sparc32: srmmu_probe now knows about leon too
[linux-2.6/cjktty.git] / arch / sparc / mm / srmmu.c
blob62e3f57733037d89d828d389bdefff93c0bc3f0b
1 /*
2 * srmmu.c: SRMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/vmalloc.h>
14 #include <linux/pagemap.h>
15 #include <linux/init.h>
16 #include <linux/spinlock.h>
17 #include <linux/bootmem.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kdebug.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
24 #include <asm/bitext.h>
25 #include <asm/page.h>
26 #include <asm/pgalloc.h>
27 #include <asm/pgtable.h>
28 #include <asm/io.h>
29 #include <asm/vaddrs.h>
30 #include <asm/traps.h>
31 #include <asm/smp.h>
32 #include <asm/mbus.h>
33 #include <asm/cache.h>
34 #include <asm/oplib.h>
35 #include <asm/asi.h>
36 #include <asm/msi.h>
37 #include <asm/mmu_context.h>
38 #include <asm/io-unit.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
42 /* Now the cpu specific definitions. */
43 #include <asm/viking.h>
44 #include <asm/mxcc.h>
45 #include <asm/ross.h>
46 #include <asm/tsunami.h>
47 #include <asm/swift.h>
48 #include <asm/turbosparc.h>
49 #include <asm/leon.h>
51 #include "srmmu.h"
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
58 struct ctx_list *ctx_list_pool;
59 struct ctx_list ctx_free;
60 struct ctx_list ctx_used;
62 extern struct resource sparc_iomap;
64 extern unsigned long last_valid_pfn;
66 static pgd_t *srmmu_swapper_pg_dir;
68 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
70 #ifdef CONFIG_SMP
71 const struct sparc32_cachetlb_ops *local_ops;
73 #define FLUSH_BEGIN(mm)
74 #define FLUSH_END
75 #else
76 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
77 #define FLUSH_END }
78 #endif
80 int flush_page_for_dma_global = 1;
82 char *srmmu_name;
84 ctxd_t *srmmu_ctx_table_phys;
85 static ctxd_t *srmmu_context_table;
87 int viking_mxcc_present;
88 static DEFINE_SPINLOCK(srmmu_context_spinlock);
90 static int is_hypersparc;
92 static int srmmu_cache_pagetables;
94 /* these will be initialized in srmmu_nocache_calcsize() */
95 static unsigned long srmmu_nocache_size;
96 static unsigned long srmmu_nocache_end;
98 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
99 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
101 /* The context table is a nocache user with the biggest alignment needs. */
102 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
104 void *srmmu_nocache_pool;
105 void *srmmu_nocache_bitmap;
106 static struct bit_map srmmu_nocache_map;
108 static inline int srmmu_pmd_none(pmd_t pmd)
109 { return !(pmd_val(pmd) & 0xFFFFFFF); }
111 /* XXX should we hyper_flush_whole_icache here - Anton */
112 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
113 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
115 void pmd_set(pmd_t *pmdp, pte_t *ptep)
117 unsigned long ptp; /* Physical address, shifted right by 4 */
118 int i;
120 ptp = __nocache_pa((unsigned long) ptep) >> 4;
121 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
122 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
123 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
127 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
129 unsigned long ptp; /* Physical address, shifted right by 4 */
130 int i;
132 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
133 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
134 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
135 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
139 /* Find an entry in the third-level page table.. */
140 pte_t *pte_offset_kernel(pmd_t * dir, unsigned long address)
142 void *pte;
144 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
145 return (pte_t *) pte +
146 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
150 * size: bytes to allocate in the nocache area.
151 * align: bytes, number to align at.
152 * Returns the virtual address of the allocated area.
154 static unsigned long __srmmu_get_nocache(int size, int align)
156 int offset;
158 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
159 printk("Size 0x%x too small for nocache request\n", size);
160 size = SRMMU_NOCACHE_BITMAP_SHIFT;
162 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
163 printk("Size 0x%x unaligned int nocache request\n", size);
164 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
166 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
168 offset = bit_map_string_get(&srmmu_nocache_map,
169 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
170 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
171 if (offset == -1) {
172 printk("srmmu: out of nocache %d: %d/%d\n",
173 size, (int) srmmu_nocache_size,
174 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
175 return 0;
178 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
181 unsigned long srmmu_get_nocache(int size, int align)
183 unsigned long tmp;
185 tmp = __srmmu_get_nocache(size, align);
187 if (tmp)
188 memset((void *)tmp, 0, size);
190 return tmp;
193 void srmmu_free_nocache(unsigned long vaddr, int size)
195 int offset;
197 if (vaddr < SRMMU_NOCACHE_VADDR) {
198 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
199 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
200 BUG();
202 if (vaddr+size > srmmu_nocache_end) {
203 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
204 vaddr, srmmu_nocache_end);
205 BUG();
207 if (!is_power_of_2(size)) {
208 printk("Size 0x%x is not a power of 2\n", size);
209 BUG();
211 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
212 printk("Size 0x%x is too small\n", size);
213 BUG();
215 if (vaddr & (size-1)) {
216 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
217 BUG();
220 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
221 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
223 bit_map_clear(&srmmu_nocache_map, offset, size);
226 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
227 unsigned long end);
229 extern unsigned long probe_memory(void); /* in fault.c */
232 * Reserve nocache dynamically proportionally to the amount of
233 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
235 static void srmmu_nocache_calcsize(void)
237 unsigned long sysmemavail = probe_memory() / 1024;
238 int srmmu_nocache_npages;
240 srmmu_nocache_npages =
241 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
243 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
244 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
245 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
246 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
248 /* anything above 1280 blows up */
249 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
250 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
252 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
253 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
256 static void __init srmmu_nocache_init(void)
258 unsigned int bitmap_bits;
259 pgd_t *pgd;
260 pmd_t *pmd;
261 pte_t *pte;
262 unsigned long paddr, vaddr;
263 unsigned long pteval;
265 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
267 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
268 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
269 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
271 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
272 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
274 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
275 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
276 init_mm.pgd = srmmu_swapper_pg_dir;
278 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
280 paddr = __pa((unsigned long)srmmu_nocache_pool);
281 vaddr = SRMMU_NOCACHE_VADDR;
283 while (vaddr < srmmu_nocache_end) {
284 pgd = pgd_offset_k(vaddr);
285 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
286 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
288 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
290 if (srmmu_cache_pagetables)
291 pteval |= SRMMU_CACHE;
293 set_pte(__nocache_fix(pte), __pte(pteval));
295 vaddr += PAGE_SIZE;
296 paddr += PAGE_SIZE;
299 flush_cache_all();
300 flush_tlb_all();
303 pgd_t *get_pgd_fast(void)
305 pgd_t *pgd = NULL;
307 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
308 if (pgd) {
309 pgd_t *init = pgd_offset_k(0);
310 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
311 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
312 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
315 return pgd;
319 * Hardware needs alignment to 256 only, but we align to whole page size
320 * to reduce fragmentation problems due to the buddy principle.
