[PATCH] Remove all ifdefs for local/io apic
[linux-2.6/cjktty.git] / arch / x86_64 / kernel / smpboot.c
blobd29571e249532acbf5caa81584d3fc3c8d33234d
1 /*
2 * x86 SMP booting functions
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
15 * This code is released under the GNU General Public License version 2
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
41 #include <linux/init.h>
43 #include <linux/mm.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/smp_lock.h>
46 #include <linux/bootmem.h>
47 #include <linux/thread_info.h>
48 #include <linux/module.h>
50 #include <linux/delay.h>
51 #include <linux/mc146818rtc.h>
52 #include <asm/mtrr.h>
53 #include <asm/pgalloc.h>
54 #include <asm/desc.h>
55 #include <asm/kdebug.h>
56 #include <asm/tlbflush.h>
57 #include <asm/proto.h>
58 #include <asm/nmi.h>
59 #include <asm/irq.h>
60 #include <asm/hw_irq.h>
61 #include <asm/numa.h>
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 EXPORT_SYMBOL(smp_num_siblings);
67 /* Last level cache ID of each logical CPU */
68 u8 cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
69 EXPORT_SYMBOL(cpu_llc_id);
71 /* Bitmask of currently online CPUs */
72 cpumask_t cpu_online_map __read_mostly;
74 EXPORT_SYMBOL(cpu_online_map);
77 * Private maps to synchronize booting between AP and BP.
78 * Probably not needed anymore, but it makes for easier debugging. -AK
80 cpumask_t cpu_callin_map;
81 cpumask_t cpu_callout_map;
82 EXPORT_SYMBOL(cpu_callout_map);
84 cpumask_t cpu_possible_map;
85 EXPORT_SYMBOL(cpu_possible_map);
87 /* Per CPU bogomips and other parameters */
88 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
89 EXPORT_SYMBOL(cpu_data);
91 /* Set when the idlers are all forked */
92 int smp_threads_ready;
94 /* representing HT siblings of each logical CPU */
95 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
96 EXPORT_SYMBOL(cpu_sibling_map);
98 /* representing HT and core siblings of each logical CPU */
99 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
100 EXPORT_SYMBOL(cpu_core_map);
103 * Trampoline 80x86 program as an array.
106 extern unsigned char trampoline_data[];
107 extern unsigned char trampoline_end[];
109 /* State of each CPU */
110 DEFINE_PER_CPU(int, cpu_state) = { 0 };
113 * Store all idle threads, this can be reused instead of creating
114 * a new thread. Also avoids complicated thread destroy functionality
115 * for idle threads.
117 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
119 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
120 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
123 * Currently trivial. Write the real->protected mode
124 * bootstrap into the page concerned. The caller
125 * has made sure it's suitably aligned.
128 static unsigned long __cpuinit setup_trampoline(void)
130 void *tramp = __va(SMP_TRAMPOLINE_BASE);
131 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
132 return virt_to_phys(tramp);
136 * The bootstrap kernel entry code has set these up. Save them for
137 * a given CPU
140 static void __cpuinit smp_store_cpu_info(int id)
142 struct cpuinfo_x86 *c = cpu_data + id;
144 *c = boot_cpu_data;
145 identify_cpu(c);
146 print_cpu_info(c);
150 * New Funky TSC sync algorithm borrowed from IA64.
151 * Main advantage is that it doesn't reset the TSCs fully and
152 * in general looks more robust and it works better than my earlier
153 * attempts. I believe it was written by David Mosberger. Some minor
154 * adjustments for x86-64 by me -AK
156 * Original comment reproduced below.
158 * Synchronize TSC of the current (slave) CPU with the TSC of the
159 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
160 * eliminate the possibility of unaccounted-for errors (such as
161 * getting a machine check in the middle of a calibration step). The
162 * basic idea is for the slave to ask the master what itc value it has
163 * and to read its own itc before and after the master responds. Each
164 * iteration gives us three timestamps:
166 * slave master
168 * t0 ---\
169 * ---\
170 * --->
171 * tm
172 * /---
173 * /---
174 * t1 <---
177 * The goal is to adjust the slave's TSC such that tm falls exactly
178 * half-way between t0 and t1. If we achieve this, the clocks are
179 * synchronized provided the interconnect between the slave and the
180 * master is symmetric. Even if the interconnect were asymmetric, we
181 * would still know that the synchronization error is smaller than the
182 * roundtrip latency (t0 - t1).
