Documentation: add SCSI drivers' mapping error handling to DMA-API-HOWTO
[linux-2.6/cjktty.git] / kernel / sched.c
blob15b93f617fd79219b7d210df086158e176fba477
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
123 static inline int rt_policy(int policy)
125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 return 1;
127 return 0;
130 static inline int task_has_rt_policy(struct task_struct *p)
132 return rt_policy(p->policy);
136 * This is the priority-queue data structure of the RT scheduling class:
138 struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
143 struct rt_bandwidth {
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock;
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
151 static struct rt_bandwidth def_rt_bandwidth;
153 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167 if (!overrun)
168 break;
170 idle = do_sched_rt_period_timer(rt_b, overrun);
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176 static
177 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
189 static inline int rt_bandwidth_enabled(void)
191 return sysctl_sched_rt_runtime >= 0;
194 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 ktime_t now;
198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 return;
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
204 raw_spin_lock(&rt_b->rt_runtime_lock);
205 for (;;) {
206 unsigned long delta;
207 ktime_t soft, hard;
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219 HRTIMER_MODE_ABS_PINNED, 0);
221 raw_spin_unlock(&rt_b->rt_runtime_lock);
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 hrtimer_cancel(&rt_b->rt_period_timer);
229 #endif
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
235 static DEFINE_MUTEX(sched_domains_mutex);
237 #ifdef CONFIG_CGROUP_SCHED
239 #include <linux/cgroup.h>
241 struct cfs_rq;
243 static LIST_HEAD(task_groups);
245 /* task group related information */
246 struct task_group {
247 struct cgroup_subsys_state css;
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
255 #endif
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
261 struct rt_bandwidth rt_bandwidth;
262 #endif
264 struct rcu_head rcu;
265 struct list_head list;
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
272 #define root_task_group init_task_group
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
277 static DEFINE_SPINLOCK(task_group_lock);
279 #ifdef CONFIG_FAIR_GROUP_SCHED
281 #ifdef CONFIG_SMP
282 static int root_task_group_empty(void)
284 return list_empty(&root_task_group.children);
286 #endif
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
298 #define MIN_SHARES 2
299 #define MAX_SHARES (1UL << 18)
301 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302 #endif
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
307 struct task_group init_task_group;
309 /* return group to which a task belongs */
310 static inline struct task_group *task_group(struct task_struct *p)
312 struct task_group *tg;
314 #ifdef CONFIG_CGROUP_SCHED
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
317 #else
318 tg = &init_task_group;
319 #endif
320 return tg;
323 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
324 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
334 rcu_read_lock();
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
337 p->se.parent = task_group(p)->se[cpu];
338 #endif
340 #ifdef CONFIG_RT_GROUP_SCHED
341 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
342 p->rt.parent = task_group(p)->rt_se[cpu];
343 #endif
344 rcu_read_unlock();
347 #else
349 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
350 static inline struct task_group *task_group(struct task_struct *p)
352 return NULL;
355 #endif /* CONFIG_CGROUP_SCHED */
357 /* CFS-related fields in a runqueue */
358 struct cfs_rq {
359 struct load_weight load;
360 unsigned long nr_running;
362 u64 exec_clock;
363 u64 min_vruntime;
365 struct rb_root tasks_timeline;
366 struct rb_node *rb_leftmost;
368 struct list_head tasks;
369 struct list_head *balance_iterator;
372 * 'curr' points to currently running entity on this cfs_rq.
373 * It is set to NULL otherwise (i.e when none are currently running).
375 struct sched_entity *curr, *next, *last;
377 unsigned int nr_spread_over;
379 #ifdef CONFIG_FAIR_GROUP_SCHED
380 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
390 struct list_head leaf_cfs_rq_list;
391 struct task_group *tg; /* group that "owns" this runqueue */
393 #ifdef CONFIG_SMP
395 * the part of load.weight contributed by tasks
397 unsigned long task_weight;
400 * h_load = weight * f(tg)
402 * Where f(tg) is the recursive weight fraction assigned to
403 * this group.
405 unsigned long h_load;
408 * this cpu's part of tg->shares
410 unsigned long shares;
413 * load.weight at the time we set shares
415 unsigned long rq_weight;
416 #endif
417 #endif
420 /* Real-Time classes' related field in a runqueue: */
421 struct rt_rq {
422 struct rt_prio_array active;
423 unsigned long rt_nr_running;
424 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
425 struct {
426 int curr; /* highest queued rt task prio */
427 #ifdef CONFIG_SMP
428 int next; /* next highest */
429 #endif
430 } highest_prio;
431 #endif
432 #ifdef CONFIG_SMP
433 unsigned long rt_nr_migratory;
434 unsigned long rt_nr_total;
435 int overloaded;
436 struct plist_head pushable_tasks;
437 #endif
438 int rt_throttled;
439 u64 rt_time;
440 u64 rt_runtime;
441 /* Nests inside the rq lock: */
442 raw_spinlock_t rt_runtime_lock;
444 #ifdef CONFIG_RT_GROUP_SCHED
445 unsigned long rt_nr_boosted;
447 struct rq *rq;
448 struct list_head leaf_rt_rq_list;
449 struct task_group *tg;
450 #endif
453 #ifdef CONFIG_SMP
456 * We add the notion of a root-domain which will be used to define per-domain
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
459 * exclusive cpuset is created, we also create and attach a new root-domain
460 * object.
463 struct root_domain {
464 atomic_t refcount;
465 cpumask_var_t span;
466 cpumask_var_t online;
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
472 cpumask_var_t rto_mask;
473 atomic_t rto_count;
474 #ifdef CONFIG_SMP
475 struct cpupri cpupri;
476 #endif
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
483 static struct root_domain def_root_domain;
485 #endif
488 * This is the main, per-CPU runqueue data structure.
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
494 struct rq {
495 /* runqueue lock: */
496 raw_spinlock_t lock;
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
502 unsigned long nr_running;
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
505 #ifdef CONFIG_NO_HZ
506 u64 nohz_stamp;
507 unsigned char in_nohz_recently;
508 #endif
509 unsigned int skip_clock_update;
511 /* capture load from *all* tasks on this cpu: */
512 struct load_weight load;
513 unsigned long nr_load_updates;
514 u64 nr_switches;
516 struct cfs_rq cfs;
517 struct rt_rq rt;
519 #ifdef CONFIG_FAIR_GROUP_SCHED
520 /* list of leaf cfs_rq on this cpu: */
521 struct list_head leaf_cfs_rq_list;
522 #endif
523 #ifdef CONFIG_RT_GROUP_SCHED
524 struct list_head leaf_rt_rq_list;
525 #endif
528 * This is part of a global counter where only the total sum
529 * over all CPUs matters. A task can increase this counter on
530 * one CPU and if it got migrated afterwards it may decrease
531 * it on another CPU. Always updated under the runqueue lock:
533 unsigned long nr_uninterruptible;
535 struct task_struct *curr, *idle;
536 unsigned long next_balance;
537 struct mm_struct *prev_mm;
539 u64 clock;
541 atomic_t nr_iowait;
543 #ifdef CONFIG_SMP
544 struct root_domain *rd;
545 struct sched_domain *sd;
547 unsigned char idle_at_tick;
548 /* For active balancing */
549 int post_schedule;
550 int active_balance;
551 int push_cpu;
552 struct cpu_stop_work active_balance_work;
553 /* cpu of this runqueue: */
554 int cpu;
555 int online;
557 unsigned long avg_load_per_task;
559 u64 rt_avg;
560 u64 age_stamp;
561 u64 idle_stamp;
562 u64 avg_idle;
563 #endif
565 /* calc_load related fields */
566 unsigned long calc_load_update;
567 long calc_load_active;
569 #ifdef CONFIG_SCHED_HRTICK
570 #ifdef CONFIG_SMP
571 int hrtick_csd_pending;
572 struct call_single_data hrtick_csd;
573 #endif
574 struct hrtimer hrtick_timer;
575 #endif
577 #ifdef CONFIG_SCHEDSTATS
578 /* latency stats */
579 struct sched_info rq_sched_info;
580 unsigned long long rq_cpu_time;
581 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
583 /* sys_sched_yield() stats */
584 unsigned int yld_count;
586 /* schedule() stats */
587 unsigned int sched_switch;
588 unsigned int sched_count;
589 unsigned int sched_goidle;
591 /* try_to_wake_up() stats */
592 unsigned int ttwu_count;
593 unsigned int ttwu_local;
595 /* BKL stats */
596 unsigned int bkl_count;
597 #endif
600 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
602 static inline
603 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
605 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
608 * A queue event has occurred, and we're going to schedule. In
609 * this case, we can save a useless back to back clock update.
611 if (test_tsk_need_resched(p))
612 rq->skip_clock_update = 1;
615 static inline int cpu_of(struct rq *rq)
617 #ifdef CONFIG_SMP
618 return rq->cpu;
619 #else
620 return 0;
621 #endif
624 #define rcu_dereference_check_sched_domain(p) \
625 rcu_dereference_check((p), \
626 rcu_read_lock_sched_held() || \
627 lockdep_is_held(&sched_domains_mutex))
630 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
631 * See detach_destroy_domains: synchronize_sched for details.
633 * The domain tree of any CPU may only be accessed from within
634 * preempt-disabled sections.
636 #define for_each_domain(cpu, __sd) \
637 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
639 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
640 #define this_rq() (&__get_cpu_var(runqueues))
641 #define task_rq(p) cpu_rq(task_cpu(p))
642 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
643 #define raw_rq() (&__raw_get_cpu_var(runqueues))
645 inline void update_rq_clock(struct rq *rq)
647 if (!rq->skip_clock_update)
648 rq->clock = sched_clock_cpu(cpu_of(rq));
652 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 #ifdef CONFIG_SCHED_DEBUG
655 # define const_debug __read_mostly
656 #else
657 # define const_debug static const
658 #endif
661 * runqueue_is_locked
662 * @cpu: the processor in question.
664 * Returns true if the current cpu runqueue is locked.
665 * This interface allows printk to be called with the runqueue lock
666 * held and know whether or not it is OK to wake up the klogd.
668 int runqueue_is_locked(int cpu)
670 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
674 * Debugging: various feature bits
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
680 enum {
681 #include "sched_features.h"
684 #undef SCHED_FEAT
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
689 const_debug unsigned int sysctl_sched_features =
690 #include "sched_features.h"
693 #undef SCHED_FEAT
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
697 #name ,
699 static __read_mostly char *sched_feat_names[] = {
700 #include "sched_features.h"
701 NULL
704 #undef SCHED_FEAT
706 static int sched_feat_show(struct seq_file *m, void *v)
708 int i;
710 for (i = 0; sched_feat_names[i]; i++) {
711 if (!(sysctl_sched_features & (1UL << i)))
712 seq_puts(m, "NO_");
713 seq_printf(m, "%s ", sched_feat_names[i]);
715 seq_puts(m, "\n");
717 return 0;
720 static ssize_t
721 sched_feat_write(struct file *filp, const char __user *ubuf,
722 size_t cnt, loff_t *ppos)
724 char buf[64];
725 char *cmp = buf;
726 int neg = 0;
727 int i;
729 if (cnt > 63)
730 cnt = 63;
732 if (copy_from_user(&buf, ubuf, cnt))
733 return -EFAULT;
735 buf[cnt] = 0;
737 if (strncmp(buf, "NO_", 3) == 0) {
738 neg = 1;
739 cmp += 3;
742 for (i = 0; sched_feat_names[i]; i++) {
743 int len = strlen(sched_feat_names[i]);
745 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
754 if (!sched_feat_names[i])
755 return -EINVAL;
757 *ppos += cnt;
759 return cnt;
762 static int sched_feat_open(struct inode *inode, struct file *filp)
764 return single_open(filp, sched_feat_show, NULL);
767 static const struct file_operations sched_feat_fops = {
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
775 static __init int sched_init_debug(void)
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
780 return 0;
782 late_initcall(sched_init_debug);
784 #endif
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
792 const_debug unsigned int sysctl_sched_nr_migrate = 32;
795 * ratelimit for updating the group shares.
796 * default: 0.25ms
798 unsigned int sysctl_sched_shares_ratelimit = 250000;
799 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
802 * Inject some fuzzyness into changing the per-cpu group shares
803 * this avoids remote rq-locks at the expense of fairness.
804 * default: 4
806 unsigned int sysctl_sched_shares_thresh = 4;
809 * period over which we average the RT time consumption, measured
810 * in ms.
812 * default: 1s
814 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
817 * period over which we measure -rt task cpu usage in us.
818 * default: 1s
820 unsigned int sysctl_sched_rt_period = 1000000;
822 static __read_mostly int scheduler_running;
825 * part of the period that we allow rt tasks to run in us.
826 * default: 0.95s
828 int sysctl_sched_rt_runtime = 950000;
830 static inline u64 global_rt_period(void)
832 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
835 static inline u64 global_rt_runtime(void)
837 if (sysctl_sched_rt_runtime < 0)
838 return RUNTIME_INF;
840 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
843 #ifndef prepare_arch_switch
844 # define prepare_arch_switch(next) do { } while (0)
845 #endif
846 #ifndef finish_arch_switch
847 # define finish_arch_switch(prev) do { } while (0)
848 #endif
850 static inline int task_current(struct rq *rq, struct task_struct *p)
852 return rq->curr == p;
855 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
856 static inline int task_running(struct rq *rq, struct task_struct *p)
858 return task_current(rq, p);
861 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
865 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
867 #ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq->lock.owner = current;
870 #endif
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
874 * prev into current:
876 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
878 raw_spin_unlock_irq(&rq->lock);
881 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
882 static inline int task_running(struct rq *rq, struct task_struct *p)
884 #ifdef CONFIG_SMP
885 return p->oncpu;
886 #else
887 return task_current(rq, p);
888 #endif
891 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
893 #ifdef CONFIG_SMP
895 * We can optimise this out completely for !SMP, because the
896 * SMP rebalancing from interrupt is the only thing that cares
897 * here.
899 next->oncpu = 1;
900 #endif
901 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
902 raw_spin_unlock_irq(&rq->lock);
903 #else
904 raw_spin_unlock(&rq->lock);
905 #endif
908 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
910 #ifdef CONFIG_SMP
912 * After ->oncpu is cleared, the task can be moved to a different CPU.
913 * We must ensure this doesn't happen until the switch is completely
914 * finished.
916 smp_wmb();
917 prev->oncpu = 0;
918 #endif
919 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 local_irq_enable();
921 #endif
923 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
926 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
927 * against ttwu().
929 static inline int task_is_waking(struct task_struct *p)
931 return unlikely(p->state == TASK_WAKING);
935 * __task_rq_lock - lock the runqueue a given task resides on.
936 * Must be called interrupts disabled.
938 static inline struct rq *__task_rq_lock(struct task_struct *p)
939 __acquires(rq->lock)
941 struct rq *rq;
943 for (;;) {
944 rq = task_rq(p);
945 raw_spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 raw_spin_unlock(&rq->lock);
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
958 __acquires(rq->lock)
960 struct rq *rq;
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 raw_spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
968 raw_spin_unlock_irqrestore(&rq->lock, *flags);
972 static void __task_rq_unlock(struct rq *rq)
973 __releases(rq->lock)
975 raw_spin_unlock(&rq->lock);
978 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
979 __releases(rq->lock)
981 raw_spin_unlock_irqrestore(&rq->lock, *flags);
985 * this_rq_lock - lock this runqueue and disable interrupts.