321 * XXX Provide actual fragmentation statistics in /proc.
323 * Alignments up to the page size are the same for physical and virtual
324 * addresses of the nocache area.
326 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
328 unsigned long pte;
329 struct page *page;
331 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
332 return NULL;
333 page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
334 pgtable_page_ctor(page);
335 return page;
338 void pte_free(struct mm_struct *mm, pgtable_t pte)
340 unsigned long p;
342 pgtable_page_dtor(pte);
343 p = (unsigned long)page_address(pte); /* Cached address (for test) */
344 if (p == 0)
345 BUG();
346 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
347 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
348 srmmu_free_nocache(p, PTE_SIZE);
353 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
355 struct ctx_list *ctxp;
357 ctxp = ctx_free.next;
358 if(ctxp != &ctx_free) {
359 remove_from_ctx_list(ctxp);
360 add_to_used_ctxlist(ctxp);
361 mm->context = ctxp->ctx_number;
362 ctxp->ctx_mm = mm;
363 return;
365 ctxp = ctx_used.next;
366 if(ctxp->ctx_mm == old_mm)
367 ctxp = ctxp->next;
368 if(ctxp == &ctx_used)
369 panic("out of mmu contexts");
370 flush_cache_mm(ctxp->ctx_mm);
371 flush_tlb_mm(ctxp->ctx_mm);
372 remove_from_ctx_list(ctxp);
373 add_to_used_ctxlist(ctxp);
374 ctxp->ctx_mm->context = NO_CONTEXT;
375 ctxp->ctx_mm = mm;
376 mm->context = ctxp->ctx_number;
379 static inline void free_context(int context)
381 struct ctx_list *ctx_old;
383 ctx_old = ctx_list_pool + context;
384 remove_from_ctx_list(ctx_old);
385 add_to_free_ctxlist(ctx_old);
389 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
390 struct task_struct *tsk)
392 if(mm->context == NO_CONTEXT) {
393 spin_lock(&srmmu_context_spinlock);
394 alloc_context(old_mm, mm);
395 spin_unlock(&srmmu_context_spinlock);
396 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
399 if (sparc_cpu_model == sparc_leon)
400 leon_switch_mm();
402 if (is_hypersparc)
403 hyper_flush_whole_icache();
405 srmmu_set_context(mm->context);
408 /* Low level IO area allocation on the SRMMU. */
409 static inline void srmmu_mapioaddr(unsigned long physaddr,
410 unsigned long virt_addr, int bus_type)
412 pgd_t *pgdp;
413 pmd_t *pmdp;
414 pte_t *ptep;
415 unsigned long tmp;
417 physaddr &= PAGE_MASK;
418 pgdp = pgd_offset_k(virt_addr);
419 pmdp = pmd_offset(pgdp, virt_addr);
420 ptep = pte_offset_kernel(pmdp, virt_addr);
421 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
424 * I need to test whether this is consistent over all
425 * sun4m's. The bus_type represents the upper 4 bits of
426 * 36-bit physical address on the I/O space lines...
428 tmp |= (bus_type << 28);
429 tmp |= SRMMU_PRIV;
430 __flush_page_to_ram(virt_addr);
431 set_pte(ptep, __pte(tmp));
434 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
435 unsigned long xva, unsigned int len)
437 while (len != 0) {
438 len -= PAGE_SIZE;
439 srmmu_mapioaddr(xpa, xva, bus);
440 xva += PAGE_SIZE;
441 xpa += PAGE_SIZE;
443 flush_tlb_all();
446 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
448 pgd_t *pgdp;
449 pmd_t *pmdp;
450 pte_t *ptep;
452 pgdp = pgd_offset_k(virt_addr);
453 pmdp = pmd_offset(pgdp, virt_addr);
454 ptep = pte_offset_kernel(pmdp, virt_addr);
456 /* No need to flush uncacheable page. */
457 __pte_clear(ptep);
460 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
462 while (len != 0) {
463 len -= PAGE_SIZE;
464 srmmu_unmapioaddr(virt_addr);
465 virt_addr += PAGE_SIZE;
467 flush_tlb_all();
470 /* tsunami.S */
471 extern void tsunami_flush_cache_all(void);
472 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
473 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
474 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
475 extern void tsunami_flush_page_to_ram(unsigned long page);
476 extern void tsunami_flush_page_for_dma(unsigned long page);
477 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
478 extern void tsunami_flush_tlb_all(void);
479 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
480 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
481 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
482 extern void tsunami_setup_blockops(void);
484 /* swift.S */
485 extern void swift_flush_cache_all(void);
486 extern void swift_flush_cache_mm(struct mm_struct *mm);
487 extern void swift_flush_cache_range(struct vm_area_struct *vma,
488 unsigned long start, unsigned long end);
489 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
490 extern void swift_flush_page_to_ram(unsigned long page);
491 extern void swift_flush_page_for_dma(unsigned long page);
492 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
493 extern void swift_flush_tlb_all(void);
494 extern void swift_flush_tlb_mm(struct mm_struct *mm);
495 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
496 unsigned long start, unsigned long end);
497 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
499 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
500 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
502 int cctx, ctx1;
504 page &= PAGE_MASK;
505 if ((ctx1 = vma->vm_mm->context) != -1) {
506 cctx = srmmu_get_context();
507 /* Is context # ever different from current context? P3 */
508 if (cctx != ctx1) {
509 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
510 srmmu_set_context(ctx1);
511 swift_flush_page(page);
512 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
513 "r" (page), "i" (ASI_M_FLUSH_PROBE));
514 srmmu_set_context(cctx);
515 } else {
516 /* Rm. prot. bits from virt. c. */
517 /* swift_flush_cache_all(); */
518 /* swift_flush_cache_page(vma, page); */
519 swift_flush_page(page);
521 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
522 "r" (page), "i" (ASI_M_FLUSH_PROBE));
523 /* same as above: srmmu_flush_tlb_page() */
527 #endif
530 * The following are all MBUS based SRMMU modules, and therefore could
531 * be found in a multiprocessor configuration. On the whole, these
532 * chips seems to be much more touchy about DVMA and page tables
533 * with respect to cache coherency.
