hugetlbfs: add missing TLB flush to hugetlb_cow()
[linux-2.6/cjktty.git] / mm / hugetlb.c
blob262d0a93d2b6d45112975357374496bf29d3138b
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
22 #include "internal.h"
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 static unsigned long nr_overcommit_huge_pages;
28 unsigned long max_huge_pages;
29 unsigned long sysctl_overcommit_huge_pages;
30 static struct list_head hugepage_freelists[MAX_NUMNODES];
31 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32 static unsigned int free_huge_pages_node[MAX_NUMNODES];
33 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36 static int hugetlb_next_nid;
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
41 static DEFINE_SPINLOCK(hugetlb_lock);
43 static void clear_huge_page(struct page *page, unsigned long addr)
45 int i;
47 might_sleep();
48 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49 cond_resched();
50 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
54 static void copy_huge_page(struct page *dst, struct page *src,
55 unsigned long addr, struct vm_area_struct *vma)
57 int i;
59 might_sleep();
60 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61 cond_resched();
62 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
66 static void enqueue_huge_page(struct page *page)
68 int nid = page_to_nid(page);
69 list_add(&page->lru, &hugepage_freelists[nid]);
70 free_huge_pages++;
71 free_huge_pages_node[nid]++;
74 static struct page *dequeue_huge_page(void)
76 int nid;
77 struct page *page = NULL;
79 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80 if (!list_empty(&hugepage_freelists[nid])) {
81 page = list_entry(hugepage_freelists[nid].next,
82 struct page, lru);
83 list_del(&page->lru);
84 free_huge_pages--;
85 free_huge_pages_node[nid]--;
86 break;
89 return page;
92 static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
93 unsigned long address)
95 int nid;
96 struct page *page = NULL;
97 struct mempolicy *mpol;
98 nodemask_t *nodemask;
99 struct zonelist *zonelist = huge_zonelist(vma, address,
100 htlb_alloc_mask, &mpol, &nodemask);
101 struct zone *zone;
102 struct zoneref *z;
104 for_each_zone_zonelist_nodemask(zone, z, zonelist,
105 MAX_NR_ZONES - 1, nodemask) {
106 nid = zone_to_nid(zone);
107 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
108 !list_empty(&hugepage_freelists[nid])) {
109 page = list_entry(hugepage_freelists[nid].next,
110 struct page, lru);
111 list_del(&page->lru);
112 free_huge_pages--;
113 free_huge_pages_node[nid]--;
114 if (vma && vma->vm_flags & VM_MAYSHARE)
115 resv_huge_pages--;
116 break;
119 mpol_cond_put(mpol);
120 return page;
123 static void update_and_free_page(struct page *page)
125 int i;
126 nr_huge_pages--;
127 nr_huge_pages_node[page_to_nid(page)]--;
128 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
129 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
130 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
131 1 << PG_private | 1<< PG_writeback);
133 set_compound_page_dtor(page, NULL);
134 set_page_refcounted(page);
135 __free_pages(page, HUGETLB_PAGE_ORDER);
138 static void free_huge_page(struct page *page)
140 int nid = page_to_nid(page);
141 struct address_space *mapping;
143 mapping = (struct address_space *) page_private(page);
144 set_page_private(page, 0);
145 BUG_ON(page_count(page));
146 INIT_LIST_HEAD(&page->lru);
148 spin_lock(&hugetlb_lock);
149 if (surplus_huge_pages_node[nid]) {
150 update_and_free_page(page);
151 surplus_huge_pages--;
152 surplus_huge_pages_node[nid]--;
153 } else {
154 enqueue_huge_page(page);
156 spin_unlock(&hugetlb_lock);
157 if (mapping)
158 hugetlb_put_quota(mapping, 1);
162 * Increment or decrement surplus_huge_pages. Keep node-specific counters
163 * balanced by operating on them in a round-robin fashion.
164 * Returns 1 if an adjustment was made.
