e1000: whitespace changes, comments, typos
[linux-2.6/cjktty.git] / drivers / net / e1000 / e1000_main.c
blob7b1c092d921c956bc02bff661afb7000ca25d442
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000.h"
31 char e1000_driver_name[] = "e1000";
32 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
33 #ifndef CONFIG_E1000_NAPI
34 #define DRIVERNAPI
35 #else
36 #define DRIVERNAPI "-NAPI"
37 #endif
38 #define DRV_VERSION "7.2.9-k4"DRIVERNAPI
39 char e1000_driver_version[] = DRV_VERSION;
40 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42 /* e1000_pci_tbl - PCI Device ID Table
44 * Last entry must be all 0s
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 static struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1049),
76 INTEL_E1000_ETHERNET_DEVICE(0x104A),
77 INTEL_E1000_ETHERNET_DEVICE(0x104B),
78 INTEL_E1000_ETHERNET_DEVICE(0x104C),
79 INTEL_E1000_ETHERNET_DEVICE(0x104D),
80 INTEL_E1000_ETHERNET_DEVICE(0x105E),
81 INTEL_E1000_ETHERNET_DEVICE(0x105F),
82 INTEL_E1000_ETHERNET_DEVICE(0x1060),
83 INTEL_E1000_ETHERNET_DEVICE(0x1075),
84 INTEL_E1000_ETHERNET_DEVICE(0x1076),
85 INTEL_E1000_ETHERNET_DEVICE(0x1077),
86 INTEL_E1000_ETHERNET_DEVICE(0x1078),
87 INTEL_E1000_ETHERNET_DEVICE(0x1079),
88 INTEL_E1000_ETHERNET_DEVICE(0x107A),
89 INTEL_E1000_ETHERNET_DEVICE(0x107B),
90 INTEL_E1000_ETHERNET_DEVICE(0x107C),
91 INTEL_E1000_ETHERNET_DEVICE(0x107D),
92 INTEL_E1000_ETHERNET_DEVICE(0x107E),
93 INTEL_E1000_ETHERNET_DEVICE(0x107F),
94 INTEL_E1000_ETHERNET_DEVICE(0x108A),
95 INTEL_E1000_ETHERNET_DEVICE(0x108B),
96 INTEL_E1000_ETHERNET_DEVICE(0x108C),
97 INTEL_E1000_ETHERNET_DEVICE(0x1096),
98 INTEL_E1000_ETHERNET_DEVICE(0x1098),
99 INTEL_E1000_ETHERNET_DEVICE(0x1099),
100 INTEL_E1000_ETHERNET_DEVICE(0x109A),
101 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106 /* required last entry */
107 {0,}
110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
112 int e1000_up(struct e1000_adapter *adapter);
113 void e1000_down(struct e1000_adapter *adapter);
114 void e1000_reinit_locked(struct e1000_adapter *adapter);
115 void e1000_reset(struct e1000_adapter *adapter);
116 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
117 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
118 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
119 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
120 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
121 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
122 struct e1000_tx_ring *txdr);
123 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
124 struct e1000_rx_ring *rxdr);
125 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
126 struct e1000_tx_ring *tx_ring);
127 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring);
129 void e1000_update_stats(struct e1000_adapter *adapter);
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134 static void __devexit e1000_remove(struct pci_dev *pdev);
135 static int e1000_alloc_queues(struct e1000_adapter *adapter);
136 static int e1000_sw_init(struct e1000_adapter *adapter);
137 static int e1000_open(struct net_device *netdev);
138 static int e1000_close(struct net_device *netdev);
139 static void e1000_configure_tx(struct e1000_adapter *adapter);
140 static void e1000_configure_rx(struct e1000_adapter *adapter);
141 static void e1000_setup_rctl(struct e1000_adapter *adapter);
142 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
144 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
145 struct e1000_tx_ring *tx_ring);
146 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
147 struct e1000_rx_ring *rx_ring);
148 static void e1000_set_multi(struct net_device *netdev);
149 static void e1000_update_phy_info(unsigned long data);
150 static void e1000_watchdog(unsigned long data);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158 struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162 struct e1000_rx_ring *rx_ring,
163 int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165 struct e1000_rx_ring *rx_ring,
166 int *work_done, int work_to_do);
167 #else
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169 struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171 struct e1000_rx_ring *rx_ring);
172 #endif
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174 struct e1000_rx_ring *rx_ring,
175 int cleaned_count);
176 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
177 struct e1000_rx_ring *rx_ring,
178 int cleaned_count);
179 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
180 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
181 int cmd);
182 void e1000_set_ethtool_ops(struct net_device *netdev);
183 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
184 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
185 static void e1000_tx_timeout(struct net_device *dev);
186 static void e1000_reset_task(struct net_device *dev);
187 static void e1000_smartspeed(struct e1000_adapter *adapter);
188 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
189 struct sk_buff *skb);
191 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
192 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
193 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
194 static void e1000_restore_vlan(struct e1000_adapter *adapter);
196 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
197 #ifdef CONFIG_PM
198 static int e1000_resume(struct pci_dev *pdev);
199 #endif
200 static void e1000_shutdown(struct pci_dev *pdev);
202 #ifdef CONFIG_NET_POLL_CONTROLLER
203 /* for netdump / net console */
204 static void e1000_netpoll (struct net_device *netdev);
205 #endif
207 extern void e1000_check_options(struct e1000_adapter *adapter);
209 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
210 pci_channel_state_t state);
211 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
212 static void e1000_io_resume(struct pci_dev *pdev);
214 static struct pci_error_handlers e1000_err_handler = {
215 .error_detected = e1000_io_error_detected,
216 .slot_reset = e1000_io_slot_reset,
217 .resume = e1000_io_resume,
220 static struct pci_driver e1000_driver = {
221 .name = e1000_driver_name,
222 .id_table = e1000_pci_tbl,
223 .probe = e1000_probe,
224 .remove = __devexit_p(e1000_remove),
225 #ifdef CONFIG_PM
226 /* Power Managment Hooks */
227 .suspend = e1000_suspend,
228 .resume = e1000_resume,
229 #endif
230 .shutdown = e1000_shutdown,
231 .err_handler = &e1000_err_handler
234 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
235 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
236 MODULE_LICENSE("GPL");
237 MODULE_VERSION(DRV_VERSION);
239 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
240 module_param(debug, int, 0);
241 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
244 * e1000_init_module - Driver Registration Routine
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
250 static int __init
251 e1000_init_module(void)
253 int ret;
254 printk(KERN_INFO "%s - version %s\n",
255 e1000_driver_string, e1000_driver_version);
257 printk(KERN_INFO "%s\n", e1000_copyright);
259 ret = pci_register_driver(&e1000_driver);
261 return ret;
264 module_init(e1000_init_module);
267 * e1000_exit_module - Driver Exit Cleanup Routine
269 * e1000_exit_module is called just before the driver is removed
270 * from memory.
273 static void __exit
274 e1000_exit_module(void)
276 pci_unregister_driver(&e1000_driver);
279 module_exit(e1000_exit_module);
281 static int e1000_request_irq(struct e1000_adapter *adapter)
283 struct net_device *netdev = adapter->netdev;
284 int flags, err = 0;
286 flags = IRQF_SHARED;
287 #ifdef CONFIG_PCI_MSI
288 if (adapter->hw.mac_type > e1000_82547_rev_2) {
289 adapter->have_msi = TRUE;
290 if ((err = pci_enable_msi(adapter->pdev))) {
291 DPRINTK(PROBE, ERR,
292 "Unable to allocate MSI interrupt Error: %d\n", err);
293 adapter->have_msi = FALSE;
296 if (adapter->have_msi)
297 flags &= ~IRQF_SHARED;
298 #endif
299 if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
300 netdev->name, netdev)))
301 DPRINTK(PROBE, ERR,
302 "Unable to allocate interrupt Error: %d\n", err);
304 return err;
307 static void e1000_free_irq(struct e1000_adapter *adapter)
309 struct net_device *netdev = adapter->netdev;
311 free_irq(adapter->pdev->irq, netdev);
313 #ifdef CONFIG_PCI_MSI
314 if (adapter->have_msi)
315 pci_disable_msi(adapter->pdev);
316 #endif
320 * e1000_irq_disable - Mask off interrupt generation on the NIC
321 * @adapter: board private structure
324 static void
325 e1000_irq_disable(struct e1000_adapter *adapter)
327 atomic_inc(&adapter->irq_sem);
328 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
329 E1000_WRITE_FLUSH(&adapter->hw);
330 synchronize_irq(adapter->pdev->irq);
334 * e1000_irq_enable - Enable default interrupt generation settings
335 * @adapter: board private structure
338 static void
339 e1000_irq_enable(struct e1000_adapter *adapter)
341 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
342 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
343 E1000_WRITE_FLUSH(&adapter->hw);
347 static void
348 e1000_update_mng_vlan(struct e1000_adapter *adapter)
350 struct net_device *netdev = adapter->netdev;
351 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
352 uint16_t old_vid = adapter->mng_vlan_id;
353 if (adapter->vlgrp) {
354 if (!adapter->vlgrp->vlan_devices[vid]) {
355 if (adapter->hw.mng_cookie.status &
356 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
357 e1000_vlan_rx_add_vid(netdev, vid);
358 adapter->mng_vlan_id = vid;
359 } else
360 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
362 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
363 (vid != old_vid) &&
364 !adapter->vlgrp->vlan_devices[old_vid])
365 e1000_vlan_rx_kill_vid(netdev, old_vid);
366 } else
367 adapter->mng_vlan_id = vid;
372 * e1000_release_hw_control - release control of the h/w to f/w
373 * @adapter: address of board private structure
375 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
376 * For ASF and Pass Through versions of f/w this means that the
377 * driver is no longer loaded. For AMT version (only with 82573) i
378 * of the f/w this means that the network i/f is closed.
382 static void
383 e1000_release_hw_control(struct e1000_adapter *adapter)
385 uint32_t ctrl_ext;
386 uint32_t swsm;
387 uint32_t extcnf;
389 /* Let firmware taken over control of h/w */
390 switch (adapter->hw.mac_type) {
391 case e1000_82571:
392 case e1000_82572:
393 case e1000_80003es2lan:
394 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
395 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
396 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
397 break;
398 case e1000_82573:
399 swsm = E1000_READ_REG(&adapter->hw, SWSM);
400 E1000_WRITE_REG(&adapter->hw, SWSM,
401 swsm & ~E1000_SWSM_DRV_LOAD);
402 case e1000_ich8lan:
403 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
404 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
405 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
406 break;
407 default:
408 break;
413 * e1000_get_hw_control - get control of the h/w from f/w
414 * @adapter: address of board private structure
416 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
417 * For ASF and Pass Through versions of f/w this means that
418 * the driver is loaded. For AMT version (only with 82573)
419 * of the f/w this means that the network i/f is open.
423 static void
424 e1000_get_hw_control(struct e1000_adapter *adapter)
426 uint32_t ctrl_ext;
427 uint32_t swsm;
428 uint32_t extcnf;
430 /* Let firmware know the driver has taken over */
431 switch (adapter->hw.mac_type) {
432 case e1000_82571:
433 case e1000_82572:
434 case e1000_80003es2lan:
435 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
436 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
437 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
438 break;
439 case e1000_82573:
440 swsm = E1000_READ_REG(&adapter->hw, SWSM);
441 E1000_WRITE_REG(&adapter->hw, SWSM,
442 swsm | E1000_SWSM_DRV_LOAD);
443 break;
444 case e1000_ich8lan:
445 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
446 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
447 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
448 break;
449 default:
450 break;
455 e1000_up(struct e1000_adapter *adapter)
457 struct net_device *netdev = adapter->netdev;
458 int i;
460 /* hardware has been reset, we need to reload some things */
462 e1000_set_multi(netdev);
464 e1000_restore_vlan(adapter);
466 e1000_configure_tx(adapter);
467 e1000_setup_rctl(adapter);
468 e1000_configure_rx(adapter);
469 /* call E1000_DESC_UNUSED which always leaves
470 * at least 1 descriptor unused to make sure
471 * next_to_use != next_to_clean */
472 for (i = 0; i < adapter->num_rx_queues; i++) {
473 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
474 adapter->alloc_rx_buf(adapter, ring,
475 E1000_DESC_UNUSED(ring));
478 adapter->tx_queue_len = netdev->tx_queue_len;
480 #ifdef CONFIG_E1000_NAPI
481 netif_poll_enable(netdev);
482 #endif
483 e1000_irq_enable(adapter);
485 clear_bit(__E1000_DOWN, &adapter->flags);
487 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
488 return 0;
492 * e1000_power_up_phy - restore link in case the phy was powered down
493 * @adapter: address of board private structure
495 * The phy may be powered down to save power and turn off link when the
496 * driver is unloaded and wake on lan is not enabled (among others)
497 * *** this routine MUST be followed by a call to e1000_reset ***
501 void e1000_power_up_phy(struct e1000_adapter *adapter)
503 uint16_t mii_reg = 0;
505 /* Just clear the power down bit to wake the phy back up */
506 if (adapter->hw.media_type == e1000_media_type_copper) {
507 /* according to the manual, the phy will retain its
508 * settings across a power-down/up cycle */
509 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
510 mii_reg &= ~MII_CR_POWER_DOWN;
511 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
515 static void e1000_power_down_phy(struct e1000_adapter *adapter)
517 /* Power down the PHY so no link is implied when interface is down *
518 * The PHY cannot be powered down if any of the following is TRUE *
519 * (a) WoL is enabled
520 * (b) AMT is active
521 * (c) SoL/IDER session is active */
522 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
523 adapter->hw.media_type == e1000_media_type_copper) {
524 uint16_t mii_reg = 0;
526 switch (adapter->hw.mac_type) {
527 case e1000_82540:
528 case e1000_82545:
529 case e1000_82545_rev_3:
530 case e1000_82546:
531 case e1000_82546_rev_3:
532 case e1000_82541:
533 case e1000_82541_rev_2:
534 case e1000_82547:
535 case e1000_82547_rev_2:
536 if (E1000_READ_REG(&adapter->hw, MANC) &
537 E1000_MANC_SMBUS_EN)
538 goto out;
539 break;
540 case e1000_82571:
541 case e1000_82572:
542 case e1000_82573:
543 case e1000_80003es2lan:
544 case e1000_ich8lan:
545 if (e1000_check_mng_mode(&adapter->hw) ||
546 e1000_check_phy_reset_block(&adapter->hw))
547 goto out;
548 break;
549 default:
550 goto out;
552 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
553 mii_reg |= MII_CR_POWER_DOWN;
554 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
555 mdelay(1);
557 out:
558 return;
561 void
562 e1000_down(struct e1000_adapter *adapter)
564 struct net_device *netdev = adapter->netdev;
566 /* signal that we're down so the interrupt handler does not
567 * reschedule our watchdog timer */
568 set_bit(__E1000_DOWN, &adapter->flags);
570 e1000_irq_disable(adapter);
572 del_timer_sync(&adapter->tx_fifo_stall_timer);
573 del_timer_sync(&adapter->watchdog_timer);
574 del_timer_sync(&adapter->phy_info_timer);
576 #ifdef CONFIG_E1000_NAPI
577 netif_poll_disable(netdev);
578 #endif
579 netdev->tx_queue_len = adapter->tx_queue_len;
580 adapter->link_speed = 0;
581 adapter->link_duplex = 0;
582 netif_carrier_off(netdev);
583 netif_stop_queue(netdev);
585 e1000_reset(adapter);
586 e1000_clean_all_tx_rings(adapter);
587 e1000_clean_all_rx_rings(adapter);
590 void
591 e1000_reinit_locked(struct e1000_adapter *adapter)
593 WARN_ON(in_interrupt());
594 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
595 msleep(1);
596 e1000_down(adapter);
597 e1000_up(adapter);
598 clear_bit(__E1000_RESETTING, &adapter->flags);
601 void
602 e1000_reset(struct e1000_adapter *adapter)
604 uint32_t pba, manc;
605 #ifdef DISABLE_MULR
606 uint32_t tctl;
607 #endif
608 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
610 /* Repartition Pba for greater than 9k mtu
611 * To take effect CTRL.RST is required.
614 switch (adapter->hw.mac_type) {
615 case e1000_82547:
616 case e1000_82547_rev_2:
617 pba = E1000_PBA_30K;
618 break;
619 case e1000_82571:
620 case e1000_82572:
621 case e1000_80003es2lan:
622 pba = E1000_PBA_38K;
623 break;
624 case e1000_82573:
625 pba = E1000_PBA_12K;
626 break;
627 case e1000_ich8lan:
628 pba = E1000_PBA_8K;
629 break;
630 default:
631 pba = E1000_PBA_48K;
632 break;
635 if ((adapter->hw.mac_type != e1000_82573) &&
636 (adapter->netdev->mtu > E1000_RXBUFFER_8192))
637 pba -= 8; /* allocate more FIFO for Tx */
640 if (adapter->hw.mac_type == e1000_82547) {
641 adapter->tx_fifo_head = 0;
642 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
643 adapter->tx_fifo_size =
644 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
645 atomic_set(&adapter->tx_fifo_stall, 0);
648 E1000_WRITE_REG(&adapter->hw, PBA, pba);
650 /* flow control settings */
651 /* Set the FC high water mark to 90% of the FIFO size.