536 /* viking.S */
537 extern void viking_flush_cache_all(void);
538 extern void viking_flush_cache_mm(struct mm_struct *mm);
539 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
540 unsigned long end);
541 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
542 extern void viking_flush_page_to_ram(unsigned long page);
543 extern void viking_flush_page_for_dma(unsigned long page);
544 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
545 extern void viking_flush_page(unsigned long page);
546 extern void viking_mxcc_flush_page(unsigned long page);
547 extern void viking_flush_tlb_all(void);
548 extern void viking_flush_tlb_mm(struct mm_struct *mm);
549 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
550 unsigned long end);
551 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
552 unsigned long page);
553 extern void sun4dsmp_flush_tlb_all(void);
554 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
555 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
556 unsigned long end);
557 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
558 unsigned long page);
560 /* hypersparc.S */
561 extern void hypersparc_flush_cache_all(void);
562 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
563 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
564 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
565 extern void hypersparc_flush_page_to_ram(unsigned long page);
566 extern void hypersparc_flush_page_for_dma(unsigned long page);
567 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
568 extern void hypersparc_flush_tlb_all(void);
569 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
570 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
571 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
572 extern void hypersparc_setup_blockops(void);
575 * NOTE: All of this startup code assumes the low 16mb (approx.) of
576 * kernel mappings are done with one single contiguous chunk of
577 * ram. On small ram machines (classics mainly) we only get
578 * around 8mb mapped for us.
581 static void __init early_pgtable_allocfail(char *type)
583 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
584 prom_halt();
587 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
588 unsigned long end)
590 pgd_t *pgdp;
591 pmd_t *pmdp;
592 pte_t *ptep;
594 while(start < end) {
595 pgdp = pgd_offset_k(start);
596 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
597 pmdp = (pmd_t *) __srmmu_get_nocache(
598 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
599 if (pmdp == NULL)
600 early_pgtable_allocfail("pmd");
601 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
602 pgd_set(__nocache_fix(pgdp), pmdp);
604 pmdp = pmd_offset(__nocache_fix(pgdp), start);
605 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
606 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
607 if (ptep == NULL)
608 early_pgtable_allocfail("pte");
609 memset(__nocache_fix(ptep), 0, PTE_SIZE);
610 pmd_set(__nocache_fix(pmdp), ptep);
612 if (start > (0xffffffffUL - PMD_SIZE))
613 break;
614 start = (start + PMD_SIZE) & PMD_MASK;
618 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
619 unsigned long end)
621 pgd_t *pgdp;
622 pmd_t *pmdp;
623 pte_t *ptep;
625 while(start < end) {
626 pgdp = pgd_offset_k(start);
627 if (pgd_none(*pgdp)) {
628 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
629 if (pmdp == NULL)
630 early_pgtable_allocfail("pmd");
631 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
632 pgd_set(pgdp, pmdp);
634 pmdp = pmd_offset(pgdp, start);
635 if(srmmu_pmd_none(*pmdp)) {
636 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
637 PTE_SIZE);
638 if (ptep == NULL)
639 early_pgtable_allocfail("pte");
640 memset(ptep, 0, PTE_SIZE);
641 pmd_set(pmdp, ptep);
643 if (start > (0xffffffffUL - PMD_SIZE))
644 break;
645 start = (start + PMD_SIZE) & PMD_MASK;
649 /* These flush types are not available on all chips... */
650 static inline unsigned long srmmu_probe(unsigned long vaddr)
652 unsigned long retval;
654 if (sparc_cpu_model != sparc_leon) {
656 vaddr &= PAGE_MASK;
657 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
658 "=r" (retval) :
659 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
660 } else {
661 retval = leon_swprobe(vaddr, 0);
663 return retval;
667 * This is much cleaner than poking around physical address space
668 * looking at the prom's page table directly which is what most
669 * other OS's do. Yuck... this is much better.
671 static void __init srmmu_inherit_prom_mappings(unsigned long start,
672 unsigned long end)
674 pgd_t *pgdp;
675 pmd_t *pmdp;
676 pte_t *ptep;
677 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
678 unsigned long prompte;
680 while(start <= end) {
681 if (start == 0)
682 break; /* probably wrap around */
683 if(start == 0xfef00000)
684 start = KADB_DEBUGGER_BEGVM;
685 if(!(prompte = srmmu_probe(start))) {
686 start += PAGE_SIZE;
687 continue;
690 /* A red snapper, see what it really is. */
691 what = 0;
693 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
694 if(srmmu_probe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
695 what = 1;
698 if(!(start & ~(SRMMU_PGDIR_MASK))) {
699 if(srmmu_probe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
700 prompte)
701 what = 2;
704 pgdp = pgd_offset_k(start);
705 if(what == 2) {
706 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
707 start += SRMMU_PGDIR_SIZE;
708 continue;
710 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
711 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
712 if (pmdp == NULL)
713 early_pgtable_allocfail("pmd");
714 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
715 pgd_set(__nocache_fix(pgdp), pmdp);
717 pmdp = pmd_offset(__nocache_fix(pgdp), start);
718 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
719 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
720 PTE_SIZE);
721 if (ptep == NULL)
722 early_pgtable_allocfail("pte");
723 memset(__nocache_fix(ptep), 0, PTE_SIZE);
724 pmd_set(__nocache_fix(pmdp), ptep);
726 if(what == 1) {
728 * We bend the rule where all 16 PTPs in a pmd_t point
729 * inside the same PTE page, and we leak a perfectly
730 * good hardware PTE piece. Alternatives seem worse.
