2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
18 #include "blk-cgroup.h"
23 /* max queue in one round of service */
24 static const int cfq_quantum
= 8;
25 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max
= 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty
= 2;
30 static const int cfq_slice_sync
= HZ
/ 10;
31 static int cfq_slice_async
= HZ
/ 25;
32 static const int cfq_slice_async_rq
= 2;
33 static int cfq_slice_idle
= HZ
/ 125;
34 static int cfq_group_idle
= HZ
/ 125;
35 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
36 static const int cfq_hist_divisor
= 4;
39 * offset from end of service tree
41 #define CFQ_IDLE_DELAY (HZ / 5)
44 * below this threshold, we consider thinktime immediate
46 #define CFQ_MIN_TT (2)
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
61 static struct kmem_cache
*cfq_pool
;
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
71 unsigned long last_end_request
;
73 unsigned long ttime_total
;
74 unsigned long ttime_samples
;
75 unsigned long ttime_mean
;
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
88 unsigned total_weight
;
90 struct cfq_ttime ttime
;
92 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
93 .ttime = {.last_end_request = jiffies,},}
96 * Per process-grouping structure
101 /* various state flags, see below */
103 /* parent cfq_data */
104 struct cfq_data
*cfqd
;
105 /* service_tree member */
106 struct rb_node rb_node
;
107 /* service_tree key */
108 unsigned long rb_key
;
109 /* prio tree member */
110 struct rb_node p_node
;
111 /* prio tree root we belong to, if any */
112 struct rb_root
*p_root
;
113 /* sorted list of pending requests */
114 struct rb_root sort_list
;
115 /* if fifo isn't expired, next request to serve */
116 struct request
*next_rq
;
117 /* requests queued in sort_list */
119 /* currently allocated requests */
121 /* fifo list of requests in sort_list */
122 struct list_head fifo
;
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start
;
126 unsigned int allocated_slice
;
127 unsigned int slice_dispatch
;
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start
;
130 unsigned long slice_end
;
133 /* pending priority requests */
135 /* number of requests that are on the dispatch list or inside driver */
138 /* io prio of this group */
139 unsigned short ioprio
, org_ioprio
;
140 unsigned short ioprio_class
;
145 sector_t last_request_pos
;
147 struct cfq_rb_root
*service_tree
;
148 struct cfq_queue
*new_cfqq
;
149 struct cfq_group
*cfqg
;
150 /* Number of sectors dispatched from queue in single dispatch round */
151 unsigned long nr_sectors
;
155 * First index in the service_trees.
156 * IDLE is handled separately, so it has negative index
166 * Second index in the service_trees.
170 SYNC_NOIDLE_WORKLOAD
= 1,
175 #ifdef CONFIG_CFQ_GROUP_IOSCHED
176 /* total bytes transferred */
177 struct blkg_rwstat service_bytes
;
178 /* total IOs serviced, post merge */
179 struct blkg_rwstat serviced
;
180 /* number of ios merged */
181 struct blkg_rwstat merged
;
182 /* total time spent on device in ns, may not be accurate w/ queueing */
183 struct blkg_rwstat service_time
;
184 /* total time spent waiting in scheduler queue in ns */
185 struct blkg_rwstat wait_time
;
186 /* number of IOs queued up */
187 struct blkg_rwstat queued
;
188 /* total sectors transferred */
189 struct blkg_stat sectors
;
190 /* total disk time and nr sectors dispatched by this group */
191 struct blkg_stat time
;
192 #ifdef CONFIG_DEBUG_BLK_CGROUP
193 /* time not charged to this cgroup */
194 struct blkg_stat unaccounted_time
;
195 /* sum of number of ios queued across all samples */
196 struct blkg_stat avg_queue_size_sum
;
197 /* count of samples taken for average */
198 struct blkg_stat avg_queue_size_samples
;
199 /* how many times this group has been removed from service tree */
200 struct blkg_stat dequeue
;
201 /* total time spent waiting for it to be assigned a timeslice. */
202 struct blkg_stat group_wait_time
;
203 /* time spent idling for this blkcg_gq */
204 struct blkg_stat idle_time
;
205 /* total time with empty current active q with other requests queued */
206 struct blkg_stat empty_time
;
207 /* fields after this shouldn't be cleared on stat reset */
208 uint64_t start_group_wait_time
;
209 uint64_t start_idle_time
;
210 uint64_t start_empty_time
;
212 #endif /* CONFIG_DEBUG_BLK_CGROUP */
213 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
216 /* This is per cgroup per device grouping structure */
218 /* must be the first member */
219 struct blkg_policy_data pd
;
221 /* group service_tree member */
222 struct rb_node rb_node
;
224 /* group service_tree key */
227 unsigned int new_weight
;
228 unsigned int dev_weight
;
230 /* number of cfqq currently on this group */
234 * Per group busy queues average. Useful for workload slice calc. We
235 * create the array for each prio class but at run time it is used
236 * only for RT and BE class and slot for IDLE class remains unused.
237 * This is primarily done to avoid confusion and a gcc warning.
239 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
241 * rr lists of queues with requests. We maintain service trees for
242 * RT and BE classes. These trees are subdivided in subclasses
243 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
244 * class there is no subclassification and all the cfq queues go on
245 * a single tree service_tree_idle.
246 * Counts are embedded in the cfq_rb_root
248 struct cfq_rb_root service_trees
[2][3];
249 struct cfq_rb_root service_tree_idle
;
251 unsigned long saved_workload_slice
;
252 enum wl_type_t saved_workload
;
253 enum wl_prio_t saved_serving_prio
;
255 /* number of requests that are on the dispatch list or inside driver */
257 struct cfq_ttime ttime
;
258 struct cfqg_stats stats
;
262 struct io_cq icq
; /* must be the first member */
263 struct cfq_queue
*cfqq
[2];
264 struct cfq_ttime ttime
;
265 int ioprio
; /* the current ioprio */
266 #ifdef CONFIG_CFQ_GROUP_IOSCHED
267 uint64_t blkcg_id
; /* the current blkcg ID */
272 * Per block device queue structure
275 struct request_queue
*queue
;
276 /* Root service tree for cfq_groups */
277 struct cfq_rb_root grp_service_tree
;
278 struct cfq_group
*root_group
;
281 * The priority currently being served
283 enum wl_prio_t serving_prio
;
284 enum wl_type_t serving_type
;
285 unsigned long workload_expires
;
286 struct cfq_group
*serving_group
;
289 * Each priority tree is sorted by next_request position. These
290 * trees are used when determining if two or more queues are
291 * interleaving requests (see cfq_close_cooperator).
293 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
295 unsigned int busy_queues
;
296 unsigned int busy_sync_queues
;
302 * queue-depth detection
308 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
309 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
312 int hw_tag_est_depth
;
313 unsigned int hw_tag_samples
;
316 * idle window management
318 struct timer_list idle_slice_timer
;
319 struct work_struct unplug_work
;
321 struct cfq_queue
*active_queue
;
322 struct cfq_io_cq
*active_cic
;
325 * async queue for each priority case
327 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
328 struct cfq_queue
*async_idle_cfqq
;
330 sector_t last_position
;
333 * tunables, see top of file
335 unsigned int cfq_quantum
;
336 unsigned int cfq_fifo_expire
[2];
337 unsigned int cfq_back_penalty
;
338 unsigned int cfq_back_max
;
339 unsigned int cfq_slice
[2];
340 unsigned int cfq_slice_async_rq
;
341 unsigned int cfq_slice_idle
;
342 unsigned int cfq_group_idle
;
343 unsigned int cfq_latency
;
344 unsigned int cfq_target_latency
;
347 * Fallback dummy cfqq for extreme OOM conditions
349 struct cfq_queue oom_cfqq
;
351 unsigned long last_delayed_sync
;
354 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
356 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
363 if (prio
== IDLE_WORKLOAD
)
364 return &cfqg
->service_tree_idle
;
366 return &cfqg
->service_trees
[prio
][type
];
369 enum cfqq_state_flags
{
370 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
371 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
372 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
373 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
374 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
375 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
376 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
377 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
378 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
379 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
380 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
381 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
382 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
385 #define CFQ_CFQQ_FNS(name) \
386 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
388 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
390 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
392 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
394 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
396 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
400 CFQ_CFQQ_FNS(wait_request
);
401 CFQ_CFQQ_FNS(must_dispatch
);
402 CFQ_CFQQ_FNS(must_alloc_slice
);
403 CFQ_CFQQ_FNS(fifo_expire
);
404 CFQ_CFQQ_FNS(idle_window
);
405 CFQ_CFQQ_FNS(prio_changed
);
406 CFQ_CFQQ_FNS(slice_new
);
409 CFQ_CFQQ_FNS(split_coop
);
411 CFQ_CFQQ_FNS(wait_busy
);
414 static inline struct cfq_group
*pd_to_cfqg(struct blkg_policy_data
*pd
)
416 return pd
? container_of(pd
, struct cfq_group
, pd
) : NULL
;
419 static inline struct blkcg_gq
*cfqg_to_blkg(struct cfq_group
*cfqg
)
421 return pd_to_blkg(&cfqg
->pd
);
424 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
426 /* cfqg stats flags */
427 enum cfqg_stats_flags
{
428 CFQG_stats_waiting
= 0,
433 #define CFQG_FLAG_FNS(name) \
434 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
436 stats->flags |= (1 << CFQG_stats_##name); \
438 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
440 stats->flags &= ~(1 << CFQG_stats_##name); \
442 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
444 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
447 CFQG_FLAG_FNS(waiting)
448 CFQG_FLAG_FNS(idling
)
452 /* This should be called with the queue_lock held. */
453 static void cfqg_stats_update_group_wait_time(struct cfqg_stats
*stats
)
455 unsigned long long now
;
457 if (!cfqg_stats_waiting(stats
))
461 if (time_after64(now
, stats
->start_group_wait_time
))
462 blkg_stat_add(&stats
->group_wait_time
,
463 now
- stats
->start_group_wait_time
);
464 cfqg_stats_clear_waiting(stats
);
467 /* This should be called with the queue_lock held. */
468 static void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
,
469 struct cfq_group
*curr_cfqg
)
471 struct cfqg_stats
*stats
= &cfqg
->stats
;
473 if (cfqg_stats_waiting(stats
))
475 if (cfqg
== curr_cfqg
)
477 stats
->start_group_wait_time
= sched_clock();
478 cfqg_stats_mark_waiting(stats
);
481 /* This should be called with the queue_lock held. */
482 static void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
)
484 unsigned long long now
;
486 if (!cfqg_stats_empty(stats
))
490 if (time_after64(now
, stats
->start_empty_time
))
491 blkg_stat_add(&stats
->empty_time
,
492 now
- stats
->start_empty_time
);
493 cfqg_stats_clear_empty(stats
);
496 static void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
)
498 blkg_stat_add(&cfqg
->stats
.dequeue
, 1);
501 static void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
)
503 struct cfqg_stats
*stats
= &cfqg
->stats
;
505 if (blkg_rwstat_sum(&stats
->queued
))
509 * group is already marked empty. This can happen if cfqq got new
510 * request in parent group and moved to this group while being added
511 * to service tree. Just ignore the event and move on.
