_IPC_SET_PERM
: {
1300 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
1301 audit_log_format(ab
,
1302 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1303 axi
->qbytes
, axi
->uid
, axi
->gid
, axi
->mode
);
1306 case AUDIT_EXECVE
: {
1307 struct audit_aux_data_execve
*axi
= (void *)aux
;
1308 audit_log_execve_info(context
, &ab
, axi
);
1311 case AUDIT_SOCKETCALL
: {
1312 struct audit_aux_data_socketcall
*axs
= (void *)aux
;
1313 audit_log_format(ab
, "nargs=%d", axs
->nargs
);
1314 for (i
=0; i
<axs
->nargs
; i
++)
1315 audit_log_format(ab
, " a%d=%lx", i
, axs
->args
[i
]);
1318 case AUDIT_SOCKADDR
: {
1319 struct audit_aux_data_sockaddr
*axs
= (void *)aux
;
1321 audit_log_format(ab
, "saddr=");
1322 audit_log_n_hex(ab
, axs
->a
, axs
->len
);
1325 case AUDIT_FD_PAIR
: {
1326 struct audit_aux_data_fd_pair
*axs
= (void *)aux
;
1327 audit_log_format(ab
, "fd0=%d fd1=%d", axs
->fd
[0], axs
->fd
[1]);
1334 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1335 struct audit_aux_data_pids
*axs
= (void *)aux
;
1337 for (i
= 0; i
< axs
->pid_count
; i
++)
1338 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1339 axs
->target_auid
[i
],
1341 axs
->target_sessionid
[i
],
1343 axs
->target_comm
[i
]))
1347 if (context
->target_pid
&&
1348 audit_log_pid_context(context
, context
->target_pid
,
1349 context
->target_auid
, context
->target_uid
,
1350 context
->target_sessionid
,
1351 context
->target_sid
, context
->target_comm
))
1354 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1355 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1357 audit_log_d_path(ab
, "cwd=", &context
->pwd
);
1361 for (i
= 0; i
< context
->name_count
; i
++) {
1362 struct audit_names
*n
= &context
->names
[i
];
1364 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1366 continue; /* audit_panic has been called */
1368 audit_log_format(ab
, "item=%d", i
);
1371 switch(n
->name_len
) {
1372 case AUDIT_NAME_FULL
:
1373 /* log the full path */
1374 audit_log_format(ab
, " name=");
1375 audit_log_untrustedstring(ab
, n
->name
);
1378 /* name was specified as a relative path and the
1379 * directory component is the cwd */
1380 audit_log_d_path(ab
, " name=", &context
->pwd
);
1383 /* log the name's directory component */
1384 audit_log_format(ab
, " name=");
1385 audit_log_n_untrustedstring(ab
, n
->name
,
1389 audit_log_format(ab
, " name=(null)");
1391 if (n
->ino
!= (unsigned long)-1) {
1392 audit_log_format(ab
, " inode=%lu"
1393 " dev=%02x:%02x mode=%#o"
1394 " ouid=%u ogid=%u rdev=%02x:%02x",
1407 if (security_secid_to_secctx(
1408 n
->osid
, &ctx
, &len
)) {
1409 audit_log_format(ab
, " osid=%u", n
->osid
);
1412 audit_log_format(ab
, " obj=%s", ctx
);
1413 security_release_secctx(ctx
, len
);
1420 /* Send end of event record to help user space know we are finished */
1421 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1425 audit_panic("error converting sid to string");
1429 * audit_free - free a per-task audit context
1430 * @tsk: task whose audit context block to free
1432 * Called from copy_process and do_exit
1434 void audit_free(struct task_struct
*tsk
)
1436 struct audit_context
*context
;
1438 context
= audit_get_context(tsk
, 0, 0);
1439 if (likely(!context
))
1442 /* Check for system calls that do not go through the exit
1443 * function (e.g., exit_group), then free context block.
