walk system ram range
[linux-2.6/cjktty.git] / drivers / net / sb1000.c
blobee366c5a8fa333b191eb2c6a6e251f950031ac24
1 /* sb1000.c: A General Instruments SB1000 driver for linux. */
2 /*
3 Written 1998 by Franco Venturi.
5 Copyright 1998 by Franco Venturi.
6 Copyright 1994,1995 by Donald Becker.
7 Copyright 1993 United States Government as represented by the
8 Director, National Security Agency.
10 This driver is for the General Instruments SB1000 (internal SURFboard)
12 The author may be reached as fventuri@mediaone.net
14 This program is free software; you can redistribute it
15 and/or modify it under the terms of the GNU General
16 Public License as published by the Free Software
17 Foundation; either version 2 of the License, or (at
18 your option) any later version.
20 Changes:
22 981115 Steven Hirsch <shirsch@adelphia.net>
24 Linus changed the timer interface. Should work on all recent
25 development kernels.
27 980608 Steven Hirsch <shirsch@adelphia.net>
29 Small changes to make it work with 2.1.x kernels. Hopefully,
30 nothing major will change before official release of Linux 2.2.
32 Merged with 2.2 - Alan Cox
35 static char version[] = "sb1000.c:v1.1.2 6/01/98 (fventuri@mediaone.net)\n";
37 #include <linux/module.h>
38 #include <linux/kernel.h>
39 #include <linux/string.h>
40 #include <linux/interrupt.h>
41 #include <linux/errno.h>
42 #include <linux/if_cablemodem.h> /* for SIOGCM/SIOSCM stuff */
43 #include <linux/in.h>
44 #include <linux/slab.h>
45 #include <linux/ioport.h>
46 #include <linux/netdevice.h>
47 #include <linux/if_arp.h>
48 #include <linux/skbuff.h>
49 #include <linux/delay.h> /* for udelay() */
50 #include <linux/etherdevice.h>
51 #include <linux/pnp.h>
52 #include <linux/init.h>
53 #include <linux/bitops.h>
55 #include <asm/io.h>
56 #include <asm/processor.h>
57 #include <asm/uaccess.h>
59 #ifdef SB1000_DEBUG
60 static int sb1000_debug = SB1000_DEBUG;
61 #else
62 static const int sb1000_debug = 1;
63 #endif
65 static const int SB1000_IO_EXTENT = 8;
66 /* SB1000 Maximum Receive Unit */
67 static const int SB1000_MRU = 1500; /* octects */
69 #define NPIDS 4
70 struct sb1000_private {
71 struct sk_buff *rx_skb[NPIDS];
72 short rx_dlen[NPIDS];
73 unsigned int rx_frames;
74 short rx_error_count;
75 short rx_error_dpc_count;
76 unsigned char rx_session_id[NPIDS];
77 unsigned char rx_frame_id[NPIDS];
78 unsigned char rx_pkt_type[NPIDS];
81 /* prototypes for Linux interface */
82 extern int sb1000_probe(struct net_device *dev);
83 static int sb1000_open(struct net_device *dev);
84 static int sb1000_dev_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd);
85 static netdev_tx_t sb1000_start_xmit(struct sk_buff *skb,
86 struct net_device *dev);
87 static irqreturn_t sb1000_interrupt(int irq, void *dev_id);
88 static int sb1000_close(struct net_device *dev);
91 /* SB1000 hardware routines to be used during open/configuration phases */
92 static int card_wait_for_busy_clear(const int ioaddr[],
93 const char* name);
94 static int card_wait_for_ready(const int ioaddr[], const char* name,
95 unsigned char in[]);
96 static int card_send_command(const int ioaddr[], const char* name,
97 const unsigned char out[], unsigned char in[]);
99 /* SB1000 hardware routines to be used during frame rx interrupt */
100 static int sb1000_wait_for_ready(const int ioaddr[], const char* name);
101 static int sb1000_wait_for_ready_clear(const int ioaddr[],
102 const char* name);
103 static void sb1000_send_command(const int ioaddr[], const char* name,
104 const unsigned char out[]);
105 static void sb1000_read_status(const int ioaddr[], unsigned char in[]);
106 static void sb1000_issue_read_command(const int ioaddr[],
107 const char* name);
109 /* SB1000 commands for open/configuration */
110 static int sb1000_reset(const int ioaddr[], const char* name);
111 static int sb1000_check_CRC(const int ioaddr[], const char* name);
112 static inline int sb1000_start_get_set_command(const int ioaddr[],
113 const char* name);
114 static int sb1000_end_get_set_command(const int ioaddr[],
115 const char* name);
116 static int sb1000_activate(const int ioaddr[], const char* name);
117 static int sb1000_get_firmware_version(const int ioaddr[],
118 const char* name, unsigned char version[], int do_end);