184 * When the interconnect is quiet and symmetric, this lets us
185 * synchronize the TSC to within one or two cycles. However, we can
186 * only *guarantee* that the synchronization is accurate to within a
187 * round-trip time, which is typically in the range of several hundred
188 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
189 * are usually almost perfectly synchronized, but we shouldn't assume
190 * that the accuracy is much better than half a micro second or so.
192 * [there are other errors like the latency of RDTSC and of the
193 * WRMSR. These can also account to hundreds of cycles. So it's
194 * probably worse. It claims 153 cycles error on a dual Opteron,
195 * but I suspect the numbers are actually somewhat worse -AK]
198 #define MASTER 0
199 #define SLAVE (SMP_CACHE_BYTES/8)
201 /* Intentionally don't use cpu_relax() while TSC synchronization
202 because we don't want to go into funky power save modi or cause
203 hypervisors to schedule us away. Going to sleep would likely affect
204 latency and low latency is the primary objective here. -AK */
205 #define no_cpu_relax() barrier()
207 static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
208 static volatile __cpuinitdata unsigned long go[SLAVE + 1];
209 static int notscsync __cpuinitdata;
211 #undef DEBUG_TSC_SYNC
213 #define NUM_ROUNDS 64 /* magic value */
214 #define NUM_ITERS 5 /* likewise */
216 /* Callback on boot CPU */
217 static __cpuinit void sync_master(void *arg)
219 unsigned long flags, i;
221 go[MASTER] = 0;
223 local_irq_save(flags);
225 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
226 while (!go[MASTER])
227 no_cpu_relax();
228 go[MASTER] = 0;
229 rdtscll(go[SLAVE]);
232 local_irq_restore(flags);
236 * Return the number of cycles by which our tsc differs from the tsc
237 * on the master (time-keeper) CPU. A positive number indicates our
238 * tsc is ahead of the master, negative that it is behind.
240 static inline long
241 get_delta(long *rt, long *master)
243 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
244 unsigned long tcenter, t0, t1, tm;
245 int i;
247 for (i = 0; i < NUM_ITERS; ++i) {
248 rdtscll(t0);
249 go[MASTER] = 1;
250 while (!(tm = go[SLAVE]))
251 no_cpu_relax();
252 go[SLAVE] = 0;
253 rdtscll(t1);
255 if (t1 - t0 < best_t1 - best_t0)
256 best_t0 = t0, best_t1 = t1, best_tm = tm;
259 *rt = best_t1 - best_t0;
260 *master = best_tm - best_t0;
262 /* average best_t0 and best_t1 without overflow: */
263 tcenter = (best_t0/2 + best_t1/2);
264 if (best_t0 % 2 + best_t1 % 2 == 2)
265 ++tcenter;
266 return tcenter - best_tm;
269 static __cpuinit void sync_tsc(unsigned int master)
271 int i, done = 0;
272 long delta, adj, adjust_latency = 0;
273 unsigned long flags, rt, master_time_stamp, bound;
274 #ifdef DEBUG_TSC_SYNC
275 static struct syncdebug {
276 long rt; /* roundtrip time */
277 long master; /* master's timestamp */
278 long diff; /* difference between midpoint and master's timestamp */
279 long lat; /* estimate of tsc adjustment latency */
280 } t[NUM_ROUNDS] __cpuinitdata;
281 #endif
283 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
284 smp_processor_id(), master);
286 go[MASTER] = 1;
288 /* It is dangerous to broadcast IPI as cpus are coming up,
289 * as they may not be ready to accept them. So since
290 * we only need to send the ipi to the boot cpu direct
291 * the message, and avoid the race.