652 * Required to clear last 3 LSB */
653 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
654 /* We can't use 90% on small FIFOs because the remainder
655 * would be less than 1 full frame. In this case, we size
656 * it to allow at least a full frame above the high water
657 * mark. */
658 if (pba < E1000_PBA_16K)
659 fc_high_water_mark = (pba * 1024) - 1600;
661 adapter->hw.fc_high_water = fc_high_water_mark;
662 adapter->hw.fc_low_water = fc_high_water_mark - 8;
663 if (adapter->hw.mac_type == e1000_80003es2lan)
664 adapter->hw.fc_pause_time = 0xFFFF;
665 else
666 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
667 adapter->hw.fc_send_xon = 1;
668 adapter->hw.fc = adapter->hw.original_fc;
670 /* Allow time for pending master requests to run */
671 e1000_reset_hw(&adapter->hw);
672 if (adapter->hw.mac_type >= e1000_82544)
673 E1000_WRITE_REG(&adapter->hw, WUC, 0);
674 #ifdef DISABLE_MULR
675 /* disable Multiple Reads in Transmit Control Register for debugging */
676 tctl = E1000_READ_REG(hw, TCTL);
677 E1000_WRITE_REG(hw, TCTL, tctl & ~E1000_TCTL_MULR);
679 #endif
680 if (e1000_init_hw(&adapter->hw))
681 DPRINTK(PROBE, ERR, "Hardware Error\n");
682 e1000_update_mng_vlan(adapter);
683 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
684 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
686 e1000_reset_adaptive(&adapter->hw);
687 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
689 if (!adapter->smart_power_down &&
690 (adapter->hw.mac_type == e1000_82571 ||
691 adapter->hw.mac_type == e1000_82572)) {
692 uint16_t phy_data = 0;
693 /* speed up time to link by disabling smart power down, ignore
694 * the return value of this function because there is nothing
695 * different we would do if it failed */
696 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
697 &phy_data);
698 phy_data &= ~IGP02E1000_PM_SPD;
699 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
700 phy_data);
703 if ((adapter->en_mng_pt) &&
704 (adapter->hw.mac_type >= e1000_82540) &&
705 (adapter->hw.mac_type < e1000_82571) &&
706 (adapter->hw.media_type == e1000_media_type_copper)) {
707 manc = E1000_READ_REG(&adapter->hw, MANC);
708 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
709 E1000_WRITE_REG(&adapter->hw, MANC, manc);
714 * e1000_probe - Device Initialization Routine
715 * @pdev: PCI device information struct
716 * @ent: entry in e1000_pci_tbl
718 * Returns 0 on success, negative on failure
720 * e1000_probe initializes an adapter identified by a pci_dev structure.
721 * The OS initialization, configuring of the adapter private structure,
722 * and a hardware reset occur.
725 static int __devinit
726 e1000_probe(struct pci_dev *pdev,
727 const struct pci_device_id *ent)
729 struct net_device *netdev;
730 struct e1000_adapter *adapter;
731 unsigned long mmio_start, mmio_len;
732 unsigned long flash_start, flash_len;
734 static int cards_found = 0;
735 static int global_quad_port_a = 0; /* global ksp3 port a indication */
736 int i, err, pci_using_dac;
737 uint16_t eeprom_data = 0;
738 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
739 if ((err = pci_enable_device(pdev)))
740 return err;
742 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
743 !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
744 pci_using_dac = 1;
745 } else {
746 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
747 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
748 E1000_ERR("No usable DMA configuration, aborting\n");
749 goto err_dma;
751 pci_using_dac = 0;
754 if ((err = pci_request_regions(pdev, e1000_driver_name)))
755 goto err_pci_reg;
757 pci_set_master(pdev);
759 err = -ENOMEM;
760 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
761 if (!netdev)
762 goto err_alloc_etherdev;
764 SET_MODULE_OWNER(netdev);
765 SET_NETDEV_DEV(netdev, &pdev->dev);
767 pci_set_drvdata(pdev, netdev);
768 adapter = netdev_priv(netdev);
769 adapter->netdev = netdev;
770 adapter->pdev = pdev;
771 adapter->hw.back = adapter;
772 adapter->msg_enable = (1 << debug) - 1;
774 mmio_start = pci_resource_start(pdev, BAR_0);
775 mmio_len = pci_resource_len(pdev, BAR_0);
777 err = -EIO;
778 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
779 if (!adapter->hw.hw_addr)
780 goto err_ioremap;
782 for (i = BAR_1; i <= BAR_5; i++) {
783 if (pci_resource_len(pdev, i) == 0)
784 continue;
785 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
786 adapter->hw.io_base = pci_resource_start(pdev, i);
787 break;
791 netdev->open = &e1000_open;
792 netdev->stop = &e1000_close;
793 netdev->hard_start_xmit = &e1000_xmit_frame;
794 netdev->get_stats = &e1000_get_stats;
795 netdev->set_multicast_list = &e1000_set_multi;
796 netdev->set_mac_address = &e1000_set_mac;
797 netdev->change_mtu = &e1000_change_mtu;
798 netdev->do_ioctl = &e1000_ioctl;
799 e1000_set_ethtool_ops(netdev);
800 netdev->tx_timeout = &e1000_tx_timeout;
801 netdev->watchdog_timeo = 5 * HZ;
802 #ifdef CONFIG_E1000_NAPI
803 netdev->poll = &e1000_clean;
804 netdev->weight = 64;
805 #endif
806 netdev->vlan_rx_register = e1000_vlan_rx_register;
807 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
808 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
809 #ifdef CONFIG_NET_POLL_CONTROLLER
810 netdev->poll_controller = e1000_netpoll;
811 #endif
812 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
814 netdev->mem_start = mmio_start;
815 netdev->mem_end = mmio_start + mmio_len;
816 netdev->base_addr = adapter->hw.io_base;
818 adapter->bd_number = cards_found;
820 /* setup the private structure */
822 if ((err = e1000_sw_init(adapter)))
823 goto err_sw_init;
825 err = -EIO;
826 /* Flash BAR mapping must happen after e1000_sw_init
827 * because it depends on mac_type */
828 if ((adapter->hw.mac_type == e1000_ich8lan) &&
829 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
830 flash_start = pci_resource_start(pdev, 1);
831 flash_len = pci_resource_len(pdev, 1);
832 adapter->hw.flash_address = ioremap(flash_start, flash_len);
833 if (!adapter->hw.flash_address)
834 goto err_flashmap;
837 if (e1000_check_phy_reset_block(&adapter->hw))
838 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
840 if (adapter->hw.mac_type >= e1000_82543) {
841 netdev->features = NETIF_F_SG |
842 NETIF_F_HW_CSUM |
843 NETIF_F_HW_VLAN_TX |
844 NETIF_F_HW_VLAN_RX |
845 NETIF_F_HW_VLAN_FILTER;
846 if (adapter->hw.mac_type == e1000_ich8lan)
847 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
850 #ifdef NETIF_F_TSO
851 if ((adapter->hw.mac_type >= e1000_82544) &&
852 (adapter->hw.mac_type != e1000_82547))
853 netdev->features |= NETIF_F_TSO;
855 #ifdef NETIF_F_TSO_IPV6
856 if (adapter->hw.mac_type > e1000_82547_rev_2)
857 netdev->features |= NETIF_F_TSO_IPV6;
858 #endif
859 #endif
860 if (pci_using_dac)
861 netdev->features |= NETIF_F_HIGHDMA;
863 netdev->features |= NETIF_F_LLTX;
865 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
867 /* initialize eeprom parameters */
869 if (e1000_init_eeprom_params(&adapter->hw)) {
870 E1000_ERR("EEPROM initialization failed\n");
871 goto err_eeprom;
874 /* before reading the EEPROM, reset the controller to
875 * put the device in a known good starting state */
877 e1000_reset_hw(&adapter->hw);
879 /* make sure the EEPROM is good */
881 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
882 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
883 goto err_eeprom;
886 /* copy the MAC address out of the EEPROM */
888 if (e1000_read_mac_addr(&adapter->hw))
889 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
890 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
891 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
893 if (!is_valid_ether_addr(netdev->perm_addr)) {
894 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
895 goto err_eeprom;
898 e1000_get_bus_info(&adapter->hw);
900 init_timer(&adapter->tx_fifo_stall_timer);
901 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
902 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
904 init_timer(&adapter->watchdog_timer);
905 adapter->watchdog_timer.function = &e1000_watchdog;
906 adapter->watchdog_timer.data = (unsigned long) adapter;
908 init_timer(&adapter->phy_info_timer);
909 adapter->phy_info_timer.function = &e1000_update_phy_info;
910 adapter->phy_info_timer.data = (unsigned long) adapter;
912 INIT_WORK(&adapter->reset_task,
913 (void (*)(void *))e1000_reset_task, netdev);
915 e1000_check_options(adapter);
917 /* Initial Wake on LAN setting
918 * If APM wake is enabled in the EEPROM,
919 * enable the ACPI Magic Packet filter
922 switch (adapter->hw.mac_type) {
923 case e1000_82542_rev2_0:
924 case e1000_82542_rev2_1:
925 case e1000_82543:
926 break;
927 case e1000_82544:
928 e1000_read_eeprom(&adapter->hw,
929 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
930 eeprom_apme_mask = E1000_EEPROM_82544_APM;
931 break;
932 case e1000_ich8lan:
933 e1000_read_eeprom(&adapter->hw,
934 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
935 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
936 break;
937 case e1000_82546:
938 case e1000_82546_rev_3:
939 case e1000_82571:
940 case e1000_80003es2lan:
941 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
942 e1000_read_eeprom(&adapter->hw,
943 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
944 break;
946 /* Fall Through */
947 default:
948 e1000_read_eeprom(&adapter->hw,
949 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
950 break;
952 if (eeprom_data & eeprom_apme_mask)
953 adapter->eeprom_wol |= E1000_WUFC_MAG;
955 /* now that we have the eeprom settings, apply the special cases
956 * where the eeprom may be wrong or the board simply won't support
957 * wake on lan on a particular port */
958 switch (pdev->device) {
959 case E1000_DEV_ID_82546GB_PCIE:
960 adapter->eeprom_wol = 0;
961 break;
962 case E1000_DEV_ID_82546EB_FIBER:
963 case E1000_DEV_ID_82546GB_FIBER:
964 case E1000_DEV_ID_82571EB_FIBER:
965 /* Wake events only supported on port A for dual fiber
966 * regardless of eeprom setting */
967 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
968 adapter->eeprom_wol = 0;
969 break;
970 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
971 case E1000_DEV_ID_82571EB_QUAD_COPPER:
972 /* if quad port adapter, disable WoL on all but port A */
973 if (global_quad_port_a != 0)
974 adapter->eeprom_wol = 0;
975 else
976 adapter->quad_port_a = 1;
977 /* Reset for multiple quad port adapters */
978 if (++global_quad_port_a == 4)
979 global_quad_port_a = 0;
980 break;
983 /* initialize the wol settings based on the eeprom settings */
984 adapter->wol = adapter->eeprom_wol;
986 /* print bus type/speed/width info */
988 struct e1000_hw *hw = &adapter->hw;
989 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
990 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
991 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
992 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
993 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
994 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
995 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
996 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
997 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
998 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
999 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1000 "32-bit"));
1003 for (i = 0; i < 6; i++)
1004 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1006 /* reset the hardware with the new settings */
1007 e1000_reset(adapter);
1009 /* If the controller is 82573 and f/w is AMT, do not set
1010 * DRV_LOAD until the interface is up. For all other cases,
1011 * let the f/w know that the h/w is now under the control
1012 * of the driver. */
1013 if (adapter->hw.mac_type != e1000_82573 ||
1014 !e1000_check_mng_mode(&adapter->hw))
1015 e1000_get_hw_control(adapter);
1017 strcpy(netdev->name, "eth%d");
1018 if ((err = register_netdev(netdev)))
1019 goto err_register;
1021 /* tell the stack to leave us alone until e1000_open() is called */
1022 netif_carrier_off(netdev);
1023 netif_stop_queue(netdev);
1025 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1027 cards_found++;
1028 return 0;
1030 err_register:
1031 e1000_release_hw_control(adapter);
1032 err_eeprom:
1033 if (!e1000_check_phy_reset_block(&adapter->hw))
1034 e1000_phy_hw_reset(&adapter->hw);
1036 if (adapter->hw.flash_address)
1037 iounmap(adapter->hw.flash_address);
1038 err_flashmap:
1039 #ifdef CONFIG_E1000_NAPI
1040 for (i = 0; i < adapter->num_rx_queues; i++)
1041 dev_put(&adapter->polling_netdev[i]);
1042 #endif
1044 kfree(adapter->tx_ring);
1045 kfree(adapter->rx_ring);
1046 #ifdef CONFIG_E1000_NAPI
1047 kfree(adapter->polling_netdev);
1048 #endif
1049 err_sw_init:
1050 iounmap(adapter->hw.hw_addr);
1051 err_ioremap:
1052 free_netdev(netdev);
1053 err_alloc_etherdev:
1054 pci_release_regions(pdev);
1055 err_pci_reg:
1056 err_dma:
1057 pci_disable_device(pdev);
1058 return err;
1062 * e1000_remove - Device Removal Routine
1063 * @pdev: PCI device information struct
1065 * e1000_remove is called by the PCI subsystem to alert the driver
1066 * that it should release a PCI device. The could be caused by a
1067 * Hot-Plug event, or because the driver is going to be removed from
1068 * memory.
1071 static void __devexit
1072 e1000_remove(struct pci_dev *pdev)
1074 struct net_device *netdev = pci_get_drvdata(pdev);
1075 struct e1000_adapter *adapter = netdev_priv(netdev);
1076 uint32_t manc;
1077 #ifdef CONFIG_E1000_NAPI
1078 int i;
1079 #endif
1081 flush_scheduled_work();
1083 if (adapter->hw.mac_type >= e1000_82540 &&
1084 adapter->hw.mac_type < e1000_82571 &&
1085 adapter->hw.media_type == e1000_media_type_copper) {
1086 manc = E1000_READ_REG(&adapter->hw, MANC);
1087 if (manc & E1000_MANC_SMBUS_EN) {
1088 manc |= E1000_MANC_ARP_EN;
1089 E1000_WRITE_REG(&adapter->hw, MANC, manc);
1093 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1094 * would have already happened in close and is redundant. */
1095 e1000_release_hw_control(adapter);
1097 unregister_netdev(netdev);
1098 #ifdef CONFIG_E1000_NAPI
1099 for (i = 0; i < adapter->num_rx_queues; i++)
1100 dev_put(&adapter->polling_netdev[i]);
1101 #endif
1103 if (!e1000_check_phy_reset_block(&adapter->hw))
1104 e1000_phy_hw_reset(&adapter->hw);
1106 kfree(adapter->tx_ring);
1107 kfree(adapter->rx_ring);
1108 #ifdef CONFIG_E1000_NAPI
1109 kfree(adapter->polling_netdev);
1110 #endif
1112 iounmap(adapter->hw.hw_addr);
1113 if (adapter->hw.flash_address)
1114 iounmap(adapter->hw.flash_address);
1115 pci_release_regions(pdev);
1117 free_netdev(netdev);
1119 pci_disable_device(pdev);
1123 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1124 * @adapter: board private structure to initialize
1126 * e1000_sw_init initializes the Adapter private data structure.
1127 * Fields are initialized based on PCI device information and
1128 * OS network device settings (MTU size).
1131 static int __devinit
1132 e1000_sw_init(struct e1000_adapter *adapter)
1134 struct e1000_hw *hw = &adapter->hw;
1135 struct net_device *netdev = adapter->netdev;
1136 struct pci_dev *pdev = adapter->pdev;
1137 #ifdef CONFIG_E1000_NAPI
1138 int i;
1139 #endif
1141 /* PCI config space info */
1143 hw->vendor_id = pdev->vendor;
1144 hw->device_id = pdev->device;
1145 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1146 hw->subsystem_id = pdev->subsystem_device;
1148 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1150 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1152 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1153 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1154 hw->max_frame_size = netdev->mtu +
1155 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1156 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1158 /* identify the MAC */
1160 if (e1000_set_mac_type(hw)) {
1161 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1162 return -EIO;
1165 switch (hw->mac_type) {
1166 default:
1167 break;
1168 case e1000_82541:
1169 case e1000_82547:
1170 case e1000_82541_rev_2:
1171 case e1000_82547_rev_2:
1172 hw->phy_init_script = 1;
1173 break;
1176 e1000_set_media_type(hw);
1178 hw->wait_autoneg_complete = FALSE;
1179 hw->tbi_compatibility_en = TRUE;
1180 hw->adaptive_ifs = TRUE;
1182 /* Copper options */
1184 if (hw->media_type == e1000_media_type_copper) {
1185 hw->mdix = AUTO_ALL_MODES;
1186 hw->disable_polarity_correction = FALSE;
1187 hw->master_slave = E1000_MASTER_SLAVE;
1190 adapter->num_tx_queues = 1;
1191 adapter->num_rx_queues = 1;
1193 if (e1000_alloc_queues(adapter)) {
1194 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1195 return -ENOMEM;
1198 #ifdef CONFIG_E1000_NAPI
1199 for (i = 0; i < adapter->num_rx_queues; i++) {
1200 adapter->polling_netdev[i].priv = adapter;
1201 adapter->polling_netdev[i].poll = &e1000_clean;
1202 adapter->polling_netdev[i].weight = 64;
1203 dev_hold(&adapter->polling_netdev[i]);
1204 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1206 spin_lock_init(&adapter->tx_queue_lock);
1207 #endif
1209 atomic_set(&adapter->irq_sem, 1);
1210 spin_lock_init(&adapter->stats_lock);
1212 set_bit(__E1000_DOWN, &adapter->flags);
1214 return 0;
1218 * e1000_alloc_queues - Allocate memory for all rings
1219 * @adapter: board private structure to initialize
1221 * We allocate one ring per queue at run-time since we don't know the
1222 * number of queues at compile-time. The polling_netdev array is
1223 * intended for Multiqueue, but should work fine with a single queue.