119 static int sb1000_get_frequency(const int ioaddr[], const char* name,
120 int* frequency);
121 static int sb1000_set_frequency(const int ioaddr[], const char* name,
122 int frequency);
123 static int sb1000_get_PIDs(const int ioaddr[], const char* name,
124 short PID[]);
125 static int sb1000_set_PIDs(const int ioaddr[], const char* name,
126 const short PID[]);
128 /* SB1000 commands for frame rx interrupt */
129 static int sb1000_rx(struct net_device *dev);
130 static void sb1000_error_dpc(struct net_device *dev);
132 static const struct pnp_device_id sb1000_pnp_ids[] = {
133 { "GIC1000", 0 },
134 { "", 0 }
136 MODULE_DEVICE_TABLE(pnp, sb1000_pnp_ids);
138 static const struct net_device_ops sb1000_netdev_ops = {
139 .ndo_open = sb1000_open,
140 .ndo_start_xmit = sb1000_start_xmit,
141 .ndo_do_ioctl = sb1000_dev_ioctl,
142 .ndo_stop = sb1000_close,
143 .ndo_change_mtu = eth_change_mtu,
144 .ndo_set_mac_address = eth_mac_addr,
145 .ndo_validate_addr = eth_validate_addr,
148 static int
149 sb1000_probe_one(struct pnp_dev *pdev, const struct pnp_device_id *id)
151 struct net_device *dev;
152 unsigned short ioaddr[2], irq;
153 unsigned int serial_number;
154 int error = -ENODEV;
156 if (pnp_device_attach(pdev) < 0)
157 return -ENODEV;
158 if (pnp_activate_dev(pdev) < 0)
159 goto out_detach;
161 if (!pnp_port_valid(pdev, 0) || !pnp_port_valid(pdev, 1))
162 goto out_disable;
163 if (!pnp_irq_valid(pdev, 0))
164 goto out_disable;
166 serial_number = pdev->card->serial;
168 ioaddr[0] = pnp_port_start(pdev, 0);
169 ioaddr[1] = pnp_port_start(pdev, 0);
171 irq = pnp_irq(pdev, 0);
173 if (!request_region(ioaddr[0], 16, "sb1000"))
174 goto out_disable;
175 if (!request_region(ioaddr[1], 16, "sb1000"))
176 goto out_release_region0;
178 dev = alloc_etherdev(sizeof(struct sb1000_private));
179 if (!dev) {
180 error = -ENOMEM;
181 goto out_release_regions;
185 dev->base_addr = ioaddr[0];
186 /* mem_start holds the second I/O address */
187 dev->mem_start = ioaddr[1];
188 dev->irq = irq;
190 if (sb1000_debug > 0)
191 printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), "
192 "S/N %#8.8x, IRQ %d.\n", dev->name, dev->base_addr,
193 dev->mem_start, serial_number, dev->irq);
196 * The SB1000 is an rx-only cable modem device. The uplink is a modem
197 * and we do not want to arp on it.
199 dev->flags = IFF_POINTOPOINT|IFF_NOARP;
201 SET_NETDEV_DEV(dev, &pdev->dev);
203 if (sb1000_debug > 0)
204 printk(KERN_NOTICE "%s", version);
206 dev->netdev_ops = &sb1000_netdev_ops;
208 /* hardware address is 0:0:serial_number */
209 dev->dev_addr[2] = serial_number >> 24 & 0xff;
210 dev->dev_addr[3] = serial_number >> 16 & 0xff;
211 dev->dev_addr[4] = serial_number >> 8 & 0xff;
212 dev->dev_addr[5] = serial_number >> 0 & 0xff;
214 pnp_set_drvdata(pdev, dev);
216 error = register_netdev(dev);
217 if (error)
218 goto out_free_netdev;
219 return 0;
221 out_free_netdev:
222 free_netdev(dev);
223 out_release_regions:
224 release_region(ioaddr[1], 16);
225 out_release_region0:
226 release_region(ioaddr[0], 16);
227 out_disable:
228 pnp_disable_dev(pdev);
229 out_detach:
230 pnp_device_detach(pdev);
231 return error;
234 static void
235 sb1000_remove_one(struct pnp_dev *pdev)
237 struct net_device *dev = pnp_get_drvdata(pdev);
239 unregister_netdev(dev);
240 release_region(dev->base_addr, 16);
241 release_region(dev->mem_start, 16);
242 free_netdev(dev);
245 static struct pnp_driver sb1000_driver = {
246 .name = "sb1000",
247 .id_table = sb1000_pnp_ids,
248 .probe = sb1000_probe_one,
249 .remove = sb1000_remove_one,
254 * SB1000 hardware routines to be used during open/configuration phases
257 static const int TimeOutJiffies = (875 * HZ) / 100;
259 /* Card Wait For Busy Clear (cannot be used during an interrupt) */
260 static int
261 card_wait_for_busy_clear(const int ioaddr[], const char* name)
263 unsigned char a;
264 unsigned long timeout;
266 a = inb(ioaddr[0] + 7);
267 timeout = jiffies + TimeOutJiffies;
268 while (a & 0x80 || a & 0x40) {
269 /* a little sleep */
270 yield();
272 a = inb(ioaddr[0] + 7);
273 if (time_after_eq(jiffies, timeout)) {
274 printk(KERN_WARNING "%s: card_wait_for_busy_clear timeout\n",
275 name);
276 return -ETIME;
280 return 0;
