4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
52 bh
->b_end_io
= handler
;
53 bh
->b_private
= private;
55 EXPORT_SYMBOL(init_buffer
);
57 static int sync_buffer(void *word
)
59 struct block_device
*bd
;
60 struct buffer_head
*bh
61 = container_of(word
, struct buffer_head
, b_state
);
66 blk_run_address_space(bd
->bd_inode
->i_mapping
);
71 void __lock_buffer(struct buffer_head
*bh
)
73 wait_on_bit_lock(&bh
->b_state
, BH_Lock
, sync_buffer
,
74 TASK_UNINTERRUPTIBLE
);
76 EXPORT_SYMBOL(__lock_buffer
);
78 void unlock_buffer(struct buffer_head
*bh
)
80 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh
->b_state
, BH_Lock
);
84 EXPORT_SYMBOL(unlock_buffer
);
87 * Block until a buffer comes unlocked. This doesn't stop it
88 * from becoming locked again - you have to lock it yourself
89 * if you want to preserve its state.
91 void __wait_on_buffer(struct buffer_head
* bh
)
93 wait_on_bit(&bh
->b_state
, BH_Lock
, sync_buffer
, TASK_UNINTERRUPTIBLE
);
95 EXPORT_SYMBOL(__wait_on_buffer
);
98 __clear_page_buffers(struct page
*page
)
100 ClearPagePrivate(page
);
101 set_page_private(page
, 0);
102 page_cache_release(page
);
106 static int quiet_error(struct buffer_head
*bh
)
108 if (!test_bit(BH_Quiet
, &bh
->b_state
) && printk_ratelimit())
114 static void buffer_io_error(struct buffer_head
*bh
)
116 char b
[BDEVNAME_SIZE
];
117 printk(KERN_ERR
"Buffer I/O error on device %s, logical block %Lu\n",
118 bdevname(bh
->b_bdev
, b
),
119 (unsigned long long)bh
->b_blocknr
);
123 * End-of-IO handler helper function which does not touch the bh after
125 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
126 * a race there is benign: unlock_buffer() only use the bh's address for
127 * hashing after unlocking the buffer, so it doesn't actually touch the bh
130 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
133 set_buffer_uptodate(bh
);
135 /* This happens, due to failed READA attempts. */
136 clear_buffer_uptodate(bh
);
142 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
143 * unlock the buffer. This is what ll_rw_block uses too.
145 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
147 __end_buffer_read_notouch(bh
, uptodate
);
150 EXPORT_SYMBOL(end_buffer_read_sync
);
152 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
154 char b
[BDEVNAME_SIZE
];
157 set_buffer_uptodate(bh
);
159 if (!buffer_eopnotsupp(bh
) && !quiet_error(bh
)) {
161 printk(KERN_WARNING
"lost page write due to "
163 bdevname(bh
->b_bdev
, b
));
165 set_buffer_write_io_error(bh
);
166 clear_buffer_uptodate(bh
);
171 EXPORT_SYMBOL(end_buffer_write_sync
);
174 * Various filesystems appear to want __find_get_block to be non-blocking.
175 * But it's the page lock which protects the buffers. To get around this,
176 * we get exclusion from try_to_free_buffers with the blockdev mapping's
179 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
180 * may be quite high. This code could TryLock the page, and if that
181 * succeeds, there is no need to take private_lock. (But if
182 * private_lock is contended then so is mapping->tree_lock).
184 static struct buffer_head
*
185 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
187 struct inode
*bd_inode
= bdev
->bd_inode
;
188 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
189 struct buffer_head
*ret
= NULL
;
191 struct buffer_head
*bh
;
192 struct buffer_head
*head
;
196 index
= block
>> (PAGE_CACHE_SHIFT
- bd_inode
->i_blkbits
);
197 page
= find_get_page(bd_mapping
, index
);
201 spin_lock(&bd_mapping
->private_lock
);
202 if (!page_has_buffers(page
))
204 head
= page_buffers(page
);
207 if (!buffer_mapped(bh
))
209 else if (bh
->b_blocknr
== block
) {
214 bh
= bh
->b_this_page
;
215 } while (bh
!= head
);
217 /* we might be here because some of the buffers on this page are
218 * not mapped. This is due to various races between
219 * file io on the block device and getblk. It gets dealt with
220 * elsewhere, don't buffer_error if we had some unmapped buffers
223 printk("__find_get_block_slow() failed. "
224 "block=%llu, b_blocknr=%llu\n",
225 (unsigned long long)block
,
226 (unsigned long long)bh
->b_blocknr
);
227 printk("b_state=0x%08lx, b_size=%zu\n",
228 bh
->b_state
, bh
->b_size
);
229 printk("device blocksize: %d\n", 1 << bd_inode
->i_blkbits
);
232 spin_unlock(&bd_mapping
->private_lock
);
233 page_cache_release(page
);
238 /* If invalidate_buffers() will trash dirty buffers, it means some kind
239 of fs corruption is going on. Trashing dirty data always imply losing
240 information that was supposed to be just stored on the physical layer
243 Thus invalidate_buffers in general usage is not allwowed to trash
244 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
245 be preserved. These buffers are simply skipped.
247 We also skip buffers which are still in use. For example this can
248 happen if a userspace program is reading the block device.
250 NOTE: In the case where the user removed a removable-media-disk even if
251 there's still dirty data not synced on disk (due a bug in the device driver
252 or due an error of the user), by not destroying the dirty buffers we could
253 generate corruption also on the next media inserted, thus a parameter is
254 necessary to handle this case in the most safe way possible (trying
255 to not corrupt also the new disk inserted with the data belonging to
256 the old now corrupted disk). Also for the ramdisk the natural thing
257 to do in order to release the ramdisk memory is to destroy dirty buffers.
259 These are two special cases. Normal usage imply the device driver
260 to issue a sync on the device (without waiting I/O completion) and
261 then an invalidate_buffers call that doesn't trash dirty buffers.
263 For handling cache coherency with the blkdev pagecache the 'update' case
264 is been introduced. It is needed to re-read from disk any pinned
265 buffer. NOTE: re-reading from disk is destructive so we can do it only
266 when we assume nobody is changing the buffercache under our I/O and when
267 we think the disk contains more recent information than the buffercache.
268 The update == 1 pass marks the buffers we need to update, the update == 2
269 pass does the actual I/O. */
270 void invalidate_bdev(struct block_device
*bdev
)
272 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
274 if (mapping
->nrpages
== 0)
277 invalidate_bh_lrus();
278 lru_add_drain_all(); /* make sure all lru add caches are flushed */
279 invalidate_mapping_pages(mapping
, 0, -1);
281 EXPORT_SYMBOL(invalidate_bdev
);
284 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
286 static void free_more_memory(void)
291 wakeup_flusher_threads(1024);
294 for_each_online_node(nid
) {
295 (void)first_zones_zonelist(node_zonelist(nid
, GFP_NOFS
),
296 gfp_zone(GFP_NOFS
), NULL
,
299 try_to_free_pages(node_zonelist(nid
, GFP_NOFS
), 0,
305 * I/O completion handler for block_read_full_page() - pages
306 * which come unlocked at the end of I/O.
308 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
311 struct buffer_head
*first
;
312 struct buffer_head
*tmp
;
314 int page_uptodate
= 1;
316 BUG_ON(!buffer_async_read(bh
));
320 set_buffer_uptodate(bh
);
322 clear_buffer_uptodate(bh
);
323 if (!quiet_error(bh
))
329 * Be _very_ careful from here on. Bad things can happen if
330 * two buffer heads end IO at almost the same time and both
331 * decide that the page is now completely done.
333 first
= page_buffers(page
);
334 local_irq_save(flags
);
335 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
336 clear_buffer_async_read(bh
);
340 if (!buffer_uptodate(tmp
))
342 if (buffer_async_read(tmp
)) {
343 BUG_ON(!buffer_locked(tmp
));
346 tmp
= tmp
->b_this_page
;
348 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
349 local_irq_restore(flags
);
352 * If none of the buffers had errors and they are all
353 * uptodate then we can set the page uptodate.
355 if (page_uptodate
&& !PageError(page
))
356 SetPageUptodate(page
);
361 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
362 local_irq_restore(flags
);
367 * Completion handler for block_write_full_page() - pages which are unlocked
368 * during I/O, and which have PageWriteback cleared upon I/O completion.
370 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
372 char b
[BDEVNAME_SIZE
];
374 struct buffer_head
*first
;
375 struct buffer_head
*tmp
;
378 BUG_ON(!buffer_async_write(bh
));
382 set_buffer_uptodate(bh
);
384 if (!quiet_error(bh
)) {
386 printk(KERN_WARNING
"lost page write due to "
388 bdevname(bh
->b_bdev
, b
));
390 set_bit(AS_EIO
, &page
->mapping
->flags
);
391 set_buffer_write_io_error(bh
);
392 clear_buffer_uptodate(bh
);
396 first
= page_buffers(page
);
397 local_irq_save(flags
);
398 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
400 clear_buffer_async_write(bh
);
402 tmp
= bh
->b_this_page
;
404 if (buffer_async_write(tmp
)) {
405 BUG_ON(!buffer_locked(tmp
));
408 tmp
= tmp
->b_this_page
;
410 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
411 local_irq_restore(flags
);
412 end_page_writeback(page
);
416 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
417 local_irq_restore(flags
);
420 EXPORT_SYMBOL(end_buffer_async_write
);
423 * If a page's buffers are under async readin (end_buffer_async_read
424 * completion) then there is a possibility that another thread of
425 * control could lock one of the buffers after it has completed
426 * but while some of the other buffers have not completed. This
427 * locked buffer would confuse end_buffer_async_read() into not unlocking
428 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
429 * that this buffer is not under async I/O.
431 * The page comes unlocked when it has no locked buffer_async buffers
434 * PageLocked prevents anyone starting new async I/O reads any of
437 * PageWriteback is used to prevent simultaneous writeout of the same
440 * PageLocked prevents anyone from starting writeback of a page which is
441 * under read I/O (PageWriteback is only ever set against a locked page).