513 if (cfqg_stats_empty(stats
))
516 stats
->start_empty_time
= sched_clock();
517 cfqg_stats_mark_empty(stats
);
520 static void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
)
522 struct cfqg_stats
*stats
= &cfqg
->stats
;
524 if (cfqg_stats_idling(stats
)) {
525 unsigned long long now
= sched_clock();
527 if (time_after64(now
, stats
->start_idle_time
))
528 blkg_stat_add(&stats
->idle_time
,
529 now
- stats
->start_idle_time
);
530 cfqg_stats_clear_idling(stats
);
534 static void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
)
536 struct cfqg_stats
*stats
= &cfqg
->stats
;
538 BUG_ON(cfqg_stats_idling(stats
));
540 stats
->start_idle_time
= sched_clock();
541 cfqg_stats_mark_idling(stats
);
544 static void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
)
546 struct cfqg_stats
*stats
= &cfqg
->stats
;
548 blkg_stat_add(&stats
->avg_queue_size_sum
,
549 blkg_rwstat_sum(&stats
->queued
));
550 blkg_stat_add(&stats
->avg_queue_size_samples
, 1);
551 cfqg_stats_update_group_wait_time(stats
);
554 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
556 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
, struct cfq_group
*curr_cfqg
) { }
557 static inline void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
) { }
558 static inline void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
) { }
559 static inline void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
) { }
560 static inline void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
) { }
561 static inline void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
) { }
562 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
) { }
564 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
566 #ifdef CONFIG_CFQ_GROUP_IOSCHED
568 static struct blkcg_policy blkcg_policy_cfq
;
570 static inline struct cfq_group
*blkg_to_cfqg(struct blkcg_gq
*blkg
)
572 return pd_to_cfqg(blkg_to_pd(blkg
, &blkcg_policy_cfq
));
575 static inline void cfqg_get(struct cfq_group
*cfqg
)
577 return blkg_get(cfqg_to_blkg(cfqg
));
580 static inline void cfqg_put(struct cfq_group
*cfqg
)
582 return blkg_put(cfqg_to_blkg(cfqg
));
585 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
588 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
589 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
590 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
594 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
597 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
598 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
601 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
602 struct cfq_group
*curr_cfqg
, int rw
)
604 blkg_rwstat_add(&cfqg
->stats
.queued
, rw
, 1);
605 cfqg_stats_end_empty_time(&cfqg
->stats
);
606 cfqg_stats_set_start_group_wait_time(cfqg
, curr_cfqg
);
609 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
610 unsigned long time
, unsigned long unaccounted_time
)
612 blkg_stat_add(&cfqg
->stats
.time
, time
);
613 #ifdef CONFIG_DEBUG_BLK_CGROUP
614 blkg_stat_add(&cfqg
->stats
.unaccounted_time
, unaccounted_time
);
618 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
, int rw
)
620 blkg_rwstat_add(&cfqg
->stats
.queued
, rw
, -1);
623 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
, int rw
)
625 blkg_rwstat_add(&cfqg
->stats
.merged
, rw
, 1);
628 static inline void cfqg_stats_update_dispatch(struct cfq_group
*cfqg
,
629 uint64_t bytes
, int rw
)
631 blkg_stat_add(&cfqg
->stats
.sectors
, bytes
>> 9);
632 blkg_rwstat_add(&cfqg
->stats
.serviced
, rw
, 1);
633 blkg_rwstat_add(&cfqg
->stats
.service_bytes
, rw
, bytes
);
636 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
637 uint64_t start_time
, uint64_t io_start_time
, int rw
)
639 struct cfqg_stats
*stats
= &cfqg
->stats
;
640 unsigned long long now
= sched_clock();
642 if (time_after64(now
, io_start_time
))
643 blkg_rwstat_add(&stats
->service_time
, rw
, now
- io_start_time
);
644 if (time_after64(io_start_time
, start_time
))
645 blkg_rwstat_add(&stats
->wait_time
, rw
,
646 io_start_time
- start_time
);
649 static void cfq_pd_reset_stats(struct blkcg_gq
*blkg
)
651 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
652 struct cfqg_stats
*stats
= &cfqg
->stats
;
654 /* queued stats shouldn't be cleared */
655 blkg_rwstat_reset(&stats
->service_bytes
);
656 blkg_rwstat_reset(&stats
->serviced
);
657 blkg_rwstat_reset(&stats
->merged
);
658 blkg_rwstat_reset(&stats
->service_time
);
659 blkg_rwstat_reset(&stats
->wait_time
);
660 blkg_stat_reset(&stats
->time
);
661 #ifdef CONFIG_DEBUG_BLK_CGROUP
662 blkg_stat_reset(&stats
->unaccounted_time
);
663 blkg_stat_reset(&stats
->avg_queue_size_sum
);
664 blkg_stat_reset(&stats
->avg_queue_size_samples
);
665 blkg_stat_reset(&stats
->dequeue
);
666 blkg_stat_reset(&stats
->group_wait_time
);
667 blkg_stat_reset(&stats
->idle_time
);
668 blkg_stat_reset(&stats
->empty_time
);
672 #else /* CONFIG_CFQ_GROUP_IOSCHED */
674 static inline void cfqg_get(struct cfq_group
*cfqg
) { }
675 static inline void cfqg_put(struct cfq_group
*cfqg
) { }
677 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
678 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
679 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
681 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
682 struct cfq_group
*curr_cfqg
, int rw
) { }
683 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
684 unsigned long time
, unsigned long unaccounted_time
) { }
685 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
, int rw
) { }
686 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
, int rw
) { }
687 static inline void cfqg_stats_update_dispatch(struct cfq_group
*cfqg
,
688 uint64_t bytes
, int rw
) { }
689 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
690 uint64_t start_time
, uint64_t io_start_time
, int rw
) { }
692 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
694 #define cfq_log(cfqd, fmt, args...) \
695 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
697 /* Traverses through cfq group service trees */
698 #define for_each_cfqg_st(cfqg, i, j, st) \
699 for (i = 0; i <= IDLE_WORKLOAD; i++) \
700 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
701 : &cfqg->service_tree_idle; \
702 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
703 (i == IDLE_WORKLOAD && j == 0); \
704 j++, st = i < IDLE_WORKLOAD ? \
705 &cfqg->service_trees[i][j]: NULL) \
707 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
708 struct cfq_ttime
*ttime
, bool group_idle
)
711 if (!sample_valid(ttime
->ttime_samples
))
714 slice
= cfqd
->cfq_group_idle
;
716 slice
= cfqd
->cfq_slice_idle
;
717 return ttime
->ttime_mean
> slice
;
720 static inline bool iops_mode(struct cfq_data
*cfqd
)
723 * If we are not idling on queues and it is a NCQ drive, parallel
724 * execution of requests is on and measuring time is not possible
725 * in most of the cases until and unless we drive shallower queue
726 * depths and that becomes a performance bottleneck. In such cases
727 * switch to start providing fairness in terms of number of IOs.
729 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
735 static inline enum wl_prio_t
cfqq_prio(struct cfq_queue
*cfqq
)
737 if (cfq_class_idle(cfqq
))
738 return IDLE_WORKLOAD
;
739 if (cfq_class_rt(cfqq
))
745 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
747 if (!cfq_cfqq_sync(cfqq
))
748 return ASYNC_WORKLOAD
;
749 if (!cfq_cfqq_idle_window(cfqq
))
750 return SYNC_NOIDLE_WORKLOAD
;
751 return SYNC_WORKLOAD
;
754 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
755 struct cfq_data
*cfqd
,
756 struct cfq_group
*cfqg
)
758 if (wl
== IDLE_WORKLOAD
)
759 return cfqg
->service_tree_idle
.count
;
761 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
762 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
763 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
766 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
767 struct cfq_group
*cfqg
)
769 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
770 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
773 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
774 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
,
775 struct cfq_io_cq
*cic
, struct bio
*bio
,
778 static inline struct cfq_io_cq
*icq_to_cic(struct io_cq
*icq
)
780 /* cic->icq is the first member, %NULL will convert to %NULL */
781 return container_of(icq
, struct cfq_io_cq
, icq
);
784 static inline struct cfq_io_cq
*cfq_cic_lookup(struct cfq_data
*cfqd
,
785 struct io_context
*ioc
)
788 return icq_to_cic(ioc_lookup_icq(ioc
, cfqd
->queue
));
792 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_cq
*cic
, bool is_sync
)
794 return cic
->cfqq
[is_sync
];
797 static inline void cic_set_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
,
800 cic
->cfqq
[is_sync
] = cfqq
;
803 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_cq
*cic
)
805 return cic
->icq
.q
->elevator
->elevator_data
;
809 * We regard a request as SYNC, if it's either a read or has the SYNC bit
810 * set (in which case it could also be direct WRITE).
812 static inline bool cfq_bio_sync(struct bio
*bio
)
814 return bio_data_dir(bio
) == READ
|| (bio
->bi_rw
& REQ_SYNC
);
818 * scheduler run of queue, if there are requests pending and no one in the
819 * driver that will restart queueing
821 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
823 if (cfqd
->busy_queues
) {
824 cfq_log(cfqd
, "schedule dispatch");
825 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
830 * Scale schedule slice based on io priority. Use the sync time slice only
831 * if a queue is marked sync and has sync io queued. A sync queue with async
832 * io only, should not get full sync slice length.
834 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
837 const int base_slice
= cfqd
->cfq_slice
[sync
];
839 WARN_ON(prio
>= IOPRIO_BE_NR
);
841 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
845 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
847 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
850 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
852 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
854 d
= d
* CFQ_WEIGHT_DEFAULT
;
855 do_div(d
, cfqg
->weight
);
859 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
861 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
863 min_vdisktime
= vdisktime
;
865 return min_vdisktime
;
868 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
870 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
872 min_vdisktime
= vdisktime
;
874 return min_vdisktime
;
877 static void update_min_vdisktime(struct cfq_rb_root
*st
)
879 struct cfq_group
*cfqg
;
882 cfqg
= rb_entry_cfqg(st
->left
);
883 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
,
889 * get averaged number of queues of RT/BE priority.
890 * average is updated, with a formula that gives more weight to higher numbers,
891 * to quickly follows sudden increases and decrease slowly
894 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
895 struct cfq_group
*cfqg
, bool rt
)
897 unsigned min_q
, max_q
;
898 unsigned mult
= cfq_hist_divisor
- 1;
899 unsigned round
= cfq_hist_divisor
/ 2;
900 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
902 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
903 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
904 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
906 return cfqg
->busy_queues_avg
[rt
];
909 static inline unsigned
910 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
912 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
914 return cfqd
->cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
917 static inline unsigned
918 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
920 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
921 if (cfqd
->cfq_latency
) {
923 * interested queues (we consider only the ones with the same
924 * priority class in the cfq group)
926 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
928 unsigned sync_slice
= cfqd
->cfq_slice
[1];
929 unsigned expect_latency
= sync_slice
* iq
;
930 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
932 if (expect_latency
> group_slice
) {
933 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
934 /* scale low_slice according to IO priority
935 * and sync vs async */
937 min(slice
, base_low_slice
* slice
/ sync_slice
);
938 /* the adapted slice value is scaled to fit all iqs
939 * into the target latency */
940 slice
= max(slice
* group_slice
/ expect_latency
,
948 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
950 unsigned slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
952 cfqq
->slice_start
= jiffies
;
953 cfqq
->slice_end
= jiffies
+ slice
;
954 cfqq
->allocated_slice
= slice
;
955 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
959 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
960 * isn't valid until the first request from the dispatch is activated
961 * and the slice time set.
963 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
965 if (cfq_cfqq_slice_new(cfqq
))
967 if (time_before(jiffies
, cfqq
->slice_end
))
974 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
975 * We choose the request that is closest to the head right now. Distance
976 * behind the head is penalized and only allowed to a certain extent.
978 static struct request
*
979 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
981 sector_t s1
, s2
, d1
= 0, d2
= 0;
982 unsigned long back_max
;
983 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
984 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
985 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
987 if (rq1
== NULL
|| rq1
== rq2
)
992 if (rq_is_sync(rq1
) != rq_is_sync(rq2
))
993 return rq_is_sync(rq1
) ? rq1
: rq2
;
995 if ((rq1
->cmd_flags
^ rq2
->cmd_flags
) & REQ_PRIO
)
996 return rq1
->cmd_flags
& REQ_PRIO
? rq1
: rq2
;
998 s1
= blk_rq_pos(rq1
);
999 s2
= blk_rq_pos(rq2
);
1002 * by definition, 1KiB is 2 sectors
1004 back_max
= cfqd
->cfq_back_max
* 2;
1007 * Strict one way elevator _except_ in the case where we allow
1008 * short backward seeks which are biased as twice the cost of a
1009 * similar forward seek.
1013 else if (s1
+ back_max
>= last
)
1014 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
1016 wrap
|= CFQ_RQ1_WRAP
;
1020 else if (s2
+ back_max
>= last
)
1021 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
1023 wrap
|= CFQ_RQ2_WRAP
;
1025 /* Found required data */
1028 * By doing switch() on the bit mask "wrap" we avoid having to
1029 * check two variables for all permutations: --> faster!