283 /* Card Wait For Ready (cannot be used during an interrupt) */
284 static int
285 card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[])
287 unsigned char a;
288 unsigned long timeout;
290 a = inb(ioaddr[1] + 6);
291 timeout = jiffies + TimeOutJiffies;
292 while (a & 0x80 || !(a & 0x40)) {
293 /* a little sleep */
294 yield();
296 a = inb(ioaddr[1] + 6);
297 if (time_after_eq(jiffies, timeout)) {
298 printk(KERN_WARNING "%s: card_wait_for_ready timeout\n",
299 name);
300 return -ETIME;
304 in[1] = inb(ioaddr[0] + 1);
305 in[2] = inb(ioaddr[0] + 2);
306 in[3] = inb(ioaddr[0] + 3);
307 in[4] = inb(ioaddr[0] + 4);
308 in[0] = inb(ioaddr[0] + 5);
309 in[6] = inb(ioaddr[0] + 6);
310 in[5] = inb(ioaddr[1] + 6);
311 return 0;
314 /* Card Send Command (cannot be used during an interrupt) */
315 static int
316 card_send_command(const int ioaddr[], const char* name,
317 const unsigned char out[], unsigned char in[])
319 int status, x;
321 if ((status = card_wait_for_busy_clear(ioaddr, name)))
322 return status;
323 outb(0xa0, ioaddr[0] + 6);
324 outb(out[2], ioaddr[0] + 1);
325 outb(out[3], ioaddr[0] + 2);
326 outb(out[4], ioaddr[0] + 3);
327 outb(out[5], ioaddr[0] + 4);
328 outb(out[1], ioaddr[0] + 5);
329 outb(0xa0, ioaddr[0] + 6);
330 outb(out[0], ioaddr[0] + 7);
331 if (out[0] != 0x20 && out[0] != 0x30) {
332 if ((status = card_wait_for_ready(ioaddr, name, in)))
333 return status;
334 inb(ioaddr[0] + 7);
335 if (sb1000_debug > 3)
336 printk(KERN_DEBUG "%s: card_send_command "
337 "out: %02x%02x%02x%02x%02x%02x "
338 "in: %02x%02x%02x%02x%02x%02x%02x\n", name,
339 out[0], out[1], out[2], out[3], out[4], out[5],
340 in[0], in[1], in[2], in[3], in[4], in[5], in[6]);
341 } else {
342 if (sb1000_debug > 3)
343 printk(KERN_DEBUG "%s: card_send_command "
344 "out: %02x%02x%02x%02x%02x%02x\n", name,
345 out[0], out[1], out[2], out[3], out[4], out[5]);
348 if (out[1] == 0x1b) {
349 x = (out[2] == 0x02);
350 } else {
351 if (out[0] >= 0x80 && in[0] != (out[1] | 0x80))
352 return -EIO;
354 return 0;
359 * SB1000 hardware routines to be used during frame rx interrupt
361 static const int Sb1000TimeOutJiffies = 7 * HZ;
363 /* Card Wait For Ready (to be used during frame rx) */
364 static int
365 sb1000_wait_for_ready(const int ioaddr[], const char* name)
367 unsigned long timeout;
369 timeout = jiffies + Sb1000TimeOutJiffies;
370 while (inb(ioaddr[1] + 6) & 0x80) {
371 if (time_after_eq(jiffies, timeout)) {
372 printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
373 name);
374 return -ETIME;
377 timeout = jiffies + Sb1000TimeOutJiffies;
378 while (!(inb(ioaddr[1] + 6) & 0x40)) {
379 if (time_after_eq(jiffies, timeout)) {
380 printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
381 name);
382 return -ETIME;
385 inb(ioaddr[0] + 7);
386 return 0;
389 /* Card Wait For Ready Clear (to be used during frame rx) */
390 static int
391 sb1000_wait_for_ready_clear(const int ioaddr[], const char* name)
393 unsigned long timeout;
395 timeout = jiffies + Sb1000TimeOutJiffies;
396 while (inb(ioaddr[1] + 6) & 0x80) {
397 if (time_after_eq(jiffies, timeout)) {
398 printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
399 name);
400 return -ETIME;
403 timeout = jiffies + Sb1000TimeOutJiffies;
404 while (inb(ioaddr[1] + 6) & 0x40) {
405 if (time_after_eq(jiffies, timeout)) {
406 printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
407 name);
408 return -ETIME;
411 return 0;
414 /* Card Send Command (to be used during frame rx) */
415 static void
416 sb1000_send_command(const int ioaddr[], const char* name,
417 const unsigned char out[])
419 outb(out[2], ioaddr[0] + 1);
420 outb(out[3], ioaddr[0] + 2);
421 outb(out[4], ioaddr[0] + 3);
422 outb(out[5], ioaddr[0] + 4);
423 outb(out[1], ioaddr[0] + 5);
424 outb(out[0], ioaddr[0] + 7);
425 if (sb1000_debug > 3)
426 printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x"
427 "%02x%02x\n", name, out[0], out[1], out[2], out[3], out[4], out[5]);
428 return;
431 /* Card Read Status (to be used during frame rx) */
432 static void
433 sb1000_read_status(const int ioaddr[], unsigned char in[])
435 in[1] = inb(ioaddr[0] + 1);
436 in[2] = inb(ioaddr[0] + 2);
437 in[3] = inb(ioaddr[0] + 3);
438 in[4] = inb(ioaddr[0] + 4);
439 in[0] = inb(ioaddr[0] + 5);