987 static struct rq *this_rq_lock(void)
988 __acquires(rq->lock)
990 struct rq *rq;
992 local_irq_disable();
993 rq = this_rq();
994 raw_spin_lock(&rq->lock);
996 return rq;
999 #ifdef CONFIG_SCHED_HRTICK
1001 * Use HR-timers to deliver accurate preemption points.
1003 * Its all a bit involved since we cannot program an hrt while holding the
1004 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1005 * reschedule event.
1007 * When we get rescheduled we reprogram the hrtick_timer outside of the
1008 * rq->lock.
1012 * Use hrtick when:
1013 * - enabled by features
1014 * - hrtimer is actually high res
1016 static inline int hrtick_enabled(struct rq *rq)
1018 if (!sched_feat(HRTICK))
1019 return 0;
1020 if (!cpu_active(cpu_of(rq)))
1021 return 0;
1022 return hrtimer_is_hres_active(&rq->hrtick_timer);
1025 static void hrtick_clear(struct rq *rq)
1027 if (hrtimer_active(&rq->hrtick_timer))
1028 hrtimer_cancel(&rq->hrtick_timer);
1032 * High-resolution timer tick.
1033 * Runs from hardirq context with interrupts disabled.
1035 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1037 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1039 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1041 raw_spin_lock(&rq->lock);
1042 update_rq_clock(rq);
1043 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1044 raw_spin_unlock(&rq->lock);
1046 return HRTIMER_NORESTART;
1049 #ifdef CONFIG_SMP
1051 * called from hardirq (IPI) context
1053 static void __hrtick_start(void *arg)
1055 struct rq *rq = arg;
1057 raw_spin_lock(&rq->lock);
1058 hrtimer_restart(&rq->hrtick_timer);
1059 rq->hrtick_csd_pending = 0;
1060 raw_spin_unlock(&rq->lock);
1064 * Called to set the hrtick timer state.
1066 * called with rq->lock held and irqs disabled
1068 static void hrtick_start(struct rq *rq, u64 delay)
1070 struct hrtimer *timer = &rq->hrtick_timer;
1071 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1073 hrtimer_set_expires(timer, time);
1075 if (rq == this_rq()) {
1076 hrtimer_restart(timer);
1077 } else if (!rq->hrtick_csd_pending) {
1078 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1079 rq->hrtick_csd_pending = 1;
1083 static int
1084 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1086 int cpu = (int)(long)hcpu;
1088 switch (action) {
1089 case CPU_UP_CANCELED:
1090 case CPU_UP_CANCELED_FROZEN:
1091 case CPU_DOWN_PREPARE:
1092 case CPU_DOWN_PREPARE_FROZEN:
1093 case CPU_DEAD:
1094 case CPU_DEAD_FROZEN:
1095 hrtick_clear(cpu_rq(cpu));
1096 return NOTIFY_OK;
1099 return NOTIFY_DONE;
1102 static __init void init_hrtick(void)
1104 hotcpu_notifier(hotplug_hrtick, 0);
1106 #else
1108 * Called to set the hrtick timer state.
1110 * called with rq->lock held and irqs disabled
1112 static void hrtick_start(struct rq *rq, u64 delay)
1114 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1115 HRTIMER_MODE_REL_PINNED, 0);
1118 static inline void init_hrtick(void)
1121 #endif /* CONFIG_SMP */
1123 static void init_rq_hrtick(struct rq *rq)
1125 #ifdef CONFIG_SMP
1126 rq->hrtick_csd_pending = 0;
1128 rq->hrtick_csd.flags = 0;
1129 rq->hrtick_csd.func = __hrtick_start;
1130 rq->hrtick_csd.info = rq;
1131 #endif
1133 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1134 rq->hrtick_timer.function = hrtick;
1136 #else /* CONFIG_SCHED_HRTICK */
1137 static inline void hrtick_clear(struct rq *rq)
1141 static inline void init_rq_hrtick(struct rq *rq)
1145 static inline void init_hrtick(void)
1148 #endif /* CONFIG_SCHED_HRTICK */
1151 * resched_task - mark a task 'to be rescheduled now'.
1153 * On UP this means the setting of the need_resched flag, on SMP it
1154 * might also involve a cross-CPU call to trigger the scheduler on
1155 * the target CPU.
1157 #ifdef CONFIG_SMP
1159 #ifndef tsk_is_polling
1160 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1161 #endif
1163 static void resched_task(struct task_struct *p)
1165 int cpu;
1167 assert_raw_spin_locked(&task_rq(p)->lock);
1169 if (test_tsk_need_resched(p))
1170 return;
1172 set_tsk_need_resched(p);
1174 cpu = task_cpu(p);
1175 if (cpu == smp_processor_id())
1176 return;
1178 /* NEED_RESCHED must be visible before we test polling */
1179 smp_mb();
1180 if (!tsk_is_polling(p))
1181 smp_send_reschedule(cpu);
1184 static void resched_cpu(int cpu)
1186 struct rq *rq = cpu_rq(cpu);
1187 unsigned long flags;
1189 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1190 return;
1191 resched_task(cpu_curr(cpu));
1192 raw_spin_unlock_irqrestore(&rq->lock, flags);
1195 #ifdef CONFIG_NO_HZ
1197 * When add_timer_on() enqueues a timer into the timer wheel of an
1198 * idle CPU then this timer might expire before the next timer event
1199 * which is scheduled to wake up that CPU. In case of a completely
1200 * idle system the next event might even be infinite time into the
1201 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1202 * leaves the inner idle loop so the newly added timer is taken into
1203 * account when the CPU goes back to idle and evaluates the timer
1204 * wheel for the next timer event.
1206 void wake_up_idle_cpu(int cpu)
1208 struct rq *rq = cpu_rq(cpu);
1210 if (cpu == smp_processor_id())
1211 return;
1214 * This is safe, as this function is called with the timer
1215 * wheel base lock of (cpu) held. When the CPU is on the way
1216 * to idle and has not yet set rq->curr to idle then it will
1217 * be serialized on the timer wheel base lock and take the new
1218 * timer into account automatically.
1220 if (rq->curr != rq->idle)
1221 return;
1224 * We can set TIF_RESCHED on the idle task of the other CPU
1225 * lockless. The worst case is that the other CPU runs the
1226 * idle task through an additional NOOP schedule()
1228 set_tsk_need_resched(rq->idle);
1230 /* NEED_RESCHED must be visible before we test polling */
1231 smp_mb();
1232 if (!tsk_is_polling(rq->idle))
1233 smp_send_reschedule(cpu);
1236 int nohz_ratelimit(int cpu)
1238 struct rq *rq = cpu_rq(cpu);
1239 u64 diff = rq->clock - rq->nohz_stamp;
1241 rq->nohz_stamp = rq->clock;
1243 return diff < (NSEC_PER_SEC / HZ) >> 1;
1246 #endif /* CONFIG_NO_HZ */
1248 static u64 sched_avg_period(void)
1250 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253 static void sched_avg_update(struct rq *rq)
1255 s64 period = sched_avg_period();
1257 while ((s64)(rq->clock - rq->age_stamp) > period) {
1258 rq->age_stamp += period;
1259 rq->rt_avg /= 2;
1263 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1265 rq->rt_avg += rt_delta;
1266 sched_avg_update(rq);
1269 #else /* !CONFIG_SMP */
1270 static void resched_task(struct task_struct *p)
1272 assert_raw_spin_locked(&task_rq(p)->lock);
1273 set_tsk_need_resched(p);
1276 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279 #endif /* CONFIG_SMP */
1281 #if BITS_PER_LONG == 32
1282 # define WMULT_CONST (~0UL)
1283 #else
1284 # define WMULT_CONST (1UL << 32)
1285 #endif
1287 #define WMULT_SHIFT 32
1290 * Shift right and round:
1292 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1295 * delta *= weight / lw
1297 static unsigned long
1298 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1299 struct load_weight *lw)
1301 u64 tmp;
1303 if (!lw->inv_weight) {
1304 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1305 lw->inv_weight = 1;
1306 else
1307 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1308 / (lw->weight+1);
1311 tmp = (u64)delta_exec * weight;
1313 * Check whether we'd overflow the 64-bit multiplication:
1315 if (unlikely(tmp > WMULT_CONST))
1316 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1317 WMULT_SHIFT/2);
1318 else
1319 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1321 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1324 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1326 lw->weight += inc;
1327 lw->inv_weight = 0;
1330 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1332 lw->weight -= dec;
1333 lw->inv_weight = 0;
1337 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1338 * of tasks with abnormal "nice" values across CPUs the contribution that
1339 * each task makes to its run queue's load is weighted according to its
1340 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1341 * scaled version of the new time slice allocation that they receive on time
1342 * slice expiry etc.
1345 #define WEIGHT_IDLEPRIO 3
1346 #define WMULT_IDLEPRIO 1431655765
1349 * Nice levels are multiplicative, with a gentle 10% change for every
1350 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1351 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1352 * that remained on nice 0.
1354 * The "10% effect" is relative and cumulative: from _any_ nice level,
1355 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1356 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1357 * If a task goes up by ~10% and another task goes down by ~10% then
1358 * the relative distance between them is ~25%.)
1360 static const int prio_to_weight[40] = {
1361 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1362 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1363 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1364 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1365 /* 0 */ 1024, 820, 655, 526, 423,
1366 /* 5 */ 335, 272, 215, 172, 137,
1367 /* 10 */ 110, 87, 70, 56, 45,
1368 /* 15 */ 36, 29, 23, 18, 15,
1372 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1374 * In cases where the weight does not change often, we can use the
1375 * precalculated inverse to speed up arithmetics by turning divisions
1376 * into multiplications:
1378 static const u32 prio_to_wmult[40] = {
1379 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1380 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1381 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1382 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1383 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1384 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1385 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1386 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1389 /* Time spent by the tasks of the cpu accounting group executing in ... */
1390 enum cpuacct_stat_index {
1391 CPUACCT_STAT_USER, /* ... user mode */
1392 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1394 CPUACCT_STAT_NSTATS,
1397 #ifdef CONFIG_CGROUP_CPUACCT
1398 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1399 static void cpuacct_update_stats(struct task_struct *tsk,
1400 enum cpuacct_stat_index idx, cputime_t val);
1401 #else
1402 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1403 static inline void cpuacct_update_stats(struct task_struct *tsk,
1404 enum cpuacct_stat_index idx, cputime_t val) {}
1405 #endif
1407 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1409 update_load_add(&rq->load, load);
1412 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1414 update_load_sub(&rq->load, load);
1417 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1418 typedef int (*tg_visitor)(struct task_group *, void *);
1421 * Iterate the full tree, calling @down when first entering a node and @up when
1422 * leaving it for the final time.
1424 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1426 struct task_group *parent, *child;
1427 int ret;
1429 rcu_read_lock();
1430 parent = &root_task_group;
1431 down:
1432 ret = (*down)(parent, data);
1433 if (ret)
1434 goto out_unlock;
1435 list_for_each_entry_rcu(child, &parent->children, siblings) {
1436 parent = child;
1437 goto down;
1440 continue;
1442 ret = (*up)(parent, data);
1443 if (ret)
1444 goto out_unlock;
1446 child = parent;
1447 parent = parent->parent;
1448 if (parent)
1449 goto up;
1450 out_unlock:
1451 rcu_read_unlock();
1453 return ret;
1456 static int tg_nop(struct task_group *tg, void *data)
1458 return 0;
1460 #endif
1462 #ifdef CONFIG_SMP
1463 /* Used instead of source_load when we know the type == 0 */
1464 static unsigned long weighted_cpuload(const int cpu)
1466 return cpu_rq(cpu)->load.weight;
1470 * Return a low guess at the load of a migration-source cpu weighted
1471 * according to the scheduling class and "nice" value.
1473 * We want to under-estimate the load of migration sources, to
1474 * balance conservatively.
1476 static unsigned long source_load(int cpu, int type)
1478 struct rq *rq = cpu_rq(cpu);
1479 unsigned long total = weighted_cpuload(cpu);
1481 if (type == 0 || !sched_feat(LB_BIAS))
1482 return total;
1484 return min(rq->cpu_load[type-1], total);
1488 * Return a high guess at the load of a migration-target cpu weighted
1489 * according to the scheduling class and "nice" value.
1491 static unsigned long target_load(int cpu, int type)
1493 struct rq *rq = cpu_rq(cpu);
1494 unsigned long total = weighted_cpuload(cpu);
1496 if (type == 0 || !sched_feat(LB_BIAS))
1497 return total;
1499 return max(rq->cpu_load[type-1], total);
1502 static struct sched_group *group_of(int cpu)
1504 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1506 if (!sd)
1507 return NULL;
1509 return sd->groups;
1512 static unsigned long power_of(int cpu)
1514 struct sched_group *group = group_of(cpu);
1516 if (!group)
1517 return SCHED_LOAD_SCALE;
1519 return group->cpu_power;
1522 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1524 static unsigned long cpu_avg_load_per_task(int cpu)
1526 struct rq *rq = cpu_rq(cpu);
1527 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1529 if (nr_running)
1530 rq->avg_load_per_task = rq->load.weight / nr_running;
1531 else
1532 rq->avg_load_per_task = 0;
1534 return rq->avg_load_per_task;
1537 #ifdef CONFIG_FAIR_GROUP_SCHED
1539 static __read_mostly unsigned long __percpu *update_shares_data;
1541 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1544 * Calculate and set the cpu's group shares.
1546 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1547 unsigned long sd_shares,
1548 unsigned long sd_rq_weight,
1549 unsigned long *usd_rq_weight)
1551 unsigned long shares, rq_weight;
1552 int boost = 0;
1554 rq_weight = usd_rq_weight[cpu];
1555 if (!rq_weight) {
1556 boost = 1;
1557 rq_weight = NICE_0_LOAD;
1561 * \Sum_j shares_j * rq_weight_i
1562 * shares_i = -----------------------------
1563 * \Sum_j rq_weight_j
1565 shares = (sd_shares * rq_weight) / sd_rq_weight;
1566 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1568 if (abs(shares - tg->se[cpu]->load.weight) >
1569 sysctl_sched_shares_thresh) {
1570 struct rq *rq = cpu_rq(cpu);
1571 unsigned long flags;
1573 raw_spin_lock_irqsave(&rq->lock, flags);
1574 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1575 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1576 __set_se_shares(tg->se[cpu], shares);
1577 raw_spin_unlock_irqrestore(&rq->lock, flags);
1582 * Re-compute the task group their per cpu shares over the given domain.
1583 * This needs to be done in a bottom-up fashion because the rq weight of a
1584 * parent group depends on the shares of its child groups.
1586 static int tg_shares_up(struct task_group *tg, void *data)
1588 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1589 unsigned long *usd_rq_weight;
1590 struct sched_domain *sd = data;
1591 unsigned long flags;
1592 int i;
1594 if (!tg->se[0])
1595 return 0;
1597 local_irq_save(flags);
1598 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1600 for_each_cpu(i, sched_domain_span(sd)) {
1601 weight = tg->cfs_rq[i]->load.weight;
1602 usd_rq_weight[i] = weight;
1604 rq_weight += weight;
1606 * If there are currently no tasks on the cpu pretend there
1607 * is one of average load so that when a new task gets to
1608 * run here it will not get delayed by group starvation.