1032 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1048 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
1051 * Since both rqs are wrapped,
1052 * start with the one that's further behind head
1053 * (--> only *one* back seek required),
1054 * since back seek takes more time than forward.
1064 * The below is leftmost cache rbtree addon
1066 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
1068 /* Service tree is empty */
1073 root
->left
= rb_first(&root
->rb
);
1076 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
1081 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
1084 root
->left
= rb_first(&root
->rb
);
1087 return rb_entry_cfqg(root
->left
);
1092 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
1098 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
1100 if (root
->left
== n
)
1102 rb_erase_init(n
, &root
->rb
);
1107 * would be nice to take fifo expire time into account as well
1109 static struct request
*
1110 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1111 struct request
*last
)
1113 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
1114 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
1115 struct request
*next
= NULL
, *prev
= NULL
;
1117 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
1120 prev
= rb_entry_rq(rbprev
);
1123 next
= rb_entry_rq(rbnext
);
1125 rbnext
= rb_first(&cfqq
->sort_list
);
1126 if (rbnext
&& rbnext
!= &last
->rb_node
)
1127 next
= rb_entry_rq(rbnext
);
1130 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
1133 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
1134 struct cfq_queue
*cfqq
)
1137 * just an approximation, should be ok.
1139 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
1140 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
1144 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1146 return cfqg
->vdisktime
- st
->min_vdisktime
;
1150 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1152 struct rb_node
**node
= &st
->rb
.rb_node
;
1153 struct rb_node
*parent
= NULL
;
1154 struct cfq_group
*__cfqg
;
1155 s64 key
= cfqg_key(st
, cfqg
);
1158 while (*node
!= NULL
) {
1160 __cfqg
= rb_entry_cfqg(parent
);
1162 if (key
< cfqg_key(st
, __cfqg
))
1163 node
= &parent
->rb_left
;
1165 node
= &parent
->rb_right
;
1171 st
->left
= &cfqg
->rb_node
;
1173 rb_link_node(&cfqg
->rb_node
, parent
, node
);
1174 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
1178 cfq_update_group_weight(struct cfq_group
*cfqg
)
1180 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1181 if (cfqg
->new_weight
) {
1182 cfqg
->weight
= cfqg
->new_weight
;
1183 cfqg
->new_weight
= 0;
1188 cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1190 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1192 cfq_update_group_weight(cfqg
);
1193 __cfq_group_service_tree_add(st
, cfqg
);
1194 st
->total_weight
+= cfqg
->weight
;
1198 cfq_group_notify_queue_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1200 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1201 struct cfq_group
*__cfqg
;
1205 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1209 * Currently put the group at the end. Later implement something
1210 * so that groups get lesser vtime based on their weights, so that
1211 * if group does not loose all if it was not continuously backlogged.
1213 n
= rb_last(&st
->rb
);
1215 __cfqg
= rb_entry_cfqg(n
);
1216 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
1218 cfqg
->vdisktime
= st
->min_vdisktime
;
1219 cfq_group_service_tree_add(st
, cfqg
);
1223 cfq_group_service_tree_del(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1225 st
->total_weight
-= cfqg
->weight
;
1226 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1227 cfq_rb_erase(&cfqg
->rb_node
, st
);
1231 cfq_group_notify_queue_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1233 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1235 BUG_ON(cfqg
->nr_cfqq
< 1);
1238 /* If there are other cfq queues under this group, don't delete it */
1242 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
1243 cfq_group_service_tree_del(st
, cfqg
);
1244 cfqg
->saved_workload_slice
= 0;
1245 cfqg_stats_update_dequeue(cfqg
);
1248 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
,
1249 unsigned int *unaccounted_time
)
1251 unsigned int slice_used
;
1254 * Queue got expired before even a single request completed or
1255 * got expired immediately after first request completion.
1257 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
1259 * Also charge the seek time incurred to the group, otherwise
1260 * if there are mutiple queues in the group, each can dispatch
1261 * a single request on seeky media and cause lots of seek time
1262 * and group will never know it.
1264 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
1267 slice_used
= jiffies
- cfqq
->slice_start
;
1268 if (slice_used
> cfqq
->allocated_slice
) {
1269 *unaccounted_time
= slice_used
- cfqq
->allocated_slice
;
1270 slice_used
= cfqq
->allocated_slice
;
1272 if (time_after(cfqq
->slice_start
, cfqq
->dispatch_start
))
1273 *unaccounted_time
+= cfqq
->slice_start
-
1274 cfqq
->dispatch_start
;
1280 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
1281 struct cfq_queue
*cfqq
)
1283 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1284 unsigned int used_sl
, charge
, unaccounted_sl
= 0;
1285 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
1286 - cfqg
->service_tree_idle
.count
;
1288 BUG_ON(nr_sync
< 0);
1289 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
, &unaccounted_sl
);
1291 if (iops_mode(cfqd
))
1292 charge
= cfqq
->slice_dispatch
;
1293 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
1294 charge
= cfqq
->allocated_slice
;
1296 /* Can't update vdisktime while group is on service tree */
1297 cfq_group_service_tree_del(st
, cfqg
);
1298 cfqg
->vdisktime
+= cfq_scale_slice(charge
, cfqg
);
1299 /* If a new weight was requested, update now, off tree */
1300 cfq_group_service_tree_add(st
, cfqg
);
1302 /* This group is being expired. Save the context */
1303 if (time_after(cfqd
->workload_expires
, jiffies
)) {
1304 cfqg
->saved_workload_slice
= cfqd
->workload_expires
1306 cfqg
->saved_workload
= cfqd
->serving_type
;
1307 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
1309 cfqg
->saved_workload_slice
= 0;
1311 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
1313 cfq_log_cfqq(cfqq
->cfqd
, cfqq
,
1314 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1315 used_sl
, cfqq
->slice_dispatch
, charge
,
1316 iops_mode(cfqd
), cfqq
->nr_sectors
);
1317 cfqg_stats_update_timeslice_used(cfqg
, used_sl
, unaccounted_sl
);
1318 cfqg_stats_set_start_empty_time(cfqg
);
1322 * cfq_init_cfqg_base - initialize base part of a cfq_group
1323 * @cfqg: cfq_group to initialize
1325 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1326 * is enabled or not.
1328 static void cfq_init_cfqg_base(struct cfq_group
*cfqg
)
1330 struct cfq_rb_root
*st
;
1333 for_each_cfqg_st(cfqg
, i
, j
, st
)
1335 RB_CLEAR_NODE(&cfqg
->rb_node
);
1337 cfqg
->ttime
.last_end_request
= jiffies
;
1340 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1341 static void cfq_pd_init(struct blkcg_gq
*blkg
)
1343 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
1345 cfq_init_cfqg_base(cfqg
);
1346 cfqg
->weight
= blkg
->blkcg
->cfq_weight
;
1350 * Search for the cfq group current task belongs to. request_queue lock must
1353 static struct cfq_group
*cfq_lookup_create_cfqg(struct cfq_data
*cfqd
,
1354 struct blkcg
*blkcg
)
1356 struct request_queue
*q
= cfqd
->queue
;
1357 struct cfq_group
*cfqg
= NULL
;
1359 /* avoid lookup for the common case where there's no blkcg */
1360 if (blkcg
== &blkcg_root
) {
1361 cfqg
= cfqd
->root_group
;
1363 struct blkcg_gq
*blkg
;
1365 blkg
= blkg_lookup_create(blkcg
, q
);
1367 cfqg
= blkg_to_cfqg(blkg
);
1373 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1375 /* Currently, all async queues are mapped to root group */
1376 if (!cfq_cfqq_sync(cfqq
))
1377 cfqg
= cfqq
->cfqd
->root_group
;
1380 /* cfqq reference on cfqg */
1384 static u64
cfqg_prfill_weight_device(struct seq_file
*sf
,
1385 struct blkg_policy_data
*pd
, int off
)
1387 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1389 if (!cfqg
->dev_weight
)
1391 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_weight
);
1394 static int cfqg_print_weight_device(struct cgroup
*cgrp
, struct cftype
*cft
,
1395 struct seq_file
*sf
)
1397 blkcg_print_blkgs(sf
, cgroup_to_blkcg(cgrp
),
1398 cfqg_prfill_weight_device
, &blkcg_policy_cfq
, 0,
1403 static int cfq_print_weight(struct cgroup
*cgrp
, struct cftype
*cft
,
1404 struct seq_file
*sf
)
1406 seq_printf(sf
, "%u\n", cgroup_to_blkcg(cgrp
)->cfq_weight
);
1410 static int cfqg_set_weight_device(struct cgroup
*cgrp
, struct cftype
*cft
,
1413 struct blkcg
*blkcg
= cgroup_to_blkcg(cgrp
);
1414 struct blkg_conf_ctx ctx
;
1415 struct cfq_group
*cfqg
;
1418 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_cfq
, buf
, &ctx
);
1423 cfqg
= blkg_to_cfqg(ctx
.blkg
);
1424 if (!ctx
.v
|| (ctx
.v
>= CFQ_WEIGHT_MIN
&& ctx
.v
<= CFQ_WEIGHT_MAX
)) {
1425 cfqg
->dev_weight
= ctx
.v
;
1426 cfqg
->new_weight
= cfqg
->dev_weight
?: blkcg
->cfq_weight
;
1430 blkg_conf_finish(&ctx
);
1434 static int cfq_set_weight(struct cgroup
*cgrp
, struct cftype
*cft
, u64 val
)
1436 struct blkcg
*blkcg
= cgroup_to_blkcg(cgrp
);
1437 struct blkcg_gq
*blkg
;
1438 struct hlist_node
*n
;
1440 if (val
< CFQ_WEIGHT_MIN
|| val
> CFQ_WEIGHT_MAX
)
1443 spin_lock_irq(&blkcg
->lock
);
1444 blkcg
->cfq_weight
= (unsigned int)val
;
1446 hlist_for_each_entry(blkg
, n
, &blkcg
->blkg_list
, blkcg_node
) {
1447 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
1449 if (cfqg
&& !cfqg
->dev_weight
)
1450 cfqg
->new_weight
= blkcg
->cfq_weight
;
1453 spin_unlock_irq(&blkcg
->lock
);
1457 static int cfqg_print_stat(struct cgroup
*cgrp
, struct cftype
*cft
,
1458 struct seq_file
*sf
)
1460 struct blkcg
*blkcg
= cgroup_to_blkcg(cgrp
);
1462 blkcg_print_blkgs(sf
, blkcg
, blkg_prfill_stat
, &blkcg_policy_cfq
,
1463 cft
->private, false);
1467 static int cfqg_print_rwstat(struct cgroup
*cgrp
, struct cftype
*cft
,
1468 struct seq_file
*sf
)
1470 struct blkcg
*blkcg
= cgroup_to_blkcg(cgrp
);
1472 blkcg_print_blkgs(sf
, blkcg
, blkg_prfill_rwstat
, &blkcg_policy_cfq
,
1473 cft
->private, true);
1477 #ifdef CONFIG_DEBUG_BLK_CGROUP
1478 static u64
cfqg_prfill_avg_queue_size(struct seq_file
*sf
,
1479 struct blkg_policy_data
*pd
, int off
)
1481 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1482 u64 samples
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_samples
);
1486 v
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_sum
);
1489 __blkg_prfill_u64(sf
, pd
, v
);
1493 /* print avg_queue_size */
1494 static int cfqg_print_avg_queue_size(struct cgroup
*cgrp
, struct cftype
*cft
,
1495 struct seq_file
*sf
)
1497 struct blkcg
*blkcg
= cgroup_to_blkcg(cgrp
);
1499 blkcg_print_blkgs(sf
, blkcg
, cfqg_prfill_avg_queue_size
,
1500 &blkcg_policy_cfq
, 0, false);
1503 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1505 static struct cftype cfq_blkcg_files
[] = {
1507 .name
= "weight_device",
1508 .read_seq_string
= cfqg_print_weight_device
,
1509 .write_string
= cfqg_set_weight_device
,
1510 .max_write_len
= 256,
1514 .read_seq_string
= cfq_print_weight
,
1515 .write_u64
= cfq_set_weight
,
1519 .private = offsetof(struct cfq_group
, stats
.time
),
1520 .read_seq_string
= cfqg_print_stat
,
1524 .private = offsetof(struct cfq_group
, stats
.sectors
),
1525 .read_seq_string
= cfqg_print_stat
,
1528 .name
= "io_service_bytes",
1529 .private = offsetof(struct cfq_group
, stats
.service_bytes
),
1530 .read_seq_string
= cfqg_print_rwstat
,
1533 .name
= "io_serviced",
1534 .private = offsetof(struct cfq_group
, stats
.serviced
),
1535 .read_seq_string
= cfqg_print_rwstat
,
1538 .name
= "io_service_time",
1539 .private = offsetof(struct cfq_group
, stats
.service_time
),
1540 .read_seq_string
= cfqg_print_rwstat
,
1543 .name
= "io_wait_time",
1544 .private = offsetof(struct cfq_group
, stats
.wait_time
),
1545 .read_seq_string
= cfqg_print_rwstat
,
1548 .name
= "io_merged",
1549 .private = offsetof(struct cfq_group
, stats
.merged
),
1550 .read_seq_string
= cfqg_print_rwstat
,
1553 .name
= "io_queued",
1554 .private = offsetof(struct cfq_group
, stats
.queued
),
1555 .read_seq_string
= cfqg_print_rwstat
,
1557 #ifdef CONFIG_DEBUG_BLK_CGROUP
1559 .name
= "avg_queue_size",
1560 .read_seq_string
= cfqg_print_avg_queue_size
,
1563 .name
= "group_wait_time",
1564 .private = offsetof(struct cfq_group
, stats
.group_wait_time
),
1565 .read_seq_string
= cfqg_print_stat
,
1568 .name
= "idle_time",
1569 .private = offsetof(struct cfq_group
, stats
.idle_time
),
1570 .read_seq_string
= cfqg_print_stat
,
1573 .name
= "empty_time",
1574 .private = offsetof(struct cfq_group
, stats
.empty_time
),
1575 .read_seq_string
= cfqg_print_stat
,
1579 .private = offsetof(struct cfq_group
, stats
.dequeue
),
1580 .read_seq_string
= cfqg_print_stat
,
1583 .name
= "unaccounted_time",
1584 .private = offsetof(struct cfq_group
, stats
.unaccounted_time
),
1585 .read_seq_string
= cfqg_print_stat
,
1587 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1590 #else /* GROUP_IOSCHED */
1591 static struct cfq_group
*cfq_lookup_create_cfqg(struct cfq_data
*cfqd
,
1592 struct blkcg
*blkcg
)
1594 return cfqd
->root_group
;
1598 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1602 #endif /* GROUP_IOSCHED */
1605 * The cfqd->service_trees holds all pending cfq_queue's that have
1606 * requests waiting to be processed. It is sorted in the order that
1607 * we will service the queues.