1226 static int __devinit
1227 e1000_alloc_queues(struct e1000_adapter *adapter)
1229 int size;
1231 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1232 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1233 if (!adapter->tx_ring)
1234 return -ENOMEM;
1235 memset(adapter->tx_ring, 0, size);
1237 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1238 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1239 if (!adapter->rx_ring) {
1240 kfree(adapter->tx_ring);
1241 return -ENOMEM;
1243 memset(adapter->rx_ring, 0, size);
1245 #ifdef CONFIG_E1000_NAPI
1246 size = sizeof(struct net_device) * adapter->num_rx_queues;
1247 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1248 if (!adapter->polling_netdev) {
1249 kfree(adapter->tx_ring);
1250 kfree(adapter->rx_ring);
1251 return -ENOMEM;
1253 memset(adapter->polling_netdev, 0, size);
1254 #endif
1256 return E1000_SUCCESS;
1260 * e1000_open - Called when a network interface is made active
1261 * @netdev: network interface device structure
1263 * Returns 0 on success, negative value on failure
1265 * The open entry point is called when a network interface is made
1266 * active by the system (IFF_UP). At this point all resources needed
1267 * for transmit and receive operations are allocated, the interrupt
1268 * handler is registered with the OS, the watchdog timer is started,
1269 * and the stack is notified that the interface is ready.
1272 static int
1273 e1000_open(struct net_device *netdev)
1275 struct e1000_adapter *adapter = netdev_priv(netdev);
1276 int err;
1278 /* disallow open during test */
1279 if (test_bit(__E1000_TESTING, &adapter->flags))
1280 return -EBUSY;
1282 /* allocate transmit descriptors */
1283 if ((err = e1000_setup_all_tx_resources(adapter)))
1284 goto err_setup_tx;
1286 /* allocate receive descriptors */
1287 if ((err = e1000_setup_all_rx_resources(adapter)))
1288 goto err_setup_rx;
1290 err = e1000_request_irq(adapter);
1291 if (err)
1292 goto err_req_irq;
1294 e1000_power_up_phy(adapter);
1296 if ((err = e1000_up(adapter)))
1297 goto err_up;
1298 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1299 if ((adapter->hw.mng_cookie.status &
1300 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1301 e1000_update_mng_vlan(adapter);
1304 /* If AMT is enabled, let the firmware know that the network
1305 * interface is now open */
1306 if (adapter->hw.mac_type == e1000_82573 &&
1307 e1000_check_mng_mode(&adapter->hw))
1308 e1000_get_hw_control(adapter);
1310 return E1000_SUCCESS;
1312 err_up:
1313 e1000_power_down_phy(adapter);
1314 e1000_free_irq(adapter);
1315 err_req_irq:
1316 e1000_free_all_rx_resources(adapter);
1317 err_setup_rx:
1318 e1000_free_all_tx_resources(adapter);
1319 err_setup_tx:
1320 e1000_reset(adapter);
1322 return err;
1326 * e1000_close - Disables a network interface
1327 * @netdev: network interface device structure
1329 * Returns 0, this is not allowed to fail
1331 * The close entry point is called when an interface is de-activated
1332 * by the OS. The hardware is still under the drivers control, but
1333 * needs to be disabled. A global MAC reset is issued to stop the
1334 * hardware, and all transmit and receive resources are freed.
1337 static int
1338 e1000_close(struct net_device *netdev)
1340 struct e1000_adapter *adapter = netdev_priv(netdev);
1342 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1343 e1000_down(adapter);
1344 e1000_power_down_phy(adapter);
1345 e1000_free_irq(adapter);
1347 e1000_free_all_tx_resources(adapter);
1348 e1000_free_all_rx_resources(adapter);
1350 /* kill manageability vlan ID if supported, but not if a vlan with
1351 * the same ID is registered on the host OS (let 8021q kill it) */
1352 if ((adapter->hw.mng_cookie.status &
1353 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1354 !(adapter->vlgrp &&
1355 adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1356 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1359 /* If AMT is enabled, let the firmware know that the network
1360 * interface is now closed */
1361 if (adapter->hw.mac_type == e1000_82573 &&
1362 e1000_check_mng_mode(&adapter->hw))
1363 e1000_release_hw_control(adapter);
1365 return 0;
1369 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1370 * @adapter: address of board private structure
1371 * @start: address of beginning of memory
1372 * @len: length of memory
1374 static boolean_t
1375 e1000_check_64k_bound(struct e1000_adapter *adapter,
1376 void *start, unsigned long len)
1378 unsigned long begin = (unsigned long) start;
1379 unsigned long end = begin + len;
1381 /* First rev 82545 and 82546 need to not allow any memory
1382 * write location to cross 64k boundary due to errata 23 */
1383 if (adapter->hw.mac_type == e1000_82545 ||
1384 adapter->hw.mac_type == e1000_82546) {
1385 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1388 return TRUE;
1392 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1393 * @adapter: board private structure
1394 * @txdr: tx descriptor ring (for a specific queue) to setup
1396 * Return 0 on success, negative on failure
1399 static int
1400 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1401 struct e1000_tx_ring *txdr)
1403 struct pci_dev *pdev = adapter->pdev;
1404 int size;
1406 size = sizeof(struct e1000_buffer) * txdr->count;
1407 txdr->buffer_info = vmalloc(size);
1408 if (!txdr->buffer_info) {
1409 DPRINTK(PROBE, ERR,
1410 "Unable to allocate memory for the transmit descriptor ring\n");
1411 return -ENOMEM;
1413 memset(txdr->buffer_info, 0, size);
1415 /* round up to nearest 4K */
1417 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1418 E1000_ROUNDUP(txdr->size, 4096);
1420 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1421 if (!txdr->desc) {
1422 setup_tx_desc_die:
1423 vfree(txdr->buffer_info);
1424 DPRINTK(PROBE, ERR,
1425 "Unable to allocate memory for the transmit descriptor ring\n");
1426 return -ENOMEM;
1429 /* Fix for errata 23, can't cross 64kB boundary */
1430 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1431 void *olddesc = txdr->desc;
1432 dma_addr_t olddma = txdr->dma;
1433 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1434 "at %p\n", txdr->size, txdr->desc);
1435 /* Try again, without freeing the previous */
1436 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1437 /* Failed allocation, critical failure */
1438 if (!txdr->desc) {
1439 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1440 goto setup_tx_desc_die;
1443 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1444 /* give up */
1445 pci_free_consistent(pdev, txdr->size, txdr->desc,
1446 txdr->dma);
1447 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1448 DPRINTK(PROBE, ERR,
1449 "Unable to allocate aligned memory "
1450 "for the transmit descriptor ring\n");
1451 vfree(txdr->buffer_info);
1452 return -ENOMEM;
1453 } else {
1454 /* Free old allocation, new allocation was successful */
1455 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1458 memset(txdr->desc, 0, txdr->size);
1460 txdr->next_to_use = 0;
1461 txdr->next_to_clean = 0;
1462 spin_lock_init(&txdr->tx_lock);
1464 return 0;
1468 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1469 * (Descriptors) for all queues
1470 * @adapter: board private structure
1472 * Return 0 on success, negative on failure
1476 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1478 int i, err = 0;
1480 for (i = 0; i < adapter->num_tx_queues; i++) {
1481 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1482 if (err) {
1483 DPRINTK(PROBE, ERR,
1484 "Allocation for Tx Queue %u failed\n", i);
1485 for (i-- ; i >= 0; i--)
1486 e1000_free_tx_resources(adapter,
1487 &adapter->tx_ring[i]);
1488 break;
1492 return err;
1496 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1497 * @adapter: board private structure
1499 * Configure the Tx unit of the MAC after a reset.
1502 static void
1503 e1000_configure_tx(struct e1000_adapter *adapter)
1505 uint64_t tdba;
1506 struct e1000_hw *hw = &adapter->hw;
1507 uint32_t tdlen, tctl, tipg, tarc;
1508 uint32_t ipgr1, ipgr2;
1510 /* Setup the HW Tx Head and Tail descriptor pointers */
1512 switch (adapter->num_tx_queues) {
1513 case 1:
1514 default:
1515 tdba = adapter->tx_ring[0].dma;
1516 tdlen = adapter->tx_ring[0].count *
1517 sizeof(struct e1000_tx_desc);
1518 E1000_WRITE_REG(hw, TDLEN, tdlen);
1519 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1520 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1521 E1000_WRITE_REG(hw, TDT, 0);
1522 E1000_WRITE_REG(hw, TDH, 0);
1523 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1524 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1525 break;
1528 /* Set the default values for the Tx Inter Packet Gap timer */
1530 if (hw->media_type == e1000_media_type_fiber ||
1531 hw->media_type == e1000_media_type_internal_serdes)
1532 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1533 else
1534 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1536 switch (hw->mac_type) {
1537 case e1000_82542_rev2_0:
1538 case e1000_82542_rev2_1:
1539 tipg = DEFAULT_82542_TIPG_IPGT;
1540 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1541 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1542 break;
1543 case e1000_80003es2lan:
1544 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1545 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1546 break;
1547 default:
1548 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1549 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1550 break;
1552 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1553 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1554 E1000_WRITE_REG(hw, TIPG, tipg);
1556 /* Set the Tx Interrupt Delay register */
1558 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1559 if (hw->mac_type >= e1000_82540)
1560 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1562 /* Program the Transmit Control Register */
1564 tctl = E1000_READ_REG(hw, TCTL);
1565 tctl &= ~E1000_TCTL_CT;
1566 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1567 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1569 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1570 tarc = E1000_READ_REG(hw, TARC0);
1571 /* set the speed mode bit, we'll clear it if we're not at
1572 * gigabit link later */
1573 tarc |= (1 << 21);
1574 E1000_WRITE_REG(hw, TARC0, tarc);
1575 } else if (hw->mac_type == e1000_80003es2lan) {
1576 tarc = E1000_READ_REG(hw, TARC0);
1577 tarc |= 1;
1578 E1000_WRITE_REG(hw, TARC0, tarc);
1579 tarc = E1000_READ_REG(hw, TARC1);
1580 tarc |= 1;
1581 E1000_WRITE_REG(hw, TARC1, tarc);
1584 e1000_config_collision_dist(hw);
1586 /* Setup Transmit Descriptor Settings for eop descriptor */
1587 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1588 E1000_TXD_CMD_IFCS;
1590 if (hw->mac_type < e1000_82543)
1591 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1592 else
1593 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1595 /* Cache if we're 82544 running in PCI-X because we'll
1596 * need this to apply a workaround later in the send path. */
1597 if (hw->mac_type == e1000_82544 &&
1598 hw->bus_type == e1000_bus_type_pcix)
1599 adapter->pcix_82544 = 1;
1601 E1000_WRITE_REG(hw, TCTL, tctl);
1606 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1607 * @adapter: board private structure
1608 * @rxdr: rx descriptor ring (for a specific queue) to setup
1610 * Returns 0 on success, negative on failure
1613 static int
1614 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1615 struct e1000_rx_ring *rxdr)
1617 struct pci_dev *pdev = adapter->pdev;
1618 int size, desc_len;
1620 size = sizeof(struct e1000_buffer) * rxdr->count;
1621 rxdr->buffer_info = vmalloc(size);
1622 if (!rxdr->buffer_info) {
1623 DPRINTK(PROBE, ERR,
1624 "Unable to allocate memory for the receive descriptor ring\n");
1625 return -ENOMEM;
1627 memset(rxdr->buffer_info, 0, size);
1629 size = sizeof(struct e1000_ps_page) * rxdr->count;
1630 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1631 if (!rxdr->ps_page) {
1632 vfree(rxdr->buffer_info);
1633 DPRINTK(PROBE, ERR,
1634 "Unable to allocate memory for the receive descriptor ring\n");
1635 return -ENOMEM;
1637 memset(rxdr->ps_page, 0, size);
1639 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1640 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1641 if (!rxdr->ps_page_dma) {
1642 vfree(rxdr->buffer_info);
1643 kfree(rxdr->ps_page);
1644 DPRINTK(PROBE, ERR,
1645 "Unable to allocate memory for the receive descriptor ring\n");
1646 return -ENOMEM;
1648 memset(rxdr->ps_page_dma, 0, size);
1650 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1651 desc_len = sizeof(struct e1000_rx_desc);
1652 else
1653 desc_len = sizeof(union e1000_rx_desc_packet_split);
1655 /* Round up to nearest 4K */
1657 rxdr->size = rxdr->count * desc_len;
1658 E1000_ROUNDUP(rxdr->size, 4096);
1660 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1662 if (!rxdr->desc) {
1663 DPRINTK(PROBE, ERR,
1664 "Unable to allocate memory for the receive descriptor ring\n");
1665 setup_rx_desc_die:
1666 vfree(rxdr->buffer_info);
1667 kfree(rxdr->ps_page);
1668 kfree(rxdr->ps_page_dma);
1669 return -ENOMEM;
1672 /* Fix for errata 23, can't cross 64kB boundary */
1673 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1674 void *olddesc = rxdr->desc;
1675 dma_addr_t olddma = rxdr->dma;
1676 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1677 "at %p\n", rxdr->size, rxdr->desc);
1678 /* Try again, without freeing the previous */
1679 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1680 /* Failed allocation, critical failure */
1681 if (!rxdr->desc) {
1682 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1683 DPRINTK(PROBE, ERR,
1684 "Unable to allocate memory "
1685 "for the receive descriptor ring\n");
1686 goto setup_rx_desc_die;
1689 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1690 /* give up */
1691 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1692 rxdr->dma);
1693 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1694 DPRINTK(PROBE, ERR,
1695 "Unable to allocate aligned memory "
1696 "for the receive descriptor ring\n");
1697 goto setup_rx_desc_die;
1698 } else {
1699 /* Free old allocation, new allocation was successful */
1700 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1703 memset(rxdr->desc, 0, rxdr->size);
1705 rxdr->next_to_clean = 0;
1706 rxdr->next_to_use = 0;
1708 return 0;
1712 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1713 * (Descriptors) for all queues
1714 * @adapter: board private structure
1716 * Return 0 on success, negative on failure
1720 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1722 int i, err = 0;
1724 for (i = 0; i < adapter->num_rx_queues; i++) {
1725 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1726 if (err) {
1727 DPRINTK(PROBE, ERR,
1728 "Allocation for Rx Queue %u failed\n", i);
1729 for (i-- ; i >= 0; i--)
1730 e1000_free_rx_resources(adapter,
1731 &adapter->rx_ring[i]);
1732 break;
1736 return err;
1740 * e1000_setup_rctl - configure the receive control registers
1741 * @adapter: Board private structure
1743 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1744 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1745 static void
1746 e1000_setup_rctl(struct e1000_adapter *adapter)
1748 uint32_t rctl, rfctl;
1749 uint32_t psrctl = 0;
1750 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1751 uint32_t pages = 0;
1752 #endif
1754 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1756 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1758 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1759 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1760 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1762 if (adapter->hw.tbi_compatibility_on == 1)
1763 rctl |= E1000_RCTL_SBP;
1764 else
1765 rctl &= ~E1000_RCTL_SBP;
1767 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1768 rctl &= ~E1000_RCTL_LPE;
1769 else
1770 rctl |= E1000_RCTL_LPE;
1772 /* Setup buffer sizes */
1773 rctl &= ~E1000_RCTL_SZ_4096;
1774 rctl |= E1000_RCTL_BSEX;
1775 switch (adapter->rx_buffer_len) {
1776 case E1000_RXBUFFER_256:
1777 rctl |= E1000_RCTL_SZ_256;
1778 rctl &= ~E1000_RCTL_BSEX;
1779 break;
1780 case E1000_RXBUFFER_512:
1781 rctl |= E1000_RCTL_SZ_512;
1782 rctl &= ~E1000_RCTL_BSEX;
1783 break;
1784 case E1000_RXBUFFER_1024:
1785 rctl |= E1000_RCTL_SZ_1024;
1786 rctl &= ~E1000_RCTL_BSEX;
1787 break;
1788 case E1000_RXBUFFER_2048:
1789 default:
1790 rctl |= E1000_RCTL_SZ_2048;
1791 rctl &= ~E1000_RCTL_BSEX;
1792 break;
1793 case E1000_RXBUFFER_4096:
1794 rctl |= E1000_RCTL_SZ_4096;
1795 break;
1796 case E1000_RXBUFFER_8192:
1797 rctl |= E1000_RCTL_SZ_8192;
1798 break;
1799 case E1000_RXBUFFER_16384:
1800 rctl |= E1000_RCTL_SZ_16384;
1801 break;
1804 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1805 /* 82571 and greater support packet-split where the protocol
1806 * header is placed in skb->data and the packet data is
1807 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1808 * In the case of a non-split, skb->data is linearly filled,
1809 * followed by the page buffers. Therefore, skb->data is
1810 * sized to hold the largest protocol header.
1812 /* allocations using alloc_page take too long for regular MTU
1813 * so only enable packet split for jumbo frames */
1814 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1815 if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1816 PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1817 adapter->rx_ps_pages = pages;
1818 else
1819 adapter->rx_ps_pages = 0;
1820 #endif
1821 if (adapter->rx_ps_pages) {
1822 /* Configure extra packet-split registers */
1823 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1824 rfctl |= E1000_RFCTL_EXTEN;
1825 /* disable IPv6 packet split support */
1826 rfctl |= E1000_RFCTL_IPV6_DIS;
1827 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1829 rctl |= E1000_RCTL_DTYP_PS;
1831 psrctl |= adapter->rx_ps_bsize0 >>
1832 E1000_PSRCTL_BSIZE0_SHIFT;
1834 switch (adapter->rx_ps_pages) {
1835 case 3:
1836 psrctl |= PAGE_SIZE <<
1837 E1000_PSRCTL_BSIZE3_SHIFT;
1838 case 2:
1839 psrctl |= PAGE_SIZE <<
1840 E1000_PSRCTL_BSIZE2_SHIFT;
1841 case 1:
1842 psrctl |= PAGE_SIZE >>
1843 E1000_PSRCTL_BSIZE1_SHIFT;
1844 break;
1847 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1850 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1854 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1855 * @adapter: board private structure
1857 * Configure the Rx unit of the MAC after a reset.