443 static void mark_buffer_async_read(struct buffer_head
*bh
)
445 bh
->b_end_io
= end_buffer_async_read
;
446 set_buffer_async_read(bh
);
449 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
450 bh_end_io_t
*handler
)
452 bh
->b_end_io
= handler
;
453 set_buffer_async_write(bh
);
456 void mark_buffer_async_write(struct buffer_head
*bh
)
458 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
460 EXPORT_SYMBOL(mark_buffer_async_write
);
464 * fs/buffer.c contains helper functions for buffer-backed address space's
465 * fsync functions. A common requirement for buffer-based filesystems is
466 * that certain data from the backing blockdev needs to be written out for
467 * a successful fsync(). For example, ext2 indirect blocks need to be
468 * written back and waited upon before fsync() returns.
470 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472 * management of a list of dependent buffers at ->i_mapping->private_list.
474 * Locking is a little subtle: try_to_free_buffers() will remove buffers
475 * from their controlling inode's queue when they are being freed. But
476 * try_to_free_buffers() will be operating against the *blockdev* mapping
477 * at the time, not against the S_ISREG file which depends on those buffers.
478 * So the locking for private_list is via the private_lock in the address_space
479 * which backs the buffers. Which is different from the address_space
480 * against which the buffers are listed. So for a particular address_space,
481 * mapping->private_lock does *not* protect mapping->private_list! In fact,
482 * mapping->private_list will always be protected by the backing blockdev's
485 * Which introduces a requirement: all buffers on an address_space's
486 * ->private_list must be from the same address_space: the blockdev's.
488 * address_spaces which do not place buffers at ->private_list via these
489 * utility functions are free to use private_lock and private_list for
490 * whatever they want. The only requirement is that list_empty(private_list)
491 * be true at clear_inode() time.
493 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
494 * filesystems should do that. invalidate_inode_buffers() should just go
495 * BUG_ON(!list_empty).
497 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
498 * take an address_space, not an inode. And it should be called
499 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
502 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503 * list if it is already on a list. Because if the buffer is on a list,
504 * it *must* already be on the right one. If not, the filesystem is being
505 * silly. This will save a ton of locking. But first we have to ensure
506 * that buffers are taken *off* the old inode's list when they are freed
507 * (presumably in truncate). That requires careful auditing of all
508 * filesystems (do it inside bforget()). It could also be done by bringing
513 * The buffer's backing address_space's private_lock must be held
515 static void __remove_assoc_queue(struct buffer_head
*bh
)
517 list_del_init(&bh
->b_assoc_buffers
);
518 WARN_ON(!bh
->b_assoc_map
);
519 if (buffer_write_io_error(bh
))
520 set_bit(AS_EIO
, &bh
->b_assoc_map
->flags
);
521 bh
->b_assoc_map
= NULL
;
524 int inode_has_buffers(struct inode
*inode
)
526 return !list_empty(&inode
->i_data
.private_list
);
530 * osync is designed to support O_SYNC io. It waits synchronously for
531 * all already-submitted IO to complete, but does not queue any new
532 * writes to the disk.
534 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535 * you dirty the buffers, and then use osync_inode_buffers to wait for
536 * completion. Any other dirty buffers which are not yet queued for
537 * write will not be flushed to disk by the osync.
539 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
541 struct buffer_head
*bh
;
547 list_for_each_prev(p
, list
) {
549 if (buffer_locked(bh
)) {
553 if (!buffer_uptodate(bh
))
564 static void do_thaw_one(struct super_block
*sb
, void *unused
)
566 char b
[BDEVNAME_SIZE
];
567 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
568 printk(KERN_WARNING
"Emergency Thaw on %s\n",
569 bdevname(sb
->s_bdev
, b
));
572 static void do_thaw_all(struct work_struct
*work
)
574 iterate_supers(do_thaw_one
, NULL
);
576 printk(KERN_WARNING
"Emergency Thaw complete\n");
580 * emergency_thaw_all -- forcibly thaw every frozen filesystem
582 * Used for emergency unfreeze of all filesystems via SysRq
584 void emergency_thaw_all(void)
586 struct work_struct
*work
;
588 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
590 INIT_WORK(work
, do_thaw_all
);
596 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
597 * @mapping: the mapping which wants those buffers written
599 * Starts I/O against the buffers at mapping->private_list, and waits upon
602 * Basically, this is a convenience function for fsync().
603 * @mapping is a file or directory which needs those buffers to be written for
604 * a successful fsync().
606 int sync_mapping_buffers(struct address_space
*mapping
)
608 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
610 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
613 return fsync_buffers_list(&buffer_mapping
->private_lock
,
614 &mapping
->private_list
);
616 EXPORT_SYMBOL(sync_mapping_buffers
);
619 * Called when we've recently written block `bblock', and it is known that
620 * `bblock' was for a buffer_boundary() buffer. This means that the block at
621 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
622 * dirty, schedule it for IO. So that indirects merge nicely with their data.
624 void write_boundary_block(struct block_device
*bdev
,
625 sector_t bblock
, unsigned blocksize
)
627 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
629 if (buffer_dirty(bh
))
630 ll_rw_block(WRITE
, 1, &bh
);
635 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
637 struct address_space
*mapping
= inode
->i_mapping
;
638 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
640 mark_buffer_dirty(bh
);
641 if (!mapping
->assoc_mapping
) {
642 mapping
->assoc_mapping
= buffer_mapping
;
644 BUG_ON(mapping
->assoc_mapping
!= buffer_mapping
);
646 if (!bh
->b_assoc_map
) {
647 spin_lock(&buffer_mapping
->private_lock
);
648 list_move_tail(&bh
->b_assoc_buffers
,
649 &mapping
->private_list
);
650 bh
->b_assoc_map
= mapping
;
651 spin_unlock(&buffer_mapping
->private_lock
);
654 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
657 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
660 * If warn is true, then emit a warning if the page is not uptodate and has
661 * not been truncated.
663 static void __set_page_dirty(struct page
*page
,
664 struct address_space
*mapping
, int warn
)
666 spin_lock_irq(&mapping
->tree_lock
);
667 if (page
->mapping
) { /* Race with truncate? */
668 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
669 account_page_dirtied(page
, mapping
);
670 radix_tree_tag_set(&mapping
->page_tree
,
671 page_index(page
), PAGECACHE_TAG_DIRTY
);
673 spin_unlock_irq(&mapping
->tree_lock
);
674 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
678 * Add a page to the dirty page list.
680 * It is a sad fact of life that this function is called from several places
681 * deeply under spinlocking. It may not sleep.
683 * If the page has buffers, the uptodate buffers are set dirty, to preserve
684 * dirty-state coherency between the page and the buffers. It the page does
685 * not have buffers then when they are later attached they will all be set
688 * The buffers are dirtied before the page is dirtied. There's a small race
689 * window in which a writepage caller may see the page cleanness but not the
690 * buffer dirtiness. That's fine. If this code were to set the page dirty
691 * before the buffers, a concurrent writepage caller could clear the page dirty
692 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693 * page on the dirty page list.
695 * We use private_lock to lock against try_to_free_buffers while using the
696 * page's buffer list. Also use this to protect against clean buffers being
697 * added to the page after it was set dirty.
699 * FIXME: may need to call ->reservepage here as well. That's rather up to the
700 * address_space though.
702 int __set_page_dirty_buffers(struct page
*page
)
705 struct address_space
*mapping
= page_mapping(page
);
707 if (unlikely(!mapping
))
708 return !TestSetPageDirty(page
);
710 spin_lock(&mapping
->private_lock
);
711 if (page_has_buffers(page
)) {
712 struct buffer_head
*head
= page_buffers(page
);
713 struct buffer_head
*bh
= head
;
716 set_buffer_dirty(bh
);
717 bh
= bh
->b_this_page
;
718 } while (bh
!= head
);
720 newly_dirty
= !TestSetPageDirty(page
);
721 spin_unlock(&mapping
->private_lock
);
724 __set_page_dirty(page
, mapping
, 1);
727 EXPORT_SYMBOL(__set_page_dirty_buffers
);
730 * Write out and wait upon a list of buffers.
732 * We have conflicting pressures: we want to make sure that all
733 * initially dirty buffers get waited on, but that any subsequently
734 * dirtied buffers don't. After all, we don't want fsync to last
735 * forever if somebody is actively writing to the file.
737 * Do this in two main stages: first we copy dirty buffers to a
738 * temporary inode list, queueing the writes as we go. Then we clean
739 * up, waiting for those writes to complete.
741 * During this second stage, any subsequent updates to the file may end
742 * up refiling the buffer on the original inode's dirty list again, so
743 * there is a chance we will end up with a buffer queued for write but
744 * not yet completed on that list. So, as a final cleanup we go through
745 * the osync code to catch these locked, dirty buffers without requeuing
746 * any newly dirty buffers for write.
748 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
750 struct buffer_head
*bh
;
751 struct list_head tmp
;
752 struct address_space
*mapping
, *prev_mapping
= NULL
;
755 INIT_LIST_HEAD(&tmp
);
758 while (!list_empty(list
)) {
759 bh
= BH_ENTRY(list
->next
);
760 mapping
= bh
->b_assoc_map
;
761 __remove_assoc_queue(bh
);
762 /* Avoid race with mark_buffer_dirty_inode() which does
763 * a lockless check and we rely on seeing the dirty bit */
765 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
766 list_add(&bh
->b_assoc_buffers
, &tmp
);
767 bh
->b_assoc_map
= mapping
;
768 if (buffer_dirty(bh
)) {
772 * Ensure any pending I/O completes so that
773 * write_dirty_buffer() actually writes the
774 * current contents - it is a noop if I/O is
775 * still in flight on potentially older
778 write_dirty_buffer(bh
, WRITE_SYNC_PLUG
);
781 * Kick off IO for the previous mapping. Note
782 * that we will not run the very last mapping,
783 * wait_on_buffer() will do that for us
784 * through sync_buffer().
786 if (prev_mapping
&& prev_mapping
!= mapping
)
787 blk_run_address_space(prev_mapping
);
788 prev_mapping
= mapping
;
796 while (!list_empty(&tmp
)) {
797 bh
= BH_ENTRY(tmp
.prev
);
799 mapping
= bh
->b_assoc_map
;
800 __remove_assoc_queue(bh
);
801 /* Avoid race with mark_buffer_dirty_inode() which does
802 * a lockless check and we rely on seeing the dirty bit */
804 if (buffer_dirty(bh
)) {
805 list_add(&bh
->b_assoc_buffers
,
806 &mapping
->private_list
);
807 bh
->b_assoc_map
= mapping
;
811 if (!buffer_uptodate(bh
))
818 err2
= osync_buffers_list(lock
, list
);
826 * Invalidate any and all dirty buffers on a given inode. We are
827 * probably unmounting the fs, but that doesn't mean we have already
828 * done a sync(). Just drop the buffers from the inode list.