1609 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1612 struct rb_node
**p
, *parent
;
1613 struct cfq_queue
*__cfqq
;
1614 unsigned long rb_key
;
1615 struct cfq_rb_root
*service_tree
;
1619 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1621 if (cfq_class_idle(cfqq
)) {
1622 rb_key
= CFQ_IDLE_DELAY
;
1623 parent
= rb_last(&service_tree
->rb
);
1624 if (parent
&& parent
!= &cfqq
->rb_node
) {
1625 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1626 rb_key
+= __cfqq
->rb_key
;
1629 } else if (!add_front
) {
1631 * Get our rb key offset. Subtract any residual slice
1632 * value carried from last service. A negative resid
1633 * count indicates slice overrun, and this should position
1634 * the next service time further away in the tree.
1636 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1637 rb_key
-= cfqq
->slice_resid
;
1638 cfqq
->slice_resid
= 0;
1641 __cfqq
= cfq_rb_first(service_tree
);
1642 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1645 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1648 * same position, nothing more to do
1650 if (rb_key
== cfqq
->rb_key
&&
1651 cfqq
->service_tree
== service_tree
)
1654 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1655 cfqq
->service_tree
= NULL
;
1660 cfqq
->service_tree
= service_tree
;
1661 p
= &service_tree
->rb
.rb_node
;
1666 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1669 * sort by key, that represents service time.
1671 if (time_before(rb_key
, __cfqq
->rb_key
))
1674 n
= &(*p
)->rb_right
;
1682 service_tree
->left
= &cfqq
->rb_node
;
1684 cfqq
->rb_key
= rb_key
;
1685 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1686 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1687 service_tree
->count
++;
1688 if (add_front
|| !new_cfqq
)
1690 cfq_group_notify_queue_add(cfqd
, cfqq
->cfqg
);
1693 static struct cfq_queue
*
1694 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1695 sector_t sector
, struct rb_node
**ret_parent
,
1696 struct rb_node
***rb_link
)
1698 struct rb_node
**p
, *parent
;
1699 struct cfq_queue
*cfqq
= NULL
;
1707 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1710 * Sort strictly based on sector. Smallest to the left,
1711 * largest to the right.
1713 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1714 n
= &(*p
)->rb_right
;
1715 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1723 *ret_parent
= parent
;
1729 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1731 struct rb_node
**p
, *parent
;
1732 struct cfq_queue
*__cfqq
;
1735 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1736 cfqq
->p_root
= NULL
;
1739 if (cfq_class_idle(cfqq
))
1744 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1745 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1746 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1748 rb_link_node(&cfqq
->p_node
, parent
, p
);
1749 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1751 cfqq
->p_root
= NULL
;
1755 * Update cfqq's position in the service tree.
1757 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1760 * Resorting requires the cfqq to be on the RR list already.
1762 if (cfq_cfqq_on_rr(cfqq
)) {
1763 cfq_service_tree_add(cfqd
, cfqq
, 0);
1764 cfq_prio_tree_add(cfqd
, cfqq
);
1769 * add to busy list of queues for service, trying to be fair in ordering
1770 * the pending list according to last request service
1772 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1774 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1775 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1776 cfq_mark_cfqq_on_rr(cfqq
);
1777 cfqd
->busy_queues
++;
1778 if (cfq_cfqq_sync(cfqq
))
1779 cfqd
->busy_sync_queues
++;
1781 cfq_resort_rr_list(cfqd
, cfqq
);
1785 * Called when the cfqq no longer has requests pending, remove it from
1788 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1790 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1791 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1792 cfq_clear_cfqq_on_rr(cfqq
);
1794 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1795 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1796 cfqq
->service_tree
= NULL
;
1799 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1800 cfqq
->p_root
= NULL
;
1803 cfq_group_notify_queue_del(cfqd
, cfqq
->cfqg
);
1804 BUG_ON(!cfqd
->busy_queues
);
1805 cfqd
->busy_queues
--;
1806 if (cfq_cfqq_sync(cfqq
))
1807 cfqd
->busy_sync_queues
--;
1811 * rb tree support functions
1813 static void cfq_del_rq_rb(struct request
*rq
)
1815 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1816 const int sync
= rq_is_sync(rq
);
1818 BUG_ON(!cfqq
->queued
[sync
]);
1819 cfqq
->queued
[sync
]--;
1821 elv_rb_del(&cfqq
->sort_list
, rq
);
1823 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1825 * Queue will be deleted from service tree when we actually
1826 * expire it later. Right now just remove it from prio tree
1830 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1831 cfqq
->p_root
= NULL
;
1836 static void cfq_add_rq_rb(struct request
*rq
)
1838 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1839 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1840 struct request
*prev
;
1842 cfqq
->queued
[rq_is_sync(rq
)]++;
1844 elv_rb_add(&cfqq
->sort_list
, rq
);
1846 if (!cfq_cfqq_on_rr(cfqq
))
1847 cfq_add_cfqq_rr(cfqd
, cfqq
);
1850 * check if this request is a better next-serve candidate
1852 prev
= cfqq
->next_rq
;
1853 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1856 * adjust priority tree position, if ->next_rq changes
1858 if (prev
!= cfqq
->next_rq
)
1859 cfq_prio_tree_add(cfqd
, cfqq
);
1861 BUG_ON(!cfqq
->next_rq
);
1864 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1866 elv_rb_del(&cfqq
->sort_list
, rq
);
1867 cfqq
->queued
[rq_is_sync(rq
)]--;
1868 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
1870 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqq
->cfqd
->serving_group
,
1874 static struct request
*
1875 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1877 struct task_struct
*tsk
= current
;
1878 struct cfq_io_cq
*cic
;
1879 struct cfq_queue
*cfqq
;
1881 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1885 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1887 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1889 return elv_rb_find(&cfqq
->sort_list
, sector
);
1895 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1897 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1899 cfqd
->rq_in_driver
++;
1900 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1901 cfqd
->rq_in_driver
);
1903 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1906 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1908 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1910 WARN_ON(!cfqd
->rq_in_driver
);
1911 cfqd
->rq_in_driver
--;
1912 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1913 cfqd
->rq_in_driver
);
1916 static void cfq_remove_request(struct request
*rq
)
1918 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1920 if (cfqq
->next_rq
== rq
)
1921 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1923 list_del_init(&rq
->queuelist
);
1926 cfqq
->cfqd
->rq_queued
--;
1927 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
1928 if (rq
->cmd_flags
& REQ_PRIO
) {
1929 WARN_ON(!cfqq
->prio_pending
);
1930 cfqq
->prio_pending
--;
1934 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1937 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1938 struct request
*__rq
;
1940 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1941 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1943 return ELEVATOR_FRONT_MERGE
;
1946 return ELEVATOR_NO_MERGE
;
1949 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1952 if (type
== ELEVATOR_FRONT_MERGE
) {
1953 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1955 cfq_reposition_rq_rb(cfqq
, req
);
1959 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
1962 cfqg_stats_update_io_merged(RQ_CFQG(req
), bio
->bi_rw
);
1966 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1967 struct request
*next
)
1969 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1970 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1973 * reposition in fifo if next is older than rq
1975 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1976 time_before(rq_fifo_time(next
), rq_fifo_time(rq
)) &&
1977 cfqq
== RQ_CFQQ(next
)) {
1978 list_move(&rq
->queuelist
, &next
->queuelist
);
1979 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1982 if (cfqq
->next_rq
== next
)
1984 cfq_remove_request(next
);
1985 cfqg_stats_update_io_merged(RQ_CFQG(rq
), next
->cmd_flags
);
1987 cfqq
= RQ_CFQQ(next
);
1989 * all requests of this queue are merged to other queues, delete it
1990 * from the service tree. If it's the active_queue,
1991 * cfq_dispatch_requests() will choose to expire it or do idle
1993 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
) &&
1994 cfqq
!= cfqd
->active_queue
)
1995 cfq_del_cfqq_rr(cfqd
, cfqq
);
1998 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
2001 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2002 struct cfq_io_cq
*cic
;
2003 struct cfq_queue
*cfqq
;
2006 * Disallow merge of a sync bio into an async request.
2008 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
2012 * Lookup the cfqq that this bio will be queued with and allow
2013 * merge only if rq is queued there.
2015 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
2019 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
2020 return cfqq
== RQ_CFQQ(rq
);
2023 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2025 del_timer(&cfqd
->idle_slice_timer
);
2026 cfqg_stats_update_idle_time(cfqq
->cfqg
);
2029 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
2030 struct cfq_queue
*cfqq
)
2033 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_prio:%d wl_type:%d",
2034 cfqd
->serving_prio
, cfqd
->serving_type
);
2035 cfqg_stats_update_avg_queue_size(cfqq
->cfqg
);
2036 cfqq
->slice_start
= 0;
2037 cfqq
->dispatch_start
= jiffies
;
2038 cfqq
->allocated_slice
= 0;
2039 cfqq
->slice_end
= 0;
2040 cfqq
->slice_dispatch
= 0;
2041 cfqq
->nr_sectors
= 0;
2043 cfq_clear_cfqq_wait_request(cfqq
);
2044 cfq_clear_cfqq_must_dispatch(cfqq
);
2045 cfq_clear_cfqq_must_alloc_slice(cfqq
);
2046 cfq_clear_cfqq_fifo_expire(cfqq
);
2047 cfq_mark_cfqq_slice_new(cfqq
);
2049 cfq_del_timer(cfqd
, cfqq
);
2052 cfqd
->active_queue
= cfqq
;
2056 * current cfqq expired its slice (or was too idle), select new one
2059 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2062 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
2064 if (cfq_cfqq_wait_request(cfqq
))
2065 cfq_del_timer(cfqd
, cfqq
);
2067 cfq_clear_cfqq_wait_request(cfqq
);
2068 cfq_clear_cfqq_wait_busy(cfqq
);
2071 * If this cfqq is shared between multiple processes, check to
2072 * make sure that those processes are still issuing I/Os within
2073 * the mean seek distance. If not, it may be time to break the
2074 * queues apart again.