732 unsigned int x; /* Index of HW PMD in soft cluster */
733 x = (start >> PMD_SHIFT) & 15;
734 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
735 start += SRMMU_REAL_PMD_SIZE;
736 continue;
738 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
739 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
740 start += PAGE_SIZE;
744 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
746 /* Create a third-level SRMMU 16MB page mapping. */
747 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
749 pgd_t *pgdp = pgd_offset_k(vaddr);
750 unsigned long big_pte;
752 big_pte = KERNEL_PTE(phys_base >> 4);
753 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
756 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
757 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
759 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
760 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
761 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
762 /* Map "low" memory only */
763 const unsigned long min_vaddr = PAGE_OFFSET;
764 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
766 if (vstart < min_vaddr || vstart >= max_vaddr)
767 return vstart;
769 if (vend > max_vaddr || vend < min_vaddr)
770 vend = max_vaddr;
772 while(vstart < vend) {
773 do_large_mapping(vstart, pstart);
774 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
776 return vstart;
779 static inline void map_kernel(void)
781 int i;
783 if (phys_base > 0) {
784 do_large_mapping(PAGE_OFFSET, phys_base);
787 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
788 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
792 /* Paging initialization on the Sparc Reference MMU. */
793 extern void sparc_context_init(int);
795 void (*poke_srmmu)(void) __cpuinitdata = NULL;
797 extern unsigned long bootmem_init(unsigned long *pages_avail);
799 void __init srmmu_paging_init(void)
801 int i;
802 phandle cpunode;
803 char node_str[128];
804 pgd_t *pgd;
805 pmd_t *pmd;
806 pte_t *pte;
807 unsigned long pages_avail;
809 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
811 if (sparc_cpu_model == sun4d)
812 num_contexts = 65536; /* We know it is Viking */
813 else {
814 /* Find the number of contexts on the srmmu. */
815 cpunode = prom_getchild(prom_root_node);
816 num_contexts = 0;
817 while(cpunode != 0) {
818 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
819 if(!strcmp(node_str, "cpu")) {
820 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
821 break;
823 cpunode = prom_getsibling(cpunode);
827 if(!num_contexts) {
828 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
829 prom_halt();
832 pages_avail = 0;
833 last_valid_pfn = bootmem_init(&pages_avail);
835 srmmu_nocache_calcsize();
836 srmmu_nocache_init();
837 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
838 map_kernel();
840 /* ctx table has to be physically aligned to its size */
841 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
842 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
844 for(i = 0; i < num_contexts; i++)
845 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
847 flush_cache_all();
848 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
849 #ifdef CONFIG_SMP
850 /* Stop from hanging here... */
851 local_ops->tlb_all();
852 #else
853 flush_tlb_all();
854 #endif
855 poke_srmmu();
857 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
858 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
860 srmmu_allocate_ptable_skeleton(
861 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
862 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
864 pgd = pgd_offset_k(PKMAP_BASE);
865 pmd = pmd_offset(pgd, PKMAP_BASE);
866 pte = pte_offset_kernel(pmd, PKMAP_BASE);
867 pkmap_page_table = pte;
869 flush_cache_all();
870 flush_tlb_all();
872 sparc_context_init(num_contexts);
874 kmap_init();
877 unsigned long zones_size[MAX_NR_ZONES];
878 unsigned long zholes_size[MAX_NR_ZONES];
879 unsigned long npages;
880 int znum;
882 for (znum = 0; znum < MAX_NR_ZONES; znum++)
883 zones_size[znum] = zholes_size[znum] = 0;
885 npages = max_low_pfn - pfn_base;
887 zones_size[ZONE_DMA] = npages;
888 zholes_size[ZONE_DMA] = npages - pages_avail;
890 npages = highend_pfn - max_low_pfn;
891 zones_size[ZONE_HIGHMEM] = npages;
892 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
894 free_area_init_node(0, zones_size, pfn_base, zholes_size);
898 void mmu_info(struct seq_file *m)
900 seq_printf(m,
901 "MMU type\t: %s\n"
902 "contexts\t: %d\n"
903 "nocache total\t: %ld\n"
904 "nocache used\t: %d\n",
905 srmmu_name,
906 num_contexts,
907 srmmu_nocache_size,
908 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
911 void destroy_context(struct mm_struct *mm)
914 if(mm->context != NO_CONTEXT) {
915 flush_cache_mm(mm);
916 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
917 flush_tlb_mm(mm);
918 spin_lock(&srmmu_context_spinlock);
919 free_context(mm->context);
920 spin_unlock(&srmmu_context_spinlock);
921 mm->context = NO_CONTEXT;
925 /* Init various srmmu chip types. */
926 static void __init srmmu_is_bad(void)
928 prom_printf("Could not determine SRMMU chip type.\n");
929 prom_halt();
932 static void __init init_vac_layout(void)
934 phandle nd;
935 int cache_lines;
936 char node_str[128];
937 #ifdef CONFIG_SMP
938 int cpu = 0;
939 unsigned long max_size = 0;
940 unsigned long min_line_size = 0x10000000;
941 #endif
943 nd = prom_getchild(prom_root_node);
944 while((nd = prom_getsibling(nd)) != 0) {
945 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
946 if(!strcmp(node_str, "cpu")) {
947 vac_line_size = prom_getint(nd, "cache-line-size");
948 if (vac_line_size == -1) {
949 prom_printf("can't determine cache-line-size, "
950 "halting.\n");
951 prom_halt();
953 cache_lines = prom_getint(nd, "cache-nlines");
954 if (cache_lines == -1) {
955 prom_printf("can't determine cache-nlines, halting.\n");
956 prom_halt();
959 vac_cache_size = cache_lines * vac_line_size;
960 #ifdef CONFIG_SMP
961 if(vac_cache_size > max_size)
962 max_size = vac_cache_size;
963 if(vac_line_size < min_line_size)
964 min_line_size = vac_line_size;
965 //FIXME: cpus not contiguous!!