293 smp_call_function_single(master, sync_master, NULL, 1, 0);
295 while (go[MASTER]) /* wait for master to be ready */
296 no_cpu_relax();
298 spin_lock_irqsave(&tsc_sync_lock, flags);
300 for (i = 0; i < NUM_ROUNDS; ++i) {
301 delta = get_delta(&rt, &master_time_stamp);
302 if (delta == 0) {
303 done = 1; /* let's lock on to this... */
304 bound = rt;
307 if (!done) {
308 unsigned long t;
309 if (i > 0) {
310 adjust_latency += -delta;
311 adj = -delta + adjust_latency/4;
312 } else
313 adj = -delta;
315 rdtscll(t);
316 wrmsrl(MSR_IA32_TSC, t + adj);
318 #ifdef DEBUG_TSC_SYNC
319 t[i].rt = rt;
320 t[i].master = master_time_stamp;
321 t[i].diff = delta;
322 t[i].lat = adjust_latency/4;
323 #endif
326 spin_unlock_irqrestore(&tsc_sync_lock, flags);
328 #ifdef DEBUG_TSC_SYNC
329 for (i = 0; i < NUM_ROUNDS; ++i)
330 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
331 t[i].rt, t[i].master, t[i].diff, t[i].lat);
332 #endif
334 printk(KERN_INFO
335 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
336 "maxerr %lu cycles)\n",
337 smp_processor_id(), master, delta, rt);
340 static void __cpuinit tsc_sync_wait(void)
343 * When the CPU has synchronized TSCs assume the BIOS
344 * or the hardware already synced. Otherwise we could
345 * mess up a possible perfect synchronization with a
346 * not-quite-perfect algorithm.
348 if (notscsync || !cpu_has_tsc || !unsynchronized_tsc())
349 return;
350 sync_tsc(0);
353 static __init int notscsync_setup(char *s)
355 notscsync = 1;
356 return 1;
358 __setup("notscsync", notscsync_setup);
360 static atomic_t init_deasserted __cpuinitdata;
363 * Report back to the Boot Processor.
364 * Running on AP.
366 void __cpuinit smp_callin(void)
368 int cpuid, phys_id;
369 unsigned long timeout;
372 * If waken up by an INIT in an 82489DX configuration
373 * we may get here before an INIT-deassert IPI reaches
374 * our local APIC. We have to wait for the IPI or we'll
375 * lock up on an APIC access.
377 while (!atomic_read(&init_deasserted))
378 cpu_relax();
381 * (This works even if the APIC is not enabled.)
383 phys_id = GET_APIC_ID(apic_read(APIC_ID));
384 cpuid = smp_processor_id();
385 if (cpu_isset(cpuid, cpu_callin_map)) {
386 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
387 phys_id, cpuid);
389 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
392 * STARTUP IPIs are fragile beasts as they might sometimes
393 * trigger some glue motherboard logic. Complete APIC bus
394 * silence for 1 second, this overestimates the time the
395 * boot CPU is spending to send the up to 2 STARTUP IPIs
396 * by a factor of two. This should be enough.
400 * Waiting 2s total for startup (udelay is not yet working)
402 timeout = jiffies + 2*HZ;
403 while (time_before(jiffies, timeout)) {
405 * Has the boot CPU finished it's STARTUP sequence?
407 if (cpu_isset(cpuid, cpu_callout_map))
408 break;
409 cpu_relax();
412 if (!time_before(jiffies, timeout)) {
413 panic("smp_callin: CPU%d started up but did not get a callout!\n",
414 cpuid);
418 * the boot CPU has finished the init stage and is spinning
419 * on callin_map until we finish. We are free to set up this
420 * CPU, first the APIC. (this is probably redundant on most
421 * boards)
424 Dprintk("CALLIN, before setup_local_APIC().\n");
425 setup_local_APIC();
428 * Get our bogomips.
430 * Need to enable IRQs because it can take longer and then
431 * the NMI watchdog might kill us.
433 local_irq_enable();
434 calibrate_delay();
435 local_irq_disable();
436 Dprintk("Stack at about %p\n",&cpuid);
438 disable_APIC_timer();
441 * Save our processor parameters
443 smp_store_cpu_info(cpuid);
446 * Allow the master to continue.
448 cpu_set(cpuid, cpu_callin_map);
451 /* maps the cpu to the sched domain representing multi-core */
452 cpumask_t cpu_coregroup_map(int cpu)
454 struct cpuinfo_x86 *c = cpu_data + cpu;
456 * For perf, we return last level cache shared map.