166 static int adjust_pool_surplus(int delta)
168 static int prev_nid;
169 int nid = prev_nid;
170 int ret = 0;
172 VM_BUG_ON(delta != -1 && delta != 1);
173 do {
174 nid = next_node(nid, node_online_map);
175 if (nid == MAX_NUMNODES)
176 nid = first_node(node_online_map);
178 /* To shrink on this node, there must be a surplus page */
179 if (delta < 0 && !surplus_huge_pages_node[nid])
180 continue;
181 /* Surplus cannot exceed the total number of pages */
182 if (delta > 0 && surplus_huge_pages_node[nid] >=
183 nr_huge_pages_node[nid])
184 continue;
186 surplus_huge_pages += delta;
187 surplus_huge_pages_node[nid] += delta;
188 ret = 1;
189 break;
190 } while (nid != prev_nid);
192 prev_nid = nid;
193 return ret;
196 static struct page *alloc_fresh_huge_page_node(int nid)
198 struct page *page;
200 page = alloc_pages_node(nid,
201 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
202 HUGETLB_PAGE_ORDER);
203 if (page) {
204 set_compound_page_dtor(page, free_huge_page);
205 spin_lock(&hugetlb_lock);
206 nr_huge_pages++;
207 nr_huge_pages_node[nid]++;
208 spin_unlock(&hugetlb_lock);
209 put_page(page); /* free it into the hugepage allocator */
212 return page;
215 static int alloc_fresh_huge_page(void)
217 struct page *page;
218 int start_nid;
219 int next_nid;
220 int ret = 0;
222 start_nid = hugetlb_next_nid;
224 do {
225 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
226 if (page)
227 ret = 1;
229 * Use a helper variable to find the next node and then
230 * copy it back to hugetlb_next_nid afterwards:
231 * otherwise there's a window in which a racer might
232 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
233 * But we don't need to use a spin_lock here: it really
234 * doesn't matter if occasionally a racer chooses the
235 * same nid as we do. Move nid forward in the mask even
236 * if we just successfully allocated a hugepage so that
237 * the next caller gets hugepages on the next node.
239 next_nid = next_node(hugetlb_next_nid, node_online_map);
240 if (next_nid == MAX_NUMNODES)
241 next_nid = first_node(node_online_map);
242 hugetlb_next_nid = next_nid;
243 } while (!page && hugetlb_next_nid != start_nid);
245 if (ret)
246 count_vm_event(HTLB_BUDDY_PGALLOC);
247 else
248 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
250 return ret;
253 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
254 unsigned long address)
256 struct page *page;
257 unsigned int nid;
260 * Assume we will successfully allocate the surplus page to
261 * prevent racing processes from causing the surplus to exceed
262 * overcommit
264 * This however introduces a different race, where a process B
265 * tries to grow the static hugepage pool while alloc_pages() is
266 * called by process A. B will only examine the per-node
267 * counters in determining if surplus huge pages can be
268 * converted to normal huge pages in adjust_pool_surplus(). A
269 * won't be able to increment the per-node counter, until the
270 * lock is dropped by B, but B doesn't drop hugetlb_lock until
271 * no more huge pages can be converted from surplus to normal
272 * state (and doesn't try to convert again). Thus, we have a
273 * case where a surplus huge page exists, the pool is grown, and
274 * the surplus huge page still exists after, even though it
275 * should just have been converted to a normal huge page. This
276 * does not leak memory, though, as the hugepage will be freed
277 * once it is out of use. It also does not allow the counters to
278 * go out of whack in adjust_pool_surplus() as we don't modify
279 * the node values until we've gotten the hugepage and only the
280 * per-node value is checked there.
282 spin_lock(&hugetlb_lock);
283 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
284 spin_unlock(&hugetlb_lock);
285 return NULL;
286 } else {
287 nr_huge_pages++;
288 surplus_huge_pages++;
290 spin_unlock(&hugetlb_lock);
292 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
293 HUGETLB_PAGE_ORDER);
295 spin_lock(&hugetlb_lock);
296 if (page) {
298 * This page is now managed by the hugetlb allocator and has
299 * no users -- drop the buddy allocator's reference.
301 put_page_testzero(page);
302 VM_BUG_ON(page_count(page));
303 nid = page_to_nid(page);
304 set_compound_page_dtor(page, free_huge_page);
306 * We incremented the global counters already
308 nr_huge_pages_node[nid]++;
309 surplus_huge_pages_node[nid]++;
310 __count_vm_event(HTLB_BUDDY_PGALLOC);
311 } else {
312 nr_huge_pages--;
313 surplus_huge_pages--;
314 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
316 spin_unlock(&hugetlb_lock);
318 return page;
322 * Increase the hugetlb pool such that it can accomodate a reservation
323 * of size 'delta'.