966 cpu++;
967 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
968 break;
969 #else
970 break;
971 #endif
974 if(nd == 0) {
975 prom_printf("No CPU nodes found, halting.\n");
976 prom_halt();
978 #ifdef CONFIG_SMP
979 vac_cache_size = max_size;
980 vac_line_size = min_line_size;
981 #endif
982 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
983 (int)vac_cache_size, (int)vac_line_size);
986 static void __cpuinit poke_hypersparc(void)
988 volatile unsigned long clear;
989 unsigned long mreg = srmmu_get_mmureg();
991 hyper_flush_unconditional_combined();
993 mreg &= ~(HYPERSPARC_CWENABLE);
994 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
995 mreg |= (HYPERSPARC_CMODE);
997 srmmu_set_mmureg(mreg);
999 #if 0 /* XXX I think this is bad news... -DaveM */
1000 hyper_clear_all_tags();
1001 #endif
1003 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1004 hyper_flush_whole_icache();
1005 clear = srmmu_get_faddr();
1006 clear = srmmu_get_fstatus();
1009 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1010 .cache_all = hypersparc_flush_cache_all,
1011 .cache_mm = hypersparc_flush_cache_mm,
1012 .cache_page = hypersparc_flush_cache_page,
1013 .cache_range = hypersparc_flush_cache_range,
1014 .tlb_all = hypersparc_flush_tlb_all,
1015 .tlb_mm = hypersparc_flush_tlb_mm,
1016 .tlb_page = hypersparc_flush_tlb_page,
1017 .tlb_range = hypersparc_flush_tlb_range,
1018 .page_to_ram = hypersparc_flush_page_to_ram,
1019 .sig_insns = hypersparc_flush_sig_insns,
1020 .page_for_dma = hypersparc_flush_page_for_dma,
1023 static void __init init_hypersparc(void)
1025 srmmu_name = "ROSS HyperSparc";
1026 srmmu_modtype = HyperSparc;
1028 init_vac_layout();
1030 is_hypersparc = 1;
1031 sparc32_cachetlb_ops = &hypersparc_ops;
1033 poke_srmmu = poke_hypersparc;
1035 hypersparc_setup_blockops();
1038 static void __cpuinit poke_swift(void)
1040 unsigned long mreg;
1042 /* Clear any crap from the cache or else... */
1043 swift_flush_cache_all();
1045 /* Enable I & D caches */
1046 mreg = srmmu_get_mmureg();
1047 mreg |= (SWIFT_IE | SWIFT_DE);
1049 * The Swift branch folding logic is completely broken. At
1050 * trap time, if things are just right, if can mistakenly
1051 * think that a trap is coming from kernel mode when in fact
1052 * it is coming from user mode (it mis-executes the branch in
1053 * the trap code). So you see things like crashme completely
1054 * hosing your machine which is completely unacceptable. Turn
1055 * this shit off... nice job Fujitsu.
1057 mreg &= ~(SWIFT_BF);
1058 srmmu_set_mmureg(mreg);
1061 static const struct sparc32_cachetlb_ops swift_ops = {
1062 .cache_all = swift_flush_cache_all,
1063 .cache_mm = swift_flush_cache_mm,
1064 .cache_page = swift_flush_cache_page,
1065 .cache_range = swift_flush_cache_range,
1066 .tlb_all = swift_flush_tlb_all,
1067 .tlb_mm = swift_flush_tlb_mm,
1068 .tlb_page = swift_flush_tlb_page,
1069 .tlb_range = swift_flush_tlb_range,
1070 .page_to_ram = swift_flush_page_to_ram,
1071 .sig_insns = swift_flush_sig_insns,
1072 .page_for_dma = swift_flush_page_for_dma,
1075 #define SWIFT_MASKID_ADDR 0x10003018
1076 static void __init init_swift(void)
1078 unsigned long swift_rev;
1080 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1081 "srl %0, 0x18, %0\n\t" :
1082 "=r" (swift_rev) :
1083 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1084 srmmu_name = "Fujitsu Swift";
1085 switch(swift_rev) {
1086 case 0x11:
1087 case 0x20:
1088 case 0x23:
1089 case 0x30:
1090 srmmu_modtype = Swift_lots_o_bugs;
1091 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1093 * Gee george, I wonder why Sun is so hush hush about
1094 * this hardware bug... really braindamage stuff going
1095 * on here. However I think we can find a way to avoid
1096 * all of the workaround overhead under Linux. Basically,
1097 * any page fault can cause kernel pages to become user
1098 * accessible (the mmu gets confused and clears some of
1099 * the ACC bits in kernel ptes). Aha, sounds pretty
1100 * horrible eh? But wait, after extensive testing it appears
1101 * that if you use pgd_t level large kernel pte's (like the
1102 * 4MB pages on the Pentium) the bug does not get tripped
1103 * at all. This avoids almost all of the major overhead.
1104 * Welcome to a world where your vendor tells you to,
1105 * "apply this kernel patch" instead of "sorry for the
1106 * broken hardware, send it back and we'll give you
1107 * properly functioning parts"
1109 break;
1110 case 0x25:
1111 case 0x31:
1112 srmmu_modtype = Swift_bad_c;
1113 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1115 * You see Sun allude to this hardware bug but never
1116 * admit things directly, they'll say things like,
1117 * "the Swift chip cache problems" or similar.
1119 break;
1120 default:
1121 srmmu_modtype = Swift_ok;
1122 break;
1125 sparc32_cachetlb_ops = &swift_ops;
1126 flush_page_for_dma_global = 0;
1129 * Are you now convinced that the Swift is one of the
1130 * biggest VLSI abortions of all time? Bravo Fujitsu!