1860 static void
1861 e1000_configure_rx(struct e1000_adapter *adapter)
1863 uint64_t rdba;
1864 struct e1000_hw *hw = &adapter->hw;
1865 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1867 if (adapter->rx_ps_pages) {
1868 /* this is a 32 byte descriptor */
1869 rdlen = adapter->rx_ring[0].count *
1870 sizeof(union e1000_rx_desc_packet_split);
1871 adapter->clean_rx = e1000_clean_rx_irq_ps;
1872 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1873 } else {
1874 rdlen = adapter->rx_ring[0].count *
1875 sizeof(struct e1000_rx_desc);
1876 adapter->clean_rx = e1000_clean_rx_irq;
1877 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1880 /* disable receives while setting up the descriptors */
1881 rctl = E1000_READ_REG(hw, RCTL);
1882 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1884 /* set the Receive Delay Timer Register */
1885 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1887 if (hw->mac_type >= e1000_82540) {
1888 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1889 if (adapter->itr > 1)
1890 E1000_WRITE_REG(hw, ITR,
1891 1000000000 / (adapter->itr * 256));
1894 if (hw->mac_type >= e1000_82571) {
1895 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1896 /* Reset delay timers after every interrupt */
1897 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1898 #ifdef CONFIG_E1000_NAPI
1899 /* Auto-Mask interrupts upon ICR read. */
1900 ctrl_ext |= E1000_CTRL_EXT_IAME;
1901 #endif
1902 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1903 E1000_WRITE_REG(hw, IAM, ~0);
1904 E1000_WRITE_FLUSH(hw);
1907 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1908 * the Base and Length of the Rx Descriptor Ring */
1909 switch (adapter->num_rx_queues) {
1910 case 1:
1911 default:
1912 rdba = adapter->rx_ring[0].dma;
1913 E1000_WRITE_REG(hw, RDLEN, rdlen);
1914 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1915 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1916 E1000_WRITE_REG(hw, RDT, 0);
1917 E1000_WRITE_REG(hw, RDH, 0);
1918 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1919 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1920 break;
1923 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1924 if (hw->mac_type >= e1000_82543) {
1925 rxcsum = E1000_READ_REG(hw, RXCSUM);
1926 if (adapter->rx_csum == TRUE) {
1927 rxcsum |= E1000_RXCSUM_TUOFL;
1929 /* Enable 82571 IPv4 payload checksum for UDP fragments
1930 * Must be used in conjunction with packet-split. */
1931 if ((hw->mac_type >= e1000_82571) &&
1932 (adapter->rx_ps_pages)) {
1933 rxcsum |= E1000_RXCSUM_IPPCSE;
1935 } else {
1936 rxcsum &= ~E1000_RXCSUM_TUOFL;
1937 /* don't need to clear IPPCSE as it defaults to 0 */
1939 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1942 /* Enable Receives */
1943 E1000_WRITE_REG(hw, RCTL, rctl);
1947 * e1000_free_tx_resources - Free Tx Resources per Queue
1948 * @adapter: board private structure
1949 * @tx_ring: Tx descriptor ring for a specific queue
1951 * Free all transmit software resources
1954 static void
1955 e1000_free_tx_resources(struct e1000_adapter *adapter,
1956 struct e1000_tx_ring *tx_ring)
1958 struct pci_dev *pdev = adapter->pdev;
1960 e1000_clean_tx_ring(adapter, tx_ring);
1962 vfree(tx_ring->buffer_info);
1963 tx_ring->buffer_info = NULL;
1965 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1967 tx_ring->desc = NULL;
1971 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1972 * @adapter: board private structure
1974 * Free all transmit software resources
1977 void
1978 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1980 int i;
1982 for (i = 0; i < adapter->num_tx_queues; i++)
1983 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1986 static void
1987 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1988 struct e1000_buffer *buffer_info)
1990 if (buffer_info->dma) {
1991 pci_unmap_page(adapter->pdev,
1992 buffer_info->dma,
1993 buffer_info->length,
1994 PCI_DMA_TODEVICE);
1996 if (buffer_info->skb)
1997 dev_kfree_skb_any(buffer_info->skb);
1998 memset(buffer_info, 0, sizeof(struct e1000_buffer));
2002 * e1000_clean_tx_ring - Free Tx Buffers
2003 * @adapter: board private structure
2004 * @tx_ring: ring to be cleaned
2007 static void
2008 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2009 struct e1000_tx_ring *tx_ring)
2011 struct e1000_buffer *buffer_info;
2012 unsigned long size;
2013 unsigned int i;
2015 /* Free all the Tx ring sk_buffs */
2017 for (i = 0; i < tx_ring->count; i++) {
2018 buffer_info = &tx_ring->buffer_info[i];
2019 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2022 size = sizeof(struct e1000_buffer) * tx_ring->count;
2023 memset(tx_ring->buffer_info, 0, size);
2025 /* Zero out the descriptor ring */
2027 memset(tx_ring->desc, 0, tx_ring->size);
2029 tx_ring->next_to_use = 0;
2030 tx_ring->next_to_clean = 0;
2031 tx_ring->last_tx_tso = 0;
2033 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2034 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2038 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2039 * @adapter: board private structure
2042 static void
2043 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2045 int i;
2047 for (i = 0; i < adapter->num_tx_queues; i++)
2048 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2052 * e1000_free_rx_resources - Free Rx Resources
2053 * @adapter: board private structure
2054 * @rx_ring: ring to clean the resources from
2056 * Free all receive software resources
2059 static void
2060 e1000_free_rx_resources(struct e1000_adapter *adapter,
2061 struct e1000_rx_ring *rx_ring)
2063 struct pci_dev *pdev = adapter->pdev;
2065 e1000_clean_rx_ring(adapter, rx_ring);
2067 vfree(rx_ring->buffer_info);
2068 rx_ring->buffer_info = NULL;
2069 kfree(rx_ring->ps_page);
2070 rx_ring->ps_page = NULL;
2071 kfree(rx_ring->ps_page_dma);
2072 rx_ring->ps_page_dma = NULL;
2074 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2076 rx_ring->desc = NULL;
2080 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2081 * @adapter: board private structure
2083 * Free all receive software resources
2086 void
2087 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2089 int i;
2091 for (i = 0; i < adapter->num_rx_queues; i++)
2092 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2096 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2097 * @adapter: board private structure
2098 * @rx_ring: ring to free buffers from
2101 static void
2102 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2103 struct e1000_rx_ring *rx_ring)
2105 struct e1000_buffer *buffer_info;
2106 struct e1000_ps_page *ps_page;
2107 struct e1000_ps_page_dma *ps_page_dma;
2108 struct pci_dev *pdev = adapter->pdev;
2109 unsigned long size;
2110 unsigned int i, j;
2112 /* Free all the Rx ring sk_buffs */
2113 for (i = 0; i < rx_ring->count; i++) {
2114 buffer_info = &rx_ring->buffer_info[i];
2115 if (buffer_info->skb) {
2116 pci_unmap_single(pdev,
2117 buffer_info->dma,
2118 buffer_info->length,
2119 PCI_DMA_FROMDEVICE);
2121 dev_kfree_skb(buffer_info->skb);
2122 buffer_info->skb = NULL;
2124 ps_page = &rx_ring->ps_page[i];
2125 ps_page_dma = &rx_ring->ps_page_dma[i];
2126 for (j = 0; j < adapter->rx_ps_pages; j++) {
2127 if (!ps_page->ps_page[j]) break;
2128 pci_unmap_page(pdev,
2129 ps_page_dma->ps_page_dma[j],
2130 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2131 ps_page_dma->ps_page_dma[j] = 0;
2132 put_page(ps_page->ps_page[j]);
2133 ps_page->ps_page[j] = NULL;
2137 size = sizeof(struct e1000_buffer) * rx_ring->count;
2138 memset(rx_ring->buffer_info, 0, size);
2139 size = sizeof(struct e1000_ps_page) * rx_ring->count;
2140 memset(rx_ring->ps_page, 0, size);
2141 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2142 memset(rx_ring->ps_page_dma, 0, size);
2144 /* Zero out the descriptor ring */
2146 memset(rx_ring->desc, 0, rx_ring->size);
2148 rx_ring->next_to_clean = 0;
2149 rx_ring->next_to_use = 0;
2151 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2152 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2156 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2157 * @adapter: board private structure
2160 static void
2161 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2163 int i;
2165 for (i = 0; i < adapter->num_rx_queues; i++)
2166 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2169 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2170 * and memory write and invalidate disabled for certain operations
2172 static void
2173 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2175 struct net_device *netdev = adapter->netdev;
2176 uint32_t rctl;
2178 e1000_pci_clear_mwi(&adapter->hw);
2180 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2181 rctl |= E1000_RCTL_RST;
2182 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2183 E1000_WRITE_FLUSH(&adapter->hw);
2184 mdelay(5);
2186 if (netif_running(netdev))
2187 e1000_clean_all_rx_rings(adapter);
2190 static void
2191 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2193 struct net_device *netdev = adapter->netdev;
2194 uint32_t rctl;
2196 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2197 rctl &= ~E1000_RCTL_RST;
2198 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2199 E1000_WRITE_FLUSH(&adapter->hw);
2200 mdelay(5);
2202 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2203 e1000_pci_set_mwi(&adapter->hw);
2205 if (netif_running(netdev)) {
2206 /* No need to loop, because 82542 supports only 1 queue */
2207 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2208 e1000_configure_rx(adapter);
2209 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2214 * e1000_set_mac - Change the Ethernet Address of the NIC
2215 * @netdev: network interface device structure
2216 * @p: pointer to an address structure
2218 * Returns 0 on success, negative on failure
2221 static int
2222 e1000_set_mac(struct net_device *netdev, void *p)
2224 struct e1000_adapter *adapter = netdev_priv(netdev);
2225 struct sockaddr *addr = p;
2227 if (!is_valid_ether_addr(addr->sa_data))
2228 return -EADDRNOTAVAIL;
2230 /* 82542 2.0 needs to be in reset to write receive address registers */
2232 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2233 e1000_enter_82542_rst(adapter);
2235 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2236 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2238 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2240 /* With 82571 controllers, LAA may be overwritten (with the default)
2241 * due to controller reset from the other port. */
2242 if (adapter->hw.mac_type == e1000_82571) {
2243 /* activate the work around */
2244 adapter->hw.laa_is_present = 1;
2246 /* Hold a copy of the LAA in RAR[14] This is done so that
2247 * between the time RAR[0] gets clobbered and the time it
2248 * gets fixed (in e1000_watchdog), the actual LAA is in one
2249 * of the RARs and no incoming packets directed to this port
2250 * are dropped. Eventaully the LAA will be in RAR[0] and
2251 * RAR[14] */
2252 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2253 E1000_RAR_ENTRIES - 1);
2256 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2257 e1000_leave_82542_rst(adapter);
2259 return 0;
2263 * e1000_set_multi - Multicast and Promiscuous mode set
2264 * @netdev: network interface device structure
2266 * The set_multi entry point is called whenever the multicast address
2267 * list or the network interface flags are updated. This routine is
2268 * responsible for configuring the hardware for proper multicast,
2269 * promiscuous mode, and all-multi behavior.
2272 static void
2273 e1000_set_multi(struct net_device *netdev)
2275 struct e1000_adapter *adapter = netdev_priv(netdev);
2276 struct e1000_hw *hw = &adapter->hw;
2277 struct dev_mc_list *mc_ptr;
2278 uint32_t rctl;
2279 uint32_t hash_value;
2280 int i, rar_entries = E1000_RAR_ENTRIES;
2281 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2282 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2283 E1000_NUM_MTA_REGISTERS;
2285 if (adapter->hw.mac_type == e1000_ich8lan)
2286 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2288 /* reserve RAR[14] for LAA over-write work-around */
2289 if (adapter->hw.mac_type == e1000_82571)
2290 rar_entries--;
2292 /* Check for Promiscuous and All Multicast modes */
2294 rctl = E1000_READ_REG(hw, RCTL);
2296 if (netdev->flags & IFF_PROMISC) {
2297 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2298 } else if (netdev->flags & IFF_ALLMULTI) {
2299 rctl |= E1000_RCTL_MPE;
2300 rctl &= ~E1000_RCTL_UPE;
2301 } else {
2302 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2305 E1000_WRITE_REG(hw, RCTL, rctl);
2307 /* 82542 2.0 needs to be in reset to write receive address registers */
2309 if (hw->mac_type == e1000_82542_rev2_0)
2310 e1000_enter_82542_rst(adapter);
2312 /* load the first 14 multicast address into the exact filters 1-14
2313 * RAR 0 is used for the station MAC adddress
2314 * if there are not 14 addresses, go ahead and clear the filters
2315 * -- with 82571 controllers only 0-13 entries are filled here
2317 mc_ptr = netdev->mc_list;
2319 for (i = 1; i < rar_entries; i++) {
2320 if (mc_ptr) {
2321 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2322 mc_ptr = mc_ptr->next;
2323 } else {
2324 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2325 E1000_WRITE_FLUSH(hw);
2326 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2327 E1000_WRITE_FLUSH(hw);
2331 /* clear the old settings from the multicast hash table */
2333 for (i = 0; i < mta_reg_count; i++) {
2334 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2335 E1000_WRITE_FLUSH(hw);
2338 /* load any remaining addresses into the hash table */
2340 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2341 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2342 e1000_mta_set(hw, hash_value);
2345 if (hw->mac_type == e1000_82542_rev2_0)
2346 e1000_leave_82542_rst(adapter);
2349 /* Need to wait a few seconds after link up to get diagnostic information from
2350 * the phy */
2352 static void
2353 e1000_update_phy_info(unsigned long data)
2355 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2356 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2360 * e1000_82547_tx_fifo_stall - Timer Call-back
2361 * @data: pointer to adapter cast into an unsigned long
2364 static void
2365 e1000_82547_tx_fifo_stall(unsigned long data)
2367 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2368 struct net_device *netdev = adapter->netdev;
2369 uint32_t tctl;
2371 if (atomic_read(&adapter->tx_fifo_stall)) {
2372 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2373 E1000_READ_REG(&adapter->hw, TDH)) &&
2374 (E1000_READ_REG(&adapter->hw, TDFT) ==
2375 E1000_READ_REG(&adapter->hw, TDFH)) &&
2376 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2377 E1000_READ_REG(&adapter->hw, TDFHS))) {
2378 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2379 E1000_WRITE_REG(&adapter->hw, TCTL,
2380 tctl & ~E1000_TCTL_EN);
2381 E1000_WRITE_REG(&adapter->hw, TDFT,
2382 adapter->tx_head_addr);
2383 E1000_WRITE_REG(&adapter->hw, TDFH,
2384 adapter->tx_head_addr);
2385 E1000_WRITE_REG(&adapter->hw, TDFTS,
2386 adapter->tx_head_addr);
2387 E1000_WRITE_REG(&adapter->hw, TDFHS,
2388 adapter->tx_head_addr);
2389 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2390 E1000_WRITE_FLUSH(&adapter->hw);
2392 adapter->tx_fifo_head = 0;
2393 atomic_set(&adapter->tx_fifo_stall, 0);
2394 netif_wake_queue(netdev);
2395 } else {
2396 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2402 * e1000_watchdog - Timer Call-back
2403 * @data: pointer to adapter cast into an unsigned long
2405 static void
2406 e1000_watchdog(unsigned long data)
2408 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2409 struct net_device *netdev = adapter->netdev;
2410 struct e1000_tx_ring *txdr = adapter->tx_ring;
2411 uint32_t link, tctl;
2412 int32_t ret_val;
2414 ret_val = e1000_check_for_link(&adapter->hw);
2415 if ((ret_val == E1000_ERR_PHY) &&
2416 (adapter->hw.phy_type == e1000_phy_igp_3) &&
2417 (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2418 /* See e1000_kumeran_lock_loss_workaround() */
2419 DPRINTK(LINK, INFO,
2420 "Gigabit has been disabled, downgrading speed\n");
2423 if (adapter->hw.mac_type == e1000_82573) {
2424 e1000_enable_tx_pkt_filtering(&adapter->hw);
2425 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2426 e1000_update_mng_vlan(adapter);
2429 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2430 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2431 link = !adapter->hw.serdes_link_down;
2432 else
2433 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2435 if (link) {
2436 if (!netif_carrier_ok(netdev)) {
2437 boolean_t txb2b = 1;
2438 e1000_get_speed_and_duplex(&adapter->hw,
2439 &adapter->link_speed,
2440 &adapter->link_duplex);
2442 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2443 adapter->link_speed,
2444 adapter->link_duplex == FULL_DUPLEX ?