457 * And for power savings, we return cpu_core_map
459 if (sched_mc_power_savings || sched_smt_power_savings)
460 return cpu_core_map[cpu];
461 else
462 return c->llc_shared_map;
465 /* representing cpus for which sibling maps can be computed */
466 static cpumask_t cpu_sibling_setup_map;
468 static inline void set_cpu_sibling_map(int cpu)
470 int i;
471 struct cpuinfo_x86 *c = cpu_data;
473 cpu_set(cpu, cpu_sibling_setup_map);
475 if (smp_num_siblings > 1) {
476 for_each_cpu_mask(i, cpu_sibling_setup_map) {
477 if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
478 c[cpu].cpu_core_id == c[i].cpu_core_id) {
479 cpu_set(i, cpu_sibling_map[cpu]);
480 cpu_set(cpu, cpu_sibling_map[i]);
481 cpu_set(i, cpu_core_map[cpu]);
482 cpu_set(cpu, cpu_core_map[i]);
483 cpu_set(i, c[cpu].llc_shared_map);
484 cpu_set(cpu, c[i].llc_shared_map);
487 } else {
488 cpu_set(cpu, cpu_sibling_map[cpu]);
491 cpu_set(cpu, c[cpu].llc_shared_map);
493 if (current_cpu_data.x86_max_cores == 1) {
494 cpu_core_map[cpu] = cpu_sibling_map[cpu];
495 c[cpu].booted_cores = 1;
496 return;
499 for_each_cpu_mask(i, cpu_sibling_setup_map) {
500 if (cpu_llc_id[cpu] != BAD_APICID &&
501 cpu_llc_id[cpu] == cpu_llc_id[i]) {
502 cpu_set(i, c[cpu].llc_shared_map);
503 cpu_set(cpu, c[i].llc_shared_map);
505 if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
506 cpu_set(i, cpu_core_map[cpu]);
507 cpu_set(cpu, cpu_core_map[i]);
509 * Does this new cpu bringup a new core?
511 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
513 * for each core in package, increment
514 * the booted_cores for this new cpu
516 if (first_cpu(cpu_sibling_map[i]) == i)
517 c[cpu].booted_cores++;
519 * increment the core count for all
520 * the other cpus in this package
522 if (i != cpu)
523 c[i].booted_cores++;
524 } else if (i != cpu && !c[cpu].booted_cores)
525 c[cpu].booted_cores = c[i].booted_cores;
531 * Setup code on secondary processor (after comming out of the trampoline)
533 void __cpuinit start_secondary(void)
536 * Dont put anything before smp_callin(), SMP
537 * booting is too fragile that we want to limit the
538 * things done here to the most necessary things.
540 cpu_init();
541 preempt_disable();
542 smp_callin();
544 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
545 barrier();
547 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
548 setup_secondary_APIC_clock();
550 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
552 if (nmi_watchdog == NMI_IO_APIC) {
553 disable_8259A_irq(0);
554 enable_NMI_through_LVT0(NULL);
555 enable_8259A_irq(0);
558 enable_APIC_timer();
561 * The sibling maps must be set before turing the online map on for
562 * this cpu
564 set_cpu_sibling_map(smp_processor_id());
567 * Wait for TSC sync to not schedule things before.
568 * We still process interrupts, which could see an inconsistent
569 * time in that window unfortunately.
570 * Do this here because TSC sync has global unprotected state.
572 tsc_sync_wait();
575 * We need to hold call_lock, so there is no inconsistency
576 * between the time smp_call_function() determines number of
577 * IPI receipients, and the time when the determination is made
578 * for which cpus receive the IPI in genapic_flat.c. Holding this
579 * lock helps us to not include this cpu in a currently in progress
580 * smp_call_function().
582 lock_ipi_call_lock();
585 * Allow the master to continue.
587 cpu_set(smp_processor_id(), cpu_online_map);
588 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
589 unlock_ipi_call_lock();
591 cpu_idle();
594 extern volatile unsigned long init_rsp;
595 extern void (*initial_code)(void);
597 #ifdef APIC_DEBUG
598 static void inquire_remote_apic(int apicid)
600 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
601 char *names[] = { "ID", "VERSION", "SPIV" };
602 int timeout, status;
604 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
606 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
607 printk("... APIC #%d %s: ", apicid, names[i]);
610 * Wait for idle.