1131 * Fujitsu, the !#?!%$'d up processor people. I bet if
1132 * you examined the microcode of the Swift you'd find
1133 * XXX's all over the place.
1135 poke_srmmu = poke_swift;
1138 static void turbosparc_flush_cache_all(void)
1140 flush_user_windows();
1141 turbosparc_idflash_clear();
1144 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1146 FLUSH_BEGIN(mm)
1147 flush_user_windows();
1148 turbosparc_idflash_clear();
1149 FLUSH_END
1152 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1154 FLUSH_BEGIN(vma->vm_mm)
1155 flush_user_windows();
1156 turbosparc_idflash_clear();
1157 FLUSH_END
1160 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1162 FLUSH_BEGIN(vma->vm_mm)
1163 flush_user_windows();
1164 if (vma->vm_flags & VM_EXEC)
1165 turbosparc_flush_icache();
1166 turbosparc_flush_dcache();
1167 FLUSH_END
1170 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1171 static void turbosparc_flush_page_to_ram(unsigned long page)
1173 #ifdef TURBOSPARC_WRITEBACK
1174 volatile unsigned long clear;
1176 if (srmmu_probe(page))
1177 turbosparc_flush_page_cache(page);
1178 clear = srmmu_get_fstatus();
1179 #endif
1182 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1186 static void turbosparc_flush_page_for_dma(unsigned long page)
1188 turbosparc_flush_dcache();
1191 static void turbosparc_flush_tlb_all(void)
1193 srmmu_flush_whole_tlb();
1196 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1198 FLUSH_BEGIN(mm)
1199 srmmu_flush_whole_tlb();
1200 FLUSH_END
1203 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1205 FLUSH_BEGIN(vma->vm_mm)
1206 srmmu_flush_whole_tlb();
1207 FLUSH_END
1210 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1212 FLUSH_BEGIN(vma->vm_mm)
1213 srmmu_flush_whole_tlb();
1214 FLUSH_END
1218 static void __cpuinit poke_turbosparc(void)
1220 unsigned long mreg = srmmu_get_mmureg();
1221 unsigned long ccreg;
1223 /* Clear any crap from the cache or else... */
1224 turbosparc_flush_cache_all();
1225 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1226 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1227 srmmu_set_mmureg(mreg);
1229 ccreg = turbosparc_get_ccreg();
1231 #ifdef TURBOSPARC_WRITEBACK
1232 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1233 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1234 /* Write-back D-cache, emulate VLSI
1235 * abortion number three, not number one */
1236 #else
1237 /* For now let's play safe, optimize later */
1238 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1239 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1240 ccreg &= ~(TURBOSPARC_uS2);
1241 /* Emulate VLSI abortion number three, not number one */
1242 #endif
1244 switch (ccreg & 7) {
1245 case 0: /* No SE cache */
1246 case 7: /* Test mode */
1247 break;
1248 default:
1249 ccreg |= (TURBOSPARC_SCENABLE);
1251 turbosparc_set_ccreg (ccreg);
1253 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1254 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1255 srmmu_set_mmureg(mreg);
1258 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1259 .cache_all = turbosparc_flush_cache_all,
1260 .cache_mm = turbosparc_flush_cache_mm,
1261 .cache_page = turbosparc_flush_cache_page,
1262 .cache_range = turbosparc_flush_cache_range,
1263 .tlb_all = turbosparc_flush_tlb_all,
1264 .tlb_mm = turbosparc_flush_tlb_mm,
1265 .tlb_page = turbosparc_flush_tlb_page,
1266 .tlb_range = turbosparc_flush_tlb_range,
1267 .page_to_ram = turbosparc_flush_page_to_ram,
1268 .sig_insns = turbosparc_flush_sig_insns,
1269 .page_for_dma = turbosparc_flush_page_for_dma,
1272 static void __init init_turbosparc(void)
1274 srmmu_name = "Fujitsu TurboSparc";
1275 srmmu_modtype = TurboSparc;
1276 sparc32_cachetlb_ops = &turbosparc_ops;
1277 poke_srmmu = poke_turbosparc;
1280 static void __cpuinit poke_tsunami(void)
1282 unsigned long mreg = srmmu_get_mmureg();
1284 tsunami_flush_icache();
1285 tsunami_flush_dcache();
1286 mreg &= ~TSUNAMI_ITD;
1287 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1288 srmmu_set_mmureg(mreg);
1291 static const struct sparc32_cachetlb_ops tsunami_ops = {
1292 .cache_all = tsunami_flush_cache_all,
1293 .cache_mm = tsunami_flush_cache_mm,
1294 .cache_page = tsunami_flush_cache_page,
1295 .cache_range = tsunami_flush_cache_range,
1296 .tlb_all = tsunami_flush_tlb_all,
1297 .tlb_mm = tsunami_flush_tlb_mm,
1298 .tlb_page = tsunami_flush_tlb_page,
1299 .tlb_range = tsunami_flush_tlb_range,
1300 .page_to_ram = tsunami_flush_page_to_ram,
1301 .sig_insns = tsunami_flush_sig_insns,
1302 .page_for_dma = tsunami_flush_page_for_dma,
1305 static void __init init_tsunami(void)
1308 * Tsunami's pretty sane, Sun and TI actually got it
1309 * somewhat right this time. Fujitsu should have
1310 * taken some lessons from them.
1313 srmmu_name = "TI Tsunami";
1314 srmmu_modtype = Tsunami;
1315 sparc32_cachetlb_ops = &tsunami_ops;
1316 poke_srmmu = poke_tsunami;
1318 tsunami_setup_blockops();
1321 static void __cpuinit poke_viking(void)
1323 unsigned long mreg = srmmu_get_mmureg();
1324 static int smp_catch;
1326 if (viking_mxcc_present) {
1327 unsigned long mxcc_control = mxcc_get_creg();
1329 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1330 mxcc_control &= ~(MXCC_CTL_RRC);
1331 mxcc_set_creg(mxcc_control);
1334 * We don't need memory parity checks.
