[IPSEC]: SPD auditing fix to include the netmask/prefix-length
[linux-2.6/cjktty.git] / kernel / time / tick-broadcast.c
blob5b86698faa0b08cc1411331c71aaf0ce466ee106
1 /*
2 * linux/kernel/time/tick-broadcast.c
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/irq.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
23 #include "tick-internal.h"
26 * Broadcast support for broken x86 hardware, where the local apic
27 * timer stops in C3 state.
30 struct tick_device tick_broadcast_device;
31 static cpumask_t tick_broadcast_mask;
32 static DEFINE_SPINLOCK(tick_broadcast_lock);
34 #ifdef CONFIG_TICK_ONESHOT
35 static void tick_broadcast_clear_oneshot(int cpu);
36 #else
37 static inline void tick_broadcast_clear_oneshot(int cpu) { }
38 #endif
41 * Debugging: see timer_list.c
43 struct tick_device *tick_get_broadcast_device(void)
45 return &tick_broadcast_device;
48 cpumask_t *tick_get_broadcast_mask(void)
50 return &tick_broadcast_mask;
54 * Start the device in periodic mode
56 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
58 if (bc)
59 tick_setup_periodic(bc, 1);
63 * Check, if the device can be utilized as broadcast device:
65 int tick_check_broadcast_device(struct clock_event_device *dev)
67 if ((tick_broadcast_device.evtdev &&
68 tick_broadcast_device.evtdev->rating >= dev->rating) ||
69 (dev->features & CLOCK_EVT_FEAT_C3STOP))
70 return 0;
72 clockevents_exchange_device(NULL, dev);
73 tick_broadcast_device.evtdev = dev;
74 if (!cpus_empty(tick_broadcast_mask))
75 tick_broadcast_start_periodic(dev);
76 return 1;
80 * Check, if the device is the broadcast device
82 int tick_is_broadcast_device(struct clock_event_device *dev)
84 return (dev && tick_broadcast_device.evtdev == dev);
88 * Check, if the device is disfunctional and a place holder, which
89 * needs to be handled by the broadcast device.
91 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
93 unsigned long flags;
94 int ret = 0;
96 spin_lock_irqsave(&tick_broadcast_lock, flags);
99 * Devices might be registered with both periodic and oneshot
100 * mode disabled. This signals, that the device needs to be
101 * operated from the broadcast device and is a placeholder for
102 * the cpu local device.
104 if (!tick_device_is_functional(dev)) {
105 dev->event_handler = tick_handle_periodic;
106 cpu_set(cpu, tick_broadcast_mask);
107 tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
108 ret = 1;
109 } else {
111 * When the new device is not affected by the stop
112 * feature and the cpu is marked in the broadcast mask
113 * then clear the broadcast bit.
115 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
116 int cpu = smp_processor_id();
118 cpu_clear(cpu, tick_broadcast_mask);
119 tick_broadcast_clear_oneshot(cpu);
122 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
123 return ret;
127 * Broadcast the event to the cpus, which are set in the mask
129 int tick_do_broadcast(cpumask_t mask)
131 int ret = 0, cpu = smp_processor_id();
132 struct tick_device *td;
135 * Check, if the current cpu is in the mask
137 if (cpu_isset(cpu, mask)) {
138 cpu_clear(cpu, mask);
139 td = &per_cpu(tick_cpu_device, cpu);
140 td->evtdev->event_handler(td->evtdev);
141 ret = 1;
144 if (!cpus_empty(mask)) {
146 * It might be necessary to actually check whether the devices
147 * have different broadcast functions. For now, just use the
148 * one of the first device. This works as long as we have this
149 * misfeature only on x86 (lapic)
151 cpu = first_cpu(mask);
152 td = &per_cpu(tick_cpu_device, cpu);
153 td->evtdev->broadcast(mask);
154 ret = 1;
156 return ret;
160 * Periodic broadcast:
161 * - invoke the broadcast handlers
163 static void tick_do_periodic_broadcast(void)
165 cpumask_t mask;
167 spin_lock(&tick_broadcast_lock);
169 cpus_and(mask, cpu_online_map, tick_broadcast_mask);
170 tick_do_broadcast(mask);
172 spin_unlock(&tick_broadcast_lock);
176 * Event handler for periodic broadcast ticks
178 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
180 tick_do_periodic_broadcast();
183 * The device is in periodic mode. No reprogramming necessary:
185 if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
186 return;
189 * Setup the next period for devices, which do not have
190 * periodic mode:
192 for (;;) {
193 ktime_t next = ktime_add(dev->next_event, tick_period);
195 if (!clockevents_program_event(dev, next, ktime_get()))
196 return;
197 tick_do_periodic_broadcast();
202 * Powerstate information: The system enters/leaves a state, where
203 * affected devices might stop
205 static void tick_do_broadcast_on_off(void *why)
207 struct clock_event_device *bc, *dev;
208 struct tick_device *td;
209 unsigned long flags, *reason = why;
210 int cpu;
212 spin_lock_irqsave(&tick_broadcast_lock, flags);
214 cpu = smp_processor_id();
215 td = &per_cpu(tick_cpu_device, cpu);
216 dev = td->evtdev;
217 bc = tick_broadcast_device.evtdev;
220 * Is the device not affected by the powerstate ?