612 apic_wait_icr_idle();
614 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
615 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
617 timeout = 0;
618 do {
619 udelay(100);
620 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
621 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
623 switch (status) {
624 case APIC_ICR_RR_VALID:
625 status = apic_read(APIC_RRR);
626 printk("%08x\n", status);
627 break;
628 default:
629 printk("failed\n");
633 #endif
636 * Kick the secondary to wake up.
638 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
640 unsigned long send_status = 0, accept_status = 0;
641 int maxlvt, timeout, num_starts, j;
643 Dprintk("Asserting INIT.\n");
646 * Turn INIT on target chip
648 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
651 * Send IPI
653 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
654 | APIC_DM_INIT);
656 Dprintk("Waiting for send to finish...\n");
657 timeout = 0;
658 do {
659 Dprintk("+");
660 udelay(100);
661 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
662 } while (send_status && (timeout++ < 1000));
664 mdelay(10);
666 Dprintk("Deasserting INIT.\n");
668 /* Target chip */
669 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
671 /* Send IPI */
672 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
674 Dprintk("Waiting for send to finish...\n");
675 timeout = 0;
676 do {
677 Dprintk("+");
678 udelay(100);
679 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
680 } while (send_status && (timeout++ < 1000));
682 mb();
683 atomic_set(&init_deasserted, 1);
685 num_starts = 2;
688 * Run STARTUP IPI loop.
690 Dprintk("#startup loops: %d.\n", num_starts);
692 maxlvt = get_maxlvt();
694 for (j = 1; j <= num_starts; j++) {
695 Dprintk("Sending STARTUP #%d.\n",j);
696 apic_write(APIC_ESR, 0);
697 apic_read(APIC_ESR);
698 Dprintk("After apic_write.\n");
701 * STARTUP IPI
704 /* Target chip */
705 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
707 /* Boot on the stack */
708 /* Kick the second */
709 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
712 * Give the other CPU some time to accept the IPI.
714 udelay(300);
716 Dprintk("Startup point 1.\n");
718 Dprintk("Waiting for send to finish...\n");
719 timeout = 0;
720 do {
721 Dprintk("+");
722 udelay(100);
723 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
724 } while (send_status && (timeout++ < 1000));
727 * Give the other CPU some time to accept the IPI.
729 udelay(200);
731 * Due to the Pentium erratum 3AP.
733 if (maxlvt > 3) {
734 apic_write(APIC_ESR, 0);
736 accept_status = (apic_read(APIC_ESR) & 0xEF);
737 if (send_status || accept_status)
738 break;
740 Dprintk("After Startup.\n");
742 if (send_status)
743 printk(KERN_ERR "APIC never delivered???\n");
744 if (accept_status)
745 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
747 return (send_status | accept_status);
750 struct create_idle {
751 struct task_struct *idle;
752 struct completion done;
753 int cpu;
756 void do_fork_idle(void *_c_idle)
758 struct create_idle *c_idle = _c_idle;
760 c_idle->idle = fork_idle(c_idle->cpu);
761 complete(&c_idle->done);
765 * Boot one CPU.
767 static int __cpuinit do_boot_cpu(int cpu, int apicid)
769 unsigned long boot_error;
770 int timeout;
771 unsigned long start_rip;
772 struct create_idle c_idle = {
773 .cpu = cpu,
774 .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done),
776 DECLARE_WORK(work, do_fork_idle, &c_idle);
778 /* allocate memory for gdts of secondary cpus. Hotplug is considered */
779 if (!cpu_gdt_descr[cpu].address &&
780 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
781 printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu);
782 return -1;
785 /* Allocate node local memory for AP pdas */
786 if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) {
787 struct x8664_pda *newpda, *pda;
788 int node = cpu_to_node(cpu);
789 pda = cpu_pda(cpu);
790 newpda = kmalloc_node(sizeof (struct x8664_pda), GFP_ATOMIC,
791 node);
792 if (newpda) {
793 memcpy(newpda, pda, sizeof (struct x8664_pda));
794 cpu_pda(cpu) = newpda;
795 } else
796 printk(KERN_ERR
797 "Could not allocate node local PDA for CPU %d on node %d\n",
798 cpu, node);
802 alternatives_smp_switch(1);
804 c_idle.idle = get_idle_for_cpu(cpu);
806 if (c_idle.idle) {
807 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
808 (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1);
809 init_idle(c_idle.idle, cpu);
810 goto do_rest;
814 * During cold boot process, keventd thread is not spun up yet.