440 return;
443 /* Issue Read Command (to be used during frame rx) */
444 static void
445 sb1000_issue_read_command(const int ioaddr[], const char* name)
447 static const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00};
449 sb1000_wait_for_ready_clear(ioaddr, name);
450 outb(0xa0, ioaddr[0] + 6);
451 sb1000_send_command(ioaddr, name, Command0);
452 return;
457 * SB1000 commands for open/configuration
459 /* reset SB1000 card */
460 static int
461 sb1000_reset(const int ioaddr[], const char* name)
463 static const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
465 unsigned char st[7];
466 int port, status;
468 port = ioaddr[1] + 6;
469 outb(0x4, port);
470 inb(port);
471 udelay(1000);
472 outb(0x0, port);
473 inb(port);
474 ssleep(1);
475 outb(0x4, port);
476 inb(port);
477 udelay(1000);
478 outb(0x0, port);
479 inb(port);
480 udelay(0);
482 if ((status = card_send_command(ioaddr, name, Command0, st)))
483 return status;
484 if (st[3] != 0xf0)
485 return -EIO;
486 return 0;
489 /* check SB1000 firmware CRC */
490 static int
491 sb1000_check_CRC(const int ioaddr[], const char* name)
493 static const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00};
495 unsigned char st[7];
496 int crc, status;
498 /* check CRC */
499 if ((status = card_send_command(ioaddr, name, Command0, st)))
500 return status;
501 if (st[1] != st[3] || st[2] != st[4])
502 return -EIO;
503 crc = st[1] << 8 | st[2];
504 return 0;
507 static inline int
508 sb1000_start_get_set_command(const int ioaddr[], const char* name)
510 static const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00};
512 unsigned char st[7];
514 return card_send_command(ioaddr, name, Command0, st);
517 static int
518 sb1000_end_get_set_command(const int ioaddr[], const char* name)
520 static const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00};
521 static const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00};
523 unsigned char st[7];
524 int status;
526 if ((status = card_send_command(ioaddr, name, Command0, st)))
527 return status;
528 return card_send_command(ioaddr, name, Command1, st);
531 static int
532 sb1000_activate(const int ioaddr[], const char* name)
534 static const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00};
535 static const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
537 unsigned char st[7];
538 int status;
540 ssleep(1);
541 if ((status = card_send_command(ioaddr, name, Command0, st)))
542 return status;
543 if ((status = card_send_command(ioaddr, name, Command1, st)))
544 return status;
545 if (st[3] != 0xf1) {
546 if ((status = sb1000_start_get_set_command(ioaddr, name)))
547 return status;
548 return -EIO;
550 udelay(1000);
551 return sb1000_start_get_set_command(ioaddr, name);
554 /* get SB1000 firmware version */
555 static int
556 sb1000_get_firmware_version(const int ioaddr[], const char* name,
557 unsigned char version[], int do_end)
559 static const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00};
561 unsigned char st[7];
562 int status;
564 if ((status = sb1000_start_get_set_command(ioaddr, name)))
565 return status;
566 if ((status = card_send_command(ioaddr, name, Command0, st)))
567 return status;
568 if (st[0] != 0xa3)
569 return -EIO;
570 version[0] = st[1];
571 version[1] = st[2];
572 if (do_end)
573 return sb1000_end_get_set_command(ioaddr, name);
574 else
575 return 0;
578 /* get SB1000 frequency */
579 static int
580 sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency)
582 static const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00};
584 unsigned char st[7];
585 int status;
587 udelay(1000);
588 if ((status = sb1000_start_get_set_command(ioaddr, name)))
589 return status;
590 if ((status = card_send_command(ioaddr, name, Command0, st)))
591 return status;
592 *frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4];
593 return sb1000_end_get_set_command(ioaddr, name);
596 /* set SB1000 frequency */
597 static int
598 sb1000_set_frequency(const int ioaddr[], const char* name, int frequency)
600 unsigned char st[7];
601 int status;
602 unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00};
604 const int FrequencyLowerLimit = 57000;
605 const int FrequencyUpperLimit = 804000;