830 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
831 * assumes that all the buffers are against the blockdev. Not true
834 void invalidate_inode_buffers(struct inode
*inode
)
836 if (inode_has_buffers(inode
)) {
837 struct address_space
*mapping
= &inode
->i_data
;
838 struct list_head
*list
= &mapping
->private_list
;
839 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
841 spin_lock(&buffer_mapping
->private_lock
);
842 while (!list_empty(list
))
843 __remove_assoc_queue(BH_ENTRY(list
->next
));
844 spin_unlock(&buffer_mapping
->private_lock
);
847 EXPORT_SYMBOL(invalidate_inode_buffers
);
850 * Remove any clean buffers from the inode's buffer list. This is called
851 * when we're trying to free the inode itself. Those buffers can pin it.
853 * Returns true if all buffers were removed.
855 int remove_inode_buffers(struct inode
*inode
)
859 if (inode_has_buffers(inode
)) {
860 struct address_space
*mapping
= &inode
->i_data
;
861 struct list_head
*list
= &mapping
->private_list
;
862 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
864 spin_lock(&buffer_mapping
->private_lock
);
865 while (!list_empty(list
)) {
866 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
867 if (buffer_dirty(bh
)) {
871 __remove_assoc_queue(bh
);
873 spin_unlock(&buffer_mapping
->private_lock
);
879 * Create the appropriate buffers when given a page for data area and
880 * the size of each buffer.. Use the bh->b_this_page linked list to
881 * follow the buffers created. Return NULL if unable to create more
884 * The retry flag is used to differentiate async IO (paging, swapping)
885 * which may not fail from ordinary buffer allocations.
887 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
890 struct buffer_head
*bh
, *head
;
896 while ((offset
-= size
) >= 0) {
897 bh
= alloc_buffer_head(GFP_NOFS
);
902 bh
->b_this_page
= head
;
907 atomic_set(&bh
->b_count
, 0);
908 bh
->b_private
= NULL
;
911 /* Link the buffer to its page */
912 set_bh_page(bh
, page
, offset
);
914 init_buffer(bh
, NULL
, NULL
);
918 * In case anything failed, we just free everything we got.
924 head
= head
->b_this_page
;
925 free_buffer_head(bh
);
930 * Return failure for non-async IO requests. Async IO requests
931 * are not allowed to fail, so we have to wait until buffer heads
932 * become available. But we don't want tasks sleeping with
933 * partially complete buffers, so all were released above.
938 /* We're _really_ low on memory. Now we just
939 * wait for old buffer heads to become free due to
940 * finishing IO. Since this is an async request and
941 * the reserve list is empty, we're sure there are
942 * async buffer heads in use.
947 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
950 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
952 struct buffer_head
*bh
, *tail
;
957 bh
= bh
->b_this_page
;
959 tail
->b_this_page
= head
;
960 attach_page_buffers(page
, head
);
964 * Initialise the state of a blockdev page's buffers.
967 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
968 sector_t block
, int size
)
970 struct buffer_head
*head
= page_buffers(page
);
971 struct buffer_head
*bh
= head
;
972 int uptodate
= PageUptodate(page
);
975 if (!buffer_mapped(bh
)) {
976 init_buffer(bh
, NULL
, NULL
);
978 bh
->b_blocknr
= block
;
980 set_buffer_uptodate(bh
);
981 set_buffer_mapped(bh
);
984 bh
= bh
->b_this_page
;
985 } while (bh
!= head
);
989 * Create the page-cache page that contains the requested block.
991 * This is user purely for blockdev mappings.
994 grow_dev_page(struct block_device
*bdev
, sector_t block
,
995 pgoff_t index
, int size
)
997 struct inode
*inode
= bdev
->bd_inode
;
999 struct buffer_head
*bh
;
1001 page
= find_or_create_page(inode
->i_mapping
, index
,
1002 (mapping_gfp_mask(inode
->i_mapping
) & ~__GFP_FS
)|__GFP_MOVABLE
);
1006 BUG_ON(!PageLocked(page
));
1008 if (page_has_buffers(page
)) {
1009 bh
= page_buffers(page
);
1010 if (bh
->b_size
== size
) {
1011 init_page_buffers(page
, bdev
, block
, size
);
1014 if (!try_to_free_buffers(page
))
1019 * Allocate some buffers for this page
1021 bh
= alloc_page_buffers(page
, size
, 0);
1026 * Link the page to the buffers and initialise them. Take the
1027 * lock to be atomic wrt __find_get_block(), which does not
1028 * run under the page lock.
1030 spin_lock(&inode
->i_mapping
->private_lock
);
1031 link_dev_buffers(page
, bh
);
1032 init_page_buffers(page
, bdev
, block
, size
);
1033 spin_unlock(&inode
->i_mapping
->private_lock
);
1039 page_cache_release(page
);
1044 * Create buffers for the specified block device block's page. If
1045 * that page was dirty, the buffers are set dirty also.
1048 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
)
1057 } while ((size
<< sizebits
) < PAGE_SIZE
);
1059 index
= block
>> sizebits
;
1062 * Check for a block which wants to lie outside our maximum possible
1063 * pagecache index. (this comparison is done using sector_t types).
1065 if (unlikely(index
!= block
>> sizebits
)) {
1066 char b
[BDEVNAME_SIZE
];
1068 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1070 __func__
, (unsigned long long)block
,
1074 block
= index
<< sizebits
;
1075 /* Create a page with the proper size buffers.. */
1076 page
= grow_dev_page(bdev
, block
, index
, size
);
1080 page_cache_release(page
);
1084 static struct buffer_head
*
1085 __getblk_slow(struct block_device
*bdev
, sector_t block
, int size
)
1087 /* Size must be multiple of hard sectorsize */
1088 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1089 (size
< 512 || size
> PAGE_SIZE
))) {
1090 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1092 printk(KERN_ERR
"logical block size: %d\n",
1093 bdev_logical_block_size(bdev
));
1100 struct buffer_head
* bh
;
1103 bh
= __find_get_block(bdev
, block
, size
);
1107 ret
= grow_buffers(bdev
, block
, size
);
1116 * The relationship between dirty buffers and dirty pages:
1118 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1119 * the page is tagged dirty in its radix tree.
1121 * At all times, the dirtiness of the buffers represents the dirtiness of
1122 * subsections of the page. If the page has buffers, the page dirty bit is
1123 * merely a hint about the true dirty state.
1125 * When a page is set dirty in its entirety, all its buffers are marked dirty
1126 * (if the page has buffers).
1128 * When a buffer is marked dirty, its page is dirtied, but the page's other
1131 * Also. When blockdev buffers are explicitly read with bread(), they
1132 * individually become uptodate. But their backing page remains not
1133 * uptodate - even if all of its buffers are uptodate. A subsequent
1134 * block_read_full_page() against that page will discover all the uptodate
1135 * buffers, will set the page uptodate and will perform no I/O.
1139 * mark_buffer_dirty - mark a buffer_head as needing writeout
1140 * @bh: the buffer_head to mark dirty
1142 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1143 * backing page dirty, then tag the page as dirty in its address_space's radix
1144 * tree and then attach the address_space's inode to its superblock's dirty
1147 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1148 * mapping->tree_lock and the global inode_lock.
1150 void mark_buffer_dirty(struct buffer_head
*bh
)
1152 WARN_ON_ONCE(!buffer_uptodate(bh
));
1155 * Very *carefully* optimize the it-is-already-dirty case.
1157 * Don't let the final "is it dirty" escape to before we
1158 * perhaps modified the buffer.
1160 if (buffer_dirty(bh
)) {
1162 if (buffer_dirty(bh
))
1166 if (!test_set_buffer_dirty(bh
)) {
1167 struct page
*page
= bh
->b_page
;
1168 if (!TestSetPageDirty(page
)) {
1169 struct address_space
*mapping
= page_mapping(page
);
1171 __set_page_dirty(page
, mapping
, 0);
1175 EXPORT_SYMBOL(mark_buffer_dirty
);
1178 * Decrement a buffer_head's reference count. If all buffers against a page
1179 * have zero reference count, are clean and unlocked, and if the page is clean
1180 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1181 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1182 * a page but it ends up not being freed, and buffers may later be reattached).
1184 void __brelse(struct buffer_head
* buf
)
1186 if (atomic_read(&buf
->b_count
)) {
1190 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1192 EXPORT_SYMBOL(__brelse
);
1195 * bforget() is like brelse(), except it discards any
1196 * potentially dirty data.
1198 void __bforget(struct buffer_head
*bh
)
1200 clear_buffer_dirty(bh
);
1201 if (bh
->b_assoc_map
) {
1202 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1204 spin_lock(&buffer_mapping
->private_lock
);
1205 list_del_init(&bh
->b_assoc_buffers
);
1206 bh
->b_assoc_map
= NULL
;
1207 spin_unlock(&buffer_mapping
->private_lock
);
1211 EXPORT_SYMBOL(__bforget
);
1213 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1216 if (buffer_uptodate(bh
)) {
1221 bh
->b_end_io
= end_buffer_read_sync
;
1222 submit_bh(READ
, bh
);
1224 if (buffer_uptodate(bh
))
1232 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1233 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1234 * refcount elevated by one when they're in an LRU. A buffer can only appear
1235 * once in a particular CPU's LRU. A single buffer can be present in multiple
1236 * CPU's LRUs at the same time.
1238 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1239 * sb_find_get_block().
1241 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1242 * a local interrupt disable for that.
1245 #define BH_LRU_SIZE 8
1248 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1251 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1254 #define bh_lru_lock() local_irq_disable()
1255 #define bh_lru_unlock() local_irq_enable()
1257 #define bh_lru_lock() preempt_disable()
1258 #define bh_lru_unlock() preempt_enable()
1261 static inline void check_irqs_on(void)
1263 #ifdef irqs_disabled
1264 BUG_ON(irqs_disabled());
1269 * The LRU management algorithm is dopey-but-simple. Sorry.