815 * When we do cpu hot-add, we create idle threads on the fly, we should
816 * not acquire any attributes from the calling context. Hence the clean
817 * way to create kernel_threads() is to do that from keventd().
818 * We do the current_is_keventd() due to the fact that ACPI notifier
819 * was also queuing to keventd() and when the caller is already running
820 * in context of keventd(), we would end up with locking up the keventd
821 * thread.
823 if (!keventd_up() || current_is_keventd())
824 work.func(work.data);
825 else {
826 schedule_work(&work);
827 wait_for_completion(&c_idle.done);
830 if (IS_ERR(c_idle.idle)) {
831 printk("failed fork for CPU %d\n", cpu);
832 return PTR_ERR(c_idle.idle);
835 set_idle_for_cpu(cpu, c_idle.idle);
837 do_rest:
839 cpu_pda(cpu)->pcurrent = c_idle.idle;
841 start_rip = setup_trampoline();
843 init_rsp = c_idle.idle->thread.rsp;
844 per_cpu(init_tss,cpu).rsp0 = init_rsp;
845 initial_code = start_secondary;
846 clear_tsk_thread_flag(c_idle.idle, TIF_FORK);
848 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
849 cpus_weight(cpu_present_map),
850 apicid);
853 * This grunge runs the startup process for
854 * the targeted processor.
857 atomic_set(&init_deasserted, 0);
859 Dprintk("Setting warm reset code and vector.\n");
861 CMOS_WRITE(0xa, 0xf);
862 local_flush_tlb();
863 Dprintk("1.\n");
864 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
865 Dprintk("2.\n");
866 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
867 Dprintk("3.\n");
870 * Be paranoid about clearing APIC errors.
872 apic_write(APIC_ESR, 0);
873 apic_read(APIC_ESR);
876 * Status is now clean
878 boot_error = 0;
881 * Starting actual IPI sequence...
883 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
885 if (!boot_error) {
887 * allow APs to start initializing.
889 Dprintk("Before Callout %d.\n", cpu);
890 cpu_set(cpu, cpu_callout_map);
891 Dprintk("After Callout %d.\n", cpu);
894 * Wait 5s total for a response
896 for (timeout = 0; timeout < 50000; timeout++) {
897 if (cpu_isset(cpu, cpu_callin_map))
898 break; /* It has booted */
899 udelay(100);
902 if (cpu_isset(cpu, cpu_callin_map)) {
903 /* number CPUs logically, starting from 1 (BSP is 0) */
904 Dprintk("CPU has booted.\n");
905 } else {
906 boot_error = 1;
907 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
908 == 0xA5)
909 /* trampoline started but...? */
910 printk("Stuck ??\n");
911 else
912 /* trampoline code not run */
913 printk("Not responding.\n");
914 #ifdef APIC_DEBUG
915 inquire_remote_apic(apicid);
916 #endif
919 if (boot_error) {
920 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
921 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
922 clear_node_cpumask(cpu); /* was set by numa_add_cpu */
923 cpu_clear(cpu, cpu_present_map);
924 cpu_clear(cpu, cpu_possible_map);
925 x86_cpu_to_apicid[cpu] = BAD_APICID;
926 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
927 return -EIO;
930 return 0;
933 cycles_t cacheflush_time;
934 unsigned long cache_decay_ticks;
937 * Cleanup possible dangling ends...
939 static __cpuinit void smp_cleanup_boot(void)
942 * Paranoid: Set warm reset code and vector here back
943 * to default values.
945 CMOS_WRITE(0, 0xf);
948 * Reset trampoline flag
950 *((volatile int *) phys_to_virt(0x467)) = 0;
954 * Fall back to non SMP mode after errors.
956 * RED-PEN audit/test this more. I bet there is more state messed up here.