1610 if (!weight)
1611 weight = NICE_0_LOAD;
1613 sum_weight += weight;
1614 shares += tg->cfs_rq[i]->shares;
1617 if (!rq_weight)
1618 rq_weight = sum_weight;
1620 if ((!shares && rq_weight) || shares > tg->shares)
1621 shares = tg->shares;
1623 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1624 shares = tg->shares;
1626 for_each_cpu(i, sched_domain_span(sd))
1627 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1629 local_irq_restore(flags);
1631 return 0;
1635 * Compute the cpu's hierarchical load factor for each task group.
1636 * This needs to be done in a top-down fashion because the load of a child
1637 * group is a fraction of its parents load.
1639 static int tg_load_down(struct task_group *tg, void *data)
1641 unsigned long load;
1642 long cpu = (long)data;
1644 if (!tg->parent) {
1645 load = cpu_rq(cpu)->load.weight;
1646 } else {
1647 load = tg->parent->cfs_rq[cpu]->h_load;
1648 load *= tg->cfs_rq[cpu]->shares;
1649 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1652 tg->cfs_rq[cpu]->h_load = load;
1654 return 0;
1657 static void update_shares(struct sched_domain *sd)
1659 s64 elapsed;
1660 u64 now;
1662 if (root_task_group_empty())
1663 return;
1665 now = cpu_clock(raw_smp_processor_id());
1666 elapsed = now - sd->last_update;
1668 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1669 sd->last_update = now;
1670 walk_tg_tree(tg_nop, tg_shares_up, sd);
1674 static void update_h_load(long cpu)
1676 if (root_task_group_empty())
1677 return;
1679 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1682 #else
1684 static inline void update_shares(struct sched_domain *sd)
1688 #endif
1690 #ifdef CONFIG_PREEMPT
1692 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1695 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1696 * way at the expense of forcing extra atomic operations in all
1697 * invocations. This assures that the double_lock is acquired using the
1698 * same underlying policy as the spinlock_t on this architecture, which
1699 * reduces latency compared to the unfair variant below. However, it
1700 * also adds more overhead and therefore may reduce throughput.
1702 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1703 __releases(this_rq->lock)
1704 __acquires(busiest->lock)
1705 __acquires(this_rq->lock)
1707 raw_spin_unlock(&this_rq->lock);
1708 double_rq_lock(this_rq, busiest);
1710 return 1;
1713 #else
1715 * Unfair double_lock_balance: Optimizes throughput at the expense of
1716 * latency by eliminating extra atomic operations when the locks are
1717 * already in proper order on entry. This favors lower cpu-ids and will
1718 * grant the double lock to lower cpus over higher ids under contention,
1719 * regardless of entry order into the function.
1721 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1722 __releases(this_rq->lock)
1723 __acquires(busiest->lock)
1724 __acquires(this_rq->lock)
1726 int ret = 0;
1728 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1729 if (busiest < this_rq) {
1730 raw_spin_unlock(&this_rq->lock);
1731 raw_spin_lock(&busiest->lock);
1732 raw_spin_lock_nested(&this_rq->lock,
1733 SINGLE_DEPTH_NESTING);
1734 ret = 1;
1735 } else
1736 raw_spin_lock_nested(&busiest->lock,
1737 SINGLE_DEPTH_NESTING);
1739 return ret;
1742 #endif /* CONFIG_PREEMPT */
1745 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1747 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 if (unlikely(!irqs_disabled())) {
1750 /* printk() doesn't work good under rq->lock */
1751 raw_spin_unlock(&this_rq->lock);
1752 BUG_ON(1);
1755 return _double_lock_balance(this_rq, busiest);
1758 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1759 __releases(busiest->lock)
1761 raw_spin_unlock(&busiest->lock);
1762 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1766 * double_rq_lock - safely lock two runqueues
1768 * Note this does not disable interrupts like task_rq_lock,
1769 * you need to do so manually before calling.
1771 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1772 __acquires(rq1->lock)
1773 __acquires(rq2->lock)
1775 BUG_ON(!irqs_disabled());
1776 if (rq1 == rq2) {
1777 raw_spin_lock(&rq1->lock);
1778 __acquire(rq2->lock); /* Fake it out ;) */
1779 } else {
1780 if (rq1 < rq2) {
1781 raw_spin_lock(&rq1->lock);
1782 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1783 } else {
1784 raw_spin_lock(&rq2->lock);
1785 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1791 * double_rq_unlock - safely unlock two runqueues
1793 * Note this does not restore interrupts like task_rq_unlock,
1794 * you need to do so manually after calling.
1796 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1797 __releases(rq1->lock)
1798 __releases(rq2->lock)
1800 raw_spin_unlock(&rq1->lock);
1801 if (rq1 != rq2)
1802 raw_spin_unlock(&rq2->lock);
1803 else
1804 __release(rq2->lock);
1807 #endif
1809 #ifdef CONFIG_FAIR_GROUP_SCHED
1810 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1812 #ifdef CONFIG_SMP
1813 cfs_rq->shares = shares;
1814 #endif
1816 #endif
1818 static void calc_load_account_idle(struct rq *this_rq);
1819 static void update_sysctl(void);
1820 static int get_update_sysctl_factor(void);
1822 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1824 set_task_rq(p, cpu);
1825 #ifdef CONFIG_SMP
1827 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1828 * successfuly executed on another CPU. We must ensure that updates of
1829 * per-task data have been completed by this moment.
1831 smp_wmb();
1832 task_thread_info(p)->cpu = cpu;
1833 #endif
1836 static const struct sched_class rt_sched_class;
1838 #define sched_class_highest (&rt_sched_class)
1839 #define for_each_class(class) \
1840 for (class = sched_class_highest; class; class = class->next)
1842 #include "sched_stats.h"
1844 static void inc_nr_running(struct rq *rq)
1846 rq->nr_running++;
1849 static void dec_nr_running(struct rq *rq)
1851 rq->nr_running--;
1854 static void set_load_weight(struct task_struct *p)
1856 if (task_has_rt_policy(p)) {
1857 p->se.load.weight = prio_to_weight[0] * 2;
1858 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1859 return;
1863 * SCHED_IDLE tasks get minimal weight:
1865 if (p->policy == SCHED_IDLE) {
1866 p->se.load.weight = WEIGHT_IDLEPRIO;
1867 p->se.load.inv_weight = WMULT_IDLEPRIO;
1868 return;
1871 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1872 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1875 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1877 update_rq_clock(rq);
1878 sched_info_queued(p);
1879 p->sched_class->enqueue_task(rq, p, flags);
1880 p->se.on_rq = 1;
1883 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1885 update_rq_clock(rq);
1886 sched_info_dequeued(p);
1887 p->sched_class->dequeue_task(rq, p, flags);
1888 p->se.on_rq = 0;
1892 * activate_task - move a task to the runqueue.
1894 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1896 if (task_contributes_to_load(p))
1897 rq->nr_uninterruptible--;
1899 enqueue_task(rq, p, flags);
1900 inc_nr_running(rq);
1904 * deactivate_task - remove a task from the runqueue.
1906 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1908 if (task_contributes_to_load(p))
1909 rq->nr_uninterruptible++;
1911 dequeue_task(rq, p, flags);
1912 dec_nr_running(rq);
1915 #include "sched_idletask.c"
1916 #include "sched_fair.c"
1917 #include "sched_rt.c"
1918 #ifdef CONFIG_SCHED_DEBUG
1919 # include "sched_debug.c"
1920 #endif
1923 * __normal_prio - return the priority that is based on the static prio
1925 static inline int __normal_prio(struct task_struct *p)
1927 return p->static_prio;
1931 * Calculate the expected normal priority: i.e. priority
1932 * without taking RT-inheritance into account. Might be
1933 * boosted by interactivity modifiers. Changes upon fork,
1934 * setprio syscalls, and whenever the interactivity
1935 * estimator recalculates.
1937 static inline int normal_prio(struct task_struct *p)
1939 int prio;
1941 if (task_has_rt_policy(p))
1942 prio = MAX_RT_PRIO-1 - p->rt_priority;
1943 else
1944 prio = __normal_prio(p);
1945 return prio;
1949 * Calculate the current priority, i.e. the priority
1950 * taken into account by the scheduler. This value might
1951 * be boosted by RT tasks, or might be boosted by
1952 * interactivity modifiers. Will be RT if the task got
1953 * RT-boosted. If not then it returns p->normal_prio.
1955 static int effective_prio(struct task_struct *p)
1957 p->normal_prio = normal_prio(p);
1959 * If we are RT tasks or we were boosted to RT priority,
1960 * keep the priority unchanged. Otherwise, update priority
1961 * to the normal priority:
1963 if (!rt_prio(p->prio))
1964 return p->normal_prio;
1965 return p->prio;
1969 * task_curr - is this task currently executing on a CPU?
1970 * @p: the task in question.
1972 inline int task_curr(const struct task_struct *p)
1974 return cpu_curr(task_cpu(p)) == p;
1977 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1978 const struct sched_class *prev_class,
1979 int oldprio, int running)
1981 if (prev_class != p->sched_class) {
1982 if (prev_class->switched_from)
1983 prev_class->switched_from(rq, p, running);
1984 p->sched_class->switched_to(rq, p, running);
1985 } else
1986 p->sched_class->prio_changed(rq, p, oldprio, running);
1989 #ifdef CONFIG_SMP
1991 * Is this task likely cache-hot:
1993 static int
1994 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1996 s64 delta;
1998 if (p->sched_class != &fair_sched_class)
1999 return 0;
2002 * Buddy candidates are cache hot:
2004 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2005 (&p->se == cfs_rq_of(&p->se)->next ||
2006 &p->se == cfs_rq_of(&p->se)->last))
2007 return 1;
2009 if (sysctl_sched_migration_cost == -1)
2010 return 1;
2011 if (sysctl_sched_migration_cost == 0)
2012 return 0;
2014 delta = now - p->se.exec_start;
2016 return delta < (s64)sysctl_sched_migration_cost;
2019 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2021 #ifdef CONFIG_SCHED_DEBUG
2023 * We should never call set_task_cpu() on a blocked task,
2024 * ttwu() will sort out the placement.
2026 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2027 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2028 #endif
2030 trace_sched_migrate_task(p, new_cpu);
2032 if (task_cpu(p) != new_cpu) {
2033 p->se.nr_migrations++;
2034 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2037 __set_task_cpu(p, new_cpu);
2040 struct migration_arg {
2041 struct task_struct *task;
2042 int dest_cpu;
2045 static int migration_cpu_stop(void *data);
2048 * The task's runqueue lock must be held.
2049 * Returns true if you have to wait for migration thread.
2051 static bool migrate_task(struct task_struct *p, int dest_cpu)
2053 struct rq *rq = task_rq(p);
2056 * If the task is not on a runqueue (and not running), then
2057 * the next wake-up will properly place the task.
2059 return p->se.on_rq || task_running(rq, p);
2063 * wait_task_inactive - wait for a thread to unschedule.
2065 * If @match_state is nonzero, it's the @p->state value just checked and
2066 * not expected to change. If it changes, i.e. @p might have woken up,
2067 * then return zero. When we succeed in waiting for @p to be off its CPU,
2068 * we return a positive number (its total switch count). If a second call
2069 * a short while later returns the same number, the caller can be sure that
2070 * @p has remained unscheduled the whole time.
2072 * The caller must ensure that the task *will* unschedule sometime soon,
2073 * else this function might spin for a *long* time. This function can't
2074 * be called with interrupts off, or it may introduce deadlock with
2075 * smp_call_function() if an IPI is sent by the same process we are
2076 * waiting to become inactive.
2078 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2080 unsigned long flags;
2081 int running, on_rq;
2082 unsigned long ncsw;
2083 struct rq *rq;
2085 for (;;) {
2087 * We do the initial early heuristics without holding
2088 * any task-queue locks at all. We'll only try to get
2089 * the runqueue lock when things look like they will
2090 * work out!
2092 rq = task_rq(p);
2095 * If the task is actively running on another CPU
2096 * still, just relax and busy-wait without holding
2097 * any locks.
2099 * NOTE! Since we don't hold any locks, it's not
2100 * even sure that "rq" stays as the right runqueue!
2101 * But we don't care, since "task_running()" will
2102 * return false if the runqueue has changed and p
2103 * is actually now running somewhere else!
2105 while (task_running(rq, p)) {
2106 if (match_state && unlikely(p->state != match_state))
2107 return 0;
2108 cpu_relax();
2112 * Ok, time to look more closely! We need the rq
2113 * lock now, to be *sure*. If we're wrong, we'll
2114 * just go back and repeat.
2116 rq = task_rq_lock(p, &flags);
2117 trace_sched_wait_task(p);
2118 running = task_running(rq, p);
2119 on_rq = p->se.on_rq;
2120 ncsw = 0;
2121 if (!match_state || p->state == match_state)
2122 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2123 task_rq_unlock(rq, &flags);
2126 * If it changed from the expected state, bail out now.
2128 if (unlikely(!ncsw))
2129 break;
2132 * Was it really running after all now that we
2133 * checked with the proper locks actually held?
2135 * Oops. Go back and try again..
2137 if (unlikely(running)) {
2138 cpu_relax();
2139 continue;
2143 * It's not enough that it's not actively running,
2144 * it must be off the runqueue _entirely_, and not
2145 * preempted!
2147 * So if it was still runnable (but just not actively
2148 * running right now), it's preempted, and we should
2149 * yield - it could be a while.
2151 if (unlikely(on_rq)) {
2152 schedule_timeout_uninterruptible(1);
2153 continue;
2157 * Ahh, all good. It wasn't running, and it wasn't
2158 * runnable, which means that it will never become
2159 * running in the future either. We're all done!
2161 break;
2164 return ncsw;
2167 /***
2168 * kick_process - kick a running thread to enter/exit the kernel
2169 * @p: the to-be-kicked thread
2171 * Cause a process which is running on another CPU to enter
2172 * kernel-mode, without any delay. (to get signals handled.)
2174 * NOTE: this function doesnt have to take the runqueue lock,
2175 * because all it wants to ensure is that the remote task enters
2176 * the kernel. If the IPI races and the task has been migrated
2177 * to another CPU then no harm is done and the purpose has been
2178 * achieved as well.
2180 void kick_process(struct task_struct *p)
2182 int cpu;
2184 preempt_disable();
2185 cpu = task_cpu(p);
2186 if ((cpu != smp_processor_id()) && task_curr(p))
2187 smp_send_reschedule(cpu);
2188 preempt_enable();
2190 EXPORT_SYMBOL_GPL(kick_process);
2191 #endif /* CONFIG_SMP */
2194 * task_oncpu_function_call - call a function on the cpu on which a task runs
2195 * @p: the task to evaluate
2196 * @func: the function to be called
2197 * @info: the function call argument
2199 * Calls the function @func when the task is currently running. This might
2200 * be on the current CPU, which just calls the function directly
2202 void task_oncpu_function_call(struct task_struct *p,
2203 void (*func) (void *info), void *info)
2205 int cpu;
2207 preempt_disable();
2208 cpu = task_cpu(p);
2209 if (task_curr(p))
2210 smp_call_function_single(cpu, func, info, 1);
2211 preempt_enable();
2214 #ifdef CONFIG_SMP
2216 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2218 static int select_fallback_rq(int cpu, struct task_struct *p)
2220 int dest_cpu;
2221 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2223 /* Look for allowed, online CPU in same node. */
2224 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2225 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2226 return dest_cpu;
2228 /* Any allowed, online CPU? */
2229 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2230 if (dest_cpu < nr_cpu_ids)
2231 return dest_cpu;
2233 /* No more Mr. Nice Guy. */
2234 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2235 dest_cpu = cpuset_cpus_allowed_fallback(p);
2237 * Don't tell them about moving exiting tasks or
2238 * kernel threads (both mm NULL), since they never
2239 * leave kernel.