2076 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
2077 cfq_mark_cfqq_split_coop(cfqq
);
2080 * store what was left of this slice, if the queue idled/timed out
2083 if (cfq_cfqq_slice_new(cfqq
))
2084 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
2086 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
2087 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
2090 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
2092 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
2093 cfq_del_cfqq_rr(cfqd
, cfqq
);
2095 cfq_resort_rr_list(cfqd
, cfqq
);
2097 if (cfqq
== cfqd
->active_queue
)
2098 cfqd
->active_queue
= NULL
;
2100 if (cfqd
->active_cic
) {
2101 put_io_context(cfqd
->active_cic
->icq
.ioc
);
2102 cfqd
->active_cic
= NULL
;
2106 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
2108 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2111 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
2115 * Get next queue for service. Unless we have a queue preemption,
2116 * we'll simply select the first cfqq in the service tree.
2118 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
2120 struct cfq_rb_root
*service_tree
=
2121 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
2122 cfqd
->serving_type
);
2124 if (!cfqd
->rq_queued
)
2127 /* There is nothing to dispatch */
2130 if (RB_EMPTY_ROOT(&service_tree
->rb
))
2132 return cfq_rb_first(service_tree
);
2135 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
2137 struct cfq_group
*cfqg
;
2138 struct cfq_queue
*cfqq
;
2140 struct cfq_rb_root
*st
;
2142 if (!cfqd
->rq_queued
)
2145 cfqg
= cfq_get_next_cfqg(cfqd
);
2149 for_each_cfqg_st(cfqg
, i
, j
, st
)
2150 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
2156 * Get and set a new active queue for service.
2158 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
2159 struct cfq_queue
*cfqq
)
2162 cfqq
= cfq_get_next_queue(cfqd
);
2164 __cfq_set_active_queue(cfqd
, cfqq
);
2168 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
2171 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
2172 return blk_rq_pos(rq
) - cfqd
->last_position
;
2174 return cfqd
->last_position
- blk_rq_pos(rq
);
2177 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2180 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
2183 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
2184 struct cfq_queue
*cur_cfqq
)
2186 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
2187 struct rb_node
*parent
, *node
;
2188 struct cfq_queue
*__cfqq
;
2189 sector_t sector
= cfqd
->last_position
;
2191 if (RB_EMPTY_ROOT(root
))
2195 * First, if we find a request starting at the end of the last
2196 * request, choose it.
2198 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
2203 * If the exact sector wasn't found, the parent of the NULL leaf
2204 * will contain the closest sector.
2206 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2207 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2210 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
2211 node
= rb_next(&__cfqq
->p_node
);
2213 node
= rb_prev(&__cfqq
->p_node
);
2217 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
2218 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2226 * cur_cfqq - passed in so that we don't decide that the current queue is
2227 * closely cooperating with itself.
2229 * So, basically we're assuming that that cur_cfqq has dispatched at least
2230 * one request, and that cfqd->last_position reflects a position on the disk
2231 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2234 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
2235 struct cfq_queue
*cur_cfqq
)
2237 struct cfq_queue
*cfqq
;
2239 if (cfq_class_idle(cur_cfqq
))
2241 if (!cfq_cfqq_sync(cur_cfqq
))
2243 if (CFQQ_SEEKY(cur_cfqq
))
2247 * Don't search priority tree if it's the only queue in the group.
2249 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
2253 * We should notice if some of the queues are cooperating, eg
2254 * working closely on the same area of the disk. In that case,
2255 * we can group them together and don't waste time idling.
2257 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
2261 /* If new queue belongs to different cfq_group, don't choose it */
2262 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
2266 * It only makes sense to merge sync queues.
2268 if (!cfq_cfqq_sync(cfqq
))
2270 if (CFQQ_SEEKY(cfqq
))
2274 * Do not merge queues of different priority classes
2276 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
2283 * Determine whether we should enforce idle window for this queue.
2286 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2288 enum wl_prio_t prio
= cfqq_prio(cfqq
);
2289 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
2291 BUG_ON(!service_tree
);
2292 BUG_ON(!service_tree
->count
);
2294 if (!cfqd
->cfq_slice_idle
)
2297 /* We never do for idle class queues. */
2298 if (prio
== IDLE_WORKLOAD
)
2301 /* We do for queues that were marked with idle window flag. */
2302 if (cfq_cfqq_idle_window(cfqq
) &&
2303 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
2307 * Otherwise, we do only if they are the last ones
2308 * in their service tree.
2310 if (service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
) &&
2311 !cfq_io_thinktime_big(cfqd
, &service_tree
->ttime
, false))
2313 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d",
2314 service_tree
->count
);
2318 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
2320 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2321 struct cfq_io_cq
*cic
;
2322 unsigned long sl
, group_idle
= 0;
2325 * SSD device without seek penalty, disable idling. But only do so
2326 * for devices that support queuing, otherwise we still have a problem
2327 * with sync vs async workloads.
2329 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
2332 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
2333 WARN_ON(cfq_cfqq_slice_new(cfqq
));
2336 * idle is disabled, either manually or by past process history
2338 if (!cfq_should_idle(cfqd
, cfqq
)) {
2339 /* no queue idling. Check for group idling */
2340 if (cfqd
->cfq_group_idle
)
2341 group_idle
= cfqd
->cfq_group_idle
;
2347 * still active requests from this queue, don't idle
2349 if (cfqq
->dispatched
)
2353 * task has exited, don't wait
2355 cic
= cfqd
->active_cic
;
2356 if (!cic
|| !atomic_read(&cic
->icq
.ioc
->active_ref
))
2360 * If our average think time is larger than the remaining time
2361 * slice, then don't idle. This avoids overrunning the allotted
2364 if (sample_valid(cic
->ttime
.ttime_samples
) &&
2365 (cfqq
->slice_end
- jiffies
< cic
->ttime
.ttime_mean
)) {
2366 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%lu",
2367 cic
->ttime
.ttime_mean
);
2371 /* There are other queues in the group, don't do group idle */
2372 if (group_idle
&& cfqq
->cfqg
->nr_cfqq
> 1)
2375 cfq_mark_cfqq_wait_request(cfqq
);
2378 sl
= cfqd
->cfq_group_idle
;
2380 sl
= cfqd
->cfq_slice_idle
;
2382 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
2383 cfqg_stats_set_start_idle_time(cfqq
->cfqg
);
2384 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu group_idle: %d", sl
,
2385 group_idle
? 1 : 0);
2389 * Move request from internal lists to the request queue dispatch list.
2391 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
2393 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2394 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2396 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
2398 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
2399 cfq_remove_request(rq
);
2401 (RQ_CFQG(rq
))->dispatched
++;
2402 elv_dispatch_sort(q
, rq
);
2404 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
2405 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
2406 cfqg_stats_update_dispatch(cfqq
->cfqg
, blk_rq_bytes(rq
), rq
->cmd_flags
);
2410 * return expired entry, or NULL to just start from scratch in rbtree
2412 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
2414 struct request
*rq
= NULL
;
2416 if (cfq_cfqq_fifo_expire(cfqq
))
2419 cfq_mark_cfqq_fifo_expire(cfqq
);
2421 if (list_empty(&cfqq
->fifo
))
2424 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
2425 if (time_before(jiffies
, rq_fifo_time(rq
)))
2428 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
2433 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2435 const int base_rq
= cfqd
->cfq_slice_async_rq
;
2437 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
2439 return 2 * base_rq
* (IOPRIO_BE_NR
- cfqq
->ioprio
);
2443 * Must be called with the queue_lock held.
2445 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
2447 int process_refs
, io_refs
;
2449 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
2450 process_refs
= cfqq
->ref
- io_refs
;
2451 BUG_ON(process_refs
< 0);
2452 return process_refs
;
2455 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
2457 int process_refs
, new_process_refs
;
2458 struct cfq_queue
*__cfqq
;
2461 * If there are no process references on the new_cfqq, then it is
2462 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2463 * chain may have dropped their last reference (not just their
2464 * last process reference).
2466 if (!cfqq_process_refs(new_cfqq
))
2469 /* Avoid a circular list and skip interim queue merges */
2470 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
2476 process_refs
= cfqq_process_refs(cfqq
);
2477 new_process_refs
= cfqq_process_refs(new_cfqq
);
2479 * If the process for the cfqq has gone away, there is no
2480 * sense in merging the queues.
2482 if (process_refs
== 0 || new_process_refs
== 0)
2486 * Merge in the direction of the lesser amount of work.
2488 if (new_process_refs
>= process_refs
) {
2489 cfqq
->new_cfqq
= new_cfqq
;
2490 new_cfqq
->ref
+= process_refs
;
2492 new_cfqq
->new_cfqq
= cfqq
;
2493 cfqq
->ref
+= new_process_refs
;
2497 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
2498 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
2500 struct cfq_queue
*queue
;
2502 bool key_valid
= false;
2503 unsigned long lowest_key
= 0;
2504 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
2506 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
2507 /* select the one with lowest rb_key */
2508 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
2510 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
2511 lowest_key
= queue
->rb_key
;
2520 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
2524 struct cfq_rb_root
*st
;
2525 unsigned group_slice
;
2526 enum wl_prio_t original_prio
= cfqd
->serving_prio
;
2528 /* Choose next priority. RT > BE > IDLE */
2529 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
2530 cfqd
->serving_prio
= RT_WORKLOAD
;
2531 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2532 cfqd
->serving_prio
= BE_WORKLOAD
;
2534 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2535 cfqd
->workload_expires
= jiffies
+ 1;
2539 if (original_prio
!= cfqd
->serving_prio
)
2543 * For RT and BE, we have to choose also the type
2544 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2547 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2551 * check workload expiration, and that we still have other queues ready
2553 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2557 /* otherwise select new workload type */
2558 cfqd
->serving_type
=
2559 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2560 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2564 * the workload slice is computed as a fraction of target latency
2565 * proportional to the number of queues in that workload, over
2566 * all the queues in the same priority class
2568 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2570 slice
= group_slice
* count
/
2571 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2572 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2574 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2578 * Async queues are currently system wide. Just taking
2579 * proportion of queues with-in same group will lead to higher
2580 * async ratio system wide as generally root group is going
2581 * to have higher weight. A more accurate thing would be to
2582 * calculate system wide asnc/sync ratio.
2584 tmp
= cfqd
->cfq_target_latency
*
2585 cfqg_busy_async_queues(cfqd
, cfqg
);
2586 tmp
= tmp
/cfqd
->busy_queues
;
2587 slice
= min_t(unsigned, slice
, tmp
);
2589 /* async workload slice is scaled down according to
2590 * the sync/async slice ratio. */
2591 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2593 /* sync workload slice is at least 2 * cfq_slice_idle */
2594 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2596 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2597 cfq_log(cfqd
, "workload slice:%d", slice
);
2598 cfqd
->workload_expires
= jiffies
+ slice
;
2601 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2603 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2604 struct cfq_group
*cfqg
;
2606 if (RB_EMPTY_ROOT(&st
->rb
))
2608 cfqg
= cfq_rb_first_group(st
);
2609 update_min_vdisktime(st
);
2613 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2615 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2617 cfqd
->serving_group
= cfqg
;
2619 /* Restore the workload type data */
2620 if (cfqg
->saved_workload_slice
) {
2621 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2622 cfqd
->serving_type
= cfqg
->saved_workload
;
2623 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2625 cfqd
->workload_expires
= jiffies
- 1;
2627 choose_service_tree(cfqd
, cfqg
);
2631 * Select a queue for service. If we have a current active queue,
2632 * check whether to continue servicing it, or retrieve and set a new one.