958 static __init void disable_smp(void)
960 cpu_present_map = cpumask_of_cpu(0);
961 cpu_possible_map = cpumask_of_cpu(0);
962 if (smp_found_config)
963 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
964 else
965 phys_cpu_present_map = physid_mask_of_physid(0);
966 cpu_set(0, cpu_sibling_map[0]);
967 cpu_set(0, cpu_core_map[0]);
970 #ifdef CONFIG_HOTPLUG_CPU
972 int additional_cpus __initdata = -1;
975 * cpu_possible_map should be static, it cannot change as cpu's
976 * are onlined, or offlined. The reason is per-cpu data-structures
977 * are allocated by some modules at init time, and dont expect to
978 * do this dynamically on cpu arrival/departure.
979 * cpu_present_map on the other hand can change dynamically.
980 * In case when cpu_hotplug is not compiled, then we resort to current
981 * behaviour, which is cpu_possible == cpu_present.
982 * - Ashok Raj
984 * Three ways to find out the number of additional hotplug CPUs:
985 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
986 * - The user can overwrite it with additional_cpus=NUM
987 * - Otherwise don't reserve additional CPUs.
988 * We do this because additional CPUs waste a lot of memory.
989 * -AK
991 __init void prefill_possible_map(void)
993 int i;
994 int possible;
996 if (additional_cpus == -1) {
997 if (disabled_cpus > 0)
998 additional_cpus = disabled_cpus;
999 else
1000 additional_cpus = 0;
1002 possible = num_processors + additional_cpus;
1003 if (possible > NR_CPUS)
1004 possible = NR_CPUS;
1006 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
1007 possible,
1008 max_t(int, possible - num_processors, 0));
1010 for (i = 0; i < possible; i++)
1011 cpu_set(i, cpu_possible_map);
1013 #endif
1016 * Various sanity checks.
1018 static int __init smp_sanity_check(unsigned max_cpus)
1020 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1021 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1022 hard_smp_processor_id());
1023 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1027 * If we couldn't find an SMP configuration at boot time,
1028 * get out of here now!
1030 if (!smp_found_config) {
1031 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1032 disable_smp();
1033 if (APIC_init_uniprocessor())
1034 printk(KERN_NOTICE "Local APIC not detected."
1035 " Using dummy APIC emulation.\n");
1036 return -1;
1040 * Should not be necessary because the MP table should list the boot
1041 * CPU too, but we do it for the sake of robustness anyway.
1043 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
1044 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
1045 boot_cpu_id);
1046 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1050 * If we couldn't find a local APIC, then get out of here now!
1052 if (!cpu_has_apic) {
1053 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1054 boot_cpu_id);
1055 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1056 nr_ioapics = 0;
1057 return -1;
1061 * If SMP should be disabled, then really disable it!
1063 if (!max_cpus) {
1064 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1065 nr_ioapics = 0;
1066 return -1;
1069 return 0;
1073 * Prepare for SMP bootup. The MP table or ACPI has been read
1074 * earlier. Just do some sanity checking here and enable APIC mode.
1076 void __init smp_prepare_cpus(unsigned int max_cpus)
1078 nmi_watchdog_default();
1079 current_cpu_data = boot_cpu_data;
1080 current_thread_info()->cpu = 0; /* needed? */
1081 set_cpu_sibling_map(0);
1083 if (smp_sanity_check(max_cpus) < 0) {
1084 printk(KERN_INFO "SMP disabled\n");
1085 disable_smp();
1086 return;
1091 * Switch from PIC to APIC mode.
1093 connect_bsp_APIC();
1094 setup_local_APIC();
1096 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1097 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1098 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1099 /* Or can we switch back to PIC here? */
1103 * Now start the IO-APICs
1105 if (!skip_ioapic_setup && nr_ioapics)
1106 setup_IO_APIC();
1107 else
1108 nr_ioapics = 0;
1111 * Set up local APIC timer on boot CPU.
1114 setup_boot_APIC_clock();
1118 * Early setup to make printk work.
1120 void __init smp_prepare_boot_cpu(void)
1122 int me = smp_processor_id();
1123 cpu_set(me, cpu_online_map);
1124 cpu_set(me, cpu_callout_map);
1125 per_cpu(cpu_state, me) = CPU_ONLINE;
1129 * Entry point to boot a CPU.