2241 if (p->mm && printk_ratelimit()) {
2242 printk(KERN_INFO "process %d (%s) no "
2243 "longer affine to cpu%d\n",
2244 task_pid_nr(p), p->comm, cpu);
2248 return dest_cpu;
2252 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2254 static inline
2255 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2257 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2260 * In order not to call set_task_cpu() on a blocking task we need
2261 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2262 * cpu.
2264 * Since this is common to all placement strategies, this lives here.
2266 * [ this allows ->select_task() to simply return task_cpu(p) and
2267 * not worry about this generic constraint ]
2269 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2270 !cpu_online(cpu)))
2271 cpu = select_fallback_rq(task_cpu(p), p);
2273 return cpu;
2276 static void update_avg(u64 *avg, u64 sample)
2278 s64 diff = sample - *avg;
2279 *avg += diff >> 3;
2281 #endif
2283 /***
2284 * try_to_wake_up - wake up a thread
2285 * @p: the to-be-woken-up thread
2286 * @state: the mask of task states that can be woken
2287 * @sync: do a synchronous wakeup?
2289 * Put it on the run-queue if it's not already there. The "current"
2290 * thread is always on the run-queue (except when the actual
2291 * re-schedule is in progress), and as such you're allowed to do
2292 * the simpler "current->state = TASK_RUNNING" to mark yourself
2293 * runnable without the overhead of this.
2295 * returns failure only if the task is already active.
2297 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2298 int wake_flags)
2300 int cpu, orig_cpu, this_cpu, success = 0;
2301 unsigned long flags;
2302 unsigned long en_flags = ENQUEUE_WAKEUP;
2303 struct rq *rq;
2305 this_cpu = get_cpu();
2307 smp_wmb();
2308 rq = task_rq_lock(p, &flags);
2309 if (!(p->state & state))
2310 goto out;
2312 if (p->se.on_rq)
2313 goto out_running;
2315 cpu = task_cpu(p);
2316 orig_cpu = cpu;
2318 #ifdef CONFIG_SMP
2319 if (unlikely(task_running(rq, p)))
2320 goto out_activate;
2323 * In order to handle concurrent wakeups and release the rq->lock
2324 * we put the task in TASK_WAKING state.
2326 * First fix up the nr_uninterruptible count:
2328 if (task_contributes_to_load(p)) {
2329 if (likely(cpu_online(orig_cpu)))
2330 rq->nr_uninterruptible--;
2331 else
2332 this_rq()->nr_uninterruptible--;
2334 p->state = TASK_WAKING;
2336 if (p->sched_class->task_waking) {
2337 p->sched_class->task_waking(rq, p);
2338 en_flags |= ENQUEUE_WAKING;
2341 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2342 if (cpu != orig_cpu)
2343 set_task_cpu(p, cpu);
2344 __task_rq_unlock(rq);
2346 rq = cpu_rq(cpu);
2347 raw_spin_lock(&rq->lock);
2350 * We migrated the task without holding either rq->lock, however
2351 * since the task is not on the task list itself, nobody else
2352 * will try and migrate the task, hence the rq should match the
2353 * cpu we just moved it to.
2355 WARN_ON(task_cpu(p) != cpu);
2356 WARN_ON(p->state != TASK_WAKING);
2358 #ifdef CONFIG_SCHEDSTATS
2359 schedstat_inc(rq, ttwu_count);
2360 if (cpu == this_cpu)
2361 schedstat_inc(rq, ttwu_local);
2362 else {
2363 struct sched_domain *sd;
2364 for_each_domain(this_cpu, sd) {
2365 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2366 schedstat_inc(sd, ttwu_wake_remote);
2367 break;
2371 #endif /* CONFIG_SCHEDSTATS */
2373 out_activate:
2374 #endif /* CONFIG_SMP */
2375 schedstat_inc(p, se.statistics.nr_wakeups);
2376 if (wake_flags & WF_SYNC)
2377 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2378 if (orig_cpu != cpu)
2379 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2380 if (cpu == this_cpu)
2381 schedstat_inc(p, se.statistics.nr_wakeups_local);
2382 else
2383 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2384 activate_task(rq, p, en_flags);
2385 success = 1;
2387 out_running:
2388 trace_sched_wakeup(p, success);
2389 check_preempt_curr(rq, p, wake_flags);
2391 p->state = TASK_RUNNING;
2392 #ifdef CONFIG_SMP
2393 if (p->sched_class->task_woken)
2394 p->sched_class->task_woken(rq, p);
2396 if (unlikely(rq->idle_stamp)) {
2397 u64 delta = rq->clock - rq->idle_stamp;
2398 u64 max = 2*sysctl_sched_migration_cost;
2400 if (delta > max)
2401 rq->avg_idle = max;
2402 else
2403 update_avg(&rq->avg_idle, delta);
2404 rq->idle_stamp = 0;
2406 #endif
2407 out:
2408 task_rq_unlock(rq, &flags);
2409 put_cpu();
2411 return success;
2415 * wake_up_process - Wake up a specific process
2416 * @p: The process to be woken up.
2418 * Attempt to wake up the nominated process and move it to the set of runnable
2419 * processes. Returns 1 if the process was woken up, 0 if it was already
2420 * running.
2422 * It may be assumed that this function implies a write memory barrier before
2423 * changing the task state if and only if any tasks are woken up.
2425 int wake_up_process(struct task_struct *p)
2427 return try_to_wake_up(p, TASK_ALL, 0);
2429 EXPORT_SYMBOL(wake_up_process);
2431 int wake_up_state(struct task_struct *p, unsigned int state)
2433 return try_to_wake_up(p, state, 0);
2437 * Perform scheduler related setup for a newly forked process p.
2438 * p is forked by current.
2440 * __sched_fork() is basic setup used by init_idle() too:
2442 static void __sched_fork(struct task_struct *p)
2444 p->se.exec_start = 0;
2445 p->se.sum_exec_runtime = 0;
2446 p->se.prev_sum_exec_runtime = 0;
2447 p->se.nr_migrations = 0;
2449 #ifdef CONFIG_SCHEDSTATS
2450 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2451 #endif
2453 INIT_LIST_HEAD(&p->rt.run_list);
2454 p->se.on_rq = 0;
2455 INIT_LIST_HEAD(&p->se.group_node);
2457 #ifdef CONFIG_PREEMPT_NOTIFIERS
2458 INIT_HLIST_HEAD(&p->preempt_notifiers);
2459 #endif
2463 * fork()/clone()-time setup:
2465 void sched_fork(struct task_struct *p, int clone_flags)
2467 int cpu = get_cpu();
2469 __sched_fork(p);
2471 * We mark the process as running here. This guarantees that
2472 * nobody will actually run it, and a signal or other external
2473 * event cannot wake it up and insert it on the runqueue either.
2475 p->state = TASK_RUNNING;
2478 * Revert to default priority/policy on fork if requested.
2480 if (unlikely(p->sched_reset_on_fork)) {
2481 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2482 p->policy = SCHED_NORMAL;
2483 p->normal_prio = p->static_prio;
2486 if (PRIO_TO_NICE(p->static_prio) < 0) {
2487 p->static_prio = NICE_TO_PRIO(0);
2488 p->normal_prio = p->static_prio;
2489 set_load_weight(p);
2493 * We don't need the reset flag anymore after the fork. It has
2494 * fulfilled its duty:
2496 p->sched_reset_on_fork = 0;
2500 * Make sure we do not leak PI boosting priority to the child.
2502 p->prio = current->normal_prio;
2504 if (!rt_prio(p->prio))
2505 p->sched_class = &fair_sched_class;
2507 if (p->sched_class->task_fork)
2508 p->sched_class->task_fork(p);
2510 set_task_cpu(p, cpu);
2512 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2513 if (likely(sched_info_on()))
2514 memset(&p->sched_info, 0, sizeof(p->sched_info));
2515 #endif
2516 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2517 p->oncpu = 0;
2518 #endif
2519 #ifdef CONFIG_PREEMPT
2520 /* Want to start with kernel preemption disabled. */
2521 task_thread_info(p)->preempt_count = 1;
2522 #endif
2523 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2525 put_cpu();
2529 * wake_up_new_task - wake up a newly created task for the first time.
2531 * This function will do some initial scheduler statistics housekeeping
2532 * that must be done for every newly created context, then puts the task
2533 * on the runqueue and wakes it.
2535 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2537 unsigned long flags;
2538 struct rq *rq;
2539 int cpu __maybe_unused = get_cpu();
2541 #ifdef CONFIG_SMP
2542 rq = task_rq_lock(p, &flags);
2543 p->state = TASK_WAKING;
2546 * Fork balancing, do it here and not earlier because:
2547 * - cpus_allowed can change in the fork path
2548 * - any previously selected cpu might disappear through hotplug
2550 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2551 * without people poking at ->cpus_allowed.
2553 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2554 set_task_cpu(p, cpu);
2556 p->state = TASK_RUNNING;
2557 task_rq_unlock(rq, &flags);
2558 #endif
2560 rq = task_rq_lock(p, &flags);
2561 activate_task(rq, p, 0);
2562 trace_sched_wakeup_new(p, 1);
2563 check_preempt_curr(rq, p, WF_FORK);
2564 #ifdef CONFIG_SMP
2565 if (p->sched_class->task_woken)
2566 p->sched_class->task_woken(rq, p);
2567 #endif
2568 task_rq_unlock(rq, &flags);
2569 put_cpu();
2572 #ifdef CONFIG_PREEMPT_NOTIFIERS
2575 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2576 * @notifier: notifier struct to register
2578 void preempt_notifier_register(struct preempt_notifier *notifier)
2580 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2582 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2585 * preempt_notifier_unregister - no longer interested in preemption notifications
2586 * @notifier: notifier struct to unregister
2588 * This is safe to call from within a preemption notifier.
2590 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2592 hlist_del(&notifier->link);
2594 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2596 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2598 struct preempt_notifier *notifier;
2599 struct hlist_node *node;
2601 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2602 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2605 static void
2606 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2607 struct task_struct *next)
2609 struct preempt_notifier *notifier;
2610 struct hlist_node *node;
2612 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2613 notifier->ops->sched_out(notifier, next);
2616 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2618 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2622 static void
2623 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2624 struct task_struct *next)
2628 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2631 * prepare_task_switch - prepare to switch tasks
2632 * @rq: the runqueue preparing to switch
2633 * @prev: the current task that is being switched out
2634 * @next: the task we are going to switch to.
2636 * This is called with the rq lock held and interrupts off. It must
2637 * be paired with a subsequent finish_task_switch after the context
2638 * switch.
2640 * prepare_task_switch sets up locking and calls architecture specific
2641 * hooks.
2643 static inline void
2644 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2645 struct task_struct *next)
2647 fire_sched_out_preempt_notifiers(prev, next);
2648 prepare_lock_switch(rq, next);
2649 prepare_arch_switch(next);
2653 * finish_task_switch - clean up after a task-switch
2654 * @rq: runqueue associated with task-switch
2655 * @prev: the thread we just switched away from.
2657 * finish_task_switch must be called after the context switch, paired
2658 * with a prepare_task_switch call before the context switch.
2659 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2660 * and do any other architecture-specific cleanup actions.
2662 * Note that we may have delayed dropping an mm in context_switch(). If
2663 * so, we finish that here outside of the runqueue lock. (Doing it
2664 * with the lock held can cause deadlocks; see schedule() for
2665 * details.)
2667 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2668 __releases(rq->lock)
2670 struct mm_struct *mm = rq->prev_mm;
2671 long prev_state;
2673 rq->prev_mm = NULL;
2676 * A task struct has one reference for the use as "current".
2677 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2678 * schedule one last time. The schedule call will never return, and
2679 * the scheduled task must drop that reference.
2680 * The test for TASK_DEAD must occur while the runqueue locks are
2681 * still held, otherwise prev could be scheduled on another cpu, die
2682 * there before we look at prev->state, and then the reference would
2683 * be dropped twice.
2684 * Manfred Spraul <manfred@colorfullife.com>
2686 prev_state = prev->state;
2687 finish_arch_switch(prev);
2688 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2689 local_irq_disable();
2690 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2691 perf_event_task_sched_in(current);
2692 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2693 local_irq_enable();
2694 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2695 finish_lock_switch(rq, prev);
2697 fire_sched_in_preempt_notifiers(current);
2698 if (mm)
2699 mmdrop(mm);
2700 if (unlikely(prev_state == TASK_DEAD)) {
2702 * Remove function-return probe instances associated with this
2703 * task and put them back on the free list.
2705 kprobe_flush_task(prev);
2706 put_task_struct(prev);
2710 #ifdef CONFIG_SMP
2712 /* assumes rq->lock is held */
2713 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2715 if (prev->sched_class->pre_schedule)
2716 prev->sched_class->pre_schedule(rq, prev);
2719 /* rq->lock is NOT held, but preemption is disabled */
2720 static inline void post_schedule(struct rq *rq)
2722 if (rq->post_schedule) {
2723 unsigned long flags;
2725 raw_spin_lock_irqsave(&rq->lock, flags);
2726 if (rq->curr->sched_class->post_schedule)
2727 rq->curr->sched_class->post_schedule(rq);
2728 raw_spin_unlock_irqrestore(&rq->lock, flags);
2730 rq->post_schedule = 0;
2734 #else
2736 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2740 static inline void post_schedule(struct rq *rq)
2744 #endif
2747 * schedule_tail - first thing a freshly forked thread must call.
2748 * @prev: the thread we just switched away from.
2750 asmlinkage void schedule_tail(struct task_struct *prev)
2751 __releases(rq->lock)
2753 struct rq *rq = this_rq();
2755 finish_task_switch(rq, prev);
2758 * FIXME: do we need to worry about rq being invalidated by the
2759 * task_switch?
2761 post_schedule(rq);
2763 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2764 /* In this case, finish_task_switch does not reenable preemption */
2765 preempt_enable();
2766 #endif
2767 if (current->set_child_tid)
2768 put_user(task_pid_vnr(current), current->set_child_tid);
2772 * context_switch - switch to the new MM and the new
2773 * thread's register state.
2775 static inline void
2776 context_switch(struct rq *rq, struct task_struct *prev,
2777 struct task_struct *next)
2779 struct mm_struct *mm, *oldmm;
2781 prepare_task_switch(rq, prev, next);
2782 trace_sched_switch(prev, next);
2783 mm = next->mm;
2784 oldmm = prev->active_mm;
2786 * For paravirt, this is coupled with an exit in switch_to to
2787 * combine the page table reload and the switch backend into
2788 * one hypercall.