1444 * We use GFP_ATOMIC here because we might be doing this
1445 * in the context of the idle thread */
1446 /* that can happen only if we are called from do_exit() */
1447 if (context
->in_syscall
&& context
->auditable
)
1448 audit_log_exit(context
, tsk
);
1450 audit_free_context(context
);
1454 * audit_syscall_entry - fill in an audit record at syscall entry
1455 * @tsk: task being audited
1456 * @arch: architecture type
1457 * @major: major syscall type (function)
1458 * @a1: additional syscall register 1
1459 * @a2: additional syscall register 2
1460 * @a3: additional syscall register 3
1461 * @a4: additional syscall register 4
1463 * Fill in audit context at syscall entry. This only happens if the
1464 * audit context was created when the task was created and the state or
1465 * filters demand the audit context be built. If the state from the
1466 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1467 * then the record will be written at syscall exit time (otherwise, it
1468 * will only be written if another part of the kernel requests that it
1471 void audit_syscall_entry(int arch
, int major
,
1472 unsigned long a1
, unsigned long a2
,
1473 unsigned long a3
, unsigned long a4
)
1475 struct task_struct
*tsk
= current
;
1476 struct audit_context
*context
= tsk
->audit_context
;
1477 enum audit_state state
;
1479 if (unlikely(!context
))
1483 * This happens only on certain architectures that make system
1484 * calls in kernel_thread via the entry.S interface, instead of
1485 * with direct calls. (If you are porting to a new
1486 * architecture, hitting this condition can indicate that you
1487 * got the _exit/_leave calls backward in entry.S.)
1491 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1493 * This also happens with vm86 emulation in a non-nested manner
1494 * (entries without exits), so this case must be caught.
1496 if (context
->in_syscall
) {
1497 struct audit_context
*newctx
;
1501 "audit(:%d) pid=%d in syscall=%d;"
1502 " entering syscall=%d\n",
1503 context
->serial
, tsk
->pid
, context
->major
, major
);
1505 newctx
= audit_alloc_context(context
->state
);
1507 newctx
->previous
= context
;
1509 tsk
->audit_context
= newctx
;
1511 /* If we can't alloc a new context, the best we
1512 * can do is to leak memory (any pending putname
1513 * will be lost). The only other alternative is
1514 * to abandon auditing. */
1515 audit_zero_context(context
, context
->state
);
1518 BUG_ON(context
->in_syscall
|| context
->name_count
);
1523 context
->arch
= arch
;
1524 context
->major
= major
;
1525 context
->argv
[0] = a1
;
1526 context
->argv
[1] = a2
;
1527 context
->argv
[2] = a3
;
1528 context
->argv
[3] = a4
;
1530 state
= context
->state
;
1531 context
->dummy
= !audit_n_rules
;
1532 if (!context
->dummy
&& (state
== AUDIT_SETUP_CONTEXT
|| state
== AUDIT_BUILD_CONTEXT
))
1533 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1534 if (likely(state
== AUDIT_DISABLED
))
1537 context
->serial
= 0;
1538 context
->ctime
= CURRENT_TIME
;
1539 context
->in_syscall
= 1;
1540 context
->auditable
= !!(state
== AUDIT_RECORD_CONTEXT
);
1545 * audit_syscall_exit - deallocate audit context after a system call
1546 * @tsk: task being audited
1547 * @valid: success/failure flag
1548 * @return_code: syscall return value
1550 * Tear down after system call. If the audit context has been marked as
1551 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1552 * filtering, or because some other part of the kernel write an audit
1553 * message), then write out the syscall information. In call cases,
1554 * free the names stored from getname().