1271 static void bh_lru_install(struct buffer_head
*bh
)
1273 struct buffer_head
*evictee
= NULL
;
1278 lru
= &__get_cpu_var(bh_lrus
);
1279 if (lru
->bhs
[0] != bh
) {
1280 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1286 for (in
= 0; in
< BH_LRU_SIZE
; in
++) {
1287 struct buffer_head
*bh2
= lru
->bhs
[in
];
1292 if (out
>= BH_LRU_SIZE
) {
1293 BUG_ON(evictee
!= NULL
);
1300 while (out
< BH_LRU_SIZE
)
1302 memcpy(lru
->bhs
, bhs
, sizeof(bhs
));
1311 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1313 static struct buffer_head
*
1314 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1316 struct buffer_head
*ret
= NULL
;
1322 lru
= &__get_cpu_var(bh_lrus
);
1323 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1324 struct buffer_head
*bh
= lru
->bhs
[i
];
1326 if (bh
&& bh
->b_bdev
== bdev
&&
1327 bh
->b_blocknr
== block
&& bh
->b_size
== size
) {
1330 lru
->bhs
[i
] = lru
->bhs
[i
- 1];
1345 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1346 * it in the LRU and mark it as accessed. If it is not present then return
1349 struct buffer_head
*
1350 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1352 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1355 bh
= __find_get_block_slow(bdev
, block
);
1363 EXPORT_SYMBOL(__find_get_block
);
1366 * __getblk will locate (and, if necessary, create) the buffer_head
1367 * which corresponds to the passed block_device, block and size. The
1368 * returned buffer has its reference count incremented.
1370 * __getblk() cannot fail - it just keeps trying. If you pass it an
1371 * illegal block number, __getblk() will happily return a buffer_head
1372 * which represents the non-existent block. Very weird.
1374 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1375 * attempt is failing. FIXME, perhaps?
1377 struct buffer_head
*
1378 __getblk(struct block_device
*bdev
, sector_t block
, unsigned size
)
1380 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1384 bh
= __getblk_slow(bdev
, block
, size
);
1387 EXPORT_SYMBOL(__getblk
);
1390 * Do async read-ahead on a buffer..
1392 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1394 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1396 ll_rw_block(READA
, 1, &bh
);
1400 EXPORT_SYMBOL(__breadahead
);
1403 * __bread() - reads a specified block and returns the bh
1404 * @bdev: the block_device to read from
1405 * @block: number of block
1406 * @size: size (in bytes) to read
1408 * Reads a specified block, and returns buffer head that contains it.
1409 * It returns NULL if the block was unreadable.
1411 struct buffer_head
*
1412 __bread(struct block_device
*bdev
, sector_t block
, unsigned size
)
1414 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1416 if (likely(bh
) && !buffer_uptodate(bh
))
1417 bh
= __bread_slow(bh
);
1420 EXPORT_SYMBOL(__bread
);
1423 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1424 * This doesn't race because it runs in each cpu either in irq
1425 * or with preempt disabled.
1427 static void invalidate_bh_lru(void *arg
)
1429 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1432 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1436 put_cpu_var(bh_lrus
);
1439 void invalidate_bh_lrus(void)
1441 on_each_cpu(invalidate_bh_lru
, NULL
, 1);
1443 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1445 void set_bh_page(struct buffer_head
*bh
,
1446 struct page
*page
, unsigned long offset
)
1449 BUG_ON(offset
>= PAGE_SIZE
);
1450 if (PageHighMem(page
))
1452 * This catches illegal uses and preserves the offset:
1454 bh
->b_data
= (char *)(0 + offset
);
1456 bh
->b_data
= page_address(page
) + offset
;
1458 EXPORT_SYMBOL(set_bh_page
);
1461 * Called when truncating a buffer on a page completely.
1463 static void discard_buffer(struct buffer_head
* bh
)
1466 clear_buffer_dirty(bh
);
1468 clear_buffer_mapped(bh
);
1469 clear_buffer_req(bh
);
1470 clear_buffer_new(bh
);
1471 clear_buffer_delay(bh
);
1472 clear_buffer_unwritten(bh
);
1477 * block_invalidatepage - invalidate part of all of a buffer-backed page
1479 * @page: the page which is affected
1480 * @offset: the index of the truncation point
1482 * block_invalidatepage() is called when all or part of the page has become
1483 * invalidatedby a truncate operation.
1485 * block_invalidatepage() does not have to release all buffers, but it must
1486 * ensure that no dirty buffer is left outside @offset and that no I/O
1487 * is underway against any of the blocks which are outside the truncation
1488 * point. Because the caller is about to free (and possibly reuse) those
1491 void block_invalidatepage(struct page
*page
, unsigned long offset
)
1493 struct buffer_head
*head
, *bh
, *next
;
1494 unsigned int curr_off
= 0;
1496 BUG_ON(!PageLocked(page
));
1497 if (!page_has_buffers(page
))
1500 head
= page_buffers(page
);
1503 unsigned int next_off
= curr_off
+ bh
->b_size
;
1504 next
= bh
->b_this_page
;
1507 * is this block fully invalidated?
1509 if (offset
<= curr_off
)
1511 curr_off
= next_off
;
1513 } while (bh
!= head
);
1516 * We release buffers only if the entire page is being invalidated.
1517 * The get_block cached value has been unconditionally invalidated,
1518 * so real IO is not possible anymore.
1521 try_to_release_page(page
, 0);
1525 EXPORT_SYMBOL(block_invalidatepage
);
1528 * We attach and possibly dirty the buffers atomically wrt
1529 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1530 * is already excluded via the page lock.
1532 void create_empty_buffers(struct page
*page
,
1533 unsigned long blocksize
, unsigned long b_state
)
1535 struct buffer_head
*bh
, *head
, *tail
;
1537 head
= alloc_page_buffers(page
, blocksize
, 1);
1540 bh
->b_state
|= b_state
;
1542 bh
= bh
->b_this_page
;
1544 tail
->b_this_page
= head
;
1546 spin_lock(&page
->mapping
->private_lock
);
1547 if (PageUptodate(page
) || PageDirty(page
)) {
1550 if (PageDirty(page
))
1551 set_buffer_dirty(bh
);
1552 if (PageUptodate(page
))
1553 set_buffer_uptodate(bh
);
1554 bh
= bh
->b_this_page
;
1555 } while (bh
!= head
);
1557 attach_page_buffers(page
, head
);
1558 spin_unlock(&page
->mapping
->private_lock
);
1560 EXPORT_SYMBOL(create_empty_buffers
);
1563 * We are taking a block for data and we don't want any output from any
1564 * buffer-cache aliases starting from return from that function and
1565 * until the moment when something will explicitly mark the buffer
1566 * dirty (hopefully that will not happen until we will free that block ;-)
1567 * We don't even need to mark it not-uptodate - nobody can expect
1568 * anything from a newly allocated buffer anyway. We used to used
1569 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1570 * don't want to mark the alias unmapped, for example - it would confuse
1571 * anyone who might pick it with bread() afterwards...
1573 * Also.. Note that bforget() doesn't lock the buffer. So there can
1574 * be writeout I/O going on against recently-freed buffers. We don't
1575 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1576 * only if we really need to. That happens here.
1578 void unmap_underlying_metadata(struct block_device
*bdev
, sector_t block
)
1580 struct buffer_head
*old_bh
;
1584 old_bh
= __find_get_block_slow(bdev
, block
);
1586 clear_buffer_dirty(old_bh
);
1587 wait_on_buffer(old_bh
);
1588 clear_buffer_req(old_bh
);
1592 EXPORT_SYMBOL(unmap_underlying_metadata
);
1595 * NOTE! All mapped/uptodate combinations are valid:
1597 * Mapped Uptodate Meaning
1599 * No No "unknown" - must do get_block()
1600 * No Yes "hole" - zero-filled
1601 * Yes No "allocated" - allocated on disk, not read in
1602 * Yes Yes "valid" - allocated and up-to-date in memory.
1604 * "Dirty" is valid only with the last case (mapped+uptodate).
1608 * While block_write_full_page is writing back the dirty buffers under
1609 * the page lock, whoever dirtied the buffers may decide to clean them
1610 * again at any time. We handle that by only looking at the buffer
1611 * state inside lock_buffer().
1613 * If block_write_full_page() is called for regular writeback
1614 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1615 * locked buffer. This only can happen if someone has written the buffer
1616 * directly, with submit_bh(). At the address_space level PageWriteback
1617 * prevents this contention from occurring.
1619 * If block_write_full_page() is called with wbc->sync_mode ==
1620 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1621 * causes the writes to be flagged as synchronous writes, but the
1622 * block device queue will NOT be unplugged, since usually many pages
1623 * will be pushed to the out before the higher-level caller actually
1624 * waits for the writes to be completed. The various wait functions,
1625 * such as wait_on_writeback_range() will ultimately call sync_page()
1626 * which will ultimately call blk_run_backing_dev(), which will end up
1627 * unplugging the device queue.
1629 static int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1630 get_block_t
*get_block
, struct writeback_control
*wbc
,
1631 bh_end_io_t
*handler
)
1635 sector_t last_block
;
1636 struct buffer_head
*bh
, *head
;
1637 const unsigned blocksize
= 1 << inode
->i_blkbits
;
1638 int nr_underway
= 0;
1639 int write_op
= (wbc
->sync_mode
== WB_SYNC_ALL
?
1640 WRITE_SYNC_PLUG
: WRITE
);
1642 BUG_ON(!PageLocked(page
));
1644 last_block
= (i_size_read(inode
) - 1) >> inode
->i_blkbits
;
1646 if (!page_has_buffers(page
)) {
1647 create_empty_buffers(page
, blocksize
,
1648 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1652 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1653 * here, and the (potentially unmapped) buffers may become dirty at
1654 * any time. If a buffer becomes dirty here after we've inspected it
1655 * then we just miss that fact, and the page stays dirty.
1657 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1658 * handle that here by just cleaning them.
1661 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1662 head
= page_buffers(page
);
1666 * Get all the dirty buffers mapped to disk addresses and
1667 * handle any aliases from the underlying blockdev's mapping.