222 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
223 goto out;
225 if (!tick_device_is_functional(dev))
226 goto out;
228 switch (*reason) {
229 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
230 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
231 if (!cpu_isset(cpu, tick_broadcast_mask)) {
232 cpu_set(cpu, tick_broadcast_mask);
233 if (td->mode == TICKDEV_MODE_PERIODIC)
234 clockevents_set_mode(dev,
235 CLOCK_EVT_MODE_SHUTDOWN);
237 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
238 dev->features |= CLOCK_EVT_FEAT_DUMMY;
239 break;
240 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
241 if (cpu_isset(cpu, tick_broadcast_mask)) {
242 cpu_clear(cpu, tick_broadcast_mask);
243 if (td->mode == TICKDEV_MODE_PERIODIC)
244 tick_setup_periodic(dev, 0);
246 break;
249 if (cpus_empty(tick_broadcast_mask))
250 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
251 else {
252 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
253 tick_broadcast_start_periodic(bc);
254 else
255 tick_broadcast_setup_oneshot(bc);
257 out:
258 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
262 * Powerstate information: The system enters/leaves a state, where
263 * affected devices might stop.
265 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
267 if (!cpu_isset(*oncpu, cpu_online_map))
268 printk(KERN_ERR "tick-braodcast: ignoring broadcast for "
269 "offline CPU #%d\n", *oncpu);
270 else
271 smp_call_function_single(*oncpu, tick_do_broadcast_on_off,
272 &reason, 1, 1);
276 * Set the periodic handler depending on broadcast on/off
278 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
280 if (!broadcast)
281 dev->event_handler = tick_handle_periodic;
282 else
283 dev->event_handler = tick_handle_periodic_broadcast;
287 * Remove a CPU from broadcasting
289 void tick_shutdown_broadcast(unsigned int *cpup)
291 struct clock_event_device *bc;
292 unsigned long flags;
293 unsigned int cpu = *cpup;
295 spin_lock_irqsave(&tick_broadcast_lock, flags);
297 bc = tick_broadcast_device.evtdev;
298 cpu_clear(cpu, tick_broadcast_mask);
300 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
301 if (bc && cpus_empty(tick_broadcast_mask))
302 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
305 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
308 void tick_suspend_broadcast(void)
310 struct clock_event_device *bc;
311 unsigned long flags;
313 spin_lock_irqsave(&tick_broadcast_lock, flags);
315 bc = tick_broadcast_device.evtdev;
316 if (bc)
317 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
319 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
322 int tick_resume_broadcast(void)
324 struct clock_event_device *bc;
325 unsigned long flags;
326 int broadcast = 0;
328 spin_lock_irqsave(&tick_broadcast_lock, flags);
330 bc = tick_broadcast_device.evtdev;
332 if (bc) {
333 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
335 switch (tick_broadcast_device.mode) {
336 case TICKDEV_MODE_PERIODIC:
337 if(!cpus_empty(tick_broadcast_mask))
338 tick_broadcast_start_periodic(bc);
339 broadcast = cpu_isset(smp_processor_id(),
340 tick_broadcast_mask);
341 break;
342 case TICKDEV_MODE_ONESHOT:
343 broadcast = tick_resume_broadcast_oneshot(bc);
344 break;
347 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
349 return broadcast;
353 #ifdef CONFIG_TICK_ONESHOT
355 static cpumask_t tick_broadcast_oneshot_mask;
358 * Debugging: see timer_list.c
360 cpumask_t *tick_get_broadcast_oneshot_mask(void)
362 return &tick_broadcast_oneshot_mask;
365 static int tick_broadcast_set_event(ktime_t expires, int force)
367 struct clock_event_device *bc = tick_broadcast_device.evtdev;
368 ktime_t now = ktime_get();
369 int res;
371 for(;;) {
372 res = clockevents_program_event(bc, expires, now);
373 if (!res || !force)
374 return res;
375 now = ktime_get();
376 expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
380 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
382 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