1556 void audit_syscall_exit(int valid
, long return_code
)
1558 struct task_struct
*tsk
= current
;
1559 struct audit_context
*context
;
1561 context
= audit_get_context(tsk
, valid
, return_code
);
1563 if (likely(!context
))
1566 if (context
->in_syscall
&& context
->auditable
)
1567 audit_log_exit(context
, tsk
);
1569 context
->in_syscall
= 0;
1570 context
->auditable
= 0;
1572 if (context
->previous
) {
1573 struct audit_context
*new_context
= context
->previous
;
1574 context
->previous
= NULL
;
1575 audit_free_context(context
);
1576 tsk
->audit_context
= new_context
;
1578 audit_free_names(context
);
1579 unroll_tree_refs(context
, NULL
, 0);
1580 audit_free_aux(context
);
1581 context
->aux
= NULL
;
1582 context
->aux_pids
= NULL
;
1583 context
->target_pid
= 0;
1584 context
->target_sid
= 0;
1585 kfree(context
->filterkey
);
1586 context
->filterkey
= NULL
;
1587 tsk
->audit_context
= context
;
1591 static inline void handle_one(const struct inode
*inode
)
1593 #ifdef CONFIG_AUDIT_TREE
1594 struct audit_context
*context
;
1595 struct audit_tree_refs
*p
;
1596 struct audit_chunk
*chunk
;
1598 if (likely(list_empty(&inode
->inotify_watches
)))
1600 context
= current
->audit_context
;
1602 count
= context
->tree_count
;
1604 chunk
= audit_tree_lookup(inode
);
1608 if (likely(put_tree_ref(context
, chunk
)))
1610 if (unlikely(!grow_tree_refs(context
))) {
1611 printk(KERN_WARNING
"out of memory, audit has lost a tree reference\n");
1612 audit_set_auditable(context
);
1613 audit_put_chunk(chunk
);
1614 unroll_tree_refs(context
, p
, count
);
1617 put_tree_ref(context
, chunk
);
1621 static void handle_path(const struct dentry
*dentry
)
1623 #ifdef CONFIG_AUDIT_TREE
1624 struct audit_context
*context
;
1625 struct audit_tree_refs
*p
;
1626 const struct dentry
*d
, *parent
;
1627 struct audit_chunk
*drop
;
1631 context
= current
->audit_context
;
1633 count
= context
->tree_count
;
1638 seq
= read_seqbegin(&rename_lock
);
1640 struct inode
*inode
= d
->d_inode
;
1641 if (inode
&& unlikely(!list_empty(&inode
->inotify_watches
))) {
1642 struct audit_chunk
*chunk
;
1643 chunk
= audit_tree_lookup(inode
);
1645 if (unlikely(!put_tree_ref(context
, chunk
))) {
1651 parent
= d
->d_parent
;
1656 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1659 /* just a race with rename */
1660 unroll_tree_refs(context
, p
, count
);
1663 audit_put_chunk(drop
);
1664 if (grow_tree_refs(context
)) {
1665 /* OK, got more space */
1666 unroll_tree_refs(context
, p
, count
);
1671 "out of memory, audit has lost a tree reference\n");
1672 unroll_tree_refs(context
, p
, count
);
1673 audit_set_auditable(context
);
1681 * audit_getname - add a name to the list
1682 * @name: name to add
1684 * Add a name to the list of audit names for this context.
1685 * Called from fs/namei.c:getname().
1687 void __audit_getname(const char *name
)
1689 struct audit_context
*context
= current
->audit_context
;
1691 if (IS_ERR(name
) || !name
)
1694 if (!context
->in_syscall
) {
1695 #if AUDIT_DEBUG == 2
1696 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
1697 __FILE__
, __LINE__
, context
->serial
, name
);
1702 BUG_ON(context
->name_count
>= AUDIT_NAMES
);
1703 context
->names
[context
->name_count
].name
= name
;
1704 context
->names
[context
->name_count
].name_len
= AUDIT_NAME_FULL
;
1705 context
->names
[context
->name_count
].name_put
= 1;
1706 context
->names
[context
->name_count
].ino
= (unsigned long)-1;
1707 context
->names
[context
->name_count
].osid
= 0;
1708 ++context
->name_count
;
1709 if (!context
->pwd
.dentry
) {
1710 read_lock(¤t
->fs
->lock
);
1711 context
->pwd
= current
->fs
->pwd
;
1712 path_get(¤t
->fs
->pwd
);
1713 read_unlock(¤t
->fs
->lock
);
1718 /* audit_putname - intercept a putname request
1719 * @name: name to intercept and delay for putname
1721 * If we have stored the name from getname in the audit context,
1722 * then we delay the putname until syscall exit.