2445 "Full Duplex" : "Half Duplex");
2447 /* tweak tx_queue_len according to speed/duplex
2448 * and adjust the timeout factor */
2449 netdev->tx_queue_len = adapter->tx_queue_len;
2450 adapter->tx_timeout_factor = 1;
2451 switch (adapter->link_speed) {
2452 case SPEED_10:
2453 txb2b = 0;
2454 netdev->tx_queue_len = 10;
2455 adapter->tx_timeout_factor = 8;
2456 break;
2457 case SPEED_100:
2458 txb2b = 0;
2459 netdev->tx_queue_len = 100;
2460 /* maybe add some timeout factor ? */
2461 break;
2464 if ((adapter->hw.mac_type == e1000_82571 ||
2465 adapter->hw.mac_type == e1000_82572) &&
2466 txb2b == 0) {
2467 uint32_t tarc0;
2468 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2469 tarc0 &= ~(1 << 21);
2470 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2473 #ifdef NETIF_F_TSO
2474 /* disable TSO for pcie and 10/100 speeds, to avoid
2475 * some hardware issues */
2476 if (!adapter->tso_force &&
2477 adapter->hw.bus_type == e1000_bus_type_pci_express){
2478 switch (adapter->link_speed) {
2479 case SPEED_10:
2480 case SPEED_100:
2481 DPRINTK(PROBE,INFO,
2482 "10/100 speed: disabling TSO\n");
2483 netdev->features &= ~NETIF_F_TSO;
2484 break;
2485 case SPEED_1000:
2486 netdev->features |= NETIF_F_TSO;
2487 break;
2488 default:
2489 /* oops */
2490 break;
2493 #endif
2495 /* enable transmits in the hardware, need to do this
2496 * after setting TARC0 */
2497 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2498 tctl |= E1000_TCTL_EN;
2499 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2501 netif_carrier_on(netdev);
2502 netif_wake_queue(netdev);
2503 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2504 adapter->smartspeed = 0;
2506 } else {
2507 if (netif_carrier_ok(netdev)) {
2508 adapter->link_speed = 0;
2509 adapter->link_duplex = 0;
2510 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2511 netif_carrier_off(netdev);
2512 netif_stop_queue(netdev);
2513 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2515 /* 80003ES2LAN workaround--
2516 * For packet buffer work-around on link down event;
2517 * disable receives in the ISR and
2518 * reset device here in the watchdog
2520 if (adapter->hw.mac_type == e1000_80003es2lan)
2521 /* reset device */
2522 schedule_work(&adapter->reset_task);
2525 e1000_smartspeed(adapter);
2528 e1000_update_stats(adapter);
2530 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2531 adapter->tpt_old = adapter->stats.tpt;
2532 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2533 adapter->colc_old = adapter->stats.colc;
2535 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2536 adapter->gorcl_old = adapter->stats.gorcl;
2537 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2538 adapter->gotcl_old = adapter->stats.gotcl;
2540 e1000_update_adaptive(&adapter->hw);
2542 if (!netif_carrier_ok(netdev)) {
2543 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2544 /* We've lost link, so the controller stops DMA,
2545 * but we've got queued Tx work that's never going
2546 * to get done, so reset controller to flush Tx.
2547 * (Do the reset outside of interrupt context). */
2548 adapter->tx_timeout_count++;
2549 schedule_work(&adapter->reset_task);
2553 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2554 if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2555 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2556 * asymmetrical Tx or Rx gets ITR=8000; everyone
2557 * else is between 2000-8000. */
2558 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2559 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2560 adapter->gotcl - adapter->gorcl :
2561 adapter->gorcl - adapter->gotcl) / 10000;
2562 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2563 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2566 /* Cause software interrupt to ensure rx ring is cleaned */
2567 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2569 /* Force detection of hung controller every watchdog period */
2570 adapter->detect_tx_hung = TRUE;
2572 /* With 82571 controllers, LAA may be overwritten due to controller
2573 * reset from the other port. Set the appropriate LAA in RAR[0] */
2574 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2575 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2577 /* Reset the timer */
2578 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2581 #define E1000_TX_FLAGS_CSUM 0x00000001
2582 #define E1000_TX_FLAGS_VLAN 0x00000002
2583 #define E1000_TX_FLAGS_TSO 0x00000004
2584 #define E1000_TX_FLAGS_IPV4 0x00000008
2585 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2586 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2588 static int
2589 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2590 struct sk_buff *skb)
2592 #ifdef NETIF_F_TSO
2593 struct e1000_context_desc *context_desc;
2594 struct e1000_buffer *buffer_info;
2595 unsigned int i;
2596 uint32_t cmd_length = 0;
2597 uint16_t ipcse = 0, tucse, mss;
2598 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2599 int err;
2601 if (skb_is_gso(skb)) {
2602 if (skb_header_cloned(skb)) {
2603 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2604 if (err)
2605 return err;
2608 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2609 mss = skb_shinfo(skb)->gso_size;
2610 if (skb->protocol == htons(ETH_P_IP)) {
2611 skb->nh.iph->tot_len = 0;
2612 skb->nh.iph->check = 0;
2613 skb->h.th->check =
2614 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2615 skb->nh.iph->daddr,
2617 IPPROTO_TCP,
2619 cmd_length = E1000_TXD_CMD_IP;
2620 ipcse = skb->h.raw - skb->data - 1;
2621 #ifdef NETIF_F_TSO_IPV6
2622 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2623 skb->nh.ipv6h->payload_len = 0;
2624 skb->h.th->check =
2625 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2626 &skb->nh.ipv6h->daddr,
2628 IPPROTO_TCP,
2630 ipcse = 0;
2631 #endif
2633 ipcss = skb->nh.raw - skb->data;
2634 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2635 tucss = skb->h.raw - skb->data;
2636 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2637 tucse = 0;
2639 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2640 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2642 i = tx_ring->next_to_use;
2643 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2644 buffer_info = &tx_ring->buffer_info[i];
2646 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2647 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2648 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2649 context_desc->upper_setup.tcp_fields.tucss = tucss;
2650 context_desc->upper_setup.tcp_fields.tucso = tucso;
2651 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2652 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2653 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2654 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2656 buffer_info->time_stamp = jiffies;
2658 if (++i == tx_ring->count) i = 0;
2659 tx_ring->next_to_use = i;
2661 return TRUE;
2663 #endif
2665 return FALSE;
2668 static boolean_t
2669 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2670 struct sk_buff *skb)
2672 struct e1000_context_desc *context_desc;
2673 struct e1000_buffer *buffer_info;
2674 unsigned int i;
2675 uint8_t css;
2677 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2678 css = skb->h.raw - skb->data;
2680 i = tx_ring->next_to_use;
2681 buffer_info = &tx_ring->buffer_info[i];
2682 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2684 context_desc->upper_setup.tcp_fields.tucss = css;
2685 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2686 context_desc->upper_setup.tcp_fields.tucse = 0;
2687 context_desc->tcp_seg_setup.data = 0;
2688 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2690 buffer_info->time_stamp = jiffies;
2692 if (unlikely(++i == tx_ring->count)) i = 0;
2693 tx_ring->next_to_use = i;
2695 return TRUE;
2698 return FALSE;
2701 #define E1000_MAX_TXD_PWR 12
2702 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2704 static int
2705 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2706 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2707 unsigned int nr_frags, unsigned int mss)
2709 struct e1000_buffer *buffer_info;
2710 unsigned int len = skb->len;
2711 unsigned int offset = 0, size, count = 0, i;
2712 unsigned int f;
2713 len -= skb->data_len;
2715 i = tx_ring->next_to_use;
2717 while (len) {
2718 buffer_info = &tx_ring->buffer_info[i];
2719 size = min(len, max_per_txd);
2720 #ifdef NETIF_F_TSO
2721 /* Workaround for Controller erratum --
2722 * descriptor for non-tso packet in a linear SKB that follows a
2723 * tso gets written back prematurely before the data is fully
2724 * DMA'd to the controller */
2725 if (!skb->data_len && tx_ring->last_tx_tso &&
2726 !skb_is_gso(skb)) {
2727 tx_ring->last_tx_tso = 0;
2728 size -= 4;
2731 /* Workaround for premature desc write-backs
2732 * in TSO mode. Append 4-byte sentinel desc */
2733 if (unlikely(mss && !nr_frags && size == len && size > 8))
2734 size -= 4;
2735 #endif
2736 /* work-around for errata 10 and it applies
2737 * to all controllers in PCI-X mode
2738 * The fix is to make sure that the first descriptor of a
2739 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2741 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2742 (size > 2015) && count == 0))
2743 size = 2015;
2745 /* Workaround for potential 82544 hang in PCI-X. Avoid
2746 * terminating buffers within evenly-aligned dwords. */
2747 if (unlikely(adapter->pcix_82544 &&
2748 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2749 size > 4))
2750 size -= 4;
2752 buffer_info->length = size;
2753 buffer_info->dma =
2754 pci_map_single(adapter->pdev,
2755 skb->data + offset,
2756 size,
2757 PCI_DMA_TODEVICE);
2758 buffer_info->time_stamp = jiffies;
2760 len -= size;
2761 offset += size;
2762 count++;
2763 if (unlikely(++i == tx_ring->count)) i = 0;
2766 for (f = 0; f < nr_frags; f++) {
2767 struct skb_frag_struct *frag;
2769 frag = &skb_shinfo(skb)->frags[f];
2770 len = frag->size;
2771 offset = frag->page_offset;
2773 while (len) {
2774 buffer_info = &tx_ring->buffer_info[i];
2775 size = min(len, max_per_txd);
2776 #ifdef NETIF_F_TSO
2777 /* Workaround for premature desc write-backs
2778 * in TSO mode. Append 4-byte sentinel desc */
2779 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2780 size -= 4;
2781 #endif
2782 /* Workaround for potential 82544 hang in PCI-X.
2783 * Avoid terminating buffers within evenly-aligned
2784 * dwords. */
2785 if (unlikely(adapter->pcix_82544 &&
2786 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2787 size > 4))
2788 size -= 4;
2790 buffer_info->length = size;
2791 buffer_info->dma =
2792 pci_map_page(adapter->pdev,
2793 frag->page,
2794 offset,
2795 size,
2796 PCI_DMA_TODEVICE);
2797 buffer_info->time_stamp = jiffies;
2799 len -= size;
2800 offset += size;
2801 count++;
2802 if (unlikely(++i == tx_ring->count)) i = 0;
2806 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2807 tx_ring->buffer_info[i].skb = skb;
2808 tx_ring->buffer_info[first].next_to_watch = i;
2810 return count;
2813 static void
2814 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2815 int tx_flags, int count)
2817 struct e1000_tx_desc *tx_desc = NULL;
2818 struct e1000_buffer *buffer_info;
2819 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2820 unsigned int i;
2822 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2823 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2824 E1000_TXD_CMD_TSE;
2825 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2827 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2828 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2831 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2832 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2833 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2836 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2837 txd_lower |= E1000_TXD_CMD_VLE;
2838 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2841 i = tx_ring->next_to_use;
2843 while (count--) {
2844 buffer_info = &tx_ring->buffer_info[i];
2845 tx_desc = E1000_TX_DESC(*tx_ring, i);
2846 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2847 tx_desc->lower.data =
2848 cpu_to_le32(txd_lower | buffer_info->length);
2849 tx_desc->upper.data = cpu_to_le32(txd_upper);
2850 if (unlikely(++i == tx_ring->count)) i = 0;
2853 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2855 /* Force memory writes to complete before letting h/w
2856 * know there are new descriptors to fetch. (Only
2857 * applicable for weak-ordered memory model archs,
2858 * such as IA-64). */
2859 wmb();
2861 tx_ring->next_to_use = i;
2862 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2866 * 82547 workaround to avoid controller hang in half-duplex environment.
2867 * The workaround is to avoid queuing a large packet that would span
2868 * the internal Tx FIFO ring boundary by notifying the stack to resend
2869 * the packet at a later time. This gives the Tx FIFO an opportunity to
2870 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2871 * to the beginning of the Tx FIFO.
2874 #define E1000_FIFO_HDR 0x10
2875 #define E1000_82547_PAD_LEN 0x3E0
2877 static int
2878 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2880 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2881 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2883 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2885 if (adapter->link_duplex != HALF_DUPLEX)
2886 goto no_fifo_stall_required;
2888 if (atomic_read(&adapter->tx_fifo_stall))
2889 return 1;
2891 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2892 atomic_set(&adapter->tx_fifo_stall, 1);
2893 return 1;
2896 no_fifo_stall_required:
2897 adapter->tx_fifo_head += skb_fifo_len;
2898 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2899 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2900 return 0;
2903 #define MINIMUM_DHCP_PACKET_SIZE 282
2904 static int
2905 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2907 struct e1000_hw *hw = &adapter->hw;
2908 uint16_t length, offset;
2909 if (vlan_tx_tag_present(skb)) {
2910 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2911 ( adapter->hw.mng_cookie.status &
2912 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2913 return 0;
2915 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2916 struct ethhdr *eth = (struct ethhdr *) skb->data;
2917 if ((htons(ETH_P_IP) == eth->h_proto)) {
2918 const struct iphdr *ip =
2919 (struct iphdr *)((uint8_t *)skb->data+14);
2920 if (IPPROTO_UDP == ip->protocol) {
2921 struct udphdr *udp =
2922 (struct udphdr *)((uint8_t *)ip +
2923 (ip->ihl << 2));
2924 if (ntohs(udp->dest) == 67) {
2925 offset = (uint8_t *)udp + 8 - skb->data;
2926 length = skb->len - offset;
2928 return e1000_mng_write_dhcp_info(hw,
2929 (uint8_t *)udp + 8,
2930 length);
2935 return 0;
2938 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2940 struct e1000_adapter *adapter = netdev_priv(netdev);
2941 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2943 netif_stop_queue(netdev);
2944 /* Herbert's original patch had:
2945 * smp_mb__after_netif_stop_queue();
2946 * but since that doesn't exist yet, just open code it. */
2947 smp_mb();
2949 /* We need to check again in a case another CPU has just
2950 * made room available. */
2951 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2952 return -EBUSY;
2954 /* A reprieve! */
2955 netif_start_queue(netdev);
2956 return 0;
2959 static int e1000_maybe_stop_tx(struct net_device *netdev,
2960 struct e1000_tx_ring *tx_ring, int size)
2962 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2963 return 0;
2964 return __e1000_maybe_stop_tx(netdev, size);
2967 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2968 static int
2969 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2971 struct e1000_adapter *adapter = netdev_priv(netdev);
2972 struct e1000_tx_ring *tx_ring;
2973 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2974 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2975 unsigned int tx_flags = 0;
2976 unsigned int len = skb->len;
2977 unsigned long flags;
2978 unsigned int nr_frags = 0;
2979 unsigned int mss = 0;
2980 int count = 0;
2981 int tso;
2982 unsigned int f;
2983 len -= skb->data_len;
2985 /* This goes back to the question of how to logically map a tx queue
2986 * to a flow. Right now, performance is impacted slightly negatively
2987 * if using multiple tx queues. If the stack breaks away from a
2988 * single qdisc implementation, we can look at this again. */
2989 tx_ring = adapter->tx_ring;
2991 if (unlikely(skb->len <= 0)) {
2992 dev_kfree_skb_any(skb);
2993 return NETDEV_TX_OK;
2996 /* 82571 and newer doesn't need the workaround that limited descriptor
2997 * length to 4kB */
2998 if (adapter->hw.mac_type >= e1000_82571)
2999 max_per_txd = 8192;
3001 #ifdef NETIF_F_TSO
3002 mss = skb_shinfo(skb)->gso_size;
3003 /* The controller does a simple calculation to
3004 * make sure there is enough room in the FIFO before
3005 * initiating the DMA for each buffer. The calc is:
3006 * 4 = ceil(buffer len/mss). To make sure we don't
3007 * overrun the FIFO, adjust the max buffer len if mss
3008 * drops. */
3009 if (mss) {
3010 uint8_t hdr_len;
3011 max_per_txd = min(mss << 2, max_per_txd);
3012 max_txd_pwr = fls(max_per_txd) - 1;
3014 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3015 * points to just header, pull a few bytes of payload from
3016 * frags into skb->data */
3017 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3018 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3019 switch (adapter->hw.mac_type) {
3020 unsigned int pull_size;
3021 case e1000_82571:
3022 case e1000_82572:
3023 case e1000_82573:
3024 case e1000_ich8lan:
3025 pull_size = min((unsigned int)4, skb->data_len);
3026 if (!__pskb_pull_tail(skb, pull_size)) {
3027 DPRINTK(DRV, ERR,
3028 "__pskb_pull_tail failed.\n");
3029 dev_kfree_skb_any(skb);
3030 return NETDEV_TX_OK;
3032 len = skb->len - skb->data_len;
3033 break;
3034 default:
3035 /* do nothing */
3036 break;
3041 /* reserve a descriptor for the offload context */
3042 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3043 count++;
3044 count++;
3045 #else
3046 if (skb->ip_summed == CHECKSUM_PARTIAL)
3047 count++;
3048 #endif
3050 #ifdef NETIF_F_TSO
3051 /* Controller Erratum workaround */
3052 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3053 count++;
3054 #endif
3056 count += TXD_USE_COUNT(len, max_txd_pwr);
3058 if (adapter->pcix_82544)
3059 count++;
3061 /* work-around for errata 10 and it applies to all controllers
3062 * in PCI-X mode, so add one more descriptor to the count
3064 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3065 (len > 2015)))
3066 count++;
3068 nr_frags = skb_shinfo(skb)->nr_frags;
3069 for (f = 0; f < nr_frags; f++)
3070 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3071 max_txd_pwr);
3072 if (adapter->pcix_82544)
3073 count += nr_frags;
3076 if (adapter->hw.tx_pkt_filtering &&
3077 (adapter->hw.mac_type == e1000_82573))
3078 e1000_transfer_dhcp_info(adapter, skb);
3080 local_irq_save(flags);
3081 if (!spin_trylock(&tx_ring->tx_lock)) {
3082 /* Collision - tell upper layer to requeue */
3083 local_irq_restore(flags);
3084 return NETDEV_TX_LOCKED;
3087 /* need: count + 2 desc gap to keep tail from touching
3088 * head, otherwise try next time */
3089 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3090 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3091 return NETDEV_TX_BUSY;
3094 if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3095 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3096 netif_stop_queue(netdev);
3097 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3098 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3099 return NETDEV_TX_BUSY;
3103 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3104 tx_flags |= E1000_TX_FLAGS_VLAN;
3105 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3108 first = tx_ring->next_to_use;
3110 tso = e1000_tso(adapter, tx_ring, skb);
3111 if (tso < 0) {
3112 dev_kfree_skb_any(skb);
3113 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3114 return NETDEV_TX_OK;
3117 if (likely(tso)) {
3118 tx_ring->last_tx_tso = 1;
3119 tx_flags |= E1000_TX_FLAGS_TSO;
3120 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3121 tx_flags |= E1000_TX_FLAGS_CSUM;
3123 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3124 * 82571 hardware supports TSO capabilities for IPv6 as well...