1670 if (block
> last_block
) {
1672 * mapped buffers outside i_size will occur, because
1673 * this page can be outside i_size when there is a
1674 * truncate in progress.
1677 * The buffer was zeroed by block_write_full_page()
1679 clear_buffer_dirty(bh
);
1680 set_buffer_uptodate(bh
);
1681 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1683 WARN_ON(bh
->b_size
!= blocksize
);
1684 err
= get_block(inode
, block
, bh
, 1);
1687 clear_buffer_delay(bh
);
1688 if (buffer_new(bh
)) {
1689 /* blockdev mappings never come here */
1690 clear_buffer_new(bh
);
1691 unmap_underlying_metadata(bh
->b_bdev
,
1695 bh
= bh
->b_this_page
;
1697 } while (bh
!= head
);
1700 if (!buffer_mapped(bh
))
1703 * If it's a fully non-blocking write attempt and we cannot
1704 * lock the buffer then redirty the page. Note that this can
1705 * potentially cause a busy-wait loop from writeback threads
1706 * and kswapd activity, but those code paths have their own
1707 * higher-level throttling.
1709 if (wbc
->sync_mode
!= WB_SYNC_NONE
|| !wbc
->nonblocking
) {
1711 } else if (!trylock_buffer(bh
)) {
1712 redirty_page_for_writepage(wbc
, page
);
1715 if (test_clear_buffer_dirty(bh
)) {
1716 mark_buffer_async_write_endio(bh
, handler
);
1720 } while ((bh
= bh
->b_this_page
) != head
);
1723 * The page and its buffers are protected by PageWriteback(), so we can
1724 * drop the bh refcounts early.
1726 BUG_ON(PageWriteback(page
));
1727 set_page_writeback(page
);
1730 struct buffer_head
*next
= bh
->b_this_page
;
1731 if (buffer_async_write(bh
)) {
1732 submit_bh(write_op
, bh
);
1736 } while (bh
!= head
);
1741 if (nr_underway
== 0) {
1743 * The page was marked dirty, but the buffers were
1744 * clean. Someone wrote them back by hand with
1745 * ll_rw_block/submit_bh. A rare case.
1747 end_page_writeback(page
);
1750 * The page and buffer_heads can be released at any time from
1758 * ENOSPC, or some other error. We may already have added some
1759 * blocks to the file, so we need to write these out to avoid
1760 * exposing stale data.
1761 * The page is currently locked and not marked for writeback
1764 /* Recovery: lock and submit the mapped buffers */
1766 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1767 !buffer_delay(bh
)) {
1769 mark_buffer_async_write_endio(bh
, handler
);
1772 * The buffer may have been set dirty during
1773 * attachment to a dirty page.
1775 clear_buffer_dirty(bh
);
1777 } while ((bh
= bh
->b_this_page
) != head
);
1779 BUG_ON(PageWriteback(page
));
1780 mapping_set_error(page
->mapping
, err
);
1781 set_page_writeback(page
);
1783 struct buffer_head
*next
= bh
->b_this_page
;
1784 if (buffer_async_write(bh
)) {
1785 clear_buffer_dirty(bh
);
1786 submit_bh(write_op
, bh
);
1790 } while (bh
!= head
);
1796 * If a page has any new buffers, zero them out here, and mark them uptodate
1797 * and dirty so they'll be written out (in order to prevent uninitialised
1798 * block data from leaking). And clear the new bit.
1800 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1802 unsigned int block_start
, block_end
;
1803 struct buffer_head
*head
, *bh
;
1805 BUG_ON(!PageLocked(page
));
1806 if (!page_has_buffers(page
))
1809 bh
= head
= page_buffers(page
);
1812 block_end
= block_start
+ bh
->b_size
;
1814 if (buffer_new(bh
)) {
1815 if (block_end
> from
&& block_start
< to
) {
1816 if (!PageUptodate(page
)) {
1817 unsigned start
, size
;
1819 start
= max(from
, block_start
);
1820 size
= min(to
, block_end
) - start
;
1822 zero_user(page
, start
, size
);
1823 set_buffer_uptodate(bh
);
1826 clear_buffer_new(bh
);
1827 mark_buffer_dirty(bh
);
1831 block_start
= block_end
;
1832 bh
= bh
->b_this_page
;
1833 } while (bh
!= head
);
1835 EXPORT_SYMBOL(page_zero_new_buffers
);
1837 int block_prepare_write(struct page
*page
, unsigned from
, unsigned to
,
1838 get_block_t
*get_block
)
1840 struct inode
*inode
= page
->mapping
->host
;
1841 unsigned block_start
, block_end
;
1844 unsigned blocksize
, bbits
;
1845 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1847 BUG_ON(!PageLocked(page
));
1848 BUG_ON(from
> PAGE_CACHE_SIZE
);
1849 BUG_ON(to
> PAGE_CACHE_SIZE
);
1852 blocksize
= 1 << inode
->i_blkbits
;
1853 if (!page_has_buffers(page
))
1854 create_empty_buffers(page
, blocksize
, 0);
1855 head
= page_buffers(page
);
1857 bbits
= inode
->i_blkbits
;
1858 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1860 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1861 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1862 block_end
= block_start
+ blocksize
;
1863 if (block_end
<= from
|| block_start
>= to
) {
1864 if (PageUptodate(page
)) {
1865 if (!buffer_uptodate(bh
))
1866 set_buffer_uptodate(bh
);
1871 clear_buffer_new(bh
);
1872 if (!buffer_mapped(bh
)) {
1873 WARN_ON(bh
->b_size
!= blocksize
);
1874 err
= get_block(inode
, block
, bh
, 1);
1877 if (buffer_new(bh
)) {
1878 unmap_underlying_metadata(bh
->b_bdev
,
1880 if (PageUptodate(page
)) {
1881 clear_buffer_new(bh
);
1882 set_buffer_uptodate(bh
);
1883 mark_buffer_dirty(bh
);
1886 if (block_end
> to
|| block_start
< from
)
1887 zero_user_segments(page
,
1893 if (PageUptodate(page
)) {
1894 if (!buffer_uptodate(bh
))
1895 set_buffer_uptodate(bh
);
1898 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1899 !buffer_unwritten(bh
) &&
1900 (block_start
< from
|| block_end
> to
)) {
1901 ll_rw_block(READ
, 1, &bh
);
1906 * If we issued read requests - let them complete.
1908 while(wait_bh
> wait
) {
1909 wait_on_buffer(*--wait_bh
);
1910 if (!buffer_uptodate(*wait_bh
))
1913 if (unlikely(err
)) {
1914 page_zero_new_buffers(page
, from
, to
);
1915 ClearPageUptodate(page
);
1919 EXPORT_SYMBOL(block_prepare_write
);
1921 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
1922 unsigned from
, unsigned to
)
1924 unsigned block_start
, block_end
;
1927 struct buffer_head
*bh
, *head
;
1929 blocksize
= 1 << inode
->i_blkbits
;
1931 for(bh
= head
= page_buffers(page
), block_start
= 0;
1932 bh
!= head
|| !block_start
;
1933 block_start
=block_end
, bh
= bh
->b_this_page
) {
1934 block_end
= block_start
+ blocksize
;
1935 if (block_end
<= from
|| block_start
>= to
) {
1936 if (!buffer_uptodate(bh
))
1939 set_buffer_uptodate(bh
);
1940 mark_buffer_dirty(bh
);
1942 clear_buffer_new(bh
);
1946 * If this is a partial write which happened to make all buffers
1947 * uptodate then we can optimize away a bogus readpage() for
1948 * the next read(). Here we 'discover' whether the page went
1949 * uptodate as a result of this (potentially partial) write.
1952 SetPageUptodate(page
);
1956 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
1957 get_block_t
*get_block
)
1959 unsigned start
= pos
& (PAGE_CACHE_SIZE
- 1);
1961 return block_prepare_write(page
, start
, start
+ len
, get_block
);
1963 EXPORT_SYMBOL(__block_write_begin
);
1966 * block_write_begin takes care of the basic task of block allocation and
1967 * bringing partial write blocks uptodate first.
1969 * The filesystem needs to handle block truncation upon failure.
1971 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
1972 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
1974 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1978 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1982 status
= __block_write_begin(page
, pos
, len
, get_block
);
1983 if (unlikely(status
)) {
1985 page_cache_release(page
);
1992 EXPORT_SYMBOL(block_write_begin
);
1994 int block_write_end(struct file
*file
, struct address_space
*mapping
,
1995 loff_t pos
, unsigned len
, unsigned copied
,
1996 struct page
*page
, void *fsdata
)
1998 struct inode
*inode
= mapping
->host
;
2001 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2003 if (unlikely(copied
< len
)) {
2005 * The buffers that were written will now be uptodate, so we
2006 * don't have to worry about a readpage reading them and
2007 * overwriting a partial write. However if we have encountered
2008 * a short write and only partially written into a buffer, it
2009 * will not be marked uptodate, so a readpage might come in and
2010 * destroy our partial write.
2012 * Do the simplest thing, and just treat any short write to a
2013 * non uptodate page as a zero-length write, and force the
2014 * caller to redo the whole thing.
2016 if (!PageUptodate(page
))
2019 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2021 flush_dcache_page(page
);
2023 /* This could be a short (even 0-length) commit */
2024 __block_commit_write(inode
, page
, start
, start
+copied
);
2028 EXPORT_SYMBOL(block_write_end
);
2030 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2031 loff_t pos
, unsigned len
, unsigned copied
,
2032 struct page
*page
, void *fsdata
)
2034 struct inode
*inode
= mapping
->host
;
2035 int i_size_changed
= 0;
2037 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2040 * No need to use i_size_read() here, the i_size
2041 * cannot change under us because we hold i_mutex.
2043 * But it's important to update i_size while still holding page lock:
2044 * page writeout could otherwise come in and zero beyond i_size.
2046 if (pos
+copied
> inode
->i_size
) {
2047 i_size_write(inode
, pos
+copied
);
2052 page_cache_release(page
);
2055 * Don't mark the inode dirty under page lock. First, it unnecessarily
2056 * makes the holding time of page lock longer. Second, it forces lock
2057 * ordering of page lock and transaction start for journaling
2061 mark_inode_dirty(inode
);
2065 EXPORT_SYMBOL(generic_write_end
);
2068 * block_is_partially_uptodate checks whether buffers within a page are
2071 * Returns true if all buffers which correspond to a file portion
2072 * we want to read are uptodate.