383 return 0;
387 * Handle oneshot mode broadcasting
389 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
391 struct tick_device *td;
392 cpumask_t mask;
393 ktime_t now, next_event;
394 int cpu;
396 spin_lock(&tick_broadcast_lock);
397 again:
398 dev->next_event.tv64 = KTIME_MAX;
399 next_event.tv64 = KTIME_MAX;
400 mask = CPU_MASK_NONE;
401 now = ktime_get();
402 /* Find all expired events */
403 for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
404 cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
405 td = &per_cpu(tick_cpu_device, cpu);
406 if (td->evtdev->next_event.tv64 <= now.tv64)
407 cpu_set(cpu, mask);
408 else if (td->evtdev->next_event.tv64 < next_event.tv64)
409 next_event.tv64 = td->evtdev->next_event.tv64;
413 * Wakeup the cpus which have an expired event.
415 tick_do_broadcast(mask);
418 * Two reasons for reprogram:
420 * - The global event did not expire any CPU local
421 * events. This happens in dyntick mode, as the maximum PIT
422 * delta is quite small.
424 * - There are pending events on sleeping CPUs which were not
425 * in the event mask
427 if (next_event.tv64 != KTIME_MAX) {
429 * Rearm the broadcast device. If event expired,
430 * repeat the above
432 if (tick_broadcast_set_event(next_event, 0))
433 goto again;
435 spin_unlock(&tick_broadcast_lock);
439 * Powerstate information: The system enters/leaves a state, where
440 * affected devices might stop
442 void tick_broadcast_oneshot_control(unsigned long reason)
444 struct clock_event_device *bc, *dev;
445 struct tick_device *td;
446 unsigned long flags;
447 int cpu;
449 spin_lock_irqsave(&tick_broadcast_lock, flags);
452 * Periodic mode does not care about the enter/exit of power
453 * states
455 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
456 goto out;
458 bc = tick_broadcast_device.evtdev;
459 cpu = smp_processor_id();
460 td = &per_cpu(tick_cpu_device, cpu);
461 dev = td->evtdev;
463 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
464 goto out;
466 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
467 if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
468 cpu_set(cpu, tick_broadcast_oneshot_mask);
469 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
470 if (dev->next_event.tv64 < bc->next_event.tv64)
471 tick_broadcast_set_event(dev->next_event, 1);
473 } else {
474 if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
475 cpu_clear(cpu, tick_broadcast_oneshot_mask);
476 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
477 if (dev->next_event.tv64 != KTIME_MAX)
478 tick_program_event(dev->next_event, 1);
482 out:
483 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
487 * Reset the one shot broadcast for a cpu
489 * Called with tick_broadcast_lock held
491 static void tick_broadcast_clear_oneshot(int cpu)
493 cpu_clear(cpu, tick_broadcast_oneshot_mask);
497 * tick_broadcast_setup_oneshot - setup the broadcast device
499 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
501 bc->event_handler = tick_handle_oneshot_broadcast;
502 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
503 bc->next_event.tv64 = KTIME_MAX;
507 * Select oneshot operating mode for the broadcast device
509 void tick_broadcast_switch_to_oneshot(void)
511 struct clock_event_device *bc;
512 unsigned long flags;
514 spin_lock_irqsave(&tick_broadcast_lock, flags);
516 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
517 bc = tick_broadcast_device.evtdev;
518 if (bc)
519 tick_broadcast_setup_oneshot(bc);
520 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
525 * Remove a dead CPU from broadcasting
527 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
529 unsigned long flags;
530 unsigned int cpu = *cpup;
532 spin_lock_irqsave(&tick_broadcast_lock, flags);
535 * Clear the broadcast mask flag for the dead cpu, but do not
536 * stop the broadcast device!
538 cpu_clear(cpu, tick_broadcast_oneshot_mask);
540 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
543 #endif