3125 * no longer assume, we must. */
3126 if (likely(skb->protocol == htons(ETH_P_IP)))
3127 tx_flags |= E1000_TX_FLAGS_IPV4;
3129 e1000_tx_queue(adapter, tx_ring, tx_flags,
3130 e1000_tx_map(adapter, tx_ring, skb, first,
3131 max_per_txd, nr_frags, mss));
3133 netdev->trans_start = jiffies;
3135 /* Make sure there is space in the ring for the next send. */
3136 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3138 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3139 return NETDEV_TX_OK;
3143 * e1000_tx_timeout - Respond to a Tx Hang
3144 * @netdev: network interface device structure
3147 static void
3148 e1000_tx_timeout(struct net_device *netdev)
3150 struct e1000_adapter *adapter = netdev_priv(netdev);
3152 /* Do the reset outside of interrupt context */
3153 adapter->tx_timeout_count++;
3154 schedule_work(&adapter->reset_task);
3157 static void
3158 e1000_reset_task(struct net_device *netdev)
3160 struct e1000_adapter *adapter = netdev_priv(netdev);
3162 e1000_reinit_locked(adapter);
3166 * e1000_get_stats - Get System Network Statistics
3167 * @netdev: network interface device structure
3169 * Returns the address of the device statistics structure.
3170 * The statistics are actually updated from the timer callback.
3173 static struct net_device_stats *
3174 e1000_get_stats(struct net_device *netdev)
3176 struct e1000_adapter *adapter = netdev_priv(netdev);
3178 /* only return the current stats */
3179 return &adapter->net_stats;
3183 * e1000_change_mtu - Change the Maximum Transfer Unit
3184 * @netdev: network interface device structure
3185 * @new_mtu: new value for maximum frame size
3187 * Returns 0 on success, negative on failure
3190 static int
3191 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3193 struct e1000_adapter *adapter = netdev_priv(netdev);
3194 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3195 uint16_t eeprom_data = 0;
3197 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3198 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3199 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3200 return -EINVAL;
3203 /* Adapter-specific max frame size limits. */
3204 switch (adapter->hw.mac_type) {
3205 case e1000_undefined ... e1000_82542_rev2_1:
3206 case e1000_ich8lan:
3207 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3208 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3209 return -EINVAL;
3211 break;
3212 case e1000_82573:
3213 /* Jumbo Frames not supported if:
3214 * - this is not an 82573L device
3215 * - ASPM is enabled in any way (0x1A bits 3:2) */
3216 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3217 &eeprom_data);
3218 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3219 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3220 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3221 DPRINTK(PROBE, ERR,
3222 "Jumbo Frames not supported.\n");
3223 return -EINVAL;
3225 break;
3227 /* ERT will be enabled later to enable wire speed receives */
3229 /* fall through to get support */
3230 case e1000_82571:
3231 case e1000_82572:
3232 case e1000_80003es2lan:
3233 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3234 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3235 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3236 return -EINVAL;
3238 break;
3239 default:
3240 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3241 break;
3244 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3245 * means we reserve 2 more, this pushes us to allocate from the next
3246 * larger slab size
3247 * i.e. RXBUFFER_2048 --> size-4096 slab */
3249 if (max_frame <= E1000_RXBUFFER_256)
3250 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3251 else if (max_frame <= E1000_RXBUFFER_512)
3252 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3253 else if (max_frame <= E1000_RXBUFFER_1024)
3254 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3255 else if (max_frame <= E1000_RXBUFFER_2048)
3256 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3257 else if (max_frame <= E1000_RXBUFFER_4096)
3258 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3259 else if (max_frame <= E1000_RXBUFFER_8192)
3260 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3261 else if (max_frame <= E1000_RXBUFFER_16384)
3262 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3264 /* adjust allocation if LPE protects us, and we aren't using SBP */
3265 if (!adapter->hw.tbi_compatibility_on &&
3266 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3267 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3268 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3270 netdev->mtu = new_mtu;
3272 if (netif_running(netdev))
3273 e1000_reinit_locked(adapter);
3275 adapter->hw.max_frame_size = max_frame;
3277 return 0;
3281 * e1000_update_stats - Update the board statistics counters
3282 * @adapter: board private structure
3285 void
3286 e1000_update_stats(struct e1000_adapter *adapter)
3288 struct e1000_hw *hw = &adapter->hw;
3289 struct pci_dev *pdev = adapter->pdev;
3290 unsigned long flags;
3291 uint16_t phy_tmp;
3293 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3296 * Prevent stats update while adapter is being reset, or if the pci
3297 * connection is down.
3299 if (adapter->link_speed == 0)
3300 return;
3301 if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3302 return;
3304 spin_lock_irqsave(&adapter->stats_lock, flags);
3306 /* these counters are modified from e1000_adjust_tbi_stats,
3307 * called from the interrupt context, so they must only
3308 * be written while holding adapter->stats_lock
3311 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3312 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3313 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3314 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3315 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3316 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3317 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3319 if (adapter->hw.mac_type != e1000_ich8lan) {
3320 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3321 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3322 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3323 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3324 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3325 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3328 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3329 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3330 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3331 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3332 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3333 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3334 adapter->stats.dc += E1000_READ_REG(hw, DC);
3335 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3336 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3337 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3338 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3339 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3340 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3341 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3342 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3343 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3344 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3345 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3346 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3347 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3348 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3349 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3350 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3351 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3352 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3353 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3355 if (adapter->hw.mac_type != e1000_ich8lan) {
3356 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3357 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3358 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3359 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3360 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3361 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3364 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3365 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3367 /* used for adaptive IFS */
3369 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3370 adapter->stats.tpt += hw->tx_packet_delta;
3371 hw->collision_delta = E1000_READ_REG(hw, COLC);
3372 adapter->stats.colc += hw->collision_delta;
3374 if (hw->mac_type >= e1000_82543) {
3375 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3376 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3377 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3378 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3379 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3380 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3382 if (hw->mac_type > e1000_82547_rev_2) {
3383 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3384 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3386 if (adapter->hw.mac_type != e1000_ich8lan) {
3387 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3388 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3389 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3390 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3391 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3392 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3393 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3397 /* Fill out the OS statistics structure */
3398 adapter->net_stats.rx_packets = adapter->stats.gprc;
3399 adapter->net_stats.tx_packets = adapter->stats.gptc;
3400 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3401 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3402 adapter->net_stats.multicast = adapter->stats.mprc;
3403 adapter->net_stats.collisions = adapter->stats.colc;
3405 /* Rx Errors */
3407 /* RLEC on some newer hardware can be incorrect so build
3408 * our own version based on RUC and ROC */
3409 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3410 adapter->stats.crcerrs + adapter->stats.algnerrc +
3411 adapter->stats.ruc + adapter->stats.roc +
3412 adapter->stats.cexterr;
3413 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3414 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3415 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3416 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3417 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3419 /* Tx Errors */
3420 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3421 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3422 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3423 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3424 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3426 /* Tx Dropped needs to be maintained elsewhere */
3428 /* Phy Stats */
3429 if (hw->media_type == e1000_media_type_copper) {
3430 if ((adapter->link_speed == SPEED_1000) &&
3431 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3432 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3433 adapter->phy_stats.idle_errors += phy_tmp;
3436 if ((hw->mac_type <= e1000_82546) &&
3437 (hw->phy_type == e1000_phy_m88) &&
3438 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3439 adapter->phy_stats.receive_errors += phy_tmp;
3442 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3446 * e1000_intr - Interrupt Handler
3447 * @irq: interrupt number
3448 * @data: pointer to a network interface device structure
3451 static irqreturn_t
3452 e1000_intr(int irq, void *data)
3454 struct net_device *netdev = data;
3455 struct e1000_adapter *adapter = netdev_priv(netdev);
3456 struct e1000_hw *hw = &adapter->hw;
3457 uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3458 #ifndef CONFIG_E1000_NAPI
3459 int i;
3460 #else
3461 /* Interrupt Auto-Mask...upon reading ICR,
3462 * interrupts are masked. No need for the
3463 * IMC write, but it does mean we should
3464 * account for it ASAP. */
3465 if (likely(hw->mac_type >= e1000_82571))
3466 atomic_inc(&adapter->irq_sem);
3467 #endif
3469 if (unlikely(!icr)) {
3470 #ifdef CONFIG_E1000_NAPI
3471 if (hw->mac_type >= e1000_82571)
3472 e1000_irq_enable(adapter);
3473 #endif
3474 return IRQ_NONE; /* Not our interrupt */
3477 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3478 hw->get_link_status = 1;
3479 /* 80003ES2LAN workaround--
3480 * For packet buffer work-around on link down event;
3481 * disable receives here in the ISR and
3482 * reset adapter in watchdog
3484 if (netif_carrier_ok(netdev) &&
3485 (adapter->hw.mac_type == e1000_80003es2lan)) {
3486 /* disable receives */
3487 rctl = E1000_READ_REG(hw, RCTL);
3488 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3490 /* guard against interrupt when we're going down */
3491 if (!test_bit(__E1000_DOWN, &adapter->flags))
3492 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3495 #ifdef CONFIG_E1000_NAPI
3496 if (unlikely(hw->mac_type < e1000_82571)) {
3497 atomic_inc(&adapter->irq_sem);
3498 E1000_WRITE_REG(hw, IMC, ~0);
3499 E1000_WRITE_FLUSH(hw);
3501 if (likely(netif_rx_schedule_prep(netdev)))
3502 __netif_rx_schedule(netdev);
3503 else
3504 /* this really should not happen! if it does it is basically a
3505 * bug, but not a hard error, so enable ints and continue */
3506 e1000_irq_enable(adapter);
3507 #else
3508 /* Writing IMC and IMS is needed for 82547.
3509 * Due to Hub Link bus being occupied, an interrupt
3510 * de-assertion message is not able to be sent.
3511 * When an interrupt assertion message is generated later,
3512 * two messages are re-ordered and sent out.
3513 * That causes APIC to think 82547 is in de-assertion
3514 * state, while 82547 is in assertion state, resulting
3515 * in dead lock. Writing IMC forces 82547 into
3516 * de-assertion state.
3518 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3519 atomic_inc(&adapter->irq_sem);
3520 E1000_WRITE_REG(hw, IMC, ~0);
3523 for (i = 0; i < E1000_MAX_INTR; i++)
3524 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3525 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3526 break;
3528 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3529 e1000_irq_enable(adapter);
3531 #endif
3532 return IRQ_HANDLED;
3535 #ifdef CONFIG_E1000_NAPI
3537 * e1000_clean - NAPI Rx polling callback
3538 * @adapter: board private structure
3541 static int
3542 e1000_clean(struct net_device *poll_dev, int *budget)
3544 struct e1000_adapter *adapter;
3545 int work_to_do = min(*budget, poll_dev->quota);
3546 int tx_cleaned = 0, work_done = 0;
3548 /* Must NOT use netdev_priv macro here. */
3549 adapter = poll_dev->priv;
3551 /* Keep link state information with original netdev */
3552 if (!netif_carrier_ok(poll_dev))
3553 goto quit_polling;
3555 /* e1000_clean is called per-cpu. This lock protects
3556 * tx_ring[0] from being cleaned by multiple cpus
3557 * simultaneously. A failure obtaining the lock means
3558 * tx_ring[0] is currently being cleaned anyway. */
3559 if (spin_trylock(&adapter->tx_queue_lock)) {
3560 tx_cleaned = e1000_clean_tx_irq(adapter,
3561 &adapter->tx_ring[0]);
3562 spin_unlock(&adapter->tx_queue_lock);
3565 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3566 &work_done, work_to_do);
3568 *budget -= work_done;
3569 poll_dev->quota -= work_done;
3571 /* If no Tx and not enough Rx work done, exit the polling mode */
3572 if ((!tx_cleaned && (work_done == 0)) ||
3573 !netif_running(poll_dev)) {
3574 quit_polling:
3575 netif_rx_complete(poll_dev);
3576 e1000_irq_enable(adapter);
3577 return 0;
3580 return 1;
3583 #endif
3585 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3586 * @adapter: board private structure
3589 static boolean_t
3590 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3591 struct e1000_tx_ring *tx_ring)
3593 struct net_device *netdev = adapter->netdev;
3594 struct e1000_tx_desc *tx_desc, *eop_desc;
3595 struct e1000_buffer *buffer_info;
3596 unsigned int i, eop;
3597 #ifdef CONFIG_E1000_NAPI
3598 unsigned int count = 0;
3599 #endif
3600 boolean_t cleaned = FALSE;
3602 i = tx_ring->next_to_clean;
3603 eop = tx_ring->buffer_info[i].next_to_watch;
3604 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3606 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3607 for (cleaned = FALSE; !cleaned; ) {
3608 tx_desc = E1000_TX_DESC(*tx_ring, i);
3609 buffer_info = &tx_ring->buffer_info[i];
3610 cleaned = (i == eop);
3612 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3613 memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3615 if (unlikely(++i == tx_ring->count)) i = 0;
3618 eop = tx_ring->buffer_info[i].next_to_watch;
3619 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3620 #ifdef CONFIG_E1000_NAPI
3621 #define E1000_TX_WEIGHT 64
3622 /* weight of a sort for tx, to avoid endless transmit cleanup */
3623 if (count++ == E1000_TX_WEIGHT) break;
3624 #endif
3627 tx_ring->next_to_clean = i;
3629 #define TX_WAKE_THRESHOLD 32
3630 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3631 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3632 /* Make sure that anybody stopping the queue after this
3633 * sees the new next_to_clean.
3635 smp_mb();
3636 if (netif_queue_stopped(netdev))
3637 netif_wake_queue(netdev);
3640 if (adapter->detect_tx_hung) {
3641 /* Detect a transmit hang in hardware, this serializes the
3642 * check with the clearing of time_stamp and movement of i */
3643 adapter->detect_tx_hung = FALSE;
3644 if (tx_ring->buffer_info[eop].dma &&
3645 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3646 (adapter->tx_timeout_factor * HZ))
3647 && !(E1000_READ_REG(&adapter->hw, STATUS) &
3648 E1000_STATUS_TXOFF)) {
3650 /* detected Tx unit hang */
3651 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3652 " Tx Queue <%lu>\n"
3653 " TDH <%x>\n"
3654 " TDT <%x>\n"
3655 " next_to_use <%x>\n"
3656 " next_to_clean <%x>\n"
3657 "buffer_info[next_to_clean]\n"
3658 " time_stamp <%lx>\n"
3659 " next_to_watch <%x>\n"
3660 " jiffies <%lx>\n"
3661 " next_to_watch.status <%x>\n",
3662 (unsigned long)((tx_ring - adapter->tx_ring) /
3663 sizeof(struct e1000_tx_ring)),
3664 readl(adapter->hw.hw_addr + tx_ring->tdh),
3665 readl(adapter->hw.hw_addr + tx_ring->tdt),
3666 tx_ring->next_to_use,
3667 tx_ring->next_to_clean,
3668 tx_ring->buffer_info[eop].time_stamp,
3669 eop,
3670 jiffies,
3671 eop_desc->upper.fields.status);
3672 netif_stop_queue(netdev);
3675 return cleaned;
3679 * e1000_rx_checksum - Receive Checksum Offload for 82543
3680 * @adapter: board private structure
3681 * @status_err: receive descriptor status and error fields
3682 * @csum: receive descriptor csum field
3683 * @sk_buff: socket buffer with received data
3686 static void
3687 e1000_rx_checksum(struct e1000_adapter *adapter,
3688 uint32_t status_err, uint32_t csum,
3689 struct sk_buff *skb)
3691 uint16_t status = (uint16_t)status_err;
3692 uint8_t errors = (uint8_t)(status_err >> 24);
3693 skb->ip_summed = CHECKSUM_NONE;
3695 /* 82543 or newer only */
3696 if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3697 /* Ignore Checksum bit is set */
3698 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3699 /* TCP/UDP checksum error bit is set */
3700 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3701 /* let the stack verify checksum errors */
3702 adapter->hw_csum_err++;
3703 return;
3705 /* TCP/UDP Checksum has not been calculated */
3706 if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3707 if (!(status & E1000_RXD_STAT_TCPCS))
3708 return;
3709 } else {
3710 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3711 return;
3713 /* It must be a TCP or UDP packet with a valid checksum */
3714 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3715 /* TCP checksum is good */
3716 skb->ip_summed = CHECKSUM_UNNECESSARY;
3717 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3718 /* IP fragment with UDP payload */
3719 /* Hardware complements the payload checksum, so we undo it
3720 * and then put the value in host order for further stack use.