325 static int gather_surplus_pages(int delta)
327 struct list_head surplus_list;
328 struct page *page, *tmp;
329 int ret, i;
330 int needed, allocated;
332 needed = (resv_huge_pages + delta) - free_huge_pages;
333 if (needed <= 0) {
334 resv_huge_pages += delta;
335 return 0;
338 allocated = 0;
339 INIT_LIST_HEAD(&surplus_list);
341 ret = -ENOMEM;
342 retry:
343 spin_unlock(&hugetlb_lock);
344 for (i = 0; i < needed; i++) {
345 page = alloc_buddy_huge_page(NULL, 0);
346 if (!page) {
348 * We were not able to allocate enough pages to
349 * satisfy the entire reservation so we free what
350 * we've allocated so far.
352 spin_lock(&hugetlb_lock);
353 needed = 0;
354 goto free;
357 list_add(&page->lru, &surplus_list);
359 allocated += needed;
362 * After retaking hugetlb_lock, we need to recalculate 'needed'
363 * because either resv_huge_pages or free_huge_pages may have changed.
365 spin_lock(&hugetlb_lock);
366 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
367 if (needed > 0)
368 goto retry;
371 * The surplus_list now contains _at_least_ the number of extra pages
372 * needed to accomodate the reservation. Add the appropriate number
373 * of pages to the hugetlb pool and free the extras back to the buddy
374 * allocator. Commit the entire reservation here to prevent another
375 * process from stealing the pages as they are added to the pool but
376 * before they are reserved.
378 needed += allocated;
379 resv_huge_pages += delta;
380 ret = 0;
381 free:
382 /* Free the needed pages to the hugetlb pool */
383 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
384 if ((--needed) < 0)
385 break;
386 list_del(&page->lru);
387 enqueue_huge_page(page);
390 /* Free unnecessary surplus pages to the buddy allocator */
391 if (!list_empty(&surplus_list)) {
392 spin_unlock(&hugetlb_lock);
393 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
394 list_del(&page->lru);
396 * The page has a reference count of zero already, so
397 * call free_huge_page directly instead of using
398 * put_page. This must be done with hugetlb_lock
399 * unlocked which is safe because free_huge_page takes
400 * hugetlb_lock before deciding how to free the page.
402 free_huge_page(page);
404 spin_lock(&hugetlb_lock);
407 return ret;
411 * When releasing a hugetlb pool reservation, any surplus pages that were
412 * allocated to satisfy the reservation must be explicitly freed if they were
413 * never used.
415 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
417 static int nid = -1;
418 struct page *page;
419 unsigned long nr_pages;
422 * We want to release as many surplus pages as possible, spread
423 * evenly across all nodes. Iterate across all nodes until we
424 * can no longer free unreserved surplus pages. This occurs when
425 * the nodes with surplus pages have no free pages.
427 unsigned long remaining_iterations = num_online_nodes();
429 /* Uncommit the reservation */
430 resv_huge_pages -= unused_resv_pages;
432 nr_pages = min(unused_resv_pages, surplus_huge_pages);
434 while (remaining_iterations-- && nr_pages) {
435 nid = next_node(nid, node_online_map);
436 if (nid == MAX_NUMNODES)
437 nid = first_node(node_online_map);
439 if (!surplus_huge_pages_node[nid])
440 continue;
442 if (!list_empty(&hugepage_freelists[nid])) {
443 page = list_entry(hugepage_freelists[nid].next,
444 struct page, lru);
445 list_del(&page->lru);
446 update_and_free_page(page);
447 free_huge_pages--;
448 free_huge_pages_node[nid]--;
449 surplus_huge_pages--;
450 surplus_huge_pages_node[nid]--;
451 nr_pages--;
452 remaining_iterations = num_online_nodes();
458 static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
459 unsigned long addr)
461 struct page *page;
463 spin_lock(&hugetlb_lock);
464 page = dequeue_huge_page_vma(vma, addr);
465 spin_unlock(&hugetlb_lock);
466 return page ? page : ERR_PTR(-VM_FAULT_OOM);
469 static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
470 unsigned long addr)
472 struct page *page = NULL;
474 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