2074 int block_is_partially_uptodate(struct page
*page
, read_descriptor_t
*desc
,
2077 struct inode
*inode
= page
->mapping
->host
;
2078 unsigned block_start
, block_end
, blocksize
;
2080 struct buffer_head
*bh
, *head
;
2083 if (!page_has_buffers(page
))
2086 blocksize
= 1 << inode
->i_blkbits
;
2087 to
= min_t(unsigned, PAGE_CACHE_SIZE
- from
, desc
->count
);
2089 if (from
< blocksize
&& to
> PAGE_CACHE_SIZE
- blocksize
)
2092 head
= page_buffers(page
);
2096 block_end
= block_start
+ blocksize
;
2097 if (block_end
> from
&& block_start
< to
) {
2098 if (!buffer_uptodate(bh
)) {
2102 if (block_end
>= to
)
2105 block_start
= block_end
;
2106 bh
= bh
->b_this_page
;
2107 } while (bh
!= head
);
2111 EXPORT_SYMBOL(block_is_partially_uptodate
);
2114 * Generic "read page" function for block devices that have the normal
2115 * get_block functionality. This is most of the block device filesystems.
2116 * Reads the page asynchronously --- the unlock_buffer() and
2117 * set/clear_buffer_uptodate() functions propagate buffer state into the
2118 * page struct once IO has completed.
2120 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2122 struct inode
*inode
= page
->mapping
->host
;
2123 sector_t iblock
, lblock
;
2124 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2125 unsigned int blocksize
;
2127 int fully_mapped
= 1;
2129 BUG_ON(!PageLocked(page
));
2130 blocksize
= 1 << inode
->i_blkbits
;
2131 if (!page_has_buffers(page
))
2132 create_empty_buffers(page
, blocksize
, 0);
2133 head
= page_buffers(page
);
2135 iblock
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2136 lblock
= (i_size_read(inode
)+blocksize
-1) >> inode
->i_blkbits
;
2142 if (buffer_uptodate(bh
))
2145 if (!buffer_mapped(bh
)) {
2149 if (iblock
< lblock
) {
2150 WARN_ON(bh
->b_size
!= blocksize
);
2151 err
= get_block(inode
, iblock
, bh
, 0);
2155 if (!buffer_mapped(bh
)) {
2156 zero_user(page
, i
* blocksize
, blocksize
);
2158 set_buffer_uptodate(bh
);
2162 * get_block() might have updated the buffer
2165 if (buffer_uptodate(bh
))
2169 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2172 SetPageMappedToDisk(page
);
2176 * All buffers are uptodate - we can set the page uptodate
2177 * as well. But not if get_block() returned an error.
2179 if (!PageError(page
))
2180 SetPageUptodate(page
);
2185 /* Stage two: lock the buffers */
2186 for (i
= 0; i
< nr
; i
++) {
2189 mark_buffer_async_read(bh
);
2193 * Stage 3: start the IO. Check for uptodateness
2194 * inside the buffer lock in case another process reading
2195 * the underlying blockdev brought it uptodate (the sct fix).
2197 for (i
= 0; i
< nr
; i
++) {
2199 if (buffer_uptodate(bh
))
2200 end_buffer_async_read(bh
, 1);
2202 submit_bh(READ
, bh
);
2206 EXPORT_SYMBOL(block_read_full_page
);
2208 /* utility function for filesystems that need to do work on expanding
2209 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2210 * deal with the hole.
2212 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2214 struct address_space
*mapping
= inode
->i_mapping
;
2219 err
= inode_newsize_ok(inode
, size
);
2223 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2224 AOP_FLAG_UNINTERRUPTIBLE
|AOP_FLAG_CONT_EXPAND
,
2229 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2235 EXPORT_SYMBOL(generic_cont_expand_simple
);
2237 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2238 loff_t pos
, loff_t
*bytes
)
2240 struct inode
*inode
= mapping
->host
;
2241 unsigned blocksize
= 1 << inode
->i_blkbits
;
2244 pgoff_t index
, curidx
;
2246 unsigned zerofrom
, offset
, len
;
2249 index
= pos
>> PAGE_CACHE_SHIFT
;
2250 offset
= pos
& ~PAGE_CACHE_MASK
;
2252 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_CACHE_SHIFT
)) {
2253 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2254 if (zerofrom
& (blocksize
-1)) {
2255 *bytes
|= (blocksize
-1);
2258 len
= PAGE_CACHE_SIZE
- zerofrom
;
2260 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2261 AOP_FLAG_UNINTERRUPTIBLE
,
2265 zero_user(page
, zerofrom
, len
);
2266 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2273 balance_dirty_pages_ratelimited(mapping
);
2276 /* page covers the boundary, find the boundary offset */
2277 if (index
== curidx
) {
2278 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2279 /* if we will expand the thing last block will be filled */
2280 if (offset
<= zerofrom
) {
2283 if (zerofrom
& (blocksize
-1)) {
2284 *bytes
|= (blocksize
-1);
2287 len
= offset
- zerofrom
;
2289 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2290 AOP_FLAG_UNINTERRUPTIBLE
,
2294 zero_user(page
, zerofrom
, len
);
2295 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2307 * For moronic filesystems that do not allow holes in file.
2308 * We may have to extend the file.
2310 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2311 loff_t pos
, unsigned len
, unsigned flags
,
2312 struct page
**pagep
, void **fsdata
,
2313 get_block_t
*get_block
, loff_t
*bytes
)
2315 struct inode
*inode
= mapping
->host
;
2316 unsigned blocksize
= 1 << inode
->i_blkbits
;
2320 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2324 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2325 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2326 *bytes
|= (blocksize
-1);
2330 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2332 EXPORT_SYMBOL(cont_write_begin
);
2334 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2336 struct inode
*inode
= page
->mapping
->host
;
2337 __block_commit_write(inode
,page
,from
,to
);
2340 EXPORT_SYMBOL(block_commit_write
);
2343 * block_page_mkwrite() is not allowed to change the file size as it gets
2344 * called from a page fault handler when a page is first dirtied. Hence we must
2345 * be careful to check for EOF conditions here. We set the page up correctly
2346 * for a written page which means we get ENOSPC checking when writing into
2347 * holes and correct delalloc and unwritten extent mapping on filesystems that
2348 * support these features.
2350 * We are not allowed to take the i_mutex here so we have to play games to
2351 * protect against truncate races as the page could now be beyond EOF. Because
2352 * truncate writes the inode size before removing pages, once we have the
2353 * page lock we can determine safely if the page is beyond EOF. If it is not
2354 * beyond EOF, then the page is guaranteed safe against truncation until we
2358 block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2359 get_block_t get_block
)
2361 struct page
*page
= vmf
->page
;
2362 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
2365 int ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
2368 size
= i_size_read(inode
);
2369 if ((page
->mapping
!= inode
->i_mapping
) ||
2370 (page_offset(page
) > size
)) {
2371 /* page got truncated out from underneath us */
2376 /* page is wholly or partially inside EOF */
2377 if (((page
->index
+ 1) << PAGE_CACHE_SHIFT
) > size
)
2378 end
= size
& ~PAGE_CACHE_MASK
;
2380 end
= PAGE_CACHE_SIZE
;
2382 ret
= block_prepare_write(page
, 0, end
, get_block
);
2384 ret
= block_commit_write(page
, 0, end
);
2386 if (unlikely(ret
)) {
2390 else /* -ENOSPC, -EIO, etc */
2391 ret
= VM_FAULT_SIGBUS
;
2393 ret
= VM_FAULT_LOCKED
;
2398 EXPORT_SYMBOL(block_page_mkwrite
);
2401 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2402 * immediately, while under the page lock. So it needs a special end_io
2403 * handler which does not touch the bh after unlocking it.
2405 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2407 __end_buffer_read_notouch(bh
, uptodate
);
2411 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2412 * the page (converting it to circular linked list and taking care of page
2415 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2417 struct buffer_head
*bh
;
2419 BUG_ON(!PageLocked(page
));
2421 spin_lock(&page
->mapping
->private_lock
);
2424 if (PageDirty(page
))
2425 set_buffer_dirty(bh
);
2426 if (!bh
->b_this_page
)
2427 bh
->b_this_page
= head
;
2428 bh
= bh
->b_this_page
;
2429 } while (bh
!= head
);
2430 attach_page_buffers(page
, head
);
2431 spin_unlock(&page
->mapping
->private_lock
);
2435 * On entry, the page is fully not uptodate.
2436 * On exit the page is fully uptodate in the areas outside (from,to)
2437 * The filesystem needs to handle block truncation upon failure.
2439 int nobh_write_begin(struct address_space
*mapping
,
2440 loff_t pos
, unsigned len
, unsigned flags
,
2441 struct page
**pagep
, void **fsdata
,
2442 get_block_t
*get_block
)
2444 struct inode
*inode
= mapping
->host
;
2445 const unsigned blkbits
= inode
->i_blkbits
;
2446 const unsigned blocksize
= 1 << blkbits
;
2447 struct buffer_head
*head
, *bh
;
2451 unsigned block_in_page
;
2452 unsigned block_start
, block_end
;
2453 sector_t block_in_file
;
2456 int is_mapped_to_disk
= 1;
2458 index
= pos
>> PAGE_CACHE_SHIFT
;
2459 from
= pos
& (PAGE_CACHE_SIZE
- 1);
2462 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2468 if (page_has_buffers(page
)) {
2470 page_cache_release(page
);
2472 return block_write_begin(mapping
, pos
, len
, flags
, pagep
,
2476 if (PageMappedToDisk(page
))
2480 * Allocate buffers so that we can keep track of state, and potentially
2481 * attach them to the page if an error occurs. In the common case of
2482 * no error, they will just be freed again without ever being attached
2483 * to the page (which is all OK, because we're under the page lock).
2485 * Be careful: the buffer linked list is a NULL terminated one, rather
2486 * than the circular one we're used to.
2488 head
= alloc_page_buffers(page
, blocksize
, 0);
2494 block_in_file
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- blkbits
);
2497 * We loop across all blocks in the page, whether or not they are
2498 * part of the affected region. This is so we can discover if the
2499 * page is fully mapped-to-disk.