3722 csum = ntohl(csum ^ 0xFFFF);
3723 skb->csum = csum;
3724 skb->ip_summed = CHECKSUM_COMPLETE;
3726 adapter->hw_csum_good++;
3730 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3731 * @adapter: board private structure
3734 static boolean_t
3735 #ifdef CONFIG_E1000_NAPI
3736 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3737 struct e1000_rx_ring *rx_ring,
3738 int *work_done, int work_to_do)
3739 #else
3740 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3741 struct e1000_rx_ring *rx_ring)
3742 #endif
3744 struct net_device *netdev = adapter->netdev;
3745 struct pci_dev *pdev = adapter->pdev;
3746 struct e1000_rx_desc *rx_desc, *next_rxd;
3747 struct e1000_buffer *buffer_info, *next_buffer;
3748 unsigned long flags;
3749 uint32_t length;
3750 uint8_t last_byte;
3751 unsigned int i;
3752 int cleaned_count = 0;
3753 boolean_t cleaned = FALSE;
3755 i = rx_ring->next_to_clean;
3756 rx_desc = E1000_RX_DESC(*rx_ring, i);
3757 buffer_info = &rx_ring->buffer_info[i];
3759 while (rx_desc->status & E1000_RXD_STAT_DD) {
3760 struct sk_buff *skb;
3761 u8 status;
3763 #ifdef CONFIG_E1000_NAPI
3764 if (*work_done >= work_to_do)
3765 break;
3766 (*work_done)++;
3767 #endif
3768 status = rx_desc->status;
3769 skb = buffer_info->skb;
3770 buffer_info->skb = NULL;
3772 prefetch(skb->data - NET_IP_ALIGN);
3774 if (++i == rx_ring->count) i = 0;
3775 next_rxd = E1000_RX_DESC(*rx_ring, i);
3776 prefetch(next_rxd);
3778 next_buffer = &rx_ring->buffer_info[i];
3780 cleaned = TRUE;
3781 cleaned_count++;
3782 pci_unmap_single(pdev,
3783 buffer_info->dma,
3784 buffer_info->length,
3785 PCI_DMA_FROMDEVICE);
3787 length = le16_to_cpu(rx_desc->length);
3789 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3790 /* All receives must fit into a single buffer */
3791 E1000_DBG("%s: Receive packet consumed multiple"
3792 " buffers\n", netdev->name);
3793 /* recycle */
3794 buffer_info->skb = skb;
3795 goto next_desc;
3798 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3799 last_byte = *(skb->data + length - 1);
3800 if (TBI_ACCEPT(&adapter->hw, status,
3801 rx_desc->errors, length, last_byte)) {
3802 spin_lock_irqsave(&adapter->stats_lock, flags);
3803 e1000_tbi_adjust_stats(&adapter->hw,
3804 &adapter->stats,
3805 length, skb->data);
3806 spin_unlock_irqrestore(&adapter->stats_lock,
3807 flags);
3808 length--;
3809 } else {
3810 /* recycle */
3811 buffer_info->skb = skb;
3812 goto next_desc;
3816 /* adjust length to remove Ethernet CRC, this must be
3817 * done after the TBI_ACCEPT workaround above */
3818 length -= 4;
3820 /* code added for copybreak, this should improve
3821 * performance for small packets with large amounts
3822 * of reassembly being done in the stack */
3823 #define E1000_CB_LENGTH 256
3824 if (length < E1000_CB_LENGTH) {
3825 struct sk_buff *new_skb =
3826 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3827 if (new_skb) {
3828 skb_reserve(new_skb, NET_IP_ALIGN);
3829 memcpy(new_skb->data - NET_IP_ALIGN,
3830 skb->data - NET_IP_ALIGN,
3831 length + NET_IP_ALIGN);
3832 /* save the skb in buffer_info as good */
3833 buffer_info->skb = skb;
3834 skb = new_skb;
3835 skb_put(skb, length);
3837 } else
3838 skb_put(skb, length);
3840 /* end copybreak code */
3842 /* Receive Checksum Offload */
3843 e1000_rx_checksum(adapter,
3844 (uint32_t)(status) |
3845 ((uint32_t)(rx_desc->errors) << 24),
3846 le16_to_cpu(rx_desc->csum), skb);
3848 skb->protocol = eth_type_trans(skb, netdev);
3849 #ifdef CONFIG_E1000_NAPI
3850 if (unlikely(adapter->vlgrp &&
3851 (status & E1000_RXD_STAT_VP))) {
3852 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3853 le16_to_cpu(rx_desc->special) &
3854 E1000_RXD_SPC_VLAN_MASK);
3855 } else {
3856 netif_receive_skb(skb);
3858 #else /* CONFIG_E1000_NAPI */
3859 if (unlikely(adapter->vlgrp &&
3860 (status & E1000_RXD_STAT_VP))) {
3861 vlan_hwaccel_rx(skb, adapter->vlgrp,
3862 le16_to_cpu(rx_desc->special) &
3863 E1000_RXD_SPC_VLAN_MASK);
3864 } else {
3865 netif_rx(skb);
3867 #endif /* CONFIG_E1000_NAPI */
3868 netdev->last_rx = jiffies;
3870 next_desc:
3871 rx_desc->status = 0;
3873 /* return some buffers to hardware, one at a time is too slow */
3874 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3875 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3876 cleaned_count = 0;
3879 /* use prefetched values */
3880 rx_desc = next_rxd;
3881 buffer_info = next_buffer;
3883 rx_ring->next_to_clean = i;
3885 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3886 if (cleaned_count)
3887 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3889 return cleaned;
3893 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3894 * @adapter: board private structure
3897 static boolean_t
3898 #ifdef CONFIG_E1000_NAPI
3899 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3900 struct e1000_rx_ring *rx_ring,
3901 int *work_done, int work_to_do)
3902 #else
3903 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3904 struct e1000_rx_ring *rx_ring)
3905 #endif
3907 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3908 struct net_device *netdev = adapter->netdev;
3909 struct pci_dev *pdev = adapter->pdev;
3910 struct e1000_buffer *buffer_info, *next_buffer;
3911 struct e1000_ps_page *ps_page;
3912 struct e1000_ps_page_dma *ps_page_dma;
3913 struct sk_buff *skb;
3914 unsigned int i, j;
3915 uint32_t length, staterr;
3916 int cleaned_count = 0;
3917 boolean_t cleaned = FALSE;
3919 i = rx_ring->next_to_clean;
3920 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3921 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3922 buffer_info = &rx_ring->buffer_info[i];
3924 while (staterr & E1000_RXD_STAT_DD) {
3925 ps_page = &rx_ring->ps_page[i];
3926 ps_page_dma = &rx_ring->ps_page_dma[i];
3927 #ifdef CONFIG_E1000_NAPI
3928 if (unlikely(*work_done >= work_to_do))
3929 break;
3930 (*work_done)++;
3931 #endif
3932 skb = buffer_info->skb;
3934 /* in the packet split case this is header only */
3935 prefetch(skb->data - NET_IP_ALIGN);
3937 if (++i == rx_ring->count) i = 0;
3938 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3939 prefetch(next_rxd);
3941 next_buffer = &rx_ring->buffer_info[i];
3943 cleaned = TRUE;
3944 cleaned_count++;
3945 pci_unmap_single(pdev, buffer_info->dma,
3946 buffer_info->length,
3947 PCI_DMA_FROMDEVICE);
3949 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3950 E1000_DBG("%s: Packet Split buffers didn't pick up"
3951 " the full packet\n", netdev->name);
3952 dev_kfree_skb_irq(skb);
3953 goto next_desc;
3956 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3957 dev_kfree_skb_irq(skb);
3958 goto next_desc;
3961 length = le16_to_cpu(rx_desc->wb.middle.length0);
3963 if (unlikely(!length)) {
3964 E1000_DBG("%s: Last part of the packet spanning"
3965 " multiple descriptors\n", netdev->name);
3966 dev_kfree_skb_irq(skb);
3967 goto next_desc;
3970 /* Good Receive */
3971 skb_put(skb, length);
3974 /* this looks ugly, but it seems compiler issues make it
3975 more efficient than reusing j */
3976 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3978 /* page alloc/put takes too long and effects small packet
3979 * throughput, so unsplit small packets and save the alloc/put*/
3980 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3981 u8 *vaddr;
3982 /* there is no documentation about how to call
3983 * kmap_atomic, so we can't hold the mapping
3984 * very long */
3985 pci_dma_sync_single_for_cpu(pdev,
3986 ps_page_dma->ps_page_dma[0],
3987 PAGE_SIZE,
3988 PCI_DMA_FROMDEVICE);
3989 vaddr = kmap_atomic(ps_page->ps_page[0],
3990 KM_SKB_DATA_SOFTIRQ);
3991 memcpy(skb->tail, vaddr, l1);
3992 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3993 pci_dma_sync_single_for_device(pdev,
3994 ps_page_dma->ps_page_dma[0],
3995 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3996 /* remove the CRC */
3997 l1 -= 4;
3998 skb_put(skb, l1);
3999 goto copydone;
4000 } /* if */
4003 for (j = 0; j < adapter->rx_ps_pages; j++) {
4004 if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4005 break;
4006 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4007 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4008 ps_page_dma->ps_page_dma[j] = 0;
4009 skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4010 length);
4011 ps_page->ps_page[j] = NULL;
4012 skb->len += length;
4013 skb->data_len += length;
4014 skb->truesize += length;
4017 /* strip the ethernet crc, problem is we're using pages now so
4018 * this whole operation can get a little cpu intensive */
4019 pskb_trim(skb, skb->len - 4);
4021 copydone:
4022 e1000_rx_checksum(adapter, staterr,
4023 le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4024 skb->protocol = eth_type_trans(skb, netdev);
4026 if (likely(rx_desc->wb.upper.header_status &
4027 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4028 adapter->rx_hdr_split++;
4029 #ifdef CONFIG_E1000_NAPI
4030 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4031 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4032 le16_to_cpu(rx_desc->wb.middle.vlan) &
4033 E1000_RXD_SPC_VLAN_MASK);
4034 } else {
4035 netif_receive_skb(skb);
4037 #else /* CONFIG_E1000_NAPI */
4038 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4039 vlan_hwaccel_rx(skb, adapter->vlgrp,
4040 le16_to_cpu(rx_desc->wb.middle.vlan) &
4041 E1000_RXD_SPC_VLAN_MASK);
4042 } else {
4043 netif_rx(skb);
4045 #endif /* CONFIG_E1000_NAPI */
4046 netdev->last_rx = jiffies;
4048 next_desc:
4049 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4050 buffer_info->skb = NULL;
4052 /* return some buffers to hardware, one at a time is too slow */
4053 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4054 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4055 cleaned_count = 0;
4058 /* use prefetched values */
4059 rx_desc = next_rxd;
4060 buffer_info = next_buffer;
4062 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4064 rx_ring->next_to_clean = i;
4066 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4067 if (cleaned_count)
4068 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4070 return cleaned;
4074 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4075 * @adapter: address of board private structure
4078 static void
4079 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4080 struct e1000_rx_ring *rx_ring,
4081 int cleaned_count)
4083 struct net_device *netdev = adapter->netdev;
4084 struct pci_dev *pdev = adapter->pdev;
4085 struct e1000_rx_desc *rx_desc;
4086 struct e1000_buffer *buffer_info;
4087 struct sk_buff *skb;
4088 unsigned int i;
4089 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4091 i = rx_ring->next_to_use;
4092 buffer_info = &rx_ring->buffer_info[i];
4094 while (cleaned_count--) {
4095 skb = buffer_info->skb;
4096 if (skb) {
4097 skb_trim(skb, 0);
4098 goto map_skb;
4101 skb = netdev_alloc_skb(netdev, bufsz);
4102 if (unlikely(!skb)) {
4103 /* Better luck next round */
4104 adapter->alloc_rx_buff_failed++;
4105 break;
4108 /* Fix for errata 23, can't cross 64kB boundary */
4109 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4110 struct sk_buff *oldskb = skb;
4111 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4112 "at %p\n", bufsz, skb->data);
4113 /* Try again, without freeing the previous */
4114 skb = netdev_alloc_skb(netdev, bufsz);
4115 /* Failed allocation, critical failure */
4116 if (!skb) {
4117 dev_kfree_skb(oldskb);
4118 break;
4121 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4122 /* give up */
4123 dev_kfree_skb(skb);
4124 dev_kfree_skb(oldskb);
4125 break; /* while !buffer_info->skb */
4128 /* Use new allocation */
4129 dev_kfree_skb(oldskb);
4131 /* Make buffer alignment 2 beyond a 16 byte boundary
4132 * this will result in a 16 byte aligned IP header after
4133 * the 14 byte MAC header is removed
4135 skb_reserve(skb, NET_IP_ALIGN);
4137 buffer_info->skb = skb;
4138 buffer_info->length = adapter->rx_buffer_len;
4139 map_skb:
4140 buffer_info->dma = pci_map_single(pdev,
4141 skb->data,
4142 adapter->rx_buffer_len,
4143 PCI_DMA_FROMDEVICE);
4145 /* Fix for errata 23, can't cross 64kB boundary */
4146 if (!e1000_check_64k_bound(adapter,
4147 (void *)(unsigned long)buffer_info->dma,
4148 adapter->rx_buffer_len)) {
4149 DPRINTK(RX_ERR, ERR,
4150 "dma align check failed: %u bytes at %p\n",
4151 adapter->rx_buffer_len,
4152 (void *)(unsigned long)buffer_info->dma);
4153 dev_kfree_skb(skb);
4154 buffer_info->skb = NULL;
4156 pci_unmap_single(pdev, buffer_info->dma,
4157 adapter->rx_buffer_len,
4158 PCI_DMA_FROMDEVICE);
4160 break; /* while !buffer_info->skb */
4162 rx_desc = E1000_RX_DESC(*rx_ring, i);
4163 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4165 if (unlikely(++i == rx_ring->count))
4166 i = 0;
4167 buffer_info = &rx_ring->buffer_info[i];
4170 if (likely(rx_ring->next_to_use != i)) {
4171 rx_ring->next_to_use = i;
4172 if (unlikely(i-- == 0))
4173 i = (rx_ring->count - 1);
4175 /* Force memory writes to complete before letting h/w
4176 * know there are new descriptors to fetch. (Only
4177 * applicable for weak-ordered memory model archs,
4178 * such as IA-64). */
4179 wmb();
4180 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4185 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4186 * @adapter: address of board private structure
4189 static void
4190 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4191 struct e1000_rx_ring *rx_ring,
4192 int cleaned_count)
4194 struct net_device *netdev = adapter->netdev;
4195 struct pci_dev *pdev = adapter->pdev;
4196 union e1000_rx_desc_packet_split *rx_desc;
4197 struct e1000_buffer *buffer_info;
4198 struct e1000_ps_page *ps_page;
4199 struct e1000_ps_page_dma *ps_page_dma;
4200 struct sk_buff *skb;
4201 unsigned int i, j;
4203 i = rx_ring->next_to_use;
4204 buffer_info = &rx_ring->buffer_info[i];
4205 ps_page = &rx_ring->ps_page[i];
4206 ps_page_dma = &rx_ring->ps_page_dma[i];
4208 while (cleaned_count--) {
4209 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4211 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4212 if (j < adapter->rx_ps_pages) {
4213 if (likely(!ps_page->ps_page[j])) {
4214 ps_page->ps_page[j] =
4215 alloc_page(GFP_ATOMIC);
4216 if (unlikely(!ps_page->ps_page[j])) {
4217 adapter->alloc_rx_buff_failed++;
4218 goto no_buffers;
4220 ps_page_dma->ps_page_dma[j] =
4221 pci_map_page(pdev,
4222 ps_page->ps_page[j],
4223 0, PAGE_SIZE,
4224 PCI_DMA_FROMDEVICE);
4226 /* Refresh the desc even if buffer_addrs didn't
4227 * change because each write-back erases
4228 * this info.
4230 rx_desc->read.buffer_addr[j+1] =
4231 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4232 } else
4233 rx_desc->read.buffer_addr[j+1] = ~0;
4236 skb = netdev_alloc_skb(netdev,
4237 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4239 if (unlikely(!skb)) {
4240 adapter->alloc_rx_buff_failed++;
4241 break;
4244 /* Make buffer alignment 2 beyond a 16 byte boundary
4245 * this will result in a 16 byte aligned IP header after
4246 * the 14 byte MAC header is removed
4248 skb_reserve(skb, NET_IP_ALIGN);
4250 buffer_info->skb = skb;
4251 buffer_info->length = adapter->rx_ps_bsize0;
4252 buffer_info->dma = pci_map_single(pdev, skb->data,
4253 adapter->rx_ps_bsize0,
4254 PCI_DMA_FROMDEVICE);
4256 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4258 if (unlikely(++i == rx_ring->count)) i = 0;
4259 buffer_info = &rx_ring->buffer_info[i];
4260 ps_page = &rx_ring->ps_page[i];
4261 ps_page_dma = &rx_ring->ps_page_dma[i];
4264 no_buffers:
4265 if (likely(rx_ring->next_to_use != i)) {
4266 rx_ring->next_to_use = i;
4267 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4269 /* Force memory writes to complete before letting h/w
4270 * know there are new descriptors to fetch. (Only
4271 * applicable for weak-ordered memory model archs,
4272 * such as IA-64). */
4273 wmb();
4274 /* Hardware increments by 16 bytes, but packet split
4275 * descriptors are 32 bytes...so we increment tail
4276 * twice as much.