475 return ERR_PTR(-VM_FAULT_SIGBUS);
477 spin_lock(&hugetlb_lock);
478 if (free_huge_pages > resv_huge_pages)
479 page = dequeue_huge_page_vma(vma, addr);
480 spin_unlock(&hugetlb_lock);
481 if (!page) {
482 page = alloc_buddy_huge_page(vma, addr);
483 if (!page) {
484 hugetlb_put_quota(vma->vm_file->f_mapping, 1);
485 return ERR_PTR(-VM_FAULT_OOM);
488 return page;
491 static struct page *alloc_huge_page(struct vm_area_struct *vma,
492 unsigned long addr)
494 struct page *page;
495 struct address_space *mapping = vma->vm_file->f_mapping;
497 if (vma->vm_flags & VM_MAYSHARE)
498 page = alloc_huge_page_shared(vma, addr);
499 else
500 page = alloc_huge_page_private(vma, addr);
502 if (!IS_ERR(page)) {
503 set_page_refcounted(page);
504 set_page_private(page, (unsigned long) mapping);
506 return page;
509 static int __init hugetlb_init(void)
511 unsigned long i;
513 if (HPAGE_SHIFT == 0)
514 return 0;
516 for (i = 0; i < MAX_NUMNODES; ++i)
517 INIT_LIST_HEAD(&hugepage_freelists[i]);
519 hugetlb_next_nid = first_node(node_online_map);
521 for (i = 0; i < max_huge_pages; ++i) {
522 if (!alloc_fresh_huge_page())
523 break;
525 max_huge_pages = free_huge_pages = nr_huge_pages = i;
526 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
527 return 0;
529 module_init(hugetlb_init);
531 static int __init hugetlb_setup(char *s)
533 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
534 max_huge_pages = 0;
535 return 1;
537 __setup("hugepages=", hugetlb_setup);
539 static unsigned int cpuset_mems_nr(unsigned int *array)
541 int node;
542 unsigned int nr = 0;
544 for_each_node_mask(node, cpuset_current_mems_allowed)
545 nr += array[node];
547 return nr;
550 #ifdef CONFIG_SYSCTL
551 #ifdef CONFIG_HIGHMEM
552 static void try_to_free_low(unsigned long count)
554 int i;
556 for (i = 0; i < MAX_NUMNODES; ++i) {
557 struct page *page, *next;
558 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
559 if (count >= nr_huge_pages)
560 return;
561 if (PageHighMem(page))
562 continue;
563 list_del(&page->lru);
564 update_and_free_page(page);
565 free_huge_pages--;
566 free_huge_pages_node[page_to_nid(page)]--;
570 #else
571 static inline void try_to_free_low(unsigned long count)
574 #endif
576 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
577 static unsigned long set_max_huge_pages(unsigned long count)
579 unsigned long min_count, ret;
582 * Increase the pool size
583 * First take pages out of surplus state. Then make up the
584 * remaining difference by allocating fresh huge pages.
586 * We might race with alloc_buddy_huge_page() here and be unable
587 * to convert a surplus huge page to a normal huge page. That is
588 * not critical, though, it just means the overall size of the
589 * pool might be one hugepage larger than it needs to be, but
590 * within all the constraints specified by the sysctls.
592 spin_lock(&hugetlb_lock);
593 while (surplus_huge_pages && count > persistent_huge_pages) {
594 if (!adjust_pool_surplus(-1))
595 break;
598 while (count > persistent_huge_pages) {
599 int ret;
601 * If this allocation races such that we no longer need the
602 * page, free_huge_page will handle it by freeing the page
603 * and reducing the surplus.
605 spin_unlock(&hugetlb_lock);
606 ret = alloc_fresh_huge_page();
607 spin_lock(&hugetlb_lock);
608 if (!ret)
609 goto out;
614 * Decrease the pool size
615 * First return free pages to the buddy allocator (being careful
616 * to keep enough around to satisfy reservations). Then place
617 * pages into surplus state as needed so the pool will shrink
618 * to the desired size as pages become free.
620 * By placing pages into the surplus state independent of the
621 * overcommit value, we are allowing the surplus pool size to
622 * exceed overcommit. There are few sane options here. Since
623 * alloc_buddy_huge_page() is checking the global counter,
624 * though, we'll note that we're not allowed to exceed surplus
625 * and won't grow the pool anywhere else. Not until one of the
626 * sysctls are changed, or the surplus pages go out of use.