2634 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2636 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2638 cfqq
= cfqd
->active_queue
;
2642 if (!cfqd
->rq_queued
)
2646 * We were waiting for group to get backlogged. Expire the queue
2648 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2652 * The active queue has run out of time, expire it and select new.
2654 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2656 * If slice had not expired at the completion of last request
2657 * we might not have turned on wait_busy flag. Don't expire
2658 * the queue yet. Allow the group to get backlogged.
2660 * The very fact that we have used the slice, that means we
2661 * have been idling all along on this queue and it should be
2662 * ok to wait for this request to complete.
2664 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2665 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2669 goto check_group_idle
;
2673 * The active queue has requests and isn't expired, allow it to
2676 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2680 * If another queue has a request waiting within our mean seek
2681 * distance, let it run. The expire code will check for close
2682 * cooperators and put the close queue at the front of the service
2683 * tree. If possible, merge the expiring queue with the new cfqq.
2685 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2687 if (!cfqq
->new_cfqq
)
2688 cfq_setup_merge(cfqq
, new_cfqq
);
2693 * No requests pending. If the active queue still has requests in
2694 * flight or is idling for a new request, allow either of these
2695 * conditions to happen (or time out) before selecting a new queue.
2697 if (timer_pending(&cfqd
->idle_slice_timer
)) {
2703 * This is a deep seek queue, but the device is much faster than
2704 * the queue can deliver, don't idle
2706 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
2707 (cfq_cfqq_slice_new(cfqq
) ||
2708 (cfqq
->slice_end
- jiffies
> jiffies
- cfqq
->slice_start
))) {
2709 cfq_clear_cfqq_deep(cfqq
);
2710 cfq_clear_cfqq_idle_window(cfqq
);
2713 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2719 * If group idle is enabled and there are requests dispatched from
2720 * this group, wait for requests to complete.
2723 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1 &&
2724 cfqq
->cfqg
->dispatched
&&
2725 !cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true)) {
2731 cfq_slice_expired(cfqd
, 0);
2734 * Current queue expired. Check if we have to switch to a new
2738 cfq_choose_cfqg(cfqd
);
2740 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2745 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2749 while (cfqq
->next_rq
) {
2750 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2754 BUG_ON(!list_empty(&cfqq
->fifo
));
2756 /* By default cfqq is not expired if it is empty. Do it explicitly */
2757 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2762 * Drain our current requests. Used for barriers and when switching
2763 * io schedulers on-the-fly.
2765 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2767 struct cfq_queue
*cfqq
;
2770 /* Expire the timeslice of the current active queue first */
2771 cfq_slice_expired(cfqd
, 0);
2772 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
2773 __cfq_set_active_queue(cfqd
, cfqq
);
2774 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2777 BUG_ON(cfqd
->busy_queues
);
2779 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2783 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
2784 struct cfq_queue
*cfqq
)
2786 /* the queue hasn't finished any request, can't estimate */
2787 if (cfq_cfqq_slice_new(cfqq
))
2789 if (time_after(jiffies
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
,
2796 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2798 unsigned int max_dispatch
;
2801 * Drain async requests before we start sync IO
2803 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
2807 * If this is an async queue and we have sync IO in flight, let it wait
2809 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
2812 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
2813 if (cfq_class_idle(cfqq
))
2817 * Does this cfqq already have too much IO in flight?
2819 if (cfqq
->dispatched
>= max_dispatch
) {
2820 bool promote_sync
= false;
2822 * idle queue must always only have a single IO in flight
2824 if (cfq_class_idle(cfqq
))
2828 * If there is only one sync queue
2829 * we can ignore async queue here and give the sync
2830 * queue no dispatch limit. The reason is a sync queue can
2831 * preempt async queue, limiting the sync queue doesn't make
2832 * sense. This is useful for aiostress test.
2834 if (cfq_cfqq_sync(cfqq
) && cfqd
->busy_sync_queues
== 1)
2835 promote_sync
= true;
2838 * We have other queues, don't allow more IO from this one
2840 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
) &&
2845 * Sole queue user, no limit
2847 if (cfqd
->busy_queues
== 1 || promote_sync
)
2851 * Normally we start throttling cfqq when cfq_quantum/2
2852 * requests have been dispatched. But we can drive
2853 * deeper queue depths at the beginning of slice
2854 * subjected to upper limit of cfq_quantum.
2856 max_dispatch
= cfqd
->cfq_quantum
;
2860 * Async queues must wait a bit before being allowed dispatch.
2861 * We also ramp up the dispatch depth gradually for async IO,
2862 * based on the last sync IO we serviced
2864 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2865 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2868 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2869 if (!depth
&& !cfqq
->dispatched
)
2871 if (depth
< max_dispatch
)
2872 max_dispatch
= depth
;
2876 * If we're below the current max, allow a dispatch
2878 return cfqq
->dispatched
< max_dispatch
;
2882 * Dispatch a request from cfqq, moving them to the request queue
2885 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2889 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2891 if (!cfq_may_dispatch(cfqd
, cfqq
))
2895 * follow expired path, else get first next available
2897 rq
= cfq_check_fifo(cfqq
);
2902 * insert request into driver dispatch list
2904 cfq_dispatch_insert(cfqd
->queue
, rq
);
2906 if (!cfqd
->active_cic
) {
2907 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
2909 atomic_long_inc(&cic
->icq
.ioc
->refcount
);
2910 cfqd
->active_cic
= cic
;
2917 * Find the cfqq that we need to service and move a request from that to the
2920 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2922 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2923 struct cfq_queue
*cfqq
;
2925 if (!cfqd
->busy_queues
)
2928 if (unlikely(force
))
2929 return cfq_forced_dispatch(cfqd
);
2931 cfqq
= cfq_select_queue(cfqd
);
2936 * Dispatch a request from this cfqq, if it is allowed
2938 if (!cfq_dispatch_request(cfqd
, cfqq
))
2941 cfqq
->slice_dispatch
++;
2942 cfq_clear_cfqq_must_dispatch(cfqq
);
2945 * expire an async queue immediately if it has used up its slice. idle
2946 * queue always expire after 1 dispatch round.
2948 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2949 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2950 cfq_class_idle(cfqq
))) {
2951 cfqq
->slice_end
= jiffies
+ 1;
2952 cfq_slice_expired(cfqd
, 0);
2955 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2960 * task holds one reference to the queue, dropped when task exits. each rq
2961 * in-flight on this queue also holds a reference, dropped when rq is freed.
2963 * Each cfq queue took a reference on the parent group. Drop it now.
2964 * queue lock must be held here.
2966 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2968 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2969 struct cfq_group
*cfqg
;
2971 BUG_ON(cfqq
->ref
<= 0);
2977 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2978 BUG_ON(rb_first(&cfqq
->sort_list
));
2979 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2982 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2983 __cfq_slice_expired(cfqd
, cfqq
, 0);
2984 cfq_schedule_dispatch(cfqd
);
2987 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2988 kmem_cache_free(cfq_pool
, cfqq
);
2992 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
2994 struct cfq_queue
*__cfqq
, *next
;
2997 * If this queue was scheduled to merge with another queue, be
2998 * sure to drop the reference taken on that queue (and others in
2999 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3001 __cfqq
= cfqq
->new_cfqq
;
3003 if (__cfqq
== cfqq
) {
3004 WARN(1, "cfqq->new_cfqq loop detected\n");
3007 next
= __cfqq
->new_cfqq
;
3008 cfq_put_queue(__cfqq
);
3013 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3015 if (unlikely(cfqq
== cfqd
->active_queue
)) {
3016 __cfq_slice_expired(cfqd
, cfqq
, 0);
3017 cfq_schedule_dispatch(cfqd
);
3020 cfq_put_cooperator(cfqq
);
3022 cfq_put_queue(cfqq
);
3025 static void cfq_init_icq(struct io_cq
*icq
)
3027 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3029 cic
->ttime
.last_end_request
= jiffies
;
3032 static void cfq_exit_icq(struct io_cq
*icq
)
3034 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3035 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3037 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
3038 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
3039 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
3042 if (cic
->cfqq
[BLK_RW_SYNC
]) {
3043 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
3044 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
3048 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct cfq_io_cq
*cic
)
3050 struct task_struct
*tsk
= current
;
3053 if (!cfq_cfqq_prio_changed(cfqq
))
3056 ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3057 switch (ioprio_class
) {
3059 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
3060 case IOPRIO_CLASS_NONE
:
3062 * no prio set, inherit CPU scheduling settings
3064 cfqq
->ioprio
= task_nice_ioprio(tsk
);
3065 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
3067 case IOPRIO_CLASS_RT
:
3068 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3069 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
3071 case IOPRIO_CLASS_BE
:
3072 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3073 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3075 case IOPRIO_CLASS_IDLE
:
3076 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
3078 cfq_clear_cfqq_idle_window(cfqq
);
3083 * keep track of original prio settings in case we have to temporarily
3084 * elevate the priority of this queue
3086 cfqq
->org_ioprio
= cfqq
->ioprio
;
3087 cfq_clear_cfqq_prio_changed(cfqq
);
3090 static void check_ioprio_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3092 int ioprio
= cic
->icq
.ioc
->ioprio
;
3093 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3094 struct cfq_queue
*cfqq
;
3097 * Check whether ioprio has changed. The condition may trigger
3098 * spuriously on a newly created cic but there's no harm.
3100 if (unlikely(!cfqd
) || likely(cic
->ioprio
== ioprio
))
3103 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
3105 struct cfq_queue
*new_cfqq
;
3106 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
, bio
,
3109 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
3110 cfq_put_queue(cfqq
);
3114 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
3116 cfq_mark_cfqq_prio_changed(cfqq
);
3118 cic
->ioprio
= ioprio
;
3121 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3122 pid_t pid
, bool is_sync
)
3124 RB_CLEAR_NODE(&cfqq
->rb_node
);
3125 RB_CLEAR_NODE(&cfqq
->p_node
);
3126 INIT_LIST_HEAD(&cfqq
->fifo
);
3131 cfq_mark_cfqq_prio_changed(cfqq
);
3134 if (!cfq_class_idle(cfqq
))
3135 cfq_mark_cfqq_idle_window(cfqq
);
3136 cfq_mark_cfqq_sync(cfqq
);
3141 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3142 static void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3144 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3145 struct cfq_queue
*sync_cfqq
;
3149 id
= bio_blkcg(bio
)->id
;
3153 * Check whether blkcg has changed. The condition may trigger
3154 * spuriously on a newly created cic but there's no harm.
3156 if (unlikely(!cfqd
) || likely(cic
->blkcg_id
== id
))
3159 sync_cfqq
= cic_to_cfqq(cic
, 1);
3162 * Drop reference to sync queue. A new sync queue will be
3163 * assigned in new group upon arrival of a fresh request.
3165 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
3166 cic_set_cfqq(cic
, NULL
, 1);
3167 cfq_put_queue(sync_cfqq
);
3173 static inline void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
) { }
3174 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3176 static struct cfq_queue
*
3177 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
, struct cfq_io_cq
*cic
,
3178 struct bio
*bio
, gfp_t gfp_mask
)
3180 struct blkcg
*blkcg
;
3181 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
3182 struct cfq_group
*cfqg
;
3187 blkcg
= bio_blkcg(bio
);
3188 cfqg
= cfq_lookup_create_cfqg(cfqd
, blkcg
);
3189 cfqq
= cic_to_cfqq(cic
, is_sync
);
3192 * Always try a new alloc if we fell back to the OOM cfqq
3193 * originally, since it should just be a temporary situation.