2790 arch_start_context_switch(prev);
2792 if (likely(!mm)) {
2793 next->active_mm = oldmm;
2794 atomic_inc(&oldmm->mm_count);
2795 enter_lazy_tlb(oldmm, next);
2796 } else
2797 switch_mm(oldmm, mm, next);
2799 if (likely(!prev->mm)) {
2800 prev->active_mm = NULL;
2801 rq->prev_mm = oldmm;
2804 * Since the runqueue lock will be released by the next
2805 * task (which is an invalid locking op but in the case
2806 * of the scheduler it's an obvious special-case), so we
2807 * do an early lockdep release here:
2809 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2810 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2811 #endif
2813 /* Here we just switch the register state and the stack. */
2814 switch_to(prev, next, prev);
2816 barrier();
2818 * this_rq must be evaluated again because prev may have moved
2819 * CPUs since it called schedule(), thus the 'rq' on its stack
2820 * frame will be invalid.
2822 finish_task_switch(this_rq(), prev);
2826 * nr_running, nr_uninterruptible and nr_context_switches:
2828 * externally visible scheduler statistics: current number of runnable
2829 * threads, current number of uninterruptible-sleeping threads, total
2830 * number of context switches performed since bootup.
2832 unsigned long nr_running(void)
2834 unsigned long i, sum = 0;
2836 for_each_online_cpu(i)
2837 sum += cpu_rq(i)->nr_running;
2839 return sum;
2842 unsigned long nr_uninterruptible(void)
2844 unsigned long i, sum = 0;
2846 for_each_possible_cpu(i)
2847 sum += cpu_rq(i)->nr_uninterruptible;
2850 * Since we read the counters lockless, it might be slightly
2851 * inaccurate. Do not allow it to go below zero though:
2853 if (unlikely((long)sum < 0))
2854 sum = 0;
2856 return sum;
2859 unsigned long long nr_context_switches(void)
2861 int i;
2862 unsigned long long sum = 0;
2864 for_each_possible_cpu(i)
2865 sum += cpu_rq(i)->nr_switches;
2867 return sum;
2870 unsigned long nr_iowait(void)
2872 unsigned long i, sum = 0;
2874 for_each_possible_cpu(i)
2875 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2877 return sum;
2880 unsigned long nr_iowait_cpu(void)
2882 struct rq *this = this_rq();
2883 return atomic_read(&this->nr_iowait);
2886 unsigned long this_cpu_load(void)
2888 struct rq *this = this_rq();
2889 return this->cpu_load[0];
2893 /* Variables and functions for calc_load */
2894 static atomic_long_t calc_load_tasks;
2895 static unsigned long calc_load_update;
2896 unsigned long avenrun[3];
2897 EXPORT_SYMBOL(avenrun);
2899 static long calc_load_fold_active(struct rq *this_rq)
2901 long nr_active, delta = 0;
2903 nr_active = this_rq->nr_running;
2904 nr_active += (long) this_rq->nr_uninterruptible;
2906 if (nr_active != this_rq->calc_load_active) {
2907 delta = nr_active - this_rq->calc_load_active;
2908 this_rq->calc_load_active = nr_active;
2911 return delta;
2914 #ifdef CONFIG_NO_HZ
2916 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2918 * When making the ILB scale, we should try to pull this in as well.
2920 static atomic_long_t calc_load_tasks_idle;
2922 static void calc_load_account_idle(struct rq *this_rq)
2924 long delta;
2926 delta = calc_load_fold_active(this_rq);
2927 if (delta)
2928 atomic_long_add(delta, &calc_load_tasks_idle);
2931 static long calc_load_fold_idle(void)
2933 long delta = 0;
2936 * Its got a race, we don't care...
2938 if (atomic_long_read(&calc_load_tasks_idle))
2939 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2941 return delta;
2943 #else
2944 static void calc_load_account_idle(struct rq *this_rq)
2948 static inline long calc_load_fold_idle(void)
2950 return 0;
2952 #endif
2955 * get_avenrun - get the load average array
2956 * @loads: pointer to dest load array
2957 * @offset: offset to add
2958 * @shift: shift count to shift the result left
2960 * These values are estimates at best, so no need for locking.
2962 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2964 loads[0] = (avenrun[0] + offset) << shift;
2965 loads[1] = (avenrun[1] + offset) << shift;
2966 loads[2] = (avenrun[2] + offset) << shift;
2969 static unsigned long
2970 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2972 load *= exp;
2973 load += active * (FIXED_1 - exp);
2974 return load >> FSHIFT;
2978 * calc_load - update the avenrun load estimates 10 ticks after the
2979 * CPUs have updated calc_load_tasks.
2981 void calc_global_load(void)
2983 unsigned long upd = calc_load_update + 10;
2984 long active;
2986 if (time_before(jiffies, upd))
2987 return;
2989 active = atomic_long_read(&calc_load_tasks);
2990 active = active > 0 ? active * FIXED_1 : 0;
2992 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2993 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2994 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2996 calc_load_update += LOAD_FREQ;
3000 * Called from update_cpu_load() to periodically update this CPU's
3001 * active count.
3003 static void calc_load_account_active(struct rq *this_rq)
3005 long delta;
3007 if (time_before(jiffies, this_rq->calc_load_update))
3008 return;
3010 delta = calc_load_fold_active(this_rq);
3011 delta += calc_load_fold_idle();
3012 if (delta)
3013 atomic_long_add(delta, &calc_load_tasks);
3015 this_rq->calc_load_update += LOAD_FREQ;
3019 * Update rq->cpu_load[] statistics. This function is usually called every
3020 * scheduler tick (TICK_NSEC).
3022 static void update_cpu_load(struct rq *this_rq)
3024 unsigned long this_load = this_rq->load.weight;
3025 int i, scale;
3027 this_rq->nr_load_updates++;
3029 /* Update our load: */
3030 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3031 unsigned long old_load, new_load;
3033 /* scale is effectively 1 << i now, and >> i divides by scale */
3035 old_load = this_rq->cpu_load[i];
3036 new_load = this_load;
3038 * Round up the averaging division if load is increasing. This
3039 * prevents us from getting stuck on 9 if the load is 10, for
3040 * example.
3042 if (new_load > old_load)
3043 new_load += scale-1;
3044 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3047 calc_load_account_active(this_rq);
3050 #ifdef CONFIG_SMP
3053 * sched_exec - execve() is a valuable balancing opportunity, because at
3054 * this point the task has the smallest effective memory and cache footprint.
3056 void sched_exec(void)
3058 struct task_struct *p = current;
3059 unsigned long flags;
3060 struct rq *rq;
3061 int dest_cpu;
3063 rq = task_rq_lock(p, &flags);
3064 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3065 if (dest_cpu == smp_processor_id())
3066 goto unlock;
3069 * select_task_rq() can race against ->cpus_allowed
3071 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3072 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3073 struct migration_arg arg = { p, dest_cpu };
3075 task_rq_unlock(rq, &flags);
3076 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3077 return;
3079 unlock:
3080 task_rq_unlock(rq, &flags);
3083 #endif
3085 DEFINE_PER_CPU(struct kernel_stat, kstat);
3087 EXPORT_PER_CPU_SYMBOL(kstat);
3090 * Return any ns on the sched_clock that have not yet been accounted in
3091 * @p in case that task is currently running.
3093 * Called with task_rq_lock() held on @rq.
3095 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3097 u64 ns = 0;
3099 if (task_current(rq, p)) {
3100 update_rq_clock(rq);
3101 ns = rq->clock - p->se.exec_start;
3102 if ((s64)ns < 0)
3103 ns = 0;
3106 return ns;
3109 unsigned long long task_delta_exec(struct task_struct *p)
3111 unsigned long flags;
3112 struct rq *rq;
3113 u64 ns = 0;
3115 rq = task_rq_lock(p, &flags);
3116 ns = do_task_delta_exec(p, rq);
3117 task_rq_unlock(rq, &flags);
3119 return ns;
3123 * Return accounted runtime for the task.
3124 * In case the task is currently running, return the runtime plus current's
3125 * pending runtime that have not been accounted yet.
3127 unsigned long long task_sched_runtime(struct task_struct *p)
3129 unsigned long flags;
3130 struct rq *rq;
3131 u64 ns = 0;
3133 rq = task_rq_lock(p, &flags);
3134 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3135 task_rq_unlock(rq, &flags);
3137 return ns;
3141 * Return sum_exec_runtime for the thread group.
3142 * In case the task is currently running, return the sum plus current's
3143 * pending runtime that have not been accounted yet.
3145 * Note that the thread group might have other running tasks as well,
3146 * so the return value not includes other pending runtime that other
3147 * running tasks might have.
3149 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3151 struct task_cputime totals;
3152 unsigned long flags;
3153 struct rq *rq;
3154 u64 ns;
3156 rq = task_rq_lock(p, &flags);
3157 thread_group_cputime(p, &totals);
3158 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3159 task_rq_unlock(rq, &flags);
3161 return ns;
3165 * Account user cpu time to a process.
3166 * @p: the process that the cpu time gets accounted to
3167 * @cputime: the cpu time spent in user space since the last update
3168 * @cputime_scaled: cputime scaled by cpu frequency
3170 void account_user_time(struct task_struct *p, cputime_t cputime,
3171 cputime_t cputime_scaled)
3173 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3174 cputime64_t tmp;
3176 /* Add user time to process. */
3177 p->utime = cputime_add(p->utime, cputime);
3178 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3179 account_group_user_time(p, cputime);
3181 /* Add user time to cpustat. */
3182 tmp = cputime_to_cputime64(cputime);
3183 if (TASK_NICE(p) > 0)
3184 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3185 else
3186 cpustat->user = cputime64_add(cpustat->user, tmp);
3188 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3189 /* Account for user time used */
3190 acct_update_integrals(p);
3194 * Account guest cpu time to a process.
3195 * @p: the process that the cpu time gets accounted to
3196 * @cputime: the cpu time spent in virtual machine since the last update
3197 * @cputime_scaled: cputime scaled by cpu frequency
3199 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3200 cputime_t cputime_scaled)
3202 cputime64_t tmp;
3203 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3205 tmp = cputime_to_cputime64(cputime);
3207 /* Add guest time to process. */
3208 p->utime = cputime_add(p->utime, cputime);
3209 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3210 account_group_user_time(p, cputime);
3211 p->gtime = cputime_add(p->gtime, cputime);
3213 /* Add guest time to cpustat. */
3214 if (TASK_NICE(p) > 0) {
3215 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3216 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3217 } else {
3218 cpustat->user = cputime64_add(cpustat->user, tmp);
3219 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3224 * Account system cpu time to a process.
3225 * @p: the process that the cpu time gets accounted to
3226 * @hardirq_offset: the offset to subtract from hardirq_count()
3227 * @cputime: the cpu time spent in kernel space since the last update
3228 * @cputime_scaled: cputime scaled by cpu frequency
3230 void account_system_time(struct task_struct *p, int hardirq_offset,
3231 cputime_t cputime, cputime_t cputime_scaled)
3233 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3234 cputime64_t tmp;
3236 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3237 account_guest_time(p, cputime, cputime_scaled);
3238 return;
3241 /* Add system time to process. */
3242 p->stime = cputime_add(p->stime, cputime);
3243 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3244 account_group_system_time(p, cputime);
3246 /* Add system time to cpustat. */
3247 tmp = cputime_to_cputime64(cputime);
3248 if (hardirq_count() - hardirq_offset)
3249 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3250 else if (softirq_count())
3251 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3252 else
3253 cpustat->system = cputime64_add(cpustat->system, tmp);
3255 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3257 /* Account for system time used */
3258 acct_update_integrals(p);
3262 * Account for involuntary wait time.
3263 * @steal: the cpu time spent in involuntary wait
3265 void account_steal_time(cputime_t cputime)
3267 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3268 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3270 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3274 * Account for idle time.
3275 * @cputime: the cpu time spent in idle wait
3277 void account_idle_time(cputime_t cputime)
3279 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3280 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3281 struct rq *rq = this_rq();
3283 if (atomic_read(&rq->nr_iowait) > 0)
3284 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3285 else
3286 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3289 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3292 * Account a single tick of cpu time.
3293 * @p: the process that the cpu time gets accounted to
3294 * @user_tick: indicates if the tick is a user or a system tick
3296 void account_process_tick(struct task_struct *p, int user_tick)
3298 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3299 struct rq *rq = this_rq();
3301 if (user_tick)
3302 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3303 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3304 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3305 one_jiffy_scaled);
3306 else
3307 account_idle_time(cputime_one_jiffy);
3311 * Account multiple ticks of steal time.
3312 * @p: the process from which the cpu time has been stolen
3313 * @ticks: number of stolen ticks
3315 void account_steal_ticks(unsigned long ticks)
3317 account_steal_time(jiffies_to_cputime(ticks));
3321 * Account multiple ticks of idle time.
3322 * @ticks: number of stolen ticks
3324 void account_idle_ticks(unsigned long ticks)
3326 account_idle_time(jiffies_to_cputime(ticks));
3329 #endif
3332 * Use precise platform statistics if available:
3334 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3335 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3337 *ut = p->utime;
3338 *st = p->stime;
3341 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3343 struct task_cputime cputime;
3345 thread_group_cputime(p, &cputime);
3347 *ut = cputime.utime;
3348 *st = cputime.stime;
3350 #else
3352 #ifndef nsecs_to_cputime
3353 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3354 #endif
3356 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3358 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3361 * Use CFS's precise accounting:
3363 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3365 if (total) {
3366 u64 temp;
3368 temp = (u64)(rtime * utime);
3369 do_div(temp, total);
3370 utime = (cputime_t)temp;
3371 } else
3372 utime = rtime;
3375 * Compare with previous values, to keep monotonicity:
3377 p->prev_utime = max(p->prev_utime, utime);
3378 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3380 *ut = p->prev_utime;
3381 *st = p->prev_stime;
3385 * Must be called with siglock held.
3387 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3389 struct signal_struct *sig = p->signal;
3390 struct task_cputime cputime;
3391 cputime_t rtime, utime, total;
3393 thread_group_cputime(p, &cputime);
3395 total = cputime_add(cputime.utime, cputime.stime);
3396 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3398 if (total) {
3399 u64 temp;
3401 temp = (u64)(rtime * cputime.utime);
3402 do_div(temp, total);
3403 utime = (cputime_t)temp;
3404 } else
3405 utime = rtime;
3407 sig->prev_utime = max(sig->prev_utime, utime);
3408 sig->prev_stime = max(sig->prev_stime,
3409 cputime_sub(rtime, sig->prev_utime));
3411 *ut = sig->prev_utime;
3412 *st = sig->prev_stime;
3414 #endif
3417 * This function gets called by the timer code, with HZ frequency.
3418 * We call it with interrupts disabled.
3420 * It also gets called by the fork code, when changing the parent's
3421 * timeslices.
3423 void scheduler_tick(void)
3425 int cpu = smp_processor_id();
3426 struct rq *rq = cpu_rq(cpu);
3427 struct task_struct *curr = rq->curr;
3429 sched_clock_tick();
3431 raw_spin_lock(&rq->lock);
3432 update_rq_clock(rq);
3433 update_cpu_load(rq);
3434 curr->sched_class->task_tick(rq, curr, 0);
3435 raw_spin_unlock(&rq->lock);
3437 perf_event_task_tick(curr);
3439 #ifdef CONFIG_SMP
3440 rq->idle_at_tick = idle_cpu(cpu);
3441 trigger_load_balance(rq, cpu);
3442 #endif
3445 notrace unsigned long get_parent_ip(unsigned long addr)
3447 if (in_lock_functions(addr)) {
3448 addr = CALLER_ADDR2;
3449 if (in_lock_functions(addr))
3450 addr = CALLER_ADDR3;
3452 return addr;
3455 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3456 defined(CONFIG_PREEMPT_TRACER))
3458 void __kprobes add_preempt_count(int val)
3460 #ifdef CONFIG_DEBUG_PREEMPT
3462 * Underflow?