1723 * Called from include/linux/fs.h:putname().
1725 void audit_putname(const char *name
)
1727 struct audit_context
*context
= current
->audit_context
;
1730 if (!context
->in_syscall
) {
1731 #if AUDIT_DEBUG == 2
1732 printk(KERN_ERR
"%s:%d(:%d): __putname(%p)\n",
1733 __FILE__
, __LINE__
, context
->serial
, name
);
1734 if (context
->name_count
) {
1736 for (i
= 0; i
< context
->name_count
; i
++)
1737 printk(KERN_ERR
"name[%d] = %p = %s\n", i
,
1738 context
->names
[i
].name
,
1739 context
->names
[i
].name
?: "(null)");
1746 ++context
->put_count
;
1747 if (context
->put_count
> context
->name_count
) {
1748 printk(KERN_ERR
"%s:%d(:%d): major=%d"
1749 " in_syscall=%d putname(%p) name_count=%d"
1752 context
->serial
, context
->major
,
1753 context
->in_syscall
, name
, context
->name_count
,
1754 context
->put_count
);
1761 static int audit_inc_name_count(struct audit_context
*context
,
1762 const struct inode
*inode
)
1764 if (context
->name_count
>= AUDIT_NAMES
) {
1766 printk(KERN_DEBUG
"name_count maxed, losing inode data: "
1767 "dev=%02x:%02x, inode=%lu\n",
1768 MAJOR(inode
->i_sb
->s_dev
),
1769 MINOR(inode
->i_sb
->s_dev
),
1773 printk(KERN_DEBUG
"name_count maxed, losing inode data\n");
1776 context
->name_count
++;
1778 context
->ino_count
++;
1783 /* Copy inode data into an audit_names. */
1784 static void audit_copy_inode(struct audit_names
*name
, const struct inode
*inode
)
1786 name
->ino
= inode
->i_ino
;
1787 name
->dev
= inode
->i_sb
->s_dev
;
1788 name
->mode
= inode
->i_mode
;
1789 name
->uid
= inode
->i_uid
;
1790 name
->gid
= inode
->i_gid
;
1791 name
->rdev
= inode
->i_rdev
;
1792 security_inode_getsecid(inode
, &name
->osid
);
1796 * audit_inode - store the inode and device from a lookup
1797 * @name: name being audited
1798 * @dentry: dentry being audited
1800 * Called from fs/namei.c:path_lookup().
1802 void __audit_inode(const char *name
, const struct dentry
*dentry
)
1805 struct audit_context
*context
= current
->audit_context
;
1806 const struct inode
*inode
= dentry
->d_inode
;
1808 if (!context
->in_syscall
)
1810 if (context
->name_count
1811 && context
->names
[context
->name_count
-1].name
1812 && context
->names
[context
->name_count
-1].name
== name
)
1813 idx
= context
->name_count
- 1;
1814 else if (context
->name_count
> 1
1815 && context
->names
[context
->name_count
-2].name
1816 && context
->names
[context
->name_count
-2].name
== name
)
1817 idx
= context
->name_count
- 2;
1819 /* FIXME: how much do we care about inodes that have no
1820 * associated name? */
1821 if (audit_inc_name_count(context
, inode
))
1823 idx
= context
->name_count
- 1;
1824 context
->names
[idx
].name
= NULL
;
1826 handle_path(dentry
);
1827 audit_copy_inode(&context
->names
[idx
], inode
);
1831 * audit_inode_child - collect inode info for created/removed objects
1832 * @dname: inode's dentry name
1833 * @dentry: dentry being audited
1834 * @parent: inode of dentry parent
1836 * For syscalls that create or remove filesystem objects, audit_inode
1837 * can only collect information for the filesystem object's parent.