628 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
629 min_count = max(count, min_count);
630 try_to_free_low(min_count);
631 while (min_count < persistent_huge_pages) {
632 struct page *page = dequeue_huge_page();
633 if (!page)
634 break;
635 update_and_free_page(page);
637 while (count < persistent_huge_pages) {
638 if (!adjust_pool_surplus(1))
639 break;
641 out:
642 ret = persistent_huge_pages;
643 spin_unlock(&hugetlb_lock);
644 return ret;
647 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
648 struct file *file, void __user *buffer,
649 size_t *length, loff_t *ppos)
651 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
652 max_huge_pages = set_max_huge_pages(max_huge_pages);
653 return 0;
656 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
657 struct file *file, void __user *buffer,
658 size_t *length, loff_t *ppos)
660 proc_dointvec(table, write, file, buffer, length, ppos);
661 if (hugepages_treat_as_movable)
662 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
663 else
664 htlb_alloc_mask = GFP_HIGHUSER;
665 return 0;
668 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
669 struct file *file, void __user *buffer,
670 size_t *length, loff_t *ppos)
672 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
673 spin_lock(&hugetlb_lock);
674 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
675 spin_unlock(&hugetlb_lock);
676 return 0;
679 #endif /* CONFIG_SYSCTL */
681 int hugetlb_report_meminfo(char *buf)
683 return sprintf(buf,
684 "HugePages_Total: %5lu\n"
685 "HugePages_Free: %5lu\n"
686 "HugePages_Rsvd: %5lu\n"
687 "HugePages_Surp: %5lu\n"
688 "Hugepagesize: %5lu kB\n",
689 nr_huge_pages,
690 free_huge_pages,
691 resv_huge_pages,
692 surplus_huge_pages,
693 HPAGE_SIZE/1024);
696 int hugetlb_report_node_meminfo(int nid, char *buf)
698 return sprintf(buf,
699 "Node %d HugePages_Total: %5u\n"
700 "Node %d HugePages_Free: %5u\n"
701 "Node %d HugePages_Surp: %5u\n",
702 nid, nr_huge_pages_node[nid],
703 nid, free_huge_pages_node[nid],
704 nid, surplus_huge_pages_node[nid]);
707 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
708 unsigned long hugetlb_total_pages(void)
710 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
714 * We cannot handle pagefaults against hugetlb pages at all. They cause
715 * handle_mm_fault() to try to instantiate regular-sized pages in the
716 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
717 * this far.
719 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
721 BUG();
722 return 0;
725 struct vm_operations_struct hugetlb_vm_ops = {
726 .fault = hugetlb_vm_op_fault,
729 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
730 int writable)
732 pte_t entry;
734 if (writable) {
735 entry =
736 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
737 } else {
738 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
740 entry = pte_mkyoung(entry);
741 entry = pte_mkhuge(entry);
743 return entry;
746 static void set_huge_ptep_writable(struct vm_area_struct *vma,
747 unsigned long address, pte_t *ptep)
749 pte_t entry;
751 entry = pte_mkwrite(pte_mkdirty(*ptep));
752 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
753 update_mmu_cache(vma, address, entry);
758 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
759 struct vm_area_struct *vma)
761 pte_t *src_pte, *dst_pte, entry;
762 struct page *ptepage;
763 unsigned long addr;
764 int cow;
766 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
768 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
769 src_pte = huge_pte_offset(src, addr);
770 if (!src_pte)
771 continue;
772 dst_pte = huge_pte_alloc(dst, addr);
773 if (!dst_pte)
774 goto nomem;
776 /* If the pagetables are shared don't copy or take references */
777 if (dst_pte == src_pte)
778 continue;
780 spin_lock(&dst->page_table_lock);
781 spin_lock(&src->page_table_lock);
782 if (!pte_none(*src_pte)) {
783 if (cow)
784 ptep_set_wrprotect(src, addr, src_pte);
785 entry = *src_pte;
786 ptepage = pte_page(entry);
787 get_page(ptepage);
788 set_huge_pte_at(dst, addr, dst_pte, entry);
790 spin_unlock(&src->page_table_lock);
791 spin_unlock(&dst->page_table_lock);
793 return 0;
795 nomem:
796 return -ENOMEM;
799 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
800 unsigned long end)
802 struct mm_struct *mm = vma->vm_mm;
803 unsigned long address;
804 pte_t *ptep;
805 pte_t pte;
806 struct page *page;
807 struct page *tmp;
809 * A page gathering list, protected by per file i_mmap_lock. The
810 * lock is used to avoid list corruption from multiple unmapping
811 * of the same page since we are using page->lru.