3195 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3200 } else if (gfp_mask
& __GFP_WAIT
) {
3202 spin_unlock_irq(cfqd
->queue
->queue_lock
);
3203 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
3204 gfp_mask
| __GFP_ZERO
,
3206 spin_lock_irq(cfqd
->queue
->queue_lock
);
3210 cfqq
= kmem_cache_alloc_node(cfq_pool
,
3211 gfp_mask
| __GFP_ZERO
,
3216 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
3217 cfq_init_prio_data(cfqq
, cic
);
3218 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
3219 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
3221 cfqq
= &cfqd
->oom_cfqq
;
3225 kmem_cache_free(cfq_pool
, new_cfqq
);
3231 static struct cfq_queue
**
3232 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
3234 switch (ioprio_class
) {
3235 case IOPRIO_CLASS_RT
:
3236 return &cfqd
->async_cfqq
[0][ioprio
];
3237 case IOPRIO_CLASS_NONE
:
3238 ioprio
= IOPRIO_NORM
;
3240 case IOPRIO_CLASS_BE
:
3241 return &cfqd
->async_cfqq
[1][ioprio
];
3242 case IOPRIO_CLASS_IDLE
:
3243 return &cfqd
->async_idle_cfqq
;
3249 static struct cfq_queue
*
3250 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct cfq_io_cq
*cic
,
3251 struct bio
*bio
, gfp_t gfp_mask
)
3253 const int ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3254 const int ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3255 struct cfq_queue
**async_cfqq
= NULL
;
3256 struct cfq_queue
*cfqq
= NULL
;
3259 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
3264 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, cic
, bio
, gfp_mask
);
3267 * pin the queue now that it's allocated, scheduler exit will prune it
3269 if (!is_sync
&& !(*async_cfqq
)) {
3279 __cfq_update_io_thinktime(struct cfq_ttime
*ttime
, unsigned long slice_idle
)
3281 unsigned long elapsed
= jiffies
- ttime
->last_end_request
;
3282 elapsed
= min(elapsed
, 2UL * slice_idle
);
3284 ttime
->ttime_samples
= (7*ttime
->ttime_samples
+ 256) / 8;
3285 ttime
->ttime_total
= (7*ttime
->ttime_total
+ 256*elapsed
) / 8;
3286 ttime
->ttime_mean
= (ttime
->ttime_total
+ 128) / ttime
->ttime_samples
;
3290 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3291 struct cfq_io_cq
*cic
)
3293 if (cfq_cfqq_sync(cfqq
)) {
3294 __cfq_update_io_thinktime(&cic
->ttime
, cfqd
->cfq_slice_idle
);
3295 __cfq_update_io_thinktime(&cfqq
->service_tree
->ttime
,
3296 cfqd
->cfq_slice_idle
);
3298 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3299 __cfq_update_io_thinktime(&cfqq
->cfqg
->ttime
, cfqd
->cfq_group_idle
);
3304 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3308 sector_t n_sec
= blk_rq_sectors(rq
);
3309 if (cfqq
->last_request_pos
) {
3310 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3311 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3313 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3316 cfqq
->seek_history
<<= 1;
3317 if (blk_queue_nonrot(cfqd
->queue
))
3318 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3320 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3324 * Disable idle window if the process thinks too long or seeks so much that
3328 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3329 struct cfq_io_cq
*cic
)
3331 int old_idle
, enable_idle
;
3334 * Don't idle for async or idle io prio class
3336 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3339 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3341 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3342 cfq_mark_cfqq_deep(cfqq
);
3344 if (cfqq
->next_rq
&& (cfqq
->next_rq
->cmd_flags
& REQ_NOIDLE
))
3346 else if (!atomic_read(&cic
->icq
.ioc
->active_ref
) ||
3347 !cfqd
->cfq_slice_idle
||
3348 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3350 else if (sample_valid(cic
->ttime
.ttime_samples
)) {
3351 if (cic
->ttime
.ttime_mean
> cfqd
->cfq_slice_idle
)
3357 if (old_idle
!= enable_idle
) {
3358 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3360 cfq_mark_cfqq_idle_window(cfqq
);
3362 cfq_clear_cfqq_idle_window(cfqq
);
3367 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3368 * no or if we aren't sure, a 1 will cause a preempt.
3371 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3374 struct cfq_queue
*cfqq
;
3376 cfqq
= cfqd
->active_queue
;
3380 if (cfq_class_idle(new_cfqq
))
3383 if (cfq_class_idle(cfqq
))
3387 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3389 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3393 * if the new request is sync, but the currently running queue is
3394 * not, let the sync request have priority.
3396 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3399 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3402 if (cfq_slice_used(cfqq
))
3405 /* Allow preemption only if we are idling on sync-noidle tree */
3406 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3407 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3408 new_cfqq
->service_tree
->count
== 2 &&
3409 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3413 * So both queues are sync. Let the new request get disk time if
3414 * it's a metadata request and the current queue is doing regular IO.
3416 if ((rq
->cmd_flags
& REQ_PRIO
) && !cfqq
->prio_pending
)
3420 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3422 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3425 /* An idle queue should not be idle now for some reason */
3426 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
3429 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3433 * if this request is as-good as one we would expect from the
3434 * current cfqq, let it preempt
3436 if (cfq_rq_close(cfqd
, cfqq
, rq
))
3443 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3444 * let it have half of its nominal slice.
3446 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3448 enum wl_type_t old_type
= cfqq_type(cfqd
->active_queue
);
3450 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3451 cfq_slice_expired(cfqd
, 1);
3454 * workload type is changed, don't save slice, otherwise preempt
3457 if (old_type
!= cfqq_type(cfqq
))
3458 cfqq
->cfqg
->saved_workload_slice
= 0;
3461 * Put the new queue at the front of the of the current list,
3462 * so we know that it will be selected next.
3464 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3466 cfq_service_tree_add(cfqd
, cfqq
, 1);
3468 cfqq
->slice_end
= 0;
3469 cfq_mark_cfqq_slice_new(cfqq
);
3473 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3474 * something we should do about it
3477 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3480 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
3483 if (rq
->cmd_flags
& REQ_PRIO
)
3484 cfqq
->prio_pending
++;
3486 cfq_update_io_thinktime(cfqd
, cfqq
, cic
);
3487 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3488 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3490 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3492 if (cfqq
== cfqd
->active_queue
) {
3494 * Remember that we saw a request from this process, but
3495 * don't start queuing just yet. Otherwise we risk seeing lots
3496 * of tiny requests, because we disrupt the normal plugging
3497 * and merging. If the request is already larger than a single
3498 * page, let it rip immediately. For that case we assume that
3499 * merging is already done. Ditto for a busy system that
3500 * has other work pending, don't risk delaying until the
3501 * idle timer unplug to continue working.
3503 if (cfq_cfqq_wait_request(cfqq
)) {
3504 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3505 cfqd
->busy_queues
> 1) {
3506 cfq_del_timer(cfqd
, cfqq
);
3507 cfq_clear_cfqq_wait_request(cfqq
);
3508 __blk_run_queue(cfqd
->queue
);
3510 cfqg_stats_update_idle_time(cfqq
->cfqg
);
3511 cfq_mark_cfqq_must_dispatch(cfqq
);
3514 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3516 * not the active queue - expire current slice if it is
3517 * idle and has expired it's mean thinktime or this new queue
3518 * has some old slice time left and is of higher priority or
3519 * this new queue is RT and the current one is BE
3521 cfq_preempt_queue(cfqd
, cfqq
);
3522 __blk_run_queue(cfqd
->queue
);
3526 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3528 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3529 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3531 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3532 cfq_init_prio_data(cfqq
, RQ_CIC(rq
));
3534 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3535 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3537 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqd
->serving_group
,
3539 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3543 * Update hw_tag based on peak queue depth over 50 samples under
3546 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3548 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3550 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
3551 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
3553 if (cfqd
->hw_tag
== 1)
3556 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3557 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
3561 * If active queue hasn't enough requests and can idle, cfq might not
3562 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3565 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3566 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3567 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
3570 if (cfqd
->hw_tag_samples
++ < 50)
3573 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3579 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3581 struct cfq_io_cq
*cic
= cfqd
->active_cic
;
3583 /* If the queue already has requests, don't wait */
3584 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3587 /* If there are other queues in the group, don't wait */
3588 if (cfqq
->cfqg
->nr_cfqq
> 1)
3591 /* the only queue in the group, but think time is big */
3592 if (cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true))
3595 if (cfq_slice_used(cfqq
))
3598 /* if slice left is less than think time, wait busy */
3599 if (cic
&& sample_valid(cic
->ttime
.ttime_samples
)
3600 && (cfqq
->slice_end
- jiffies
< cic
->ttime
.ttime_mean
))
3604 * If think times is less than a jiffy than ttime_mean=0 and above
3605 * will not be true. It might happen that slice has not expired yet
3606 * but will expire soon (4-5 ns) during select_queue(). To cover the
3607 * case where think time is less than a jiffy, mark the queue wait
3608 * busy if only 1 jiffy is left in the slice.
3610 if (cfqq
->slice_end
- jiffies
== 1)
3616 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3618 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3619 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3620 const int sync
= rq_is_sync(rq
);
3624 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d",
3625 !!(rq
->cmd_flags
& REQ_NOIDLE
));
3627 cfq_update_hw_tag(cfqd
);
3629 WARN_ON(!cfqd
->rq_in_driver
);
3630 WARN_ON(!cfqq
->dispatched
);
3631 cfqd
->rq_in_driver
--;
3633 (RQ_CFQG(rq
))->dispatched
--;
3634 cfqg_stats_update_completion(cfqq
->cfqg
, rq_start_time_ns(rq
),
3635 rq_io_start_time_ns(rq
), rq
->cmd_flags
);
3637 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
3640 struct cfq_rb_root
*service_tree
;
3642 RQ_CIC(rq
)->ttime
.last_end_request
= now
;
3644 if (cfq_cfqq_on_rr(cfqq
))
3645 service_tree
= cfqq
->service_tree
;
3647 service_tree
= service_tree_for(cfqq
->cfqg
,
3648 cfqq_prio(cfqq
), cfqq_type(cfqq
));
3649 service_tree
->ttime
.last_end_request
= now
;
3650 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3651 cfqd
->last_delayed_sync
= now
;
3654 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3655 cfqq
->cfqg
->ttime
.last_end_request
= now
;
3659 * If this is the active queue, check if it needs to be expired,
3660 * or if we want to idle in case it has no pending requests.
3662 if (cfqd
->active_queue
== cfqq
) {
3663 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3665 if (cfq_cfqq_slice_new(cfqq
)) {
3666 cfq_set_prio_slice(cfqd
, cfqq
);
3667 cfq_clear_cfqq_slice_new(cfqq
);
3671 * Should we wait for next request to come in before we expire
3674 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3675 unsigned long extend_sl
= cfqd
->cfq_slice_idle
;
3676 if (!cfqd
->cfq_slice_idle
)
3677 extend_sl
= cfqd
->cfq_group_idle
;
3678 cfqq
->slice_end
= jiffies
+ extend_sl
;
3679 cfq_mark_cfqq_wait_busy(cfqq
);
3680 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
3684 * Idling is not enabled on:
3686 * - idle-priority queues
3688 * - queues with still some requests queued
3689 * - when there is a close cooperator
3691 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3692 cfq_slice_expired(cfqd
, 1);
3693 else if (sync
&& cfqq_empty
&&
3694 !cfq_close_cooperator(cfqd
, cfqq
)) {
3695 cfq_arm_slice_timer(cfqd
);
3699 if (!cfqd
->rq_in_driver
)
3700 cfq_schedule_dispatch(cfqd
);
3703 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3705 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3706 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3707 return ELV_MQUEUE_MUST
;
3710 return ELV_MQUEUE_MAY
;
3713 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3715 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3716 struct task_struct
*tsk
= current
;
3717 struct cfq_io_cq
*cic
;
3718 struct cfq_queue
*cfqq
;
3721 * don't force setup of a queue from here, as a call to may_queue
3722 * does not necessarily imply that a request actually will be queued.
3723 * so just lookup a possibly existing queue, or return 'may queue'
3726 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3728 return ELV_MQUEUE_MAY
;
3730 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3732 cfq_init_prio_data(cfqq
, cic
);
3734 return __cfq_may_queue(cfqq
);
3737 return ELV_MQUEUE_MAY
;
3741 * queue lock held here
3743 static void cfq_put_request(struct request
*rq
)
3745 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3748 const int rw
= rq_data_dir(rq
);
3750 BUG_ON(!cfqq
->allocated
[rw
]);
3751 cfqq
->allocated
[rw
]--;
3753 /* Put down rq reference on cfqg */
3754 cfqg_put(RQ_CFQG(rq
));
3755 rq
->elv
.priv
[0] = NULL
;
3756 rq
->elv
.priv
[1] = NULL
;
3758 cfq_put_queue(cfqq
);
3762 static struct cfq_queue
*
3763 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_cq
*cic
,
3764 struct cfq_queue
*cfqq
)
3766 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3767 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3768 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3769 cfq_put_queue(cfqq
);
3770 return cic_to_cfqq(cic
, 1);
3774 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3775 * was the last process referring to said cfqq.