1838 * This call updates the audit context with the child's information.
1839 * Syscalls that create a new filesystem object must be hooked after
1840 * the object is created. Syscalls that remove a filesystem object
1841 * must be hooked prior, in order to capture the target inode during
1842 * unsuccessful attempts.
1844 void __audit_inode_child(const char *dname
, const struct dentry
*dentry
,
1845 const struct inode
*parent
)
1848 struct audit_context
*context
= current
->audit_context
;
1849 const char *found_parent
= NULL
, *found_child
= NULL
;
1850 const struct inode
*inode
= dentry
->d_inode
;
1853 if (!context
->in_syscall
)
1858 /* determine matching parent */
1862 /* parent is more likely, look for it first */
1863 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1864 struct audit_names
*n
= &context
->names
[idx
];
1869 if (n
->ino
== parent
->i_ino
&&
1870 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1871 n
->name_len
= dirlen
; /* update parent data in place */
1872 found_parent
= n
->name
;
1877 /* no matching parent, look for matching child */
1878 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1879 struct audit_names
*n
= &context
->names
[idx
];
1884 /* strcmp() is the more likely scenario */
1885 if (!strcmp(dname
, n
->name
) ||
1886 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1888 audit_copy_inode(n
, inode
);
1890 n
->ino
= (unsigned long)-1;
1891 found_child
= n
->name
;
1897 if (!found_parent
) {
1898 if (audit_inc_name_count(context
, parent
))
1900 idx
= context
->name_count
- 1;
1901 context
->names
[idx
].name
= NULL
;
1902 audit_copy_inode(&context
->names
[idx
], parent
);
1906 if (audit_inc_name_count(context
, inode
))
1908 idx
= context
->name_count
- 1;
1910 /* Re-use the name belonging to the slot for a matching parent
1911 * directory. All names for this context are relinquished in
1912 * audit_free_names() */
1914 context
->names
[idx
].name
= found_parent
;
1915 context
->names
[idx
].name_len
= AUDIT_NAME_FULL
;
1916 /* don't call __putname() */
1917 context
->names
[idx
].name_put
= 0;
1919 context
->names
[idx
].name
= NULL
;
1923 audit_copy_inode(&context
->names
[idx
], inode
);
1925 context
->names
[idx
].ino
= (unsigned long)-1;
1928 EXPORT_SYMBOL_GPL(__audit_inode_child
);
1931 * auditsc_get_stamp - get local copies of audit_context values
1932 * @ctx: audit_context for the task
1933 * @t: timespec to store time recorded in the audit_context
1934 * @serial: serial value that is recorded in the audit_context
1936 * Also sets the context as auditable.
1938 void auditsc_get_stamp(struct audit_context
*ctx
,
1939 struct timespec
*t
, unsigned int *serial
)
1942 ctx
->serial
= audit_serial();
1943 t
->tv_sec
= ctx
->ctime
.tv_sec
;
1944 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
1945 *serial
= ctx
->serial
;
1949 /* global counter which is incremented every time something logs in */
1950 static atomic_t session_id
= ATOMIC_INIT(0);
1953 * audit_set_loginuid - set a task's audit_context loginuid
1954 * @task: task whose audit context is being modified
1955 * @loginuid: loginuid value
1959 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1961 int audit_set_loginuid(struct task_struct
*task
, uid_t loginuid
)
1963 unsigned int sessionid
= atomic_inc_return(&session_id
);
1964 struct audit_context
*context
= task
->audit_context
;
1966 if (context
&& context
->in_syscall
) {
1967 struct audit_buffer
*ab
;
1969 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
1971 audit_log_format(ab
, "login pid=%d uid=%u "
1972 "old auid=%u new auid=%u"
1973 " old ses=%u new ses=%u",
1974 task
->pid
, task
->uid
,
1975 task
->loginuid
, loginuid
,
1976 task
->sessionid
, sessionid
);
1980 task
->sessionid
= sessionid
;
1981 task
->loginuid
= loginuid
;
1986 * __audit_mq_open - record audit data for a POSIX MQ open
1989 * @u_attr: queue attributes
1991 * Returns 0 for success or NULL context or < 0 on error.