607 if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) {
608 printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range "
609 "[%d,%d] kHz\n", name, frequency, FrequencyLowerLimit,
610 FrequencyUpperLimit);
611 return -EINVAL;
613 udelay(1000);
614 if ((status = sb1000_start_get_set_command(ioaddr, name)))
615 return status;
616 Command0[5] = frequency & 0xff;
617 frequency >>= 8;
618 Command0[4] = frequency & 0xff;
619 frequency >>= 8;
620 Command0[3] = frequency & 0xff;
621 frequency >>= 8;
622 Command0[2] = frequency & 0xff;
623 return card_send_command(ioaddr, name, Command0, st);
626 /* get SB1000 PIDs */
627 static int
628 sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[])
630 static const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00};
631 static const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00};
632 static const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00};
633 static const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00};
635 unsigned char st[7];
636 int status;
638 udelay(1000);
639 if ((status = sb1000_start_get_set_command(ioaddr, name)))
640 return status;
642 if ((status = card_send_command(ioaddr, name, Command0, st)))
643 return status;
644 PID[0] = st[1] << 8 | st[2];
646 if ((status = card_send_command(ioaddr, name, Command1, st)))
647 return status;
648 PID[1] = st[1] << 8 | st[2];
650 if ((status = card_send_command(ioaddr, name, Command2, st)))
651 return status;
652 PID[2] = st[1] << 8 | st[2];
654 if ((status = card_send_command(ioaddr, name, Command3, st)))
655 return status;
656 PID[3] = st[1] << 8 | st[2];
658 return sb1000_end_get_set_command(ioaddr, name);
661 /* set SB1000 PIDs */
662 static int
663 sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[])
665 static const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
667 unsigned char st[7];
668 short p;
669 int status;
670 unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00};
671 unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00};
672 unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00};
673 unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00};
675 udelay(1000);
676 if ((status = sb1000_start_get_set_command(ioaddr, name)))
677 return status;
679 p = PID[0];
680 Command0[3] = p & 0xff;
681 p >>= 8;
682 Command0[2] = p & 0xff;
683 if ((status = card_send_command(ioaddr, name, Command0, st)))
684 return status;
686 p = PID[1];
687 Command1[3] = p & 0xff;
688 p >>= 8;
689 Command1[2] = p & 0xff;
690 if ((status = card_send_command(ioaddr, name, Command1, st)))
691 return status;
693 p = PID[2];
694 Command2[3] = p & 0xff;
695 p >>= 8;
696 Command2[2] = p & 0xff;
697 if ((status = card_send_command(ioaddr, name, Command2, st)))
698 return status;
700 p = PID[3];
701 Command3[3] = p & 0xff;
702 p >>= 8;
703 Command3[2] = p & 0xff;
704 if ((status = card_send_command(ioaddr, name, Command3, st)))
705 return status;
707 if ((status = card_send_command(ioaddr, name, Command4, st)))
708 return status;
709 return sb1000_end_get_set_command(ioaddr, name);
713 static void
714 sb1000_print_status_buffer(const char* name, unsigned char st[],
715 unsigned char buffer[], int size)
717 int i, j, k;
719 printk(KERN_DEBUG "%s: status: %02x %02x\n", name, st[0], st[1]);
720 if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) {
721 printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d "
722 "to %d.%d.%d.%d:%d\n", name, buffer[28] << 8 | buffer[29],
723 buffer[35], buffer[38], buffer[39], buffer[40], buffer[41],
724 buffer[46] << 8 | buffer[47],
725 buffer[42], buffer[43], buffer[44], buffer[45],
726 buffer[48] << 8 | buffer[49]);
727 } else {
728 for (i = 0, k = 0; i < (size + 7) / 8; i++) {
729 printk(KERN_DEBUG "%s: %s", name, i ? " " : "buffer:");
730 for (j = 0; j < 8 && k < size; j++, k++)
731 printk(" %02x", buffer[k]);
732 printk("\n");
735 return;
739 * SB1000 commands for frame rx interrupt
741 /* receive a single frame and assemble datagram
742 * (this is the heart of the interrupt routine)
744 static int
745 sb1000_rx(struct net_device *dev)
748 #define FRAMESIZE 184
749 unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id;
750 short dlen;
751 int ioaddr, ns;
752 unsigned int skbsize;
753 struct sk_buff *skb;