3464 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3465 return;
3466 #endif
3467 preempt_count() += val;
3468 #ifdef CONFIG_DEBUG_PREEMPT
3470 * Spinlock count overflowing soon?
3472 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3473 PREEMPT_MASK - 10);
3474 #endif
3475 if (preempt_count() == val)
3476 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3478 EXPORT_SYMBOL(add_preempt_count);
3480 void __kprobes sub_preempt_count(int val)
3482 #ifdef CONFIG_DEBUG_PREEMPT
3484 * Underflow?
3486 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3487 return;
3489 * Is the spinlock portion underflowing?
3491 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3492 !(preempt_count() & PREEMPT_MASK)))
3493 return;
3494 #endif
3496 if (preempt_count() == val)
3497 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3498 preempt_count() -= val;
3500 EXPORT_SYMBOL(sub_preempt_count);
3502 #endif
3505 * Print scheduling while atomic bug:
3507 static noinline void __schedule_bug(struct task_struct *prev)
3509 struct pt_regs *regs = get_irq_regs();
3511 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3512 prev->comm, prev->pid, preempt_count());
3514 debug_show_held_locks(prev);
3515 print_modules();
3516 if (irqs_disabled())
3517 print_irqtrace_events(prev);
3519 if (regs)
3520 show_regs(regs);
3521 else
3522 dump_stack();
3526 * Various schedule()-time debugging checks and statistics:
3528 static inline void schedule_debug(struct task_struct *prev)
3531 * Test if we are atomic. Since do_exit() needs to call into
3532 * schedule() atomically, we ignore that path for now.
3533 * Otherwise, whine if we are scheduling when we should not be.
3535 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3536 __schedule_bug(prev);
3538 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3540 schedstat_inc(this_rq(), sched_count);
3541 #ifdef CONFIG_SCHEDSTATS
3542 if (unlikely(prev->lock_depth >= 0)) {
3543 schedstat_inc(this_rq(), bkl_count);
3544 schedstat_inc(prev, sched_info.bkl_count);
3546 #endif
3549 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3551 if (prev->se.on_rq)
3552 update_rq_clock(rq);
3553 rq->skip_clock_update = 0;
3554 prev->sched_class->put_prev_task(rq, prev);
3558 * Pick up the highest-prio task:
3560 static inline struct task_struct *
3561 pick_next_task(struct rq *rq)
3563 const struct sched_class *class;
3564 struct task_struct *p;
3567 * Optimization: we know that if all tasks are in
3568 * the fair class we can call that function directly:
3570 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3571 p = fair_sched_class.pick_next_task(rq);
3572 if (likely(p))
3573 return p;
3576 class = sched_class_highest;
3577 for ( ; ; ) {
3578 p = class->pick_next_task(rq);
3579 if (p)
3580 return p;
3582 * Will never be NULL as the idle class always
3583 * returns a non-NULL p:
3585 class = class->next;
3590 * schedule() is the main scheduler function.
3592 asmlinkage void __sched schedule(void)
3594 struct task_struct *prev, *next;
3595 unsigned long *switch_count;
3596 struct rq *rq;
3597 int cpu;
3599 need_resched:
3600 preempt_disable();
3601 cpu = smp_processor_id();
3602 rq = cpu_rq(cpu);
3603 rcu_note_context_switch(cpu);
3604 prev = rq->curr;
3605 switch_count = &prev->nivcsw;
3607 release_kernel_lock(prev);
3608 need_resched_nonpreemptible:
3610 schedule_debug(prev);
3612 if (sched_feat(HRTICK))
3613 hrtick_clear(rq);
3615 raw_spin_lock_irq(&rq->lock);
3616 clear_tsk_need_resched(prev);
3618 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3619 if (unlikely(signal_pending_state(prev->state, prev)))
3620 prev->state = TASK_RUNNING;
3621 else
3622 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3623 switch_count = &prev->nvcsw;
3626 pre_schedule(rq, prev);
3628 if (unlikely(!rq->nr_running))
3629 idle_balance(cpu, rq);
3631 put_prev_task(rq, prev);
3632 next = pick_next_task(rq);
3634 if (likely(prev != next)) {
3635 sched_info_switch(prev, next);
3636 perf_event_task_sched_out(prev, next);
3638 rq->nr_switches++;
3639 rq->curr = next;
3640 ++*switch_count;
3642 context_switch(rq, prev, next); /* unlocks the rq */
3644 * the context switch might have flipped the stack from under
3645 * us, hence refresh the local variables.
3647 cpu = smp_processor_id();
3648 rq = cpu_rq(cpu);
3649 } else
3650 raw_spin_unlock_irq(&rq->lock);
3652 post_schedule(rq);
3654 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3655 prev = rq->curr;
3656 switch_count = &prev->nivcsw;
3657 goto need_resched_nonpreemptible;
3660 preempt_enable_no_resched();
3661 if (need_resched())
3662 goto need_resched;
3664 EXPORT_SYMBOL(schedule);
3666 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3668 * Look out! "owner" is an entirely speculative pointer
3669 * access and not reliable.
3671 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3673 unsigned int cpu;
3674 struct rq *rq;
3676 if (!sched_feat(OWNER_SPIN))
3677 return 0;
3679 #ifdef CONFIG_DEBUG_PAGEALLOC
3681 * Need to access the cpu field knowing that
3682 * DEBUG_PAGEALLOC could have unmapped it if
3683 * the mutex owner just released it and exited.
3685 if (probe_kernel_address(&owner->cpu, cpu))
3686 return 0;
3687 #else
3688 cpu = owner->cpu;
3689 #endif
3692 * Even if the access succeeded (likely case),
3693 * the cpu field may no longer be valid.
3695 if (cpu >= nr_cpumask_bits)
3696 return 0;
3699 * We need to validate that we can do a
3700 * get_cpu() and that we have the percpu area.
3702 if (!cpu_online(cpu))
3703 return 0;
3705 rq = cpu_rq(cpu);
3707 for (;;) {
3709 * Owner changed, break to re-assess state.
3711 if (lock->owner != owner)
3712 break;
3715 * Is that owner really running on that cpu?
3717 if (task_thread_info(rq->curr) != owner || need_resched())
3718 return 0;
3720 cpu_relax();
3723 return 1;
3725 #endif
3727 #ifdef CONFIG_PREEMPT
3729 * this is the entry point to schedule() from in-kernel preemption
3730 * off of preempt_enable. Kernel preemptions off return from interrupt
3731 * occur there and call schedule directly.
3733 asmlinkage void __sched preempt_schedule(void)
3735 struct thread_info *ti = current_thread_info();
3738 * If there is a non-zero preempt_count or interrupts are disabled,
3739 * we do not want to preempt the current task. Just return..
3741 if (likely(ti->preempt_count || irqs_disabled()))
3742 return;
3744 do {
3745 add_preempt_count(PREEMPT_ACTIVE);
3746 schedule();
3747 sub_preempt_count(PREEMPT_ACTIVE);
3750 * Check again in case we missed a preemption opportunity
3751 * between schedule and now.
3753 barrier();
3754 } while (need_resched());
3756 EXPORT_SYMBOL(preempt_schedule);
3759 * this is the entry point to schedule() from kernel preemption
3760 * off of irq context.
3761 * Note, that this is called and return with irqs disabled. This will
3762 * protect us against recursive calling from irq.
3764 asmlinkage void __sched preempt_schedule_irq(void)
3766 struct thread_info *ti = current_thread_info();
3768 /* Catch callers which need to be fixed */
3769 BUG_ON(ti->preempt_count || !irqs_disabled());
3771 do {
3772 add_preempt_count(PREEMPT_ACTIVE);
3773 local_irq_enable();
3774 schedule();
3775 local_irq_disable();
3776 sub_preempt_count(PREEMPT_ACTIVE);
3779 * Check again in case we missed a preemption opportunity
3780 * between schedule and now.
3782 barrier();
3783 } while (need_resched());
3786 #endif /* CONFIG_PREEMPT */
3788 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3789 void *key)
3791 return try_to_wake_up(curr->private, mode, wake_flags);
3793 EXPORT_SYMBOL(default_wake_function);
3796 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3797 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3798 * number) then we wake all the non-exclusive tasks and one exclusive task.
3800 * There are circumstances in which we can try to wake a task which has already
3801 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3802 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3804 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3805 int nr_exclusive, int wake_flags, void *key)
3807 wait_queue_t *curr, *next;
3809 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3810 unsigned flags = curr->flags;
3812 if (curr->func(curr, mode, wake_flags, key) &&
3813 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3814 break;
3819 * __wake_up - wake up threads blocked on a waitqueue.
3820 * @q: the waitqueue
3821 * @mode: which threads
3822 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3823 * @key: is directly passed to the wakeup function
3825 * It may be assumed that this function implies a write memory barrier before
3826 * changing the task state if and only if any tasks are woken up.
3828 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3829 int nr_exclusive, void *key)
3831 unsigned long flags;
3833 spin_lock_irqsave(&q->lock, flags);
3834 __wake_up_common(q, mode, nr_exclusive, 0, key);
3835 spin_unlock_irqrestore(&q->lock, flags);
3837 EXPORT_SYMBOL(__wake_up);
3840 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3842 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3844 __wake_up_common(q, mode, 1, 0, NULL);
3846 EXPORT_SYMBOL_GPL(__wake_up_locked);
3848 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3850 __wake_up_common(q, mode, 1, 0, key);
3854 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3855 * @q: the waitqueue
3856 * @mode: which threads
3857 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3858 * @key: opaque value to be passed to wakeup targets
3860 * The sync wakeup differs that the waker knows that it will schedule
3861 * away soon, so while the target thread will be woken up, it will not
3862 * be migrated to another CPU - ie. the two threads are 'synchronized'
3863 * with each other. This can prevent needless bouncing between CPUs.
3865 * On UP it can prevent extra preemption.
3867 * It may be assumed that this function implies a write memory barrier before
3868 * changing the task state if and only if any tasks are woken up.
3870 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3871 int nr_exclusive, void *key)
3873 unsigned long flags;
3874 int wake_flags = WF_SYNC;
3876 if (unlikely(!q))
3877 return;
3879 if (unlikely(!nr_exclusive))
3880 wake_flags = 0;
3882 spin_lock_irqsave(&q->lock, flags);
3883 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3884 spin_unlock_irqrestore(&q->lock, flags);
3886 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3889 * __wake_up_sync - see __wake_up_sync_key()
3891 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3893 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3895 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3898 * complete: - signals a single thread waiting on this completion
3899 * @x: holds the state of this particular completion
3901 * This will wake up a single thread waiting on this completion. Threads will be
3902 * awakened in the same order in which they were queued.
3904 * See also complete_all(), wait_for_completion() and related routines.
3906 * It may be assumed that this function implies a write memory barrier before
3907 * changing the task state if and only if any tasks are woken up.
3909 void complete(struct completion *x)
3911 unsigned long flags;
3913 spin_lock_irqsave(&x->wait.lock, flags);
3914 x->done++;
3915 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3916 spin_unlock_irqrestore(&x->wait.lock, flags);
3918 EXPORT_SYMBOL(complete);
3921 * complete_all: - signals all threads waiting on this completion
3922 * @x: holds the state of this particular completion
3924 * This will wake up all threads waiting on this particular completion event.
3926 * It may be assumed that this function implies a write memory barrier before
3927 * changing the task state if and only if any tasks are woken up.
3929 void complete_all(struct completion *x)
3931 unsigned long flags;
3933 spin_lock_irqsave(&x->wait.lock, flags);
3934 x->done += UINT_MAX/2;
3935 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3936 spin_unlock_irqrestore(&x->wait.lock, flags);
3938 EXPORT_SYMBOL(complete_all);
3940 static inline long __sched
3941 do_wait_for_common(struct completion *x, long timeout, int state)
3943 if (!x->done) {
3944 DECLARE_WAITQUEUE(wait, current);
3946 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3947 do {
3948 if (signal_pending_state(state, current)) {
3949 timeout = -ERESTARTSYS;
3950 break;
3952 __set_current_state(state);
3953 spin_unlock_irq(&x->wait.lock);
3954 timeout = schedule_timeout(timeout);
3955 spin_lock_irq(&x->wait.lock);
3956 } while (!x->done && timeout);
3957 __remove_wait_queue(&x->wait, &wait);
3958 if (!x->done)
3959 return timeout;
3961 x->done--;
3962 return timeout ?: 1;
3965 static long __sched
3966 wait_for_common(struct completion *x, long timeout, int state)
3968 might_sleep();
3970 spin_lock_irq(&x->wait.lock);
3971 timeout = do_wait_for_common(x, timeout, state);
3972 spin_unlock_irq(&x->wait.lock);
3973 return timeout;
3977 * wait_for_completion: - waits for completion of a task
3978 * @x: holds the state of this particular completion
3980 * This waits to be signaled for completion of a specific task. It is NOT
3981 * interruptible and there is no timeout.
3983 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3984 * and interrupt capability. Also see complete().
3986 void __sched wait_for_completion(struct completion *x)
3988 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3990 EXPORT_SYMBOL(wait_for_completion);
3993 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3994 * @x: holds the state of this particular completion
3995 * @timeout: timeout value in jiffies
3997 * This waits for either a completion of a specific task to be signaled or for a
3998 * specified timeout to expire. The timeout is in jiffies. It is not
3999 * interruptible.
4001 unsigned long __sched
4002 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4004 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4006 EXPORT_SYMBOL(wait_for_completion_timeout);
4009 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4010 * @x: holds the state of this particular completion
4012 * This waits for completion of a specific task to be signaled. It is
4013 * interruptible.
4015 int __sched wait_for_completion_interruptible(struct completion *x)
4017 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4018 if (t == -ERESTARTSYS)
4019 return t;
4020 return 0;
4022 EXPORT_SYMBOL(wait_for_completion_interruptible);
4025 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4026 * @x: holds the state of this particular completion
4027 * @timeout: timeout value in jiffies
4029 * This waits for either a completion of a specific task to be signaled or for a
4030 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4032 unsigned long __sched
4033 wait_for_completion_interruptible_timeout(struct completion *x,
4034 unsigned long timeout)
4036 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4038 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4041 * wait_for_completion_killable: - waits for completion of a task (killable)
4042 * @x: holds the state of this particular completion
4044 * This waits to be signaled for completion of a specific task. It can be
4045 * interrupted by a kill signal.
4047 int __sched wait_for_completion_killable(struct completion *x)
4049 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4050 if (t == -ERESTARTSYS)
4051 return t;
4052 return 0;
4054 EXPORT_SYMBOL(wait_for_completion_killable);
4057 * try_wait_for_completion - try to decrement a completion without blocking
4058 * @x: completion structure
4060 * Returns: 0 if a decrement cannot be done without blocking
4061 * 1 if a decrement succeeded.
4063 * If a completion is being used as a counting completion,
4064 * attempt to decrement the counter without blocking. This
4065 * enables us to avoid waiting if the resource the completion
4066 * is protecting is not available.