1335 * XXX This is a mess, have to dig out later. ecd.
1336 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1339 /* We do cache ptables on MXCC. */
1340 mreg |= VIKING_TCENABLE;
1341 } else {
1342 unsigned long bpreg;
1344 mreg &= ~(VIKING_TCENABLE);
1345 if(smp_catch++) {
1346 /* Must disable mixed-cmd mode here for other cpu's. */
1347 bpreg = viking_get_bpreg();
1348 bpreg &= ~(VIKING_ACTION_MIX);
1349 viking_set_bpreg(bpreg);
1351 /* Just in case PROM does something funny. */
1352 msi_set_sync();
1356 mreg |= VIKING_SPENABLE;
1357 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1358 mreg |= VIKING_SBENABLE;
1359 mreg &= ~(VIKING_ACENABLE);
1360 srmmu_set_mmureg(mreg);
1363 static struct sparc32_cachetlb_ops viking_ops = {
1364 .cache_all = viking_flush_cache_all,
1365 .cache_mm = viking_flush_cache_mm,
1366 .cache_page = viking_flush_cache_page,
1367 .cache_range = viking_flush_cache_range,
1368 .tlb_all = viking_flush_tlb_all,
1369 .tlb_mm = viking_flush_tlb_mm,
1370 .tlb_page = viking_flush_tlb_page,
1371 .tlb_range = viking_flush_tlb_range,
1372 .page_to_ram = viking_flush_page_to_ram,
1373 .sig_insns = viking_flush_sig_insns,
1374 .page_for_dma = viking_flush_page_for_dma,
1377 #ifdef CONFIG_SMP
1378 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1379 * perform the local TLB flush and all the other cpus will see it.
1380 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1381 * that requires that we add some synchronization to these flushes.
1383 * The bug is that the fifo which keeps track of all the pending TLB
1384 * broadcasts in the system is an entry or two too small, so if we
1385 * have too many going at once we'll overflow that fifo and lose a TLB
1386 * flush resulting in corruption.
1388 * Our workaround is to take a global spinlock around the TLB flushes,
1389 * which guarentees we won't ever have too many pending. It's a big
1390 * hammer, but a semaphore like system to make sure we only have N TLB
1391 * flushes going at once will require SMP locking anyways so there's
1392 * no real value in trying any harder than this.
1394 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1395 .cache_all = viking_flush_cache_all,
1396 .cache_mm = viking_flush_cache_mm,
1397 .cache_page = viking_flush_cache_page,
1398 .cache_range = viking_flush_cache_range,
1399 .tlb_all = sun4dsmp_flush_tlb_all,
1400 .tlb_mm = sun4dsmp_flush_tlb_mm,
1401 .tlb_page = sun4dsmp_flush_tlb_page,
1402 .tlb_range = sun4dsmp_flush_tlb_range,
1403 .page_to_ram = viking_flush_page_to_ram,
1404 .sig_insns = viking_flush_sig_insns,
1405 .page_for_dma = viking_flush_page_for_dma,
1407 #endif
1409 static void __init init_viking(void)
1411 unsigned long mreg = srmmu_get_mmureg();
1413 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1414 if(mreg & VIKING_MMODE) {
1415 srmmu_name = "TI Viking";
1416 viking_mxcc_present = 0;
1417 msi_set_sync();
1420 * We need this to make sure old viking takes no hits
1421 * on it's cache for dma snoops to workaround the
1422 * "load from non-cacheable memory" interrupt bug.
1423 * This is only necessary because of the new way in
1424 * which we use the IOMMU.
1426 viking_ops.page_for_dma = viking_flush_page;
1427 #ifdef CONFIG_SMP
1428 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1429 #endif
1430 flush_page_for_dma_global = 0;
1431 } else {
1432 srmmu_name = "TI Viking/MXCC";
1433 viking_mxcc_present = 1;
1434 srmmu_cache_pagetables = 1;
1437 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1438 &viking_ops;
1439 #ifdef CONFIG_SMP
1440 if (sparc_cpu_model == sun4d)
1441 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1442 &viking_sun4d_smp_ops;
1443 #endif
1445 poke_srmmu = poke_viking;
1448 /* Probe for the srmmu chip version. */
1449 static void __init get_srmmu_type(void)
1451 unsigned long mreg, psr;
1452 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1454 srmmu_modtype = SRMMU_INVAL_MOD;
1455 hwbug_bitmask = 0;
1457 mreg = srmmu_get_mmureg(); psr = get_psr();
1458 mod_typ = (mreg & 0xf0000000) >> 28;
1459 mod_rev = (mreg & 0x0f000000) >> 24;
1460 psr_typ = (psr >> 28) & 0xf;
1461 psr_vers = (psr >> 24) & 0xf;
1463 /* First, check for sparc-leon. */
1464 if (sparc_cpu_model == sparc_leon) {
1465 init_leon();
1466 return;
1469 /* Second, check for HyperSparc or Cypress. */
1470 if(mod_typ == 1) {
1471 switch(mod_rev) {
1472 case 7:
1473 /* UP or MP Hypersparc */
1474 init_hypersparc();
1475 break;
1476 case 0:
1477 case 2:
1478 case 10:
1479 case 11:
1480 case 12:
1481 case 13:
1482 case 14:
1483 case 15:
1484 default:
1485 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1486 prom_halt();
1487 break;
1489 return;
1493 * Now Fujitsu TurboSparc. It might happen that it is
1494 * in Swift emulation mode, so we will check later...