754 struct sb1000_private *lp = netdev_priv(dev);
755 struct net_device_stats *stats = &dev->stats;
757 /* SB1000 frame constants */
758 const int FrameSize = FRAMESIZE;
759 const int NewDatagramHeaderSkip = 8;
760 const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18;
761 const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize;
762 const int ContDatagramHeaderSkip = 7;
763 const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1;
764 const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize;
765 const int TrailerSize = 4;
767 ioaddr = dev->base_addr;
769 insw(ioaddr, (unsigned short*) st, 1);
770 #ifdef XXXDEBUG
771 printk("cm0: received: %02x %02x\n", st[0], st[1]);
772 #endif /* XXXDEBUG */
773 lp->rx_frames++;
775 /* decide if it is a good or bad frame */
776 for (ns = 0; ns < NPIDS; ns++) {
777 session_id = lp->rx_session_id[ns];
778 frame_id = lp->rx_frame_id[ns];
779 if (st[0] == session_id) {
780 if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) {
781 goto good_frame;
782 } else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) {
783 goto skipped_frame;
784 } else {
785 goto bad_frame;
787 } else if (st[0] == (session_id | 0x40)) {
788 if ((st[1] & 0xf0) == 0x30) {
789 goto skipped_frame;
790 } else {
791 goto bad_frame;
795 goto bad_frame;
797 skipped_frame:
798 stats->rx_frame_errors++;
799 skb = lp->rx_skb[ns];
800 if (sb1000_debug > 1)
801 printk(KERN_WARNING "%s: missing frame(s): got %02x %02x "
802 "expecting %02x %02x\n", dev->name, st[0], st[1],
803 skb ? session_id : session_id | 0x40, frame_id);
804 if (skb) {
805 dev_kfree_skb(skb);
806 skb = NULL;
809 good_frame:
810 lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f);
811 /* new datagram */
812 if (st[0] & 0x40) {
813 /* get data length */
814 insw(ioaddr, buffer, NewDatagramHeaderSize / 2);
815 #ifdef XXXDEBUG
816 printk("cm0: IP identification: %02x%02x fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]);
817 #endif /* XXXDEBUG */
818 if (buffer[0] != NewDatagramHeaderSkip) {
819 if (sb1000_debug > 1)
820 printk(KERN_WARNING "%s: new datagram header skip error: "
821 "got %02x expecting %02x\n", dev->name, buffer[0],
822 NewDatagramHeaderSkip);
823 stats->rx_length_errors++;
824 insw(ioaddr, buffer, NewDatagramDataSize / 2);
825 goto bad_frame_next;
827 dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 |
828 buffer[NewDatagramHeaderSkip + 4]) - 17;
829 if (dlen > SB1000_MRU) {
830 if (sb1000_debug > 1)
831 printk(KERN_WARNING "%s: datagram length (%d) greater "
832 "than MRU (%d)\n", dev->name, dlen, SB1000_MRU);
833 stats->rx_length_errors++;
834 insw(ioaddr, buffer, NewDatagramDataSize / 2);
835 goto bad_frame_next;
837 lp->rx_dlen[ns] = dlen;
838 /* compute size to allocate for datagram */
839 skbsize = dlen + FrameSize;
840 if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) {
841 if (sb1000_debug > 1)
842 printk(KERN_WARNING "%s: can't allocate %d bytes long "
843 "skbuff\n", dev->name, skbsize);
844 stats->rx_dropped++;
845 insw(ioaddr, buffer, NewDatagramDataSize / 2);
846 goto dropped_frame;
848 skb->dev = dev;
849 skb_reset_mac_header(skb);
850 skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16];
851 insw(ioaddr, skb_put(skb, NewDatagramDataSize),
852 NewDatagramDataSize / 2);
853 lp->rx_skb[ns] = skb;
854 } else {
855 /* continuation of previous datagram */
856 insw(ioaddr, buffer, ContDatagramHeaderSize / 2);
857 if (buffer[0] != ContDatagramHeaderSkip) {
858 if (sb1000_debug > 1)
859 printk(KERN_WARNING "%s: cont datagram header skip error: "
860 "got %02x expecting %02x\n", dev->name, buffer[0],
861 ContDatagramHeaderSkip);
862 stats->rx_length_errors++;
863 insw(ioaddr, buffer, ContDatagramDataSize / 2);
864 goto bad_frame_next;
866 skb = lp->rx_skb[ns];
867 insw(ioaddr, skb_put(skb, ContDatagramDataSize),
868 ContDatagramDataSize / 2);
869 dlen = lp->rx_dlen[ns];
871 if (skb->len < dlen + TrailerSize) {
872 lp->rx_session_id[ns] &= ~0x40;
873 return 0;
876 /* datagram completed: send to upper level */
877 skb_trim(skb, dlen);
878 netif_rx(skb);
879 stats->rx_bytes+=dlen;
880 stats->rx_packets++;
881 lp->rx_skb[ns] = NULL;
882 lp->rx_session_id[ns] |= 0x40;
883 return 0;
885 bad_frame:
886 insw(ioaddr, buffer, FrameSize / 2);