1131 int __cpuinit __cpu_up(unsigned int cpu)
1133 int err;
1134 int apicid = cpu_present_to_apicid(cpu);
1136 WARN_ON(irqs_disabled());
1138 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1140 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1141 !physid_isset(apicid, phys_cpu_present_map)) {
1142 printk("__cpu_up: bad cpu %d\n", cpu);
1143 return -EINVAL;
1147 * Already booted CPU?
1149 if (cpu_isset(cpu, cpu_callin_map)) {
1150 Dprintk("do_boot_cpu %d Already started\n", cpu);
1151 return -ENOSYS;
1154 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1155 /* Boot it! */
1156 err = do_boot_cpu(cpu, apicid);
1157 if (err < 0) {
1158 Dprintk("do_boot_cpu failed %d\n", err);
1159 return err;
1162 /* Unleash the CPU! */
1163 Dprintk("waiting for cpu %d\n", cpu);
1165 while (!cpu_isset(cpu, cpu_online_map))
1166 cpu_relax();
1167 err = 0;
1169 return err;
1173 * Finish the SMP boot.
1175 void __init smp_cpus_done(unsigned int max_cpus)
1177 smp_cleanup_boot();
1178 setup_ioapic_dest();
1179 check_nmi_watchdog();
1180 time_init_gtod();
1183 #ifdef CONFIG_HOTPLUG_CPU
1185 static void remove_siblinginfo(int cpu)
1187 int sibling;
1188 struct cpuinfo_x86 *c = cpu_data;
1190 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1191 cpu_clear(cpu, cpu_core_map[sibling]);
1193 * last thread sibling in this cpu core going down
1195 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1196 c[sibling].booted_cores--;
1199 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1200 cpu_clear(cpu, cpu_sibling_map[sibling]);
1201 cpus_clear(cpu_sibling_map[cpu]);
1202 cpus_clear(cpu_core_map[cpu]);
1203 c[cpu].phys_proc_id = 0;
1204 c[cpu].cpu_core_id = 0;
1205 cpu_clear(cpu, cpu_sibling_setup_map);
1208 void remove_cpu_from_maps(void)
1210 int cpu = smp_processor_id();
1212 cpu_clear(cpu, cpu_callout_map);
1213 cpu_clear(cpu, cpu_callin_map);
1214 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1215 clear_node_cpumask(cpu);
1218 int __cpu_disable(void)
1220 int cpu = smp_processor_id();
1223 * Perhaps use cpufreq to drop frequency, but that could go
1224 * into generic code.
1226 * We won't take down the boot processor on i386 due to some
1227 * interrupts only being able to be serviced by the BSP.
1228 * Especially so if we're not using an IOAPIC -zwane
1230 if (cpu == 0)
1231 return -EBUSY;
1233 if (nmi_watchdog == NMI_LOCAL_APIC)
1234 stop_apic_nmi_watchdog(NULL);
1235 clear_local_APIC();
1238 * HACK:
1239 * Allow any queued timer interrupts to get serviced
1240 * This is only a temporary solution until we cleanup
1241 * fixup_irqs as we do for IA64.
1243 local_irq_enable();
1244 mdelay(1);
1246 local_irq_disable();
1247 remove_siblinginfo(cpu);
1249 /* It's now safe to remove this processor from the online map */
1250 cpu_clear(cpu, cpu_online_map);
1251 remove_cpu_from_maps();
1252 fixup_irqs(cpu_online_map);
1253 return 0;
1256 void __cpu_die(unsigned int cpu)
1258 /* We don't do anything here: idle task is faking death itself. */
1259 unsigned int i;
1261 for (i = 0; i < 10; i++) {
1262 /* They ack this in play_dead by setting CPU_DEAD */
1263 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1264 printk ("CPU %d is now offline\n", cpu);
1265 if (1 == num_online_cpus())
1266 alternatives_smp_switch(0);
1267 return;
1269 msleep(100);
1271 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1274 __init int setup_additional_cpus(char *s)
1276 return get_option(&s, &additional_cpus);
1278 __setup("additional_cpus=", setup_additional_cpus);
1280 #else /* ... !CONFIG_HOTPLUG_CPU */
1282 int __cpu_disable(void)
1284 return -ENOSYS;
1287 void __cpu_die(unsigned int cpu)
1289 /* We said "no" in __cpu_disable */
1290 BUG();
1292 #endif /* CONFIG_HOTPLUG_CPU */