4278 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4283 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4284 * @adapter:
4287 static void
4288 e1000_smartspeed(struct e1000_adapter *adapter)
4290 uint16_t phy_status;
4291 uint16_t phy_ctrl;
4293 if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4294 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4295 return;
4297 if (adapter->smartspeed == 0) {
4298 /* If Master/Slave config fault is asserted twice,
4299 * we assume back-to-back */
4300 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4301 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4302 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4303 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4304 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4305 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4306 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4307 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4308 phy_ctrl);
4309 adapter->smartspeed++;
4310 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4311 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4312 &phy_ctrl)) {
4313 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4314 MII_CR_RESTART_AUTO_NEG);
4315 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4316 phy_ctrl);
4319 return;
4320 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4321 /* If still no link, perhaps using 2/3 pair cable */
4322 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4323 phy_ctrl |= CR_1000T_MS_ENABLE;
4324 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4325 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4326 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4327 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4328 MII_CR_RESTART_AUTO_NEG);
4329 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4332 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4333 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4334 adapter->smartspeed = 0;
4338 * e1000_ioctl -
4339 * @netdev:
4340 * @ifreq:
4341 * @cmd:
4344 static int
4345 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4347 switch (cmd) {
4348 case SIOCGMIIPHY:
4349 case SIOCGMIIREG:
4350 case SIOCSMIIREG:
4351 return e1000_mii_ioctl(netdev, ifr, cmd);
4352 default:
4353 return -EOPNOTSUPP;
4358 * e1000_mii_ioctl -
4359 * @netdev:
4360 * @ifreq:
4361 * @cmd:
4364 static int
4365 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4367 struct e1000_adapter *adapter = netdev_priv(netdev);
4368 struct mii_ioctl_data *data = if_mii(ifr);
4369 int retval;
4370 uint16_t mii_reg;
4371 uint16_t spddplx;
4372 unsigned long flags;
4374 if (adapter->hw.media_type != e1000_media_type_copper)
4375 return -EOPNOTSUPP;
4377 switch (cmd) {
4378 case SIOCGMIIPHY:
4379 data->phy_id = adapter->hw.phy_addr;
4380 break;
4381 case SIOCGMIIREG:
4382 if (!capable(CAP_NET_ADMIN))
4383 return -EPERM;
4384 spin_lock_irqsave(&adapter->stats_lock, flags);
4385 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4386 &data->val_out)) {
4387 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4388 return -EIO;
4390 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4391 break;
4392 case SIOCSMIIREG:
4393 if (!capable(CAP_NET_ADMIN))
4394 return -EPERM;
4395 if (data->reg_num & ~(0x1F))
4396 return -EFAULT;
4397 mii_reg = data->val_in;
4398 spin_lock_irqsave(&adapter->stats_lock, flags);
4399 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4400 mii_reg)) {
4401 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4402 return -EIO;
4404 if (adapter->hw.media_type == e1000_media_type_copper) {
4405 switch (data->reg_num) {
4406 case PHY_CTRL:
4407 if (mii_reg & MII_CR_POWER_DOWN)
4408 break;
4409 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4410 adapter->hw.autoneg = 1;
4411 adapter->hw.autoneg_advertised = 0x2F;
4412 } else {
4413 if (mii_reg & 0x40)
4414 spddplx = SPEED_1000;
4415 else if (mii_reg & 0x2000)
4416 spddplx = SPEED_100;
4417 else
4418 spddplx = SPEED_10;
4419 spddplx += (mii_reg & 0x100)
4420 ? DUPLEX_FULL :
4421 DUPLEX_HALF;
4422 retval = e1000_set_spd_dplx(adapter,
4423 spddplx);
4424 if (retval) {
4425 spin_unlock_irqrestore(
4426 &adapter->stats_lock,
4427 flags);
4428 return retval;
4431 if (netif_running(adapter->netdev))
4432 e1000_reinit_locked(adapter);
4433 else
4434 e1000_reset(adapter);
4435 break;
4436 case M88E1000_PHY_SPEC_CTRL:
4437 case M88E1000_EXT_PHY_SPEC_CTRL:
4438 if (e1000_phy_reset(&adapter->hw)) {
4439 spin_unlock_irqrestore(
4440 &adapter->stats_lock, flags);
4441 return -EIO;
4443 break;
4445 } else {
4446 switch (data->reg_num) {
4447 case PHY_CTRL:
4448 if (mii_reg & MII_CR_POWER_DOWN)
4449 break;
4450 if (netif_running(adapter->netdev))
4451 e1000_reinit_locked(adapter);
4452 else
4453 e1000_reset(adapter);
4454 break;
4457 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4458 break;
4459 default:
4460 return -EOPNOTSUPP;
4462 return E1000_SUCCESS;
4465 void
4466 e1000_pci_set_mwi(struct e1000_hw *hw)
4468 struct e1000_adapter *adapter = hw->back;
4469 int ret_val = pci_set_mwi(adapter->pdev);
4471 if (ret_val)
4472 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4475 void
4476 e1000_pci_clear_mwi(struct e1000_hw *hw)
4478 struct e1000_adapter *adapter = hw->back;
4480 pci_clear_mwi(adapter->pdev);
4483 void
4484 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4486 struct e1000_adapter *adapter = hw->back;
4488 pci_read_config_word(adapter->pdev, reg, value);
4491 void
4492 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4494 struct e1000_adapter *adapter = hw->back;
4496 pci_write_config_word(adapter->pdev, reg, *value);
4499 int32_t
4500 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4502 struct e1000_adapter *adapter = hw->back;
4503 uint16_t cap_offset;
4505 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4506 if (!cap_offset)
4507 return -E1000_ERR_CONFIG;
4509 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4511 return E1000_SUCCESS;
4514 void
4515 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4517 outl(value, port);
4520 static void
4521 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4523 struct e1000_adapter *adapter = netdev_priv(netdev);
4524 uint32_t ctrl, rctl;
4526 e1000_irq_disable(adapter);
4527 adapter->vlgrp = grp;
4529 if (grp) {
4530 /* enable VLAN tag insert/strip */
4531 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4532 ctrl |= E1000_CTRL_VME;
4533 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4535 if (adapter->hw.mac_type != e1000_ich8lan) {
4536 /* enable VLAN receive filtering */
4537 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4538 rctl |= E1000_RCTL_VFE;
4539 rctl &= ~E1000_RCTL_CFIEN;
4540 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4541 e1000_update_mng_vlan(adapter);
4543 } else {
4544 /* disable VLAN tag insert/strip */
4545 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4546 ctrl &= ~E1000_CTRL_VME;
4547 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4549 if (adapter->hw.mac_type != e1000_ich8lan) {
4550 /* disable VLAN filtering */
4551 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4552 rctl &= ~E1000_RCTL_VFE;
4553 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4554 if (adapter->mng_vlan_id !=
4555 (uint16_t)E1000_MNG_VLAN_NONE) {
4556 e1000_vlan_rx_kill_vid(netdev,
4557 adapter->mng_vlan_id);
4558 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4563 e1000_irq_enable(adapter);
4566 static void
4567 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4569 struct e1000_adapter *adapter = netdev_priv(netdev);
4570 uint32_t vfta, index;
4572 if ((adapter->hw.mng_cookie.status &
4573 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4574 (vid == adapter->mng_vlan_id))
4575 return;
4576 /* add VID to filter table */
4577 index = (vid >> 5) & 0x7F;
4578 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4579 vfta |= (1 << (vid & 0x1F));
4580 e1000_write_vfta(&adapter->hw, index, vfta);
4583 static void
4584 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4586 struct e1000_adapter *adapter = netdev_priv(netdev);
4587 uint32_t vfta, index;
4589 e1000_irq_disable(adapter);
4591 if (adapter->vlgrp)
4592 adapter->vlgrp->vlan_devices[vid] = NULL;
4594 e1000_irq_enable(adapter);
4596 if ((adapter->hw.mng_cookie.status &
4597 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4598 (vid == adapter->mng_vlan_id)) {
4599 /* release control to f/w */
4600 e1000_release_hw_control(adapter);
4601 return;
4604 /* remove VID from filter table */
4605 index = (vid >> 5) & 0x7F;
4606 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4607 vfta &= ~(1 << (vid & 0x1F));
4608 e1000_write_vfta(&adapter->hw, index, vfta);
4611 static void
4612 e1000_restore_vlan(struct e1000_adapter *adapter)
4614 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4616 if (adapter->vlgrp) {
4617 uint16_t vid;
4618 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4619 if (!adapter->vlgrp->vlan_devices[vid])
4620 continue;
4621 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4627 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4629 adapter->hw.autoneg = 0;
4631 /* Fiber NICs only allow 1000 gbps Full duplex */
4632 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4633 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4634 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4635 return -EINVAL;
4638 switch (spddplx) {
4639 case SPEED_10 + DUPLEX_HALF:
4640 adapter->hw.forced_speed_duplex = e1000_10_half;
4641 break;
4642 case SPEED_10 + DUPLEX_FULL:
4643 adapter->hw.forced_speed_duplex = e1000_10_full;
4644 break;
4645 case SPEED_100 + DUPLEX_HALF:
4646 adapter->hw.forced_speed_duplex = e1000_100_half;
4647 break;
4648 case SPEED_100 + DUPLEX_FULL:
4649 adapter->hw.forced_speed_duplex = e1000_100_full;
4650 break;
4651 case SPEED_1000 + DUPLEX_FULL:
4652 adapter->hw.autoneg = 1;
4653 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4654 break;
4655 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4656 default:
4657 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4658 return -EINVAL;
4660 return 0;
4663 #ifdef CONFIG_PM
4664 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4665 * bus we're on (PCI(X) vs. PCI-E)
4667 #define PCIE_CONFIG_SPACE_LEN 256
4668 #define PCI_CONFIG_SPACE_LEN 64
4669 static int
4670 e1000_pci_save_state(struct e1000_adapter *adapter)
4672 struct pci_dev *dev = adapter->pdev;
4673 int size;
4674 int i;
4676 if (adapter->hw.mac_type >= e1000_82571)
4677 size = PCIE_CONFIG_SPACE_LEN;
4678 else
4679 size = PCI_CONFIG_SPACE_LEN;
4681 WARN_ON(adapter->config_space != NULL);
4683 adapter->config_space = kmalloc(size, GFP_KERNEL);
4684 if (!adapter->config_space) {
4685 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4686 return -ENOMEM;
4688 for (i = 0; i < (size / 4); i++)
4689 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4690 return 0;
4693 static void
4694 e1000_pci_restore_state(struct e1000_adapter *adapter)
4696 struct pci_dev *dev = adapter->pdev;
4697 int size;
4698 int i;
4700 if (adapter->config_space == NULL)
4701 return;
4703 if (adapter->hw.mac_type >= e1000_82571)
4704 size = PCIE_CONFIG_SPACE_LEN;
4705 else
4706 size = PCI_CONFIG_SPACE_LEN;
4707 for (i = 0; i < (size / 4); i++)
4708 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4709 kfree(adapter->config_space);
4710 adapter->config_space = NULL;
4711 return;
4713 #endif /* CONFIG_PM */
4715 static int
4716 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4718 struct net_device *netdev = pci_get_drvdata(pdev);
4719 struct e1000_adapter *adapter = netdev_priv(netdev);
4720 uint32_t ctrl, ctrl_ext, rctl, manc, status;
4721 uint32_t wufc = adapter->wol;
4722 #ifdef CONFIG_PM
4723 int retval = 0;
4724 #endif
4726 netif_device_detach(netdev);
4728 if (netif_running(netdev)) {
4729 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4730 e1000_down(adapter);
4733 #ifdef CONFIG_PM
4734 /* Implement our own version of pci_save_state(pdev) because pci-
4735 * express adapters have 256-byte config spaces. */
4736 retval = e1000_pci_save_state(adapter);
4737 if (retval)
4738 return retval;
4739 #endif
4741 status = E1000_READ_REG(&adapter->hw, STATUS);
4742 if (status & E1000_STATUS_LU)
4743 wufc &= ~E1000_WUFC_LNKC;
4745 if (wufc) {
4746 e1000_setup_rctl(adapter);
4747 e1000_set_multi(netdev);
4749 /* turn on all-multi mode if wake on multicast is enabled */
4750 if (wufc & E1000_WUFC_MC) {
4751 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4752 rctl |= E1000_RCTL_MPE;
4753 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4756 if (adapter->hw.mac_type >= e1000_82540) {
4757 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4758 /* advertise wake from D3Cold */
4759 #define E1000_CTRL_ADVD3WUC 0x00100000
4760 /* phy power management enable */
4761 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4762 ctrl |= E1000_CTRL_ADVD3WUC |
4763 E1000_CTRL_EN_PHY_PWR_MGMT;
4764 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4767 if (adapter->hw.media_type == e1000_media_type_fiber ||
4768 adapter->hw.media_type == e1000_media_type_internal_serdes) {
4769 /* keep the laser running in D3 */
4770 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4771 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4772 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4775 /* Allow time for pending master requests to run */
4776 e1000_disable_pciex_master(&adapter->hw);
4778 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4779 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4780 pci_enable_wake(pdev, PCI_D3hot, 1);
4781 pci_enable_wake(pdev, PCI_D3cold, 1);
4782 } else {
4783 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4784 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4785 pci_enable_wake(pdev, PCI_D3hot, 0);
4786 pci_enable_wake(pdev, PCI_D3cold, 0);
4789 if (adapter->hw.mac_type >= e1000_82540 &&
4790 adapter->hw.mac_type < e1000_82571 &&
4791 adapter->hw.media_type == e1000_media_type_copper) {
4792 manc = E1000_READ_REG(&adapter->hw, MANC);
4793 if (manc & E1000_MANC_SMBUS_EN) {
4794 manc |= E1000_MANC_ARP_EN;
4795 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4796 pci_enable_wake(pdev, PCI_D3hot, 1);
4797 pci_enable_wake(pdev, PCI_D3cold, 1);
4801 if (adapter->hw.phy_type == e1000_phy_igp_3)
4802 e1000_phy_powerdown_workaround(&adapter->hw);
4804 if (netif_running(netdev))
4805 e1000_free_irq(adapter);
4807 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4808 * would have already happened in close and is redundant. */
4809 e1000_release_hw_control(adapter);
4811 pci_disable_device(pdev);
4813 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4815 return 0;
4818 #ifdef CONFIG_PM
4819 static int
4820 e1000_resume(struct pci_dev *pdev)
4822 struct net_device *netdev = pci_get_drvdata(pdev);
4823 struct e1000_adapter *adapter = netdev_priv(netdev);
4824 uint32_t manc, err;
4826 pci_set_power_state(pdev, PCI_D0);
4827 e1000_pci_restore_state(adapter);
4828 if ((err = pci_enable_device(pdev))) {
4829 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4830 return err;
4832 pci_set_master(pdev);
4834 pci_enable_wake(pdev, PCI_D3hot, 0);
4835 pci_enable_wake(pdev, PCI_D3cold, 0);
4837 if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
4838 return err;
4840 e1000_power_up_phy(adapter);
4841 e1000_reset(adapter);
4842 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4844 if (netif_running(netdev))
4845 e1000_up(adapter);
4847 netif_device_attach(netdev);
4849 if (adapter->hw.mac_type >= e1000_82540 &&
4850 adapter->hw.mac_type < e1000_82571 &&
4851 adapter->hw.media_type == e1000_media_type_copper) {
4852 manc = E1000_READ_REG(&adapter->hw, MANC);
4853 manc &= ~(E1000_MANC_ARP_EN);
4854 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4857 /* If the controller is 82573 and f/w is AMT, do not set
4858 * DRV_LOAD until the interface is up. For all other cases,
4859 * let the f/w know that the h/w is now under the control
4860 * of the driver. */
4861 if (adapter->hw.mac_type != e1000_82573 ||
4862 !e1000_check_mng_mode(&adapter->hw))
4863 e1000_get_hw_control(adapter);
4865 return 0;
4867 #endif
4869 static void e1000_shutdown(struct pci_dev *pdev)
4871 e1000_suspend(pdev, PMSG_SUSPEND);
4874 #ifdef CONFIG_NET_POLL_CONTROLLER
4876 * Polling 'interrupt' - used by things like netconsole to send skbs
4877 * without having to re-enable interrupts. It's not called while
4878 * the interrupt routine is executing.
4880 static void
4881 e1000_netpoll(struct net_device *netdev)
4883 struct e1000_adapter *adapter = netdev_priv(netdev);
4885 disable_irq(adapter->pdev->irq);
4886 e1000_intr(adapter->pdev->irq, netdev);
4887 e1000_clean_tx_irq(adapter, adapter->tx_ring);
4888 #ifndef CONFIG_E1000_NAPI
4889 adapter->clean_rx(adapter, adapter->rx_ring);
4890 #endif
4891 enable_irq(adapter->pdev->irq);
4893 #endif
4896 * e1000_io_error_detected - called when PCI error is detected
4897 * @pdev: Pointer to PCI device
4898 * @state: The current pci conneection state
4900 * This function is called after a PCI bus error affecting
4901 * this device has been detected.
4903 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4905 struct net_device *netdev = pci_get_drvdata(pdev);
4906 struct e1000_adapter *adapter = netdev->priv;
4908 netif_device_detach(netdev);
4910 if (netif_running(netdev))
4911 e1000_down(adapter);
4912 pci_disable_device(pdev);
4914 /* Request a slot slot reset. */
4915 return PCI_ERS_RESULT_NEED_RESET;
4919 * e1000_io_slot_reset - called after the pci bus has been reset.
4920 * @pdev: Pointer to PCI device
4922 * Restart the card from scratch, as if from a cold-boot. Implementation
4923 * resembles the first-half of the e1000_resume routine.
4925 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4927 struct net_device *netdev = pci_get_drvdata(pdev);
4928 struct e1000_adapter *adapter = netdev->priv;
4930 if (pci_enable_device(pdev)) {
4931 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4932 return PCI_ERS_RESULT_DISCONNECT;
4934 pci_set_master(pdev);
4936 pci_enable_wake(pdev, PCI_D3hot, 0);
4937 pci_enable_wake(pdev, PCI_D3cold, 0);
4939 e1000_reset(adapter);
4940 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4942 return PCI_ERS_RESULT_RECOVERED;
4946 * e1000_io_resume - called when traffic can start flowing again.
4947 * @pdev: Pointer to PCI device
4949 * This callback is called when the error recovery driver tells us that
4950 * its OK to resume normal operation. Implementation resembles the
4951 * second-half of the e1000_resume routine.
4953 static void e1000_io_resume(struct pci_dev *pdev)
4955 struct net_device *netdev = pci_get_drvdata(pdev);
4956 struct e1000_adapter *adapter = netdev->priv;
4957 uint32_t manc, swsm;
4959 if (netif_running(netdev)) {
4960 if (e1000_up(adapter)) {
4961 printk("e1000: can't bring device back up after reset\n");
4962 return;
4966 netif_device_attach(netdev);
4968 if (adapter->hw.mac_type >= e1000_82540 &&
4969 adapter->hw.mac_type < e1000_82571 &&
4970 adapter->hw.media_type == e1000_media_type_copper) {
4971 manc = E1000_READ_REG(&adapter->hw, MANC);
4972 manc &= ~(E1000_MANC_ARP_EN);
4973 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4976 switch (adapter->hw.mac_type) {
4977 case e1000_82573:
4978 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4979 E1000_WRITE_REG(&adapter->hw, SWSM,
4980 swsm | E1000_SWSM_DRV_LOAD);
4981 break;
4982 default:
4983 break;
4986 if (netif_running(netdev))
4987 mod_timer(&adapter->watchdog_timer, jiffies);
4990 /* e1000_main.c */