4068 bool try_wait_for_completion(struct completion *x)
4070 unsigned long flags;
4071 int ret = 1;
4073 spin_lock_irqsave(&x->wait.lock, flags);
4074 if (!x->done)
4075 ret = 0;
4076 else
4077 x->done--;
4078 spin_unlock_irqrestore(&x->wait.lock, flags);
4079 return ret;
4081 EXPORT_SYMBOL(try_wait_for_completion);
4084 * completion_done - Test to see if a completion has any waiters
4085 * @x: completion structure
4087 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4088 * 1 if there are no waiters.
4091 bool completion_done(struct completion *x)
4093 unsigned long flags;
4094 int ret = 1;
4096 spin_lock_irqsave(&x->wait.lock, flags);
4097 if (!x->done)
4098 ret = 0;
4099 spin_unlock_irqrestore(&x->wait.lock, flags);
4100 return ret;
4102 EXPORT_SYMBOL(completion_done);
4104 static long __sched
4105 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4107 unsigned long flags;
4108 wait_queue_t wait;
4110 init_waitqueue_entry(&wait, current);
4112 __set_current_state(state);
4114 spin_lock_irqsave(&q->lock, flags);
4115 __add_wait_queue(q, &wait);
4116 spin_unlock(&q->lock);
4117 timeout = schedule_timeout(timeout);
4118 spin_lock_irq(&q->lock);
4119 __remove_wait_queue(q, &wait);
4120 spin_unlock_irqrestore(&q->lock, flags);
4122 return timeout;
4125 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4127 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4129 EXPORT_SYMBOL(interruptible_sleep_on);
4131 long __sched
4132 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4134 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4136 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4138 void __sched sleep_on(wait_queue_head_t *q)
4140 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4142 EXPORT_SYMBOL(sleep_on);
4144 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4146 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4148 EXPORT_SYMBOL(sleep_on_timeout);
4150 #ifdef CONFIG_RT_MUTEXES
4153 * rt_mutex_setprio - set the current priority of a task
4154 * @p: task
4155 * @prio: prio value (kernel-internal form)
4157 * This function changes the 'effective' priority of a task. It does
4158 * not touch ->normal_prio like __setscheduler().
4160 * Used by the rt_mutex code to implement priority inheritance logic.
4162 void rt_mutex_setprio(struct task_struct *p, int prio)
4164 unsigned long flags;
4165 int oldprio, on_rq, running;
4166 struct rq *rq;
4167 const struct sched_class *prev_class;
4169 BUG_ON(prio < 0 || prio > MAX_PRIO);
4171 rq = task_rq_lock(p, &flags);
4173 oldprio = p->prio;
4174 prev_class = p->sched_class;
4175 on_rq = p->se.on_rq;
4176 running = task_current(rq, p);
4177 if (on_rq)
4178 dequeue_task(rq, p, 0);
4179 if (running)
4180 p->sched_class->put_prev_task(rq, p);
4182 if (rt_prio(prio))
4183 p->sched_class = &rt_sched_class;
4184 else
4185 p->sched_class = &fair_sched_class;
4187 p->prio = prio;
4189 if (running)
4190 p->sched_class->set_curr_task(rq);
4191 if (on_rq) {
4192 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4194 check_class_changed(rq, p, prev_class, oldprio, running);
4196 task_rq_unlock(rq, &flags);
4199 #endif
4201 void set_user_nice(struct task_struct *p, long nice)
4203 int old_prio, delta, on_rq;
4204 unsigned long flags;
4205 struct rq *rq;
4207 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4208 return;
4210 * We have to be careful, if called from sys_setpriority(),
4211 * the task might be in the middle of scheduling on another CPU.
4213 rq = task_rq_lock(p, &flags);
4215 * The RT priorities are set via sched_setscheduler(), but we still
4216 * allow the 'normal' nice value to be set - but as expected
4217 * it wont have any effect on scheduling until the task is
4218 * SCHED_FIFO/SCHED_RR:
4220 if (task_has_rt_policy(p)) {
4221 p->static_prio = NICE_TO_PRIO(nice);
4222 goto out_unlock;
4224 on_rq = p->se.on_rq;
4225 if (on_rq)
4226 dequeue_task(rq, p, 0);
4228 p->static_prio = NICE_TO_PRIO(nice);
4229 set_load_weight(p);
4230 old_prio = p->prio;
4231 p->prio = effective_prio(p);
4232 delta = p->prio - old_prio;
4234 if (on_rq) {
4235 enqueue_task(rq, p, 0);
4237 * If the task increased its priority or is running and
4238 * lowered its priority, then reschedule its CPU:
4240 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4241 resched_task(rq->curr);
4243 out_unlock:
4244 task_rq_unlock(rq, &flags);
4246 EXPORT_SYMBOL(set_user_nice);
4249 * can_nice - check if a task can reduce its nice value
4250 * @p: task
4251 * @nice: nice value
4253 int can_nice(const struct task_struct *p, const int nice)
4255 /* convert nice value [19,-20] to rlimit style value [1,40] */
4256 int nice_rlim = 20 - nice;
4258 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4259 capable(CAP_SYS_NICE));
4262 #ifdef __ARCH_WANT_SYS_NICE
4265 * sys_nice - change the priority of the current process.
4266 * @increment: priority increment
4268 * sys_setpriority is a more generic, but much slower function that
4269 * does similar things.
4271 SYSCALL_DEFINE1(nice, int, increment)
4273 long nice, retval;
4276 * Setpriority might change our priority at the same moment.
4277 * We don't have to worry. Conceptually one call occurs first
4278 * and we have a single winner.
4280 if (increment < -40)
4281 increment = -40;
4282 if (increment > 40)
4283 increment = 40;
4285 nice = TASK_NICE(current) + increment;
4286 if (nice < -20)
4287 nice = -20;
4288 if (nice > 19)
4289 nice = 19;
4291 if (increment < 0 && !can_nice(current, nice))
4292 return -EPERM;
4294 retval = security_task_setnice(current, nice);
4295 if (retval)
4296 return retval;
4298 set_user_nice(current, nice);
4299 return 0;
4302 #endif
4305 * task_prio - return the priority value of a given task.
4306 * @p: the task in question.
4308 * This is the priority value as seen by users in /proc.
4309 * RT tasks are offset by -200. Normal tasks are centered
4310 * around 0, value goes from -16 to +15.
4312 int task_prio(const struct task_struct *p)
4314 return p->prio - MAX_RT_PRIO;
4318 * task_nice - return the nice value of a given task.
4319 * @p: the task in question.
4321 int task_nice(const struct task_struct *p)
4323 return TASK_NICE(p);
4325 EXPORT_SYMBOL(task_nice);
4328 * idle_cpu - is a given cpu idle currently?
4329 * @cpu: the processor in question.
4331 int idle_cpu(int cpu)
4333 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4337 * idle_task - return the idle task for a given cpu.
4338 * @cpu: the processor in question.
4340 struct task_struct *idle_task(int cpu)
4342 return cpu_rq(cpu)->idle;
4346 * find_process_by_pid - find a process with a matching PID value.
4347 * @pid: the pid in question.
4349 static struct task_struct *find_process_by_pid(pid_t pid)
4351 return pid ? find_task_by_vpid(pid) : current;
4354 /* Actually do priority change: must hold rq lock. */
4355 static void
4356 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4358 BUG_ON(p->se.on_rq);
4360 p->policy = policy;
4361 p->rt_priority = prio;
4362 p->normal_prio = normal_prio(p);
4363 /* we are holding p->pi_lock already */
4364 p->prio = rt_mutex_getprio(p);
4365 if (rt_prio(p->prio))
4366 p->sched_class = &rt_sched_class;
4367 else
4368 p->sched_class = &fair_sched_class;
4369 set_load_weight(p);
4373 * check the target process has a UID that matches the current process's
4375 static bool check_same_owner(struct task_struct *p)
4377 const struct cred *cred = current_cred(), *pcred;
4378 bool match;
4380 rcu_read_lock();
4381 pcred = __task_cred(p);
4382 match = (cred->euid == pcred->euid ||
4383 cred->euid == pcred->uid);
4384 rcu_read_unlock();
4385 return match;
4388 static int __sched_setscheduler(struct task_struct *p, int policy,
4389 struct sched_param *param, bool user)
4391 int retval, oldprio, oldpolicy = -1, on_rq, running;
4392 unsigned long flags;
4393 const struct sched_class *prev_class;
4394 struct rq *rq;
4395 int reset_on_fork;
4397 /* may grab non-irq protected spin_locks */
4398 BUG_ON(in_interrupt());
4399 recheck:
4400 /* double check policy once rq lock held */
4401 if (policy < 0) {
4402 reset_on_fork = p->sched_reset_on_fork;
4403 policy = oldpolicy = p->policy;
4404 } else {
4405 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4406 policy &= ~SCHED_RESET_ON_FORK;
4408 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4409 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4410 policy != SCHED_IDLE)
4411 return -EINVAL;
4415 * Valid priorities for SCHED_FIFO and SCHED_RR are
4416 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4417 * SCHED_BATCH and SCHED_IDLE is 0.
4419 if (param->sched_priority < 0 ||
4420 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4421 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4422 return -EINVAL;
4423 if (rt_policy(policy) != (param->sched_priority != 0))
4424 return -EINVAL;
4427 * Allow unprivileged RT tasks to decrease priority:
4429 if (user && !capable(CAP_SYS_NICE)) {
4430 if (rt_policy(policy)) {
4431 unsigned long rlim_rtprio;
4433 if (!lock_task_sighand(p, &flags))
4434 return -ESRCH;
4435 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4436 unlock_task_sighand(p, &flags);
4438 /* can't set/change the rt policy */
4439 if (policy != p->policy && !rlim_rtprio)
4440 return -EPERM;
4442 /* can't increase priority */
4443 if (param->sched_priority > p->rt_priority &&
4444 param->sched_priority > rlim_rtprio)
4445 return -EPERM;
4448 * Like positive nice levels, dont allow tasks to
4449 * move out of SCHED_IDLE either:
4451 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4452 return -EPERM;
4454 /* can't change other user's priorities */
4455 if (!check_same_owner(p))
4456 return -EPERM;
4458 /* Normal users shall not reset the sched_reset_on_fork flag */
4459 if (p->sched_reset_on_fork && !reset_on_fork)
4460 return -EPERM;
4463 if (user) {
4464 #ifdef CONFIG_RT_GROUP_SCHED
4466 * Do not allow realtime tasks into groups that have no runtime
4467 * assigned.
4469 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4470 task_group(p)->rt_bandwidth.rt_runtime == 0)
4471 return -EPERM;
4472 #endif
4474 retval = security_task_setscheduler(p, policy, param);
4475 if (retval)
4476 return retval;
4480 * make sure no PI-waiters arrive (or leave) while we are
4481 * changing the priority of the task:
4483 raw_spin_lock_irqsave(&p->pi_lock, flags);
4485 * To be able to change p->policy safely, the apropriate
4486 * runqueue lock must be held.
4488 rq = __task_rq_lock(p);
4489 /* recheck policy now with rq lock held */
4490 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4491 policy = oldpolicy = -1;
4492 __task_rq_unlock(rq);
4493 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4494 goto recheck;
4496 on_rq = p->se.on_rq;
4497 running = task_current(rq, p);
4498 if (on_rq)
4499 deactivate_task(rq, p, 0);
4500 if (running)
4501 p->sched_class->put_prev_task(rq, p);
4503 p->sched_reset_on_fork = reset_on_fork;
4505 oldprio = p->prio;
4506 prev_class = p->sched_class;
4507 __setscheduler(rq, p, policy, param->sched_priority);
4509 if (running)
4510 p->sched_class->set_curr_task(rq);
4511 if (on_rq) {
4512 activate_task(rq, p, 0);
4514 check_class_changed(rq, p, prev_class, oldprio, running);
4516 __task_rq_unlock(rq);
4517 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4519 rt_mutex_adjust_pi(p);
4521 return 0;
4525 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4526 * @p: the task in question.
4527 * @policy: new policy.
4528 * @param: structure containing the new RT priority.
4530 * NOTE that the task may be already dead.
4532 int sched_setscheduler(struct task_struct *p, int policy,
4533 struct sched_param *param)
4535 return __sched_setscheduler(p, policy, param, true);
4537 EXPORT_SYMBOL_GPL(sched_setscheduler);
4540 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4541 * @p: the task in question.
4542 * @policy: new policy.
4543 * @param: structure containing the new RT priority.
4545 * Just like sched_setscheduler, only don't bother checking if the
4546 * current context has permission. For example, this is needed in
4547 * stop_machine(): we create temporary high priority worker threads,
4548 * but our caller might not have that capability.
4550 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4551 struct sched_param *param)
4553 return __sched_setscheduler(p, policy, param, false);
4556 static int
4557 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4559 struct sched_param lparam;
4560 struct task_struct *p;
4561 int retval;
4563 if (!param || pid < 0)
4564 return -EINVAL;
4565 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4566 return -EFAULT;
4568 rcu_read_lock();
4569 retval = -ESRCH;
4570 p = find_process_by_pid(pid);
4571 if (p != NULL)
4572 retval = sched_setscheduler(p, policy, &lparam);
4573 rcu_read_unlock();
4575 return retval;
4579 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4580 * @pid: the pid in question.
4581 * @policy: new policy.
4582 * @param: structure containing the new RT priority.
4584 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4585 struct sched_param __user *, param)
4587 /* negative values for policy are not valid */
4588 if (policy < 0)
4589 return -EINVAL;
4591 return do_sched_setscheduler(pid, policy, param);
4595 * sys_sched_setparam - set/change the RT priority of a thread
4596 * @pid: the pid in question.
4597 * @param: structure containing the new RT priority.
4599 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4601 return do_sched_setscheduler(pid, -1, param);
4605 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4606 * @pid: the pid in question.
4608 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4610 struct task_struct *p;
4611 int retval;
4613 if (pid < 0)
4614 return -EINVAL;
4616 retval = -ESRCH;
4617 rcu_read_lock();
4618 p = find_process_by_pid(pid);
4619 if (p) {
4620 retval = security_task_getscheduler(p);
4621 if (!retval)
4622 retval = p->policy
4623 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4625 rcu_read_unlock();
4626 return retval;
4630 * sys_sched_getparam - get the RT priority of a thread
4631 * @pid: the pid in question.
4632 * @param: structure containing the RT priority.
4634 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4636 struct sched_param lp;
4637 struct task_struct *p;
4638 int retval;
4640 if (!param || pid < 0)
4641 return -EINVAL;
4643 rcu_read_lock();
4644 p = find_process_by_pid(pid);
4645 retval = -ESRCH;
4646 if (!p)
4647 goto out_unlock;
4649 retval = security_task_getscheduler(p);
4650 if (retval)
4651 goto out_unlock;
4653 lp.sched_priority = p->rt_priority;
4654 rcu_read_unlock();
4657 * This one might sleep, we cannot do it with a spinlock held ...