2501 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2502 block_start
< PAGE_CACHE_SIZE
;
2503 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2506 block_end
= block_start
+ blocksize
;
2509 if (block_start
>= to
)
2511 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2515 if (!buffer_mapped(bh
))
2516 is_mapped_to_disk
= 0;
2518 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
2519 if (PageUptodate(page
)) {
2520 set_buffer_uptodate(bh
);
2523 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2524 zero_user_segments(page
, block_start
, from
,
2528 if (buffer_uptodate(bh
))
2529 continue; /* reiserfs does this */
2530 if (block_start
< from
|| block_end
> to
) {
2532 bh
->b_end_io
= end_buffer_read_nobh
;
2533 submit_bh(READ
, bh
);
2540 * The page is locked, so these buffers are protected from
2541 * any VM or truncate activity. Hence we don't need to care
2542 * for the buffer_head refcounts.
2544 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2546 if (!buffer_uptodate(bh
))
2553 if (is_mapped_to_disk
)
2554 SetPageMappedToDisk(page
);
2556 *fsdata
= head
; /* to be released by nobh_write_end */
2563 * Error recovery is a bit difficult. We need to zero out blocks that
2564 * were newly allocated, and dirty them to ensure they get written out.
2565 * Buffers need to be attached to the page at this point, otherwise
2566 * the handling of potential IO errors during writeout would be hard
2567 * (could try doing synchronous writeout, but what if that fails too?)
2569 attach_nobh_buffers(page
, head
);
2570 page_zero_new_buffers(page
, from
, to
);
2574 page_cache_release(page
);
2579 EXPORT_SYMBOL(nobh_write_begin
);
2581 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2582 loff_t pos
, unsigned len
, unsigned copied
,
2583 struct page
*page
, void *fsdata
)
2585 struct inode
*inode
= page
->mapping
->host
;
2586 struct buffer_head
*head
= fsdata
;
2587 struct buffer_head
*bh
;
2588 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2590 if (unlikely(copied
< len
) && head
)
2591 attach_nobh_buffers(page
, head
);
2592 if (page_has_buffers(page
))
2593 return generic_write_end(file
, mapping
, pos
, len
,
2594 copied
, page
, fsdata
);
2596 SetPageUptodate(page
);
2597 set_page_dirty(page
);
2598 if (pos
+copied
> inode
->i_size
) {
2599 i_size_write(inode
, pos
+copied
);
2600 mark_inode_dirty(inode
);
2604 page_cache_release(page
);
2608 head
= head
->b_this_page
;
2609 free_buffer_head(bh
);
2614 EXPORT_SYMBOL(nobh_write_end
);
2617 * nobh_writepage() - based on block_full_write_page() except
2618 * that it tries to operate without attaching bufferheads to
2621 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2622 struct writeback_control
*wbc
)
2624 struct inode
* const inode
= page
->mapping
->host
;
2625 loff_t i_size
= i_size_read(inode
);
2626 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2630 /* Is the page fully inside i_size? */
2631 if (page
->index
< end_index
)
2634 /* Is the page fully outside i_size? (truncate in progress) */
2635 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2636 if (page
->index
>= end_index
+1 || !offset
) {
2638 * The page may have dirty, unmapped buffers. For example,
2639 * they may have been added in ext3_writepage(). Make them
2640 * freeable here, so the page does not leak.
2643 /* Not really sure about this - do we need this ? */
2644 if (page
->mapping
->a_ops
->invalidatepage
)
2645 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2648 return 0; /* don't care */
2652 * The page straddles i_size. It must be zeroed out on each and every
2653 * writepage invocation because it may be mmapped. "A file is mapped
2654 * in multiples of the page size. For a file that is not a multiple of
2655 * the page size, the remaining memory is zeroed when mapped, and
2656 * writes to that region are not written out to the file."
2658 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2660 ret
= mpage_writepage(page
, get_block
, wbc
);
2662 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2663 end_buffer_async_write
);
2666 EXPORT_SYMBOL(nobh_writepage
);
2668 int nobh_truncate_page(struct address_space
*mapping
,
2669 loff_t from
, get_block_t
*get_block
)
2671 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2672 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2675 unsigned length
, pos
;
2676 struct inode
*inode
= mapping
->host
;
2678 struct buffer_head map_bh
;
2681 blocksize
= 1 << inode
->i_blkbits
;
2682 length
= offset
& (blocksize
- 1);
2684 /* Block boundary? Nothing to do */
2688 length
= blocksize
- length
;
2689 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2691 page
= grab_cache_page(mapping
, index
);
2696 if (page_has_buffers(page
)) {
2699 page_cache_release(page
);
2700 return block_truncate_page(mapping
, from
, get_block
);
2703 /* Find the buffer that contains "offset" */
2705 while (offset
>= pos
) {
2710 map_bh
.b_size
= blocksize
;
2712 err
= get_block(inode
, iblock
, &map_bh
, 0);
2715 /* unmapped? It's a hole - nothing to do */
2716 if (!buffer_mapped(&map_bh
))
2719 /* Ok, it's mapped. Make sure it's up-to-date */
2720 if (!PageUptodate(page
)) {
2721 err
= mapping
->a_ops
->readpage(NULL
, page
);
2723 page_cache_release(page
);
2727 if (!PageUptodate(page
)) {
2731 if (page_has_buffers(page
))
2734 zero_user(page
, offset
, length
);
2735 set_page_dirty(page
);
2740 page_cache_release(page
);
2744 EXPORT_SYMBOL(nobh_truncate_page
);
2746 int block_truncate_page(struct address_space
*mapping
,
2747 loff_t from
, get_block_t
*get_block
)
2749 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2750 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2753 unsigned length
, pos
;
2754 struct inode
*inode
= mapping
->host
;
2756 struct buffer_head
*bh
;
2759 blocksize
= 1 << inode
->i_blkbits
;
2760 length
= offset
& (blocksize
- 1);
2762 /* Block boundary? Nothing to do */
2766 length
= blocksize
- length
;
2767 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2769 page
= grab_cache_page(mapping
, index
);
2774 if (!page_has_buffers(page
))
2775 create_empty_buffers(page
, blocksize
, 0);
2777 /* Find the buffer that contains "offset" */
2778 bh
= page_buffers(page
);
2780 while (offset
>= pos
) {
2781 bh
= bh
->b_this_page
;
2787 if (!buffer_mapped(bh
)) {
2788 WARN_ON(bh
->b_size
!= blocksize
);
2789 err
= get_block(inode
, iblock
, bh
, 0);
2792 /* unmapped? It's a hole - nothing to do */
2793 if (!buffer_mapped(bh
))
2797 /* Ok, it's mapped. Make sure it's up-to-date */
2798 if (PageUptodate(page
))
2799 set_buffer_uptodate(bh
);
2801 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2803 ll_rw_block(READ
, 1, &bh
);
2805 /* Uhhuh. Read error. Complain and punt. */
2806 if (!buffer_uptodate(bh
))
2810 zero_user(page
, offset
, length
);
2811 mark_buffer_dirty(bh
);
2816 page_cache_release(page
);
2820 EXPORT_SYMBOL(block_truncate_page
);
2823 * The generic ->writepage function for buffer-backed address_spaces
2824 * this form passes in the end_io handler used to finish the IO.
2826 int block_write_full_page_endio(struct page
*page
, get_block_t
*get_block
,
2827 struct writeback_control
*wbc
, bh_end_io_t
*handler
)
2829 struct inode
* const inode
= page
->mapping
->host
;
2830 loff_t i_size
= i_size_read(inode
);
2831 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2834 /* Is the page fully inside i_size? */
2835 if (page
->index
< end_index
)
2836 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2839 /* Is the page fully outside i_size? (truncate in progress) */
2840 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2841 if (page
->index
>= end_index
+1 || !offset
) {
2843 * The page may have dirty, unmapped buffers. For example,
2844 * they may have been added in ext3_writepage(). Make them
2845 * freeable here, so the page does not leak.
2847 do_invalidatepage(page
, 0);
2849 return 0; /* don't care */
2853 * The page straddles i_size. It must be zeroed out on each and every
2854 * writepage invocation because it may be mmapped. "A file is mapped
2855 * in multiples of the page size. For a file that is not a multiple of
2856 * the page size, the remaining memory is zeroed when mapped, and
2857 * writes to that region are not written out to the file."
2859 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2860 return __block_write_full_page(inode
, page
, get_block
, wbc
, handler
);
2862 EXPORT_SYMBOL(block_write_full_page_endio
);
2865 * The generic ->writepage function for buffer-backed address_spaces
2867 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2868 struct writeback_control
*wbc
)
2870 return block_write_full_page_endio(page
, get_block
, wbc
,
2871 end_buffer_async_write
);
2873 EXPORT_SYMBOL(block_write_full_page
);
2875 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2876 get_block_t
*get_block
)
2878 struct buffer_head tmp
;
2879 struct inode
*inode
= mapping
->host
;
2882 tmp
.b_size
= 1 << inode
->i_blkbits
;
2883 get_block(inode
, block
, &tmp
, 0);
2884 return tmp
.b_blocknr
;
2886 EXPORT_SYMBOL(generic_block_bmap
);
2888 static void end_bio_bh_io_sync(struct bio
*bio
, int err
)
2890 struct buffer_head
*bh
= bio
->bi_private
;
2892 if (err
== -EOPNOTSUPP
) {
2893 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
2894 set_bit(BH_Eopnotsupp
, &bh
->b_state
);
2897 if (unlikely (test_bit(BIO_QUIET
,&bio
->bi_flags
)))
2898 set_bit(BH_Quiet
, &bh
->b_state
);
2900 bh
->b_end_io(bh
, test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
2904 int submit_bh(int rw
, struct buffer_head
* bh
)
2909 BUG_ON(!buffer_locked(bh
));
2910 BUG_ON(!buffer_mapped(bh
));
2911 BUG_ON(!bh
->b_end_io
);
2912 BUG_ON(buffer_delay(bh
));
2913 BUG_ON(buffer_unwritten(bh
));
2916 * Only clear out a write error when rewriting
2918 if (test_set_buffer_req(bh
) && (rw
& WRITE
))
2919 clear_buffer_write_io_error(bh
);
2922 * from here on down, it's all bio -- do the initial mapping,
2923 * submit_bio -> generic_make_request may further map this bio around
2925 bio
= bio_alloc(GFP_NOIO
, 1);
2927 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
2928 bio
->bi_bdev
= bh
->b_bdev
;
2929 bio
->bi_io_vec
[0].bv_page
= bh
->b_page
;
2930 bio
->bi_io_vec
[0].bv_len
= bh
->b_size
;
2931 bio
->bi_io_vec
[0].bv_offset
= bh_offset(bh
);
2935 bio
->bi_size
= bh
->b_size
;
2937 bio
->bi_end_io
= end_bio_bh_io_sync
;
2938 bio
->bi_private
= bh
;
2941 submit_bio(rw
, bio
);
2943 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
2949 EXPORT_SYMBOL(submit_bh
);
2952 * ll_rw_block: low-level access to block devices (DEPRECATED)
2953 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2954 * @nr: number of &struct buffer_heads in the array
2955 * @bhs: array of pointers to &struct buffer_head
2957 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2958 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2959 * %READA option is described in the documentation for generic_make_request()
2960 * which ll_rw_block() calls.