813 LIST_HEAD(page_list);
815 WARN_ON(!is_vm_hugetlb_page(vma));
816 BUG_ON(start & ~HPAGE_MASK);
817 BUG_ON(end & ~HPAGE_MASK);
819 spin_lock(&mm->page_table_lock);
820 for (address = start; address < end; address += HPAGE_SIZE) {
821 ptep = huge_pte_offset(mm, address);
822 if (!ptep)
823 continue;
825 if (huge_pmd_unshare(mm, &address, ptep))
826 continue;
828 pte = huge_ptep_get_and_clear(mm, address, ptep);
829 if (pte_none(pte))
830 continue;
832 page = pte_page(pte);
833 if (pte_dirty(pte))
834 set_page_dirty(page);
835 list_add(&page->lru, &page_list);
837 spin_unlock(&mm->page_table_lock);
838 flush_tlb_range(vma, start, end);
839 list_for_each_entry_safe(page, tmp, &page_list, lru) {
840 list_del(&page->lru);
841 put_page(page);
845 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
846 unsigned long end)
849 * It is undesirable to test vma->vm_file as it should be non-null
850 * for valid hugetlb area. However, vm_file will be NULL in the error
851 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
852 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
853 * to clean up. Since no pte has actually been setup, it is safe to
854 * do nothing in this case.
856 if (vma->vm_file) {
857 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
858 __unmap_hugepage_range(vma, start, end);
859 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
863 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
864 unsigned long address, pte_t *ptep, pte_t pte)
866 struct page *old_page, *new_page;
867 int avoidcopy;
869 old_page = pte_page(pte);
871 /* If no-one else is actually using this page, avoid the copy
872 * and just make the page writable */
873 avoidcopy = (page_count(old_page) == 1);
874 if (avoidcopy) {
875 set_huge_ptep_writable(vma, address, ptep);
876 return 0;
879 page_cache_get(old_page);
880 new_page = alloc_huge_page(vma, address);
882 if (IS_ERR(new_page)) {
883 page_cache_release(old_page);
884 return -PTR_ERR(new_page);
887 spin_unlock(&mm->page_table_lock);
888 copy_huge_page(new_page, old_page, address, vma);
889 __SetPageUptodate(new_page);
890 spin_lock(&mm->page_table_lock);
892 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
893 if (likely(pte_same(*ptep, pte))) {
894 /* Break COW */
895 huge_ptep_clear_flush(vma, address, ptep);
896 set_huge_pte_at(mm, address, ptep,
897 make_huge_pte(vma, new_page, 1));
898 /* Make the old page be freed below */
899 new_page = old_page;
901 page_cache_release(new_page);
902 page_cache_release(old_page);
903 return 0;
906 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
907 unsigned long address, pte_t *ptep, int write_access)
909 int ret = VM_FAULT_SIGBUS;
910 unsigned long idx;
911 unsigned long size;
912 struct page *page;
913 struct address_space *mapping;
914 pte_t new_pte;
916 mapping = vma->vm_file->f_mapping;
917 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
918 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
921 * Use page lock to guard against racing truncation
922 * before we get page_table_lock.
924 retry:
925 page = find_lock_page(mapping, idx);
926 if (!page) {
927 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
928 if (idx >= size)
929 goto out;
930 page = alloc_huge_page(vma, address);
931 if (IS_ERR(page)) {
932 ret = -PTR_ERR(page);
933 goto out;
935 clear_huge_page(page, address);
936 __SetPageUptodate(page);
938 if (vma->vm_flags & VM_SHARED) {
939 int err;
940 struct inode *inode = mapping->host;
942 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
943 if (err) {
944 put_page(page);
945 if (err == -EEXIST)
946 goto retry;
947 goto out;
950 spin_lock(&inode->i_lock);
951 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
952 spin_unlock(&inode->i_lock);
953 } else
954 lock_page(page);
957 spin_lock(&mm->page_table_lock);
958 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
959 if (idx >= size)
960 goto backout;
962 ret = 0;
963 if (!pte_none(*ptep))
964 goto backout;
966 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
967 && (vma->vm_flags & VM_SHARED)));
968 set_huge_pte_at(mm, address, ptep, new_pte);
970 if (write_access && !(vma->vm_flags & VM_SHARED)) {
971 /* Optimization, do the COW without a second fault */
972 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
975 spin_unlock(&mm->page_table_lock);
976 unlock_page(page);
977 out:
978 return ret;
980 backout:
981 spin_unlock(&mm->page_table_lock);
982 unlock_page(page);
983 put_page(page);
984 goto out;
987 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
988 unsigned long address, int write_access)
990 pte_t *ptep;
991 pte_t entry;
992 int ret;
993 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
995 ptep = huge_pte_alloc(mm, address);
996 if (!ptep)
997 return VM_FAULT_OOM;
1000 * Serialize hugepage allocation and instantiation, so that we don't
1001 * get spurious allocation failures if two CPUs race to instantiate
1002 * the same page in the page cache.