1993 int __audit_mq_open(int oflag
, mode_t mode
, struct mq_attr __user
*u_attr
)
1995 struct audit_aux_data_mq_open
*ax
;
1996 struct audit_context
*context
= current
->audit_context
;
2001 if (likely(!context
))
2004 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2008 if (u_attr
!= NULL
) {
2009 if (copy_from_user(&ax
->attr
, u_attr
, sizeof(ax
->attr
))) {
2014 memset(&ax
->attr
, 0, sizeof(ax
->attr
));
2019 ax
->d
.type
= AUDIT_MQ_OPEN
;
2020 ax
->d
.next
= context
->aux
;
2021 context
->aux
= (void *)ax
;
2026 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2027 * @mqdes: MQ descriptor
2028 * @msg_len: Message length
2029 * @msg_prio: Message priority
2030 * @u_abs_timeout: Message timeout in absolute time
2032 * Returns 0 for success or NULL context or < 0 on error.
2034 int __audit_mq_timedsend(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2035 const struct timespec __user
*u_abs_timeout
)
2037 struct audit_aux_data_mq_sendrecv
*ax
;
2038 struct audit_context
*context
= current
->audit_context
;
2043 if (likely(!context
))
2046 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2050 if (u_abs_timeout
!= NULL
) {
2051 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
2056 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
2059 ax
->msg_len
= msg_len
;
2060 ax
->msg_prio
= msg_prio
;
2062 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
2063 ax
->d
.next
= context
->aux
;
2064 context
->aux
= (void *)ax
;
2069 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2070 * @mqdes: MQ descriptor
2071 * @msg_len: Message length
2072 * @u_msg_prio: Message priority
2073 * @u_abs_timeout: Message timeout in absolute time
2075 * Returns 0 for success or NULL context or < 0 on error.
2077 int __audit_mq_timedreceive(mqd_t mqdes
, size_t msg_len
,
2078 unsigned int __user
*u_msg_prio
,
2079 const struct timespec __user
*u_abs_timeout
)
2081 struct audit_aux_data_mq_sendrecv
*ax
;
2082 struct audit_context
*context
= current
->audit_context
;
2087 if (likely(!context
))
2090 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2094 if (u_msg_prio
!= NULL
) {
2095 if (get_user(ax
->msg_prio
, u_msg_prio
)) {
2102 if (u_abs_timeout
!= NULL
) {
2103 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
2108 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
2111 ax
->msg_len
= msg_len
;
2113 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
2114 ax
->d
.next
= context
->aux
;
2115 context
->aux
= (void *)ax
;
2120 * __audit_mq_notify - record audit data for a POSIX MQ notify
2121 * @mqdes: MQ descriptor
2122 * @u_notification: Notification event
2124 * Returns 0 for success or NULL context or < 0 on error.
2127 int __audit_mq_notify(mqd_t mqdes
, const struct sigevent __user
*u_notification
)
2129 struct audit_aux_data_mq_notify
*ax
;
2130 struct audit_context
*context
= current
->audit_context
;
2135 if (likely(!context
))
2138 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2142 if (u_notification
!= NULL
) {
2143 if (copy_from_user(&ax
->notification
, u_notification
, sizeof(ax
->notification
))) {
2148 memset(&ax
->notification
, 0, sizeof(ax
->notification
));
2152 ax
->d
.type
= AUDIT_MQ_NOTIFY
;
2153 ax
->d
.next
= context
->aux
;
2154 context
->aux
= (void *)ax
;
2159 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2160 * @mqdes: MQ descriptor
2163 * Returns 0 for success or NULL context or < 0 on error.