887 if (sb1000_debug > 1)
888 printk(KERN_WARNING "%s: frame error: got %02x %02x\n",
889 dev->name, st[0], st[1]);
890 stats->rx_frame_errors++;
891 bad_frame_next:
892 if (sb1000_debug > 2)
893 sb1000_print_status_buffer(dev->name, st, buffer, FrameSize);
894 dropped_frame:
895 stats->rx_errors++;
896 if (ns < NPIDS) {
897 if ((skb = lp->rx_skb[ns])) {
898 dev_kfree_skb(skb);
899 lp->rx_skb[ns] = NULL;
901 lp->rx_session_id[ns] |= 0x40;
903 return -1;
906 static void
907 sb1000_error_dpc(struct net_device *dev)
909 static const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00};
911 char *name;
912 unsigned char st[5];
913 int ioaddr[2];
914 struct sb1000_private *lp = netdev_priv(dev);
915 const int ErrorDpcCounterInitialize = 200;
917 ioaddr[0] = dev->base_addr;
918 /* mem_start holds the second I/O address */
919 ioaddr[1] = dev->mem_start;
920 name = dev->name;
922 sb1000_wait_for_ready_clear(ioaddr, name);
923 sb1000_send_command(ioaddr, name, Command0);
924 sb1000_wait_for_ready(ioaddr, name);
925 sb1000_read_status(ioaddr, st);
926 if (st[1] & 0x10)
927 lp->rx_error_dpc_count = ErrorDpcCounterInitialize;
928 return;
933 * Linux interface functions
935 static int
936 sb1000_open(struct net_device *dev)
938 char *name;
939 int ioaddr[2], status;
940 struct sb1000_private *lp = netdev_priv(dev);
941 const unsigned short FirmwareVersion[] = {0x01, 0x01};
943 ioaddr[0] = dev->base_addr;
944 /* mem_start holds the second I/O address */
945 ioaddr[1] = dev->mem_start;
946 name = dev->name;
948 /* initialize sb1000 */
949 if ((status = sb1000_reset(ioaddr, name)))
950 return status;
951 ssleep(1);
952 if ((status = sb1000_check_CRC(ioaddr, name)))
953 return status;
955 /* initialize private data before board can catch interrupts */
956 lp->rx_skb[0] = NULL;
957 lp->rx_skb[1] = NULL;
958 lp->rx_skb[2] = NULL;
959 lp->rx_skb[3] = NULL;
960 lp->rx_dlen[0] = 0;
961 lp->rx_dlen[1] = 0;
962 lp->rx_dlen[2] = 0;
963 lp->rx_dlen[3] = 0;
964 lp->rx_frames = 0;
965 lp->rx_error_count = 0;
966 lp->rx_error_dpc_count = 0;
967 lp->rx_session_id[0] = 0x50;
968 lp->rx_session_id[0] = 0x48;
969 lp->rx_session_id[0] = 0x44;
970 lp->rx_session_id[0] = 0x42;
971 lp->rx_frame_id[0] = 0;
972 lp->rx_frame_id[1] = 0;
973 lp->rx_frame_id[2] = 0;
974 lp->rx_frame_id[3] = 0;
975 if (request_irq(dev->irq, &sb1000_interrupt, 0, "sb1000", dev)) {
976 return -EAGAIN;
979 if (sb1000_debug > 2)
980 printk(KERN_DEBUG "%s: Opening, IRQ %d\n", name, dev->irq);
982 /* Activate board and check firmware version */
983 udelay(1000);
984 if ((status = sb1000_activate(ioaddr, name)))
985 return status;
986 udelay(0);
987 if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0)))
988 return status;
989 if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1])
990 printk(KERN_WARNING "%s: found firmware version %x.%02x "
991 "(should be %x.%02x)\n", name, version[0], version[1],
992 FirmwareVersion[0], FirmwareVersion[1]);
995 netif_start_queue(dev);
996 return 0; /* Always succeed */
999 static int sb1000_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1001 char* name;
1002 unsigned char version[2];
1003 short PID[4];
1004 int ioaddr[2], status, frequency;
1005 unsigned int stats[5];
1006 struct sb1000_private *lp = netdev_priv(dev);
1008 if (!(dev && dev->flags & IFF_UP))
1009 return -ENODEV;
1011 ioaddr[0] = dev->base_addr;
1012 /* mem_start holds the second I/O address */
1013 ioaddr[1] = dev->mem_start;
1014 name = dev->name;
1016 switch (cmd) {
1017 case SIOCGCMSTATS: /* get statistics */
1018 stats[0] = dev->stats.rx_bytes;
1019 stats[1] = lp->rx_frames;
1020 stats[2] = dev->stats.rx_packets;
1021 stats[3] = dev->stats.rx_errors;
1022 stats[4] = dev->stats.rx_dropped;
1023 if(copy_to_user(ifr->ifr_data, stats, sizeof(stats)))
1024 return -EFAULT;
1025 status = 0;
1026 break;
1028 case SIOCGCMFIRMWARE: /* get firmware version */
1029 if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1)))
1030 return status;
1031 if(copy_to_user(ifr->ifr_data, version, sizeof(version)))
1032 return -EFAULT;
1033 break;
1035 case SIOCGCMFREQUENCY: /* get frequency */
1036 if ((status = sb1000_get_frequency(ioaddr, name, &frequency)))
1037 return status;
1038 if(put_user(frequency, (int __user *) ifr->ifr_data))