2962 * This function drops any buffer that it cannot get a lock on (with the
2963 * BH_Lock state bit), any buffer that appears to be clean when doing a write
2964 * request, and any buffer that appears to be up-to-date when doing read
2965 * request. Further it marks as clean buffers that are processed for
2966 * writing (the buffer cache won't assume that they are actually clean
2967 * until the buffer gets unlocked).
2969 * ll_rw_block sets b_end_io to simple completion handler that marks
2970 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2973 * All of the buffers must be for the same device, and must also be a
2974 * multiple of the current approved size for the device.
2976 void ll_rw_block(int rw
, int nr
, struct buffer_head
*bhs
[])
2980 for (i
= 0; i
< nr
; i
++) {
2981 struct buffer_head
*bh
= bhs
[i
];
2983 if (!trylock_buffer(bh
))
2986 if (test_clear_buffer_dirty(bh
)) {
2987 bh
->b_end_io
= end_buffer_write_sync
;
2989 submit_bh(WRITE
, bh
);
2993 if (!buffer_uptodate(bh
)) {
2994 bh
->b_end_io
= end_buffer_read_sync
;
3003 EXPORT_SYMBOL(ll_rw_block
);
3005 void write_dirty_buffer(struct buffer_head
*bh
, int rw
)
3008 if (!test_clear_buffer_dirty(bh
)) {
3012 bh
->b_end_io
= end_buffer_write_sync
;
3016 EXPORT_SYMBOL(write_dirty_buffer
);
3019 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3020 * and then start new I/O and then wait upon it. The caller must have a ref on
3023 int __sync_dirty_buffer(struct buffer_head
*bh
, int rw
)
3027 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3029 if (test_clear_buffer_dirty(bh
)) {
3031 bh
->b_end_io
= end_buffer_write_sync
;
3032 ret
= submit_bh(rw
, bh
);
3034 if (buffer_eopnotsupp(bh
)) {
3035 clear_buffer_eopnotsupp(bh
);
3038 if (!ret
&& !buffer_uptodate(bh
))
3045 EXPORT_SYMBOL(__sync_dirty_buffer
);
3047 int sync_dirty_buffer(struct buffer_head
*bh
)
3049 return __sync_dirty_buffer(bh
, WRITE_SYNC
);
3051 EXPORT_SYMBOL(sync_dirty_buffer
);
3054 * try_to_free_buffers() checks if all the buffers on this particular page
3055 * are unused, and releases them if so.
3057 * Exclusion against try_to_free_buffers may be obtained by either
3058 * locking the page or by holding its mapping's private_lock.
3060 * If the page is dirty but all the buffers are clean then we need to
3061 * be sure to mark the page clean as well. This is because the page
3062 * may be against a block device, and a later reattachment of buffers
3063 * to a dirty page will set *all* buffers dirty. Which would corrupt
3064 * filesystem data on the same device.
3066 * The same applies to regular filesystem pages: if all the buffers are
3067 * clean then we set the page clean and proceed. To do that, we require
3068 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3071 * try_to_free_buffers() is non-blocking.
3073 static inline int buffer_busy(struct buffer_head
*bh
)
3075 return atomic_read(&bh
->b_count
) |
3076 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3080 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3082 struct buffer_head
*head
= page_buffers(page
);
3083 struct buffer_head
*bh
;
3087 if (buffer_write_io_error(bh
) && page
->mapping
)
3088 set_bit(AS_EIO
, &page
->mapping
->flags
);
3089 if (buffer_busy(bh
))
3091 bh
= bh
->b_this_page
;
3092 } while (bh
!= head
);
3095 struct buffer_head
*next
= bh
->b_this_page
;
3097 if (bh
->b_assoc_map
)
3098 __remove_assoc_queue(bh
);
3100 } while (bh
!= head
);
3101 *buffers_to_free
= head
;
3102 __clear_page_buffers(page
);
3108 int try_to_free_buffers(struct page
*page
)
3110 struct address_space
* const mapping
= page
->mapping
;
3111 struct buffer_head
*buffers_to_free
= NULL
;
3114 BUG_ON(!PageLocked(page
));
3115 if (PageWriteback(page
))
3118 if (mapping
== NULL
) { /* can this still happen? */
3119 ret
= drop_buffers(page
, &buffers_to_free
);
3123 spin_lock(&mapping
->private_lock
);
3124 ret
= drop_buffers(page
, &buffers_to_free
);
3127 * If the filesystem writes its buffers by hand (eg ext3)
3128 * then we can have clean buffers against a dirty page. We
3129 * clean the page here; otherwise the VM will never notice
3130 * that the filesystem did any IO at all.
3132 * Also, during truncate, discard_buffer will have marked all
3133 * the page's buffers clean. We discover that here and clean
3136 * private_lock must be held over this entire operation in order
3137 * to synchronise against __set_page_dirty_buffers and prevent the
3138 * dirty bit from being lost.
3141 cancel_dirty_page(page
, PAGE_CACHE_SIZE
);
3142 spin_unlock(&mapping
->private_lock
);
3144 if (buffers_to_free
) {
3145 struct buffer_head
*bh
= buffers_to_free
;
3148 struct buffer_head
*next
= bh
->b_this_page
;
3149 free_buffer_head(bh
);
3151 } while (bh
!= buffers_to_free
);
3155 EXPORT_SYMBOL(try_to_free_buffers
);
3157 void block_sync_page(struct page
*page
)
3159 struct address_space
*mapping
;
3162 mapping
= page_mapping(page
);
3164 blk_run_backing_dev(mapping
->backing_dev_info
, page
);
3166 EXPORT_SYMBOL(block_sync_page
);
3169 * There are no bdflush tunables left. But distributions are
3170 * still running obsolete flush daemons, so we terminate them here.
3172 * Use of bdflush() is deprecated and will be removed in a future kernel.
3173 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3175 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3177 static int msg_count
;
3179 if (!capable(CAP_SYS_ADMIN
))
3182 if (msg_count
< 5) {
3185 "warning: process `%s' used the obsolete bdflush"
3186 " system call\n", current
->comm
);
3187 printk(KERN_INFO
"Fix your initscripts?\n");
3196 * Buffer-head allocation
3198 static struct kmem_cache
*bh_cachep
;
3201 * Once the number of bh's in the machine exceeds this level, we start
3202 * stripping them in writeback.
3204 static int max_buffer_heads
;
3206 int buffer_heads_over_limit
;
3208 struct bh_accounting
{
3209 int nr
; /* Number of live bh's */
3210 int ratelimit
; /* Limit cacheline bouncing */
3213 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3215 static void recalc_bh_state(void)
3220 if (__get_cpu_var(bh_accounting
).ratelimit
++ < 4096)
3222 __get_cpu_var(bh_accounting
).ratelimit
= 0;
3223 for_each_online_cpu(i
)
3224 tot
+= per_cpu(bh_accounting
, i
).nr
;
3225 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3228 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3230 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3232 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3233 get_cpu_var(bh_accounting
).nr
++;
3235 put_cpu_var(bh_accounting
);
3239 EXPORT_SYMBOL(alloc_buffer_head
);
3241 void free_buffer_head(struct buffer_head
*bh
)
3243 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3244 kmem_cache_free(bh_cachep
, bh
);
3245 get_cpu_var(bh_accounting
).nr
--;
3247 put_cpu_var(bh_accounting
);
3249 EXPORT_SYMBOL(free_buffer_head
);
3251 static void buffer_exit_cpu(int cpu
)
3254 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3256 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3260 get_cpu_var(bh_accounting
).nr
+= per_cpu(bh_accounting
, cpu
).nr
;
3261 per_cpu(bh_accounting
, cpu
).nr
= 0;
3262 put_cpu_var(bh_accounting
);
3265 static int buffer_cpu_notify(struct notifier_block
*self
,
3266 unsigned long action
, void *hcpu
)
3268 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
3269 buffer_exit_cpu((unsigned long)hcpu
);
3274 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3275 * @bh: struct buffer_head
3277 * Return true if the buffer is up-to-date and false,
3278 * with the buffer locked, if not.
3280 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3282 if (!buffer_uptodate(bh
)) {
3284 if (!buffer_uptodate(bh
))
3290 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3293 * bh_submit_read - Submit a locked buffer for reading
3294 * @bh: struct buffer_head
3296 * Returns zero on success and -EIO on error.
3298 int bh_submit_read(struct buffer_head
*bh
)
3300 BUG_ON(!buffer_locked(bh
));
3302 if (buffer_uptodate(bh
)) {
3308 bh
->b_end_io
= end_buffer_read_sync
;
3309 submit_bh(READ
, bh
);
3311 if (buffer_uptodate(bh
))
3315 EXPORT_SYMBOL(bh_submit_read
);
3317 void __init
buffer_init(void)
3321 bh_cachep
= kmem_cache_create("buffer_head",
3322 sizeof(struct buffer_head
), 0,
3323 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3328 * Limit the bh occupancy to 10% of ZONE_NORMAL
3330 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3331 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3332 hotcpu_notifier(buffer_cpu_notify
, 0);