2165 int __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2167 struct audit_aux_data_mq_getsetattr
*ax
;
2168 struct audit_context
*context
= current
->audit_context
;
2173 if (likely(!context
))
2176 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2181 ax
->mqstat
= *mqstat
;
2183 ax
->d
.type
= AUDIT_MQ_GETSETATTR
;
2184 ax
->d
.next
= context
->aux
;
2185 context
->aux
= (void *)ax
;
2190 * audit_ipc_obj - record audit data for ipc object
2191 * @ipcp: ipc permissions
2193 * Returns 0 for success or NULL context or < 0 on error.
2195 int __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2197 struct audit_aux_data_ipcctl
*ax
;
2198 struct audit_context
*context
= current
->audit_context
;
2200 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2204 ax
->uid
= ipcp
->uid
;
2205 ax
->gid
= ipcp
->gid
;
2206 ax
->mode
= ipcp
->mode
;
2207 security_ipc_getsecid(ipcp
, &ax
->osid
);
2208 ax
->d
.type
= AUDIT_IPC
;
2209 ax
->d
.next
= context
->aux
;
2210 context
->aux
= (void *)ax
;
2215 * audit_ipc_set_perm - record audit data for new ipc permissions
2216 * @qbytes: msgq bytes
2217 * @uid: msgq user id
2218 * @gid: msgq group id
2219 * @mode: msgq mode (permissions)
2221 * Returns 0 for success or NULL context or < 0 on error.
2223 int __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, mode_t mode
)
2225 struct audit_aux_data_ipcctl
*ax
;
2226 struct audit_context
*context
= current
->audit_context
;
2228 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2232 ax
->qbytes
= qbytes
;
2237 ax
->d
.type
= AUDIT_IPC_SET_PERM
;
2238 ax
->d
.next
= context
->aux
;
2239 context
->aux
= (void *)ax
;
2243 int audit_bprm(struct linux_binprm
*bprm
)
2245 struct audit_aux_data_execve
*ax
;
2246 struct audit_context
*context
= current
->audit_context
;
2248 if (likely(!audit_enabled
|| !context
|| context
->dummy
))
2251 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2255 ax
->argc
= bprm
->argc
;
2256 ax
->envc
= bprm
->envc
;
2258 ax
->d
.type
= AUDIT_EXECVE
;
2259 ax
->d
.next
= context
->aux
;
2260 context
->aux
= (void *)ax
;
2266 * audit_socketcall - record audit data for sys_socketcall
2267 * @nargs: number of args
2270 * Returns 0 for success or NULL context or < 0 on error.
2272 int audit_socketcall(int nargs
, unsigned long *args
)
2274 struct audit_aux_data_socketcall
*ax
;
2275 struct audit_context
*context
= current
->audit_context
;
2277 if (likely(!context
|| context
->dummy
))
2280 ax
= kmalloc(sizeof(*ax
) + nargs
* sizeof(unsigned long), GFP_KERNEL
);
2285 memcpy(ax
->args
, args
, nargs
* sizeof(unsigned long));
2287 ax
->d
.type
= AUDIT_SOCKETCALL
;
2288 ax
->d
.next
= context
->aux
;
2289 context
->aux
= (void *)ax
;
2294 * __audit_fd_pair - record audit data for pipe and socketpair
2295 * @fd1: the first file descriptor
2296 * @fd2: the second file descriptor
2298 * Returns 0 for success or NULL context or < 0 on error.
2300 int __audit_fd_pair(int fd1
, int fd2
)
2302 struct audit_context
*context
= current
->audit_context
;
2303 struct audit_aux_data_fd_pair
*ax
;
2305 if (likely(!context
)) {
2309 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2317 ax
->d
.type
= AUDIT_FD_PAIR
;
2318 ax
->d
.next
= context
->aux
;
2319 context
->aux
= (void *)ax
;
2324 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2325 * @len: data length in user space
2326 * @a: data address in kernel space
2328 * Returns 0 for success or NULL context or < 0 on error.