1004 mutex_lock(&hugetlb_instantiation_mutex);
1005 entry = *ptep;
1006 if (pte_none(entry)) {
1007 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1008 mutex_unlock(&hugetlb_instantiation_mutex);
1009 return ret;
1012 ret = 0;
1014 spin_lock(&mm->page_table_lock);
1015 /* Check for a racing update before calling hugetlb_cow */
1016 if (likely(pte_same(entry, *ptep)))
1017 if (write_access && !pte_write(entry))
1018 ret = hugetlb_cow(mm, vma, address, ptep, entry);
1019 spin_unlock(&mm->page_table_lock);
1020 mutex_unlock(&hugetlb_instantiation_mutex);
1022 return ret;
1025 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1026 struct page **pages, struct vm_area_struct **vmas,
1027 unsigned long *position, int *length, int i,
1028 int write)
1030 unsigned long pfn_offset;
1031 unsigned long vaddr = *position;
1032 int remainder = *length;
1034 spin_lock(&mm->page_table_lock);
1035 while (vaddr < vma->vm_end && remainder) {
1036 pte_t *pte;
1037 struct page *page;
1040 * Some archs (sparc64, sh*) have multiple pte_ts to
1041 * each hugepage. We have to make * sure we get the
1042 * first, for the page indexing below to work.
1044 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
1046 if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
1047 int ret;
1049 spin_unlock(&mm->page_table_lock);
1050 ret = hugetlb_fault(mm, vma, vaddr, write);
1051 spin_lock(&mm->page_table_lock);
1052 if (!(ret & VM_FAULT_ERROR))
1053 continue;
1055 remainder = 0;
1056 if (!i)
1057 i = -EFAULT;
1058 break;
1061 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1062 page = pte_page(*pte);
1063 same_page:
1064 if (pages) {
1065 get_page(page);
1066 pages[i] = page + pfn_offset;
1069 if (vmas)
1070 vmas[i] = vma;
1072 vaddr += PAGE_SIZE;
1073 ++pfn_offset;
1074 --remainder;
1075 ++i;
1076 if (vaddr < vma->vm_end && remainder &&
1077 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1079 * We use pfn_offset to avoid touching the pageframes
1080 * of this compound page.
1082 goto same_page;
1085 spin_unlock(&mm->page_table_lock);
1086 *length = remainder;
1087 *position = vaddr;
1089 return i;
1092 void hugetlb_change_protection(struct vm_area_struct *vma,
1093 unsigned long address, unsigned long end, pgprot_t newprot)
1095 struct mm_struct *mm = vma->vm_mm;
1096 unsigned long start = address;
1097 pte_t *ptep;
1098 pte_t pte;
1100 BUG_ON(address >= end);
1101 flush_cache_range(vma, address, end);
1103 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1104 spin_lock(&mm->page_table_lock);
1105 for (; address < end; address += HPAGE_SIZE) {
1106 ptep = huge_pte_offset(mm, address);
1107 if (!ptep)
1108 continue;
1109 if (huge_pmd_unshare(mm, &address, ptep))
1110 continue;
1111 if (!pte_none(*ptep)) {
1112 pte = huge_ptep_get_and_clear(mm, address, ptep);
1113 pte = pte_mkhuge(pte_modify(pte, newprot));
1114 set_huge_pte_at(mm, address, ptep, pte);
1117 spin_unlock(&mm->page_table_lock);
1118 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1120 flush_tlb_range(vma, start, end);
1123 struct file_region {
1124 struct list_head link;
1125 long from;
1126 long to;
1129 static long region_add(struct list_head *head, long f, long t)
1131 struct file_region *rg, *nrg, *trg;
1133 /* Locate the region we are either in or before. */
1134 list_for_each_entry(rg, head, link)
1135 if (f <= rg->to)
1136 break;
1138 /* Round our left edge to the current segment if it encloses us. */
1139 if (f > rg->from)
1140 f = rg->from;
1142 /* Check for and consume any regions we now overlap with. */
1143 nrg = rg;
1144 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1145 if (&rg->link == head)
1146 break;
1147 if (rg->from > t)
1148 break;
1150 /* If this area reaches higher then extend our area to
1151 * include it completely. If this is not the first area
1152 * which we intend to reuse, free it. */
1153 if (rg->to > t)
1154 t = rg->to;
1155 if (rg != nrg) {
1156 list_del(&rg->link);
1157 kfree(rg);
1160 nrg->from = f;
1161 nrg->to = t;
1162 return 0;
1165 static long region_chg(struct list_head *head, long f, long t)
1167 struct file_region *rg, *nrg;
1168 long chg = 0;
1170 /* Locate the region we are before or in. */
1171 list_for_each_entry(rg, head, link)
1172 if (f <= rg->to)
1173 break;
1175 /* If we are below the current region then a new region is required.