1039 return -EFAULT;
1040 break;
1042 case SIOCSCMFREQUENCY: /* set frequency */
1043 if (!capable(CAP_NET_ADMIN))
1044 return -EPERM;
1045 if(get_user(frequency, (int __user *) ifr->ifr_data))
1046 return -EFAULT;
1047 if ((status = sb1000_set_frequency(ioaddr, name, frequency)))
1048 return status;
1049 break;
1051 case SIOCGCMPIDS: /* get PIDs */
1052 if ((status = sb1000_get_PIDs(ioaddr, name, PID)))
1053 return status;
1054 if(copy_to_user(ifr->ifr_data, PID, sizeof(PID)))
1055 return -EFAULT;
1056 break;
1058 case SIOCSCMPIDS: /* set PIDs */
1059 if (!capable(CAP_NET_ADMIN))
1060 return -EPERM;
1061 if(copy_from_user(PID, ifr->ifr_data, sizeof(PID)))
1062 return -EFAULT;
1063 if ((status = sb1000_set_PIDs(ioaddr, name, PID)))
1064 return status;
1065 /* set session_id, frame_id and pkt_type too */
1066 lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f);
1067 lp->rx_session_id[1] = 0x48;
1068 lp->rx_session_id[2] = 0x44;
1069 lp->rx_session_id[3] = 0x42;
1070 lp->rx_frame_id[0] = 0;
1071 lp->rx_frame_id[1] = 0;
1072 lp->rx_frame_id[2] = 0;
1073 lp->rx_frame_id[3] = 0;
1074 break;
1076 default:
1077 status = -EINVAL;
1078 break;
1080 return status;
1083 /* transmit function: do nothing since SB1000 can't send anything out */
1084 static netdev_tx_t
1085 sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1087 printk(KERN_WARNING "%s: trying to transmit!!!\n", dev->name);
1088 /* sb1000 can't xmit datagrams */
1089 dev_kfree_skb(skb);
1090 return NETDEV_TX_OK;
1093 /* SB1000 interrupt handler. */
1094 static irqreturn_t sb1000_interrupt(int irq, void *dev_id)
1096 static const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00};
1097 static const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
1099 char *name;
1100 unsigned char st;
1101 int ioaddr[2];
1102 struct net_device *dev = dev_id;
1103 struct sb1000_private *lp = netdev_priv(dev);
1105 const int MaxRxErrorCount = 6;
1107 ioaddr[0] = dev->base_addr;
1108 /* mem_start holds the second I/O address */
1109 ioaddr[1] = dev->mem_start;
1110 name = dev->name;
1112 /* is it a good interrupt? */
1113 st = inb(ioaddr[1] + 6);
1114 if (!(st & 0x08 && st & 0x20)) {
1115 return IRQ_NONE;
1118 if (sb1000_debug > 3)
1119 printk(KERN_DEBUG "%s: entering interrupt\n", dev->name);
1121 st = inb(ioaddr[0] + 7);
1122 if (sb1000_rx(dev))
1123 lp->rx_error_count++;
1124 #ifdef SB1000_DELAY
1125 udelay(SB1000_DELAY);
1126 #endif /* SB1000_DELAY */
1127 sb1000_issue_read_command(ioaddr, name);
1128 if (st & 0x01) {
1129 sb1000_error_dpc(dev);
1130 sb1000_issue_read_command(ioaddr, name);
1132 if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) {
1133 sb1000_wait_for_ready_clear(ioaddr, name);
1134 sb1000_send_command(ioaddr, name, Command0);
1135 sb1000_wait_for_ready(ioaddr, name);
1136 sb1000_issue_read_command(ioaddr, name);
1138 if (lp->rx_error_count >= MaxRxErrorCount) {
1139 sb1000_wait_for_ready_clear(ioaddr, name);
1140 sb1000_send_command(ioaddr, name, Command1);
1141 sb1000_wait_for_ready(ioaddr, name);
1142 sb1000_issue_read_command(ioaddr, name);
1143 lp->rx_error_count = 0;
1146 return IRQ_HANDLED;
1149 static int sb1000_close(struct net_device *dev)
1151 int i;
1152 int ioaddr[2];
1153 struct sb1000_private *lp = netdev_priv(dev);
1155 if (sb1000_debug > 2)
1156 printk(KERN_DEBUG "%s: Shutting down sb1000.\n", dev->name);
1158 netif_stop_queue(dev);
1160 ioaddr[0] = dev->base_addr;
1161 /* mem_start holds the second I/O address */
1162 ioaddr[1] = dev->mem_start;
1164 free_irq(dev->irq, dev);
1165 /* If we don't do this, we can't re-insmod it later. */
1166 release_region(ioaddr[1], SB1000_IO_EXTENT);
1167 release_region(ioaddr[0], SB1000_IO_EXTENT);
1169 /* free rx_skb's if needed */
1170 for (i=0; i<4; i++) {
1171 if (lp->rx_skb[i]) {
1172 dev_kfree_skb(lp->rx_skb[i]);
1175 return 0;
1178 MODULE_AUTHOR("Franco Venturi <fventuri@mediaone.net>");
1179 MODULE_DESCRIPTION("General Instruments SB1000 driver");
1180 MODULE_LICENSE("GPL");
1182 static int __init
1183 sb1000_init(void)
1185 return pnp_register_driver(&sb1000_driver);
1188 static void __exit
1189 sb1000_exit(void)
1191 pnp_unregister_driver(&sb1000_driver);
1194 module_init(sb1000_init);
1195 module_exit(sb1000_exit);