1496 if (psr_typ == 0 && psr_vers == 5) {
1497 init_turbosparc();
1498 return;
1501 /* Next check for Fujitsu Swift. */
1502 if(psr_typ == 0 && psr_vers == 4) {
1503 phandle cpunode;
1504 char node_str[128];
1506 /* Look if it is not a TurboSparc emulating Swift... */
1507 cpunode = prom_getchild(prom_root_node);
1508 while((cpunode = prom_getsibling(cpunode)) != 0) {
1509 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1510 if(!strcmp(node_str, "cpu")) {
1511 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1512 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1513 init_turbosparc();
1514 return;
1516 break;
1520 init_swift();
1521 return;
1524 /* Now the Viking family of srmmu. */
1525 if(psr_typ == 4 &&
1526 ((psr_vers == 0) ||
1527 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1528 init_viking();
1529 return;
1532 /* Finally the Tsunami. */
1533 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1534 init_tsunami();
1535 return;
1538 /* Oh well */
1539 srmmu_is_bad();
1542 #ifdef CONFIG_SMP
1543 /* Local cross-calls. */
1544 static void smp_flush_page_for_dma(unsigned long page)
1546 xc1((smpfunc_t) local_ops->page_for_dma, page);
1547 local_ops->page_for_dma(page);
1550 static void smp_flush_cache_all(void)
1552 xc0((smpfunc_t) local_ops->cache_all);
1553 local_ops->cache_all();
1556 static void smp_flush_tlb_all(void)
1558 xc0((smpfunc_t) local_ops->tlb_all);
1559 local_ops->tlb_all();
1562 static void smp_flush_cache_mm(struct mm_struct *mm)
1564 if (mm->context != NO_CONTEXT) {
1565 cpumask_t cpu_mask;
1566 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1567 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1568 if (!cpumask_empty(&cpu_mask))
1569 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1570 local_ops->cache_mm(mm);
1574 static void smp_flush_tlb_mm(struct mm_struct *mm)
1576 if (mm->context != NO_CONTEXT) {
1577 cpumask_t cpu_mask;
1578 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1579 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1580 if (!cpumask_empty(&cpu_mask)) {
1581 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1582 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1583 cpumask_copy(mm_cpumask(mm),
1584 cpumask_of(smp_processor_id()));
1586 local_ops->tlb_mm(mm);
1590 static void smp_flush_cache_range(struct vm_area_struct *vma,
1591 unsigned long start,
1592 unsigned long end)
1594 struct mm_struct *mm = vma->vm_mm;
1596 if (mm->context != NO_CONTEXT) {
1597 cpumask_t cpu_mask;
1598 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1599 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1600 if (!cpumask_empty(&cpu_mask))
1601 xc3((smpfunc_t) local_ops->cache_range,
1602 (unsigned long) vma, start, end);
1603 local_ops->cache_range(vma, start, end);
1607 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1608 unsigned long start,
1609 unsigned long end)
1611 struct mm_struct *mm = vma->vm_mm;
1613 if (mm->context != NO_CONTEXT) {
1614 cpumask_t cpu_mask;
1615 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1616 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1617 if (!cpumask_empty(&cpu_mask))
1618 xc3((smpfunc_t) local_ops->tlb_range,
1619 (unsigned long) vma, start, end);
1620 local_ops->tlb_range(vma, start, end);
1624 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1626 struct mm_struct *mm = vma->vm_mm;
1628 if (mm->context != NO_CONTEXT) {
1629 cpumask_t cpu_mask;
1630 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1631 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1632 if (!cpumask_empty(&cpu_mask))
1633 xc2((smpfunc_t) local_ops->cache_page,
1634 (unsigned long) vma, page);
1635 local_ops->cache_page(vma, page);
1639 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1641 struct mm_struct *mm = vma->vm_mm;
1643 if (mm->context != NO_CONTEXT) {
1644 cpumask_t cpu_mask;
1645 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1646 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1647 if (!cpumask_empty(&cpu_mask))
1648 xc2((smpfunc_t) local_ops->tlb_page,
1649 (unsigned long) vma, page);
1650 local_ops->tlb_page(vma, page);
1654 static void smp_flush_page_to_ram(unsigned long page)
1656 /* Current theory is that those who call this are the one's
1657 * who have just dirtied their cache with the pages contents
1658 * in kernel space, therefore we only run this on local cpu.
1660 * XXX This experiment failed, research further... -DaveM
1662 #if 1
1663 xc1((smpfunc_t) local_ops->page_to_ram, page);
1664 #endif
1665 local_ops->page_to_ram(page);
1668 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1670 cpumask_t cpu_mask;
1671 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1672 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1673 if (!cpumask_empty(&cpu_mask))
1674 xc2((smpfunc_t) local_ops->sig_insns,
1675 (unsigned long) mm, insn_addr);
1676 local_ops->sig_insns(mm, insn_addr);
1679 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1680 .cache_all = smp_flush_cache_all,
1681 .cache_mm = smp_flush_cache_mm,
1682 .cache_page = smp_flush_cache_page,
1683 .cache_range = smp_flush_cache_range,
1684 .tlb_all = smp_flush_tlb_all,
1685 .tlb_mm = smp_flush_tlb_mm,
1686 .tlb_page = smp_flush_tlb_page,
1687 .tlb_range = smp_flush_tlb_range,
1688 .page_to_ram = smp_flush_page_to_ram,
1689 .sig_insns = smp_flush_sig_insns,
1690 .page_for_dma = smp_flush_page_for_dma,
1692 #endif
1694 /* Load up routines and constants for sun4m and sun4d mmu */
1695 void __init load_mmu(void)
1697 extern void ld_mmu_iommu(void);
1698 extern void ld_mmu_iounit(void);
1700 /* Functions */
1701 get_srmmu_type();
1703 #ifdef CONFIG_SMP
1704 /* El switcheroo... */
1705 local_ops = sparc32_cachetlb_ops;
1707 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1708 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1709 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1710 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1711 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1714 if (poke_srmmu == poke_viking) {
1715 /* Avoid unnecessary cross calls. */
1716 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1717 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1718 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1719 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1721 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1722 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1723 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1726 /* It really is const after this point. */
1727 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1728 &smp_cachetlb_ops;
1729 #endif
1731 if (sparc_cpu_model == sun4d)
1732 ld_mmu_iounit();
1733 else
1734 ld_mmu_iommu();
1735 #ifdef CONFIG_SMP
1736 if (sparc_cpu_model == sun4d)
1737 sun4d_init_smp();
1738 else if (sparc_cpu_model == sparc_leon)
1739 leon_init_smp();
1740 else
1741 sun4m_init_smp();
1742 #endif