3777 static struct cfq_queue
*
3778 split_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
)
3780 if (cfqq_process_refs(cfqq
) == 1) {
3781 cfqq
->pid
= current
->pid
;
3782 cfq_clear_cfqq_coop(cfqq
);
3783 cfq_clear_cfqq_split_coop(cfqq
);
3787 cic_set_cfqq(cic
, NULL
, 1);
3789 cfq_put_cooperator(cfqq
);
3791 cfq_put_queue(cfqq
);
3795 * Allocate cfq data structures associated with this request.
3798 cfq_set_request(struct request_queue
*q
, struct request
*rq
, struct bio
*bio
,
3801 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3802 struct cfq_io_cq
*cic
= icq_to_cic(rq
->elv
.icq
);
3803 const int rw
= rq_data_dir(rq
);
3804 const bool is_sync
= rq_is_sync(rq
);
3805 struct cfq_queue
*cfqq
;
3807 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3809 spin_lock_irq(q
->queue_lock
);
3811 check_ioprio_changed(cic
, bio
);
3812 check_blkcg_changed(cic
, bio
);
3814 cfqq
= cic_to_cfqq(cic
, is_sync
);
3815 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3816 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
, bio
, gfp_mask
);
3817 cic_set_cfqq(cic
, cfqq
, is_sync
);
3820 * If the queue was seeky for too long, break it apart.
3822 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3823 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3824 cfqq
= split_cfqq(cic
, cfqq
);
3830 * Check to see if this queue is scheduled to merge with
3831 * another, closely cooperating queue. The merging of
3832 * queues happens here as it must be done in process context.
3833 * The reference on new_cfqq was taken in merge_cfqqs.
3836 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3839 cfqq
->allocated
[rw
]++;
3842 cfqg_get(cfqq
->cfqg
);
3843 rq
->elv
.priv
[0] = cfqq
;
3844 rq
->elv
.priv
[1] = cfqq
->cfqg
;
3845 spin_unlock_irq(q
->queue_lock
);
3849 static void cfq_kick_queue(struct work_struct
*work
)
3851 struct cfq_data
*cfqd
=
3852 container_of(work
, struct cfq_data
, unplug_work
);
3853 struct request_queue
*q
= cfqd
->queue
;
3855 spin_lock_irq(q
->queue_lock
);
3856 __blk_run_queue(cfqd
->queue
);
3857 spin_unlock_irq(q
->queue_lock
);
3861 * Timer running if the active_queue is currently idling inside its time slice
3863 static void cfq_idle_slice_timer(unsigned long data
)
3865 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3866 struct cfq_queue
*cfqq
;
3867 unsigned long flags
;
3870 cfq_log(cfqd
, "idle timer fired");
3872 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3874 cfqq
= cfqd
->active_queue
;
3879 * We saw a request before the queue expired, let it through
3881 if (cfq_cfqq_must_dispatch(cfqq
))
3887 if (cfq_slice_used(cfqq
))
3891 * only expire and reinvoke request handler, if there are
3892 * other queues with pending requests
3894 if (!cfqd
->busy_queues
)
3898 * not expired and it has a request pending, let it dispatch
3900 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3904 * Queue depth flag is reset only when the idle didn't succeed
3906 cfq_clear_cfqq_deep(cfqq
);
3909 cfq_slice_expired(cfqd
, timed_out
);
3911 cfq_schedule_dispatch(cfqd
);
3913 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3916 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3918 del_timer_sync(&cfqd
->idle_slice_timer
);
3919 cancel_work_sync(&cfqd
->unplug_work
);
3922 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3926 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3927 if (cfqd
->async_cfqq
[0][i
])
3928 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3929 if (cfqd
->async_cfqq
[1][i
])
3930 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3933 if (cfqd
->async_idle_cfqq
)
3934 cfq_put_queue(cfqd
->async_idle_cfqq
);
3937 static void cfq_exit_queue(struct elevator_queue
*e
)
3939 struct cfq_data
*cfqd
= e
->elevator_data
;
3940 struct request_queue
*q
= cfqd
->queue
;
3942 cfq_shutdown_timer_wq(cfqd
);
3944 spin_lock_irq(q
->queue_lock
);
3946 if (cfqd
->active_queue
)
3947 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3949 cfq_put_async_queues(cfqd
);
3951 spin_unlock_irq(q
->queue_lock
);
3953 cfq_shutdown_timer_wq(cfqd
);
3955 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3956 blkcg_deactivate_policy(q
, &blkcg_policy_cfq
);
3958 kfree(cfqd
->root_group
);
3963 static int cfq_init_queue(struct request_queue
*q
)
3965 struct cfq_data
*cfqd
;
3966 struct blkcg_gq
*blkg __maybe_unused
;
3969 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3974 q
->elevator
->elevator_data
= cfqd
;
3976 /* Init root service tree */
3977 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3979 /* Init root group and prefer root group over other groups by default */
3980 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3981 ret
= blkcg_activate_policy(q
, &blkcg_policy_cfq
);
3985 cfqd
->root_group
= blkg_to_cfqg(q
->root_blkg
);
3988 cfqd
->root_group
= kzalloc_node(sizeof(*cfqd
->root_group
),
3989 GFP_KERNEL
, cfqd
->queue
->node
);
3990 if (!cfqd
->root_group
)
3993 cfq_init_cfqg_base(cfqd
->root_group
);
3995 cfqd
->root_group
->weight
= 2 * CFQ_WEIGHT_DEFAULT
;
3998 * Not strictly needed (since RB_ROOT just clears the node and we
3999 * zeroed cfqd on alloc), but better be safe in case someone decides
4000 * to add magic to the rb code
4002 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
4003 cfqd
->prio_trees
[i
] = RB_ROOT
;
4006 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4007 * Grab a permanent reference to it, so that the normal code flow
4008 * will not attempt to free it. oom_cfqq is linked to root_group
4009 * but shouldn't hold a reference as it'll never be unlinked. Lose
4010 * the reference from linking right away.
4012 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
4013 cfqd
->oom_cfqq
.ref
++;
4015 spin_lock_irq(q
->queue_lock
);
4016 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, cfqd
->root_group
);
4017 cfqg_put(cfqd
->root_group
);
4018 spin_unlock_irq(q
->queue_lock
);
4020 init_timer(&cfqd
->idle_slice_timer
);
4021 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
4022 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
4024 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
4026 cfqd
->cfq_quantum
= cfq_quantum
;
4027 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
4028 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
4029 cfqd
->cfq_back_max
= cfq_back_max
;
4030 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
4031 cfqd
->cfq_slice
[0] = cfq_slice_async
;
4032 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
4033 cfqd
->cfq_target_latency
= cfq_target_latency
;
4034 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
4035 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
4036 cfqd
->cfq_group_idle
= cfq_group_idle
;
4037 cfqd
->cfq_latency
= 1;
4040 * we optimistically start assuming sync ops weren't delayed in last
4041 * second, in order to have larger depth for async operations.
4043 cfqd
->last_delayed_sync
= jiffies
- HZ
;
4052 * sysfs parts below -->
4055 cfq_var_show(unsigned int var
, char *page
)
4057 return sprintf(page
, "%d\n", var
);
4061 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
4063 char *p
= (char *) page
;
4065 *var
= simple_strtoul(p
, &p
, 10);
4069 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4070 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4072 struct cfq_data *cfqd = e->elevator_data; \
4073 unsigned int __data = __VAR; \
4075 __data = jiffies_to_msecs(__data); \
4076 return cfq_var_show(__data, (page)); \
4078 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
4079 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
4080 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
4081 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
4082 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
4083 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
4084 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4085 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4086 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4087 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4088 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4089 SHOW_FUNCTION(cfq_target_latency_show
, cfqd
->cfq_target_latency
, 1);
4090 #undef SHOW_FUNCTION
4092 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4093 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4095 struct cfq_data *cfqd = e->elevator_data; \
4096 unsigned int __data; \
4097 int ret = cfq_var_store(&__data, (page), count); \
4098 if (__data < (MIN)) \
4100 else if (__data > (MAX)) \
4103 *(__PTR) = msecs_to_jiffies(__data); \
4105 *(__PTR) = __data; \
4108 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4109 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4111 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4113 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4114 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4116 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4117 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4118 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4119 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4120 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4122 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4123 STORE_FUNCTION(cfq_target_latency_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
, 1);
4124 #undef STORE_FUNCTION
4126 #define CFQ_ATTR(name) \
4127 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4129 static struct elv_fs_entry cfq_attrs
[] = {
4131 CFQ_ATTR(fifo_expire_sync
),
4132 CFQ_ATTR(fifo_expire_async
),
4133 CFQ_ATTR(back_seek_max
),
4134 CFQ_ATTR(back_seek_penalty
),
4135 CFQ_ATTR(slice_sync
),
4136 CFQ_ATTR(slice_async
),
4137 CFQ_ATTR(slice_async_rq
),
4138 CFQ_ATTR(slice_idle
),
4139 CFQ_ATTR(group_idle
),
4140 CFQ_ATTR(low_latency
),
4141 CFQ_ATTR(target_latency
),
4145 static struct elevator_type iosched_cfq
= {
4147 .elevator_merge_fn
= cfq_merge
,
4148 .elevator_merged_fn
= cfq_merged_request
,
4149 .elevator_merge_req_fn
= cfq_merged_requests
,
4150 .elevator_allow_merge_fn
= cfq_allow_merge
,
4151 .elevator_bio_merged_fn
= cfq_bio_merged
,
4152 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4153 .elevator_add_req_fn
= cfq_insert_request
,
4154 .elevator_activate_req_fn
= cfq_activate_request
,
4155 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4156 .elevator_completed_req_fn
= cfq_completed_request
,
4157 .elevator_former_req_fn
= elv_rb_former_request
,
4158 .elevator_latter_req_fn
= elv_rb_latter_request
,
4159 .elevator_init_icq_fn
= cfq_init_icq
,
4160 .elevator_exit_icq_fn
= cfq_exit_icq
,
4161 .elevator_set_req_fn
= cfq_set_request
,
4162 .elevator_put_req_fn
= cfq_put_request
,
4163 .elevator_may_queue_fn
= cfq_may_queue
,
4164 .elevator_init_fn
= cfq_init_queue
,
4165 .elevator_exit_fn
= cfq_exit_queue
,
4167 .icq_size
= sizeof(struct cfq_io_cq
),
4168 .icq_align
= __alignof__(struct cfq_io_cq
),
4169 .elevator_attrs
= cfq_attrs
,
4170 .elevator_name
= "cfq",
4171 .elevator_owner
= THIS_MODULE
,
4174 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4175 static struct blkcg_policy blkcg_policy_cfq
= {
4176 .pd_size
= sizeof(struct cfq_group
),
4177 .cftypes
= cfq_blkcg_files
,
4179 .pd_init_fn
= cfq_pd_init
,
4180 .pd_reset_stats_fn
= cfq_pd_reset_stats
,
4184 static int __init
cfq_init(void)
4189 * could be 0 on HZ < 1000 setups
4191 if (!cfq_slice_async
)
4192 cfq_slice_async
= 1;
4193 if (!cfq_slice_idle
)
4196 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4197 if (!cfq_group_idle
)
4200 ret
= blkcg_policy_register(&blkcg_policy_cfq
);
4208 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
4212 ret
= elv_register(&iosched_cfq
);
4219 kmem_cache_destroy(cfq_pool
);
4221 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4222 blkcg_policy_unregister(&blkcg_policy_cfq
);
4227 static void __exit
cfq_exit(void)
4229 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4230 blkcg_policy_unregister(&blkcg_policy_cfq
);
4232 elv_unregister(&iosched_cfq
);
4233 kmem_cache_destroy(cfq_pool
);
4236 module_init(cfq_init
);
4237 module_exit(cfq_exit
);
4239 MODULE_AUTHOR("Jens Axboe");
4240 MODULE_LICENSE("GPL");
4241 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");