2330 int audit_sockaddr(int len
, void *a
)
2332 struct audit_aux_data_sockaddr
*ax
;
2333 struct audit_context
*context
= current
->audit_context
;
2335 if (likely(!context
|| context
->dummy
))
2338 ax
= kmalloc(sizeof(*ax
) + len
, GFP_KERNEL
);
2343 memcpy(ax
->a
, a
, len
);
2345 ax
->d
.type
= AUDIT_SOCKADDR
;
2346 ax
->d
.next
= context
->aux
;
2347 context
->aux
= (void *)ax
;
2351 void __audit_ptrace(struct task_struct
*t
)
2353 struct audit_context
*context
= current
->audit_context
;
2355 context
->target_pid
= t
->pid
;
2356 context
->target_auid
= audit_get_loginuid(t
);
2357 context
->target_uid
= t
->uid
;
2358 context
->target_sessionid
= audit_get_sessionid(t
);
2359 security_task_getsecid(t
, &context
->target_sid
);
2360 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2364 * audit_signal_info - record signal info for shutting down audit subsystem
2365 * @sig: signal value
2366 * @t: task being signaled
2368 * If the audit subsystem is being terminated, record the task (pid)
2369 * and uid that is doing that.
2371 int __audit_signal_info(int sig
, struct task_struct
*t
)
2373 struct audit_aux_data_pids
*axp
;
2374 struct task_struct
*tsk
= current
;
2375 struct audit_context
*ctx
= tsk
->audit_context
;
2377 if (audit_pid
&& t
->tgid
== audit_pid
) {
2378 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
) {
2379 audit_sig_pid
= tsk
->pid
;
2380 if (tsk
->loginuid
!= -1)
2381 audit_sig_uid
= tsk
->loginuid
;
2383 audit_sig_uid
= tsk
->uid
;
2384 security_task_getsecid(tsk
, &audit_sig_sid
);
2386 if (!audit_signals
|| audit_dummy_context())
2390 /* optimize the common case by putting first signal recipient directly
2391 * in audit_context */
2392 if (!ctx
->target_pid
) {
2393 ctx
->target_pid
= t
->tgid
;
2394 ctx
->target_auid
= audit_get_loginuid(t
);
2395 ctx
->target_uid
= t
->uid
;
2396 ctx
->target_sessionid
= audit_get_sessionid(t
);
2397 security_task_getsecid(t
, &ctx
->target_sid
);
2398 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2402 axp
= (void *)ctx
->aux_pids
;
2403 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2404 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2408 axp
->d
.type
= AUDIT_OBJ_PID
;
2409 axp
->d
.next
= ctx
->aux_pids
;
2410 ctx
->aux_pids
= (void *)axp
;
2412 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2414 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2415 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2416 axp
->target_uid
[axp
->pid_count
] = t
->uid
;
2417 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2418 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2419 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2426 * audit_core_dumps - record information about processes that end abnormally
2427 * @signr: signal value
2429 * If a process ends with a core dump, something fishy is going on and we
2430 * should record the event for investigation.
2432 void audit_core_dumps(long signr
)
2434 struct audit_buffer
*ab
;
2436 uid_t auid
= audit_get_loginuid(current
);
2437 unsigned int sessionid
= audit_get_sessionid(current
);
2442 if (signr
== SIGQUIT
) /* don't care for those */
2445 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2446 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2447 auid
, current
->uid
, current
->gid
, sessionid
);
2448 security_task_getsecid(current
, &sid
);
2453 if (security_secid_to_secctx(sid
, &ctx
, &len
))
2454 audit_log_format(ab
, " ssid=%u", sid
);
2456 audit_log_format(ab
, " subj=%s", ctx
);
2457 security_release_secctx(ctx
, len
);
2460 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2461 audit_log_untrustedstring(ab
, current
->comm
);
2462 audit_log_format(ab
, " sig=%ld", signr
);