1176 * Subtle, allocate a new region at the position but make it zero
1177 * size such that we can guarantee to record the reservation. */
1178 if (&rg->link == head || t < rg->from) {
1179 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1180 if (!nrg)
1181 return -ENOMEM;
1182 nrg->from = f;
1183 nrg->to = f;
1184 INIT_LIST_HEAD(&nrg->link);
1185 list_add(&nrg->link, rg->link.prev);
1187 return t - f;
1190 /* Round our left edge to the current segment if it encloses us. */
1191 if (f > rg->from)
1192 f = rg->from;
1193 chg = t - f;
1195 /* Check for and consume any regions we now overlap with. */
1196 list_for_each_entry(rg, rg->link.prev, link) {
1197 if (&rg->link == head)
1198 break;
1199 if (rg->from > t)
1200 return chg;
1202 /* We overlap with this area, if it extends futher than
1203 * us then we must extend ourselves. Account for its
1204 * existing reservation. */
1205 if (rg->to > t) {
1206 chg += rg->to - t;
1207 t = rg->to;
1209 chg -= rg->to - rg->from;
1211 return chg;
1214 static long region_truncate(struct list_head *head, long end)
1216 struct file_region *rg, *trg;
1217 long chg = 0;
1219 /* Locate the region we are either in or before. */
1220 list_for_each_entry(rg, head, link)
1221 if (end <= rg->to)
1222 break;
1223 if (&rg->link == head)
1224 return 0;
1226 /* If we are in the middle of a region then adjust it. */
1227 if (end > rg->from) {
1228 chg = rg->to - end;
1229 rg->to = end;
1230 rg = list_entry(rg->link.next, typeof(*rg), link);
1233 /* Drop any remaining regions. */
1234 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1235 if (&rg->link == head)
1236 break;
1237 chg += rg->to - rg->from;
1238 list_del(&rg->link);
1239 kfree(rg);
1241 return chg;
1244 static int hugetlb_acct_memory(long delta)
1246 int ret = -ENOMEM;
1248 spin_lock(&hugetlb_lock);
1250 * When cpuset is configured, it breaks the strict hugetlb page
1251 * reservation as the accounting is done on a global variable. Such
1252 * reservation is completely rubbish in the presence of cpuset because
1253 * the reservation is not checked against page availability for the
1254 * current cpuset. Application can still potentially OOM'ed by kernel
1255 * with lack of free htlb page in cpuset that the task is in.
1256 * Attempt to enforce strict accounting with cpuset is almost
1257 * impossible (or too ugly) because cpuset is too fluid that
1258 * task or memory node can be dynamically moved between cpusets.
1260 * The change of semantics for shared hugetlb mapping with cpuset is
1261 * undesirable. However, in order to preserve some of the semantics,
1262 * we fall back to check against current free page availability as
1263 * a best attempt and hopefully to minimize the impact of changing
1264 * semantics that cpuset has.
1266 if (delta > 0) {
1267 if (gather_surplus_pages(delta) < 0)
1268 goto out;
1270 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1271 return_unused_surplus_pages(delta);
1272 goto out;
1276 ret = 0;
1277 if (delta < 0)
1278 return_unused_surplus_pages((unsigned long) -delta);
1280 out:
1281 spin_unlock(&hugetlb_lock);
1282 return ret;
1285 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1287 long ret, chg;
1289 chg = region_chg(&inode->i_mapping->private_list, from, to);
1290 if (chg < 0)
1291 return chg;
1293 if (hugetlb_get_quota(inode->i_mapping, chg))
1294 return -ENOSPC;
1295 ret = hugetlb_acct_memory(chg);
1296 if (ret < 0) {
1297 hugetlb_put_quota(inode->i_mapping, chg);
1298 return ret;
1300 region_add(&inode->i_mapping->private_list, from, to);
1301 return 0;
1304 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1306 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1308 spin_lock(&inode->i_lock);
1309 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1310 spin_unlock(&inode->i_lock);
1312 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1313 hugetlb_acct_memory(-(chg - freed));