4659 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4661 return retval;
4663 out_unlock:
4664 rcu_read_unlock();
4665 return retval;
4668 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4670 cpumask_var_t cpus_allowed, new_mask;
4671 struct task_struct *p;
4672 int retval;
4674 get_online_cpus();
4675 rcu_read_lock();
4677 p = find_process_by_pid(pid);
4678 if (!p) {
4679 rcu_read_unlock();
4680 put_online_cpus();
4681 return -ESRCH;
4684 /* Prevent p going away */
4685 get_task_struct(p);
4686 rcu_read_unlock();
4688 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4689 retval = -ENOMEM;
4690 goto out_put_task;
4692 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4693 retval = -ENOMEM;
4694 goto out_free_cpus_allowed;
4696 retval = -EPERM;
4697 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4698 goto out_unlock;
4700 retval = security_task_setscheduler(p, 0, NULL);
4701 if (retval)
4702 goto out_unlock;
4704 cpuset_cpus_allowed(p, cpus_allowed);
4705 cpumask_and(new_mask, in_mask, cpus_allowed);
4706 again:
4707 retval = set_cpus_allowed_ptr(p, new_mask);
4709 if (!retval) {
4710 cpuset_cpus_allowed(p, cpus_allowed);
4711 if (!cpumask_subset(new_mask, cpus_allowed)) {
4713 * We must have raced with a concurrent cpuset
4714 * update. Just reset the cpus_allowed to the
4715 * cpuset's cpus_allowed
4717 cpumask_copy(new_mask, cpus_allowed);
4718 goto again;
4721 out_unlock:
4722 free_cpumask_var(new_mask);
4723 out_free_cpus_allowed:
4724 free_cpumask_var(cpus_allowed);
4725 out_put_task:
4726 put_task_struct(p);
4727 put_online_cpus();
4728 return retval;
4731 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4732 struct cpumask *new_mask)
4734 if (len < cpumask_size())
4735 cpumask_clear(new_mask);
4736 else if (len > cpumask_size())
4737 len = cpumask_size();
4739 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4743 * sys_sched_setaffinity - set the cpu affinity of a process
4744 * @pid: pid of the process
4745 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4746 * @user_mask_ptr: user-space pointer to the new cpu mask
4748 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4749 unsigned long __user *, user_mask_ptr)
4751 cpumask_var_t new_mask;
4752 int retval;
4754 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4755 return -ENOMEM;
4757 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4758 if (retval == 0)
4759 retval = sched_setaffinity(pid, new_mask);
4760 free_cpumask_var(new_mask);
4761 return retval;
4764 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4766 struct task_struct *p;
4767 unsigned long flags;
4768 struct rq *rq;
4769 int retval;
4771 get_online_cpus();
4772 rcu_read_lock();
4774 retval = -ESRCH;
4775 p = find_process_by_pid(pid);
4776 if (!p)
4777 goto out_unlock;
4779 retval = security_task_getscheduler(p);
4780 if (retval)
4781 goto out_unlock;
4783 rq = task_rq_lock(p, &flags);
4784 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4785 task_rq_unlock(rq, &flags);
4787 out_unlock:
4788 rcu_read_unlock();
4789 put_online_cpus();
4791 return retval;
4795 * sys_sched_getaffinity - get the cpu affinity of a process
4796 * @pid: pid of the process
4797 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4798 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4800 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4801 unsigned long __user *, user_mask_ptr)
4803 int ret;
4804 cpumask_var_t mask;
4806 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4807 return -EINVAL;
4808 if (len & (sizeof(unsigned long)-1))
4809 return -EINVAL;
4811 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4812 return -ENOMEM;
4814 ret = sched_getaffinity(pid, mask);
4815 if (ret == 0) {
4816 size_t retlen = min_t(size_t, len, cpumask_size());
4818 if (copy_to_user(user_mask_ptr, mask, retlen))
4819 ret = -EFAULT;
4820 else
4821 ret = retlen;
4823 free_cpumask_var(mask);
4825 return ret;
4829 * sys_sched_yield - yield the current processor to other threads.
4831 * This function yields the current CPU to other tasks. If there are no
4832 * other threads running on this CPU then this function will return.
4834 SYSCALL_DEFINE0(sched_yield)
4836 struct rq *rq = this_rq_lock();
4838 schedstat_inc(rq, yld_count);
4839 current->sched_class->yield_task(rq);
4842 * Since we are going to call schedule() anyway, there's
4843 * no need to preempt or enable interrupts:
4845 __release(rq->lock);
4846 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4847 do_raw_spin_unlock(&rq->lock);
4848 preempt_enable_no_resched();
4850 schedule();
4852 return 0;
4855 static inline int should_resched(void)
4857 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4860 static void __cond_resched(void)
4862 add_preempt_count(PREEMPT_ACTIVE);
4863 schedule();
4864 sub_preempt_count(PREEMPT_ACTIVE);
4867 int __sched _cond_resched(void)
4869 if (should_resched()) {
4870 __cond_resched();
4871 return 1;
4873 return 0;
4875 EXPORT_SYMBOL(_cond_resched);
4878 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4879 * call schedule, and on return reacquire the lock.
4881 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4882 * operations here to prevent schedule() from being called twice (once via
4883 * spin_unlock(), once by hand).
4885 int __cond_resched_lock(spinlock_t *lock)
4887 int resched = should_resched();
4888 int ret = 0;
4890 lockdep_assert_held(lock);
4892 if (spin_needbreak(lock) || resched) {
4893 spin_unlock(lock);
4894 if (resched)
4895 __cond_resched();
4896 else
4897 cpu_relax();
4898 ret = 1;
4899 spin_lock(lock);
4901 return ret;
4903 EXPORT_SYMBOL(__cond_resched_lock);
4905 int __sched __cond_resched_softirq(void)
4907 BUG_ON(!in_softirq());
4909 if (should_resched()) {
4910 local_bh_enable();
4911 __cond_resched();
4912 local_bh_disable();
4913 return 1;
4915 return 0;
4917 EXPORT_SYMBOL(__cond_resched_softirq);
4920 * yield - yield the current processor to other threads.
4922 * This is a shortcut for kernel-space yielding - it marks the
4923 * thread runnable and calls sys_sched_yield().
4925 void __sched yield(void)
4927 set_current_state(TASK_RUNNING);
4928 sys_sched_yield();
4930 EXPORT_SYMBOL(yield);
4933 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4934 * that process accounting knows that this is a task in IO wait state.
4936 void __sched io_schedule(void)
4938 struct rq *rq = raw_rq();
4940 delayacct_blkio_start();
4941 atomic_inc(&rq->nr_iowait);
4942 current->in_iowait = 1;
4943 schedule();
4944 current->in_iowait = 0;
4945 atomic_dec(&rq->nr_iowait);
4946 delayacct_blkio_end();
4948 EXPORT_SYMBOL(io_schedule);
4950 long __sched io_schedule_timeout(long timeout)
4952 struct rq *rq = raw_rq();
4953 long ret;
4955 delayacct_blkio_start();
4956 atomic_inc(&rq->nr_iowait);
4957 current->in_iowait = 1;
4958 ret = schedule_timeout(timeout);
4959 current->in_iowait = 0;
4960 atomic_dec(&rq->nr_iowait);
4961 delayacct_blkio_end();
4962 return ret;
4966 * sys_sched_get_priority_max - return maximum RT priority.
4967 * @policy: scheduling class.
4969 * this syscall returns the maximum rt_priority that can be used
4970 * by a given scheduling class.
4972 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4974 int ret = -EINVAL;
4976 switch (policy) {
4977 case SCHED_FIFO:
4978 case SCHED_RR:
4979 ret = MAX_USER_RT_PRIO-1;
4980 break;
4981 case SCHED_NORMAL:
4982 case SCHED_BATCH:
4983 case SCHED_IDLE:
4984 ret = 0;
4985 break;
4987 return ret;
4991 * sys_sched_get_priority_min - return minimum RT priority.
4992 * @policy: scheduling class.
4994 * this syscall returns the minimum rt_priority that can be used
4995 * by a given scheduling class.
4997 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4999 int ret = -EINVAL;
5001 switch (policy) {
5002 case SCHED_FIFO:
5003 case SCHED_RR:
5004 ret = 1;
5005 break;
5006 case SCHED_NORMAL:
5007 case SCHED_BATCH:
5008 case SCHED_IDLE:
5009 ret = 0;
5011 return ret;
5015 * sys_sched_rr_get_interval - return the default timeslice of a process.
5016 * @pid: pid of the process.
5017 * @interval: userspace pointer to the timeslice value.
5019 * this syscall writes the default timeslice value of a given process
5020 * into the user-space timespec buffer. A value of '0' means infinity.
5022 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5023 struct timespec __user *, interval)
5025 struct task_struct *p;
5026 unsigned int time_slice;
5027 unsigned long flags;
5028 struct rq *rq;
5029 int retval;
5030 struct timespec t;
5032 if (pid < 0)
5033 return -EINVAL;
5035 retval = -ESRCH;
5036 rcu_read_lock();
5037 p = find_process_by_pid(pid);
5038 if (!p)
5039 goto out_unlock;
5041 retval = security_task_getscheduler(p);
5042 if (retval)
5043 goto out_unlock;
5045 rq = task_rq_lock(p, &flags);
5046 time_slice = p->sched_class->get_rr_interval(rq, p);
5047 task_rq_unlock(rq, &flags);
5049 rcu_read_unlock();
5050 jiffies_to_timespec(time_slice, &t);
5051 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5052 return retval;
5054 out_unlock:
5055 rcu_read_unlock();
5056 return retval;
5059 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5061 void sched_show_task(struct task_struct *p)
5063 unsigned long free = 0;
5064 unsigned state;
5066 state = p->state ? __ffs(p->state) + 1 : 0;
5067 printk(KERN_INFO "%-13.13s %c", p->comm,
5068 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5069 #if BITS_PER_LONG == 32
5070 if (state == TASK_RUNNING)
5071 printk(KERN_CONT " running ");
5072 else
5073 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5074 #else
5075 if (state == TASK_RUNNING)
5076 printk(KERN_CONT " running task ");
5077 else
5078 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5079 #endif
5080 #ifdef CONFIG_DEBUG_STACK_USAGE
5081 free = stack_not_used(p);
5082 #endif
5083 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5084 task_pid_nr(p), task_pid_nr(p->real_parent),
5085 (unsigned long)task_thread_info(p)->flags);
5087 show_stack(p, NULL);
5090 void show_state_filter(unsigned long state_filter)
5092 struct task_struct *g, *p;
5094 #if BITS_PER_LONG == 32
5095 printk(KERN_INFO
5096 " task PC stack pid father\n");
5097 #else
5098 printk(KERN_INFO
5099 " task PC stack pid father\n");
5100 #endif
5101 read_lock(&tasklist_lock);
5102 do_each_thread(g, p) {
5104 * reset the NMI-timeout, listing all files on a slow
5105 * console might take alot of time:
5107 touch_nmi_watchdog();
5108 if (!state_filter || (p->state & state_filter))
5109 sched_show_task(p);
5110 } while_each_thread(g, p);
5112 touch_all_softlockup_watchdogs();
5114 #ifdef CONFIG_SCHED_DEBUG
5115 sysrq_sched_debug_show();
5116 #endif
5117 read_unlock(&tasklist_lock);
5119 * Only show locks if all tasks are dumped:
5121 if (!state_filter)
5122 debug_show_all_locks();
5125 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5127 idle->sched_class = &idle_sched_class;
5131 * init_idle - set up an idle thread for a given CPU
5132 * @idle: task in question
5133 * @cpu: cpu the idle task belongs to
5135 * NOTE: this function does not set the idle thread's NEED_RESCHED
5136 * flag, to make booting more robust.
5138 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5140 struct rq *rq = cpu_rq(cpu);
5141 unsigned long flags;
5143 raw_spin_lock_irqsave(&rq->lock, flags);
5145 __sched_fork(idle);
5146 idle->state = TASK_RUNNING;
5147 idle->se.exec_start = sched_clock();
5149 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5150 __set_task_cpu(idle, cpu);
5152 rq->curr = rq->idle = idle;
5153 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5154 idle->oncpu = 1;
5155 #endif
5156 raw_spin_unlock_irqrestore(&rq->lock, flags);
5158 /* Set the preempt count _outside_ the spinlocks! */
5159 #if defined(CONFIG_PREEMPT)
5160 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5161 #else
5162 task_thread_info(idle)->preempt_count = 0;
5163 #endif
5165 * The idle tasks have their own, simple scheduling class:
5167 idle->sched_class = &idle_sched_class;
5168 ftrace_graph_init_task(idle);
5172 * In a system that switches off the HZ timer nohz_cpu_mask
5173 * indicates which cpus entered this state. This is used
5174 * in the rcu update to wait only for active cpus. For system
5175 * which do not switch off the HZ timer nohz_cpu_mask should
5176 * always be CPU_BITS_NONE.
5178 cpumask_var_t nohz_cpu_mask;
5181 * Increase the granularity value when there are more CPUs,
5182 * because with more CPUs the 'effective latency' as visible
5183 * to users decreases. But the relationship is not linear,
5184 * so pick a second-best guess by going with the log2 of the
5185 * number of CPUs.
5187 * This idea comes from the SD scheduler of Con Kolivas:
5189 static int get_update_sysctl_factor(void)
5191 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5192 unsigned int factor;
5194 switch (sysctl_sched_tunable_scaling) {
5195 case SCHED_TUNABLESCALING_NONE:
5196 factor = 1;
5197 break;
5198 case SCHED_TUNABLESCALING_LINEAR:
5199 factor = cpus;
5200 break;
5201 case SCHED_TUNABLESCALING_LOG:
5202 default:
5203 factor = 1 + ilog2(cpus);
5204 break;
5207 return factor;
5210 static void update_sysctl(void)
5212 unsigned int factor = get_update_sysctl_factor();
5214 #define SET_SYSCTL(name) \
5215 (sysctl_##name = (factor) * normalized_sysctl_##name)
5216 SET_SYSCTL(sched_min_granularity);
5217 SET_SYSCTL(sched_latency);
5218 SET_SYSCTL(sched_wakeup_granularity);
5219 SET_SYSCTL(sched_shares_ratelimit);
5220 #undef SET_SYSCTL
5223 static inline void sched_init_granularity(void)
5225 update_sysctl();
5228 #ifdef CONFIG_SMP
5230 * This is how migration works:
5232 * 1) we invoke migration_cpu_stop() on the target CPU using
5233 * stop_one_cpu().
5234 * 2) stopper starts to run (implicitly forcing the migrated thread
5235 * off the CPU)
5236 * 3) it checks whether the migrated task is still in the wrong runqueue.
5237 * 4) if it's in the wrong runqueue then the migration thread removes
5238 * it and puts it into the right queue.
5239 * 5) stopper completes and stop_one_cpu() returns and the migration
5240 * is done.
5244 * Change a given task's CPU affinity. Migrate the thread to a
5245 * proper CPU and schedule it away if the CPU it's executing on
5246 * is removed from the allowed bitmask.
5248 * NOTE: the caller must have a valid reference to the task, the
5249 * task must not exit() & deallocate itself prematurely. The
5250 * call is not atomic; no spinlocks may be held.
5252 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5254 unsigned long flags;
5255 struct rq *rq;
5256 unsigned int dest_cpu;
5257 int ret = 0;
5260 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5261 * drop the rq->lock and still rely on ->cpus_allowed.
5263 again:
5264 while (task_is_waking(p))
5265 cpu_relax();
5266 rq = task_rq_lock(p, &flags);
5267 if (task_is_waking(p)) {
5268 task_rq_unlock(rq, &flags);
5269 goto again;
5272 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5273 ret = -EINVAL;
5274 goto out;
5277 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5278 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5279 ret = -EINVAL;
5280 goto out;
5283 if (p->sched_class->set_cpus_allowed)
5284 p->sched_class->set_cpus_allowed(p, new_mask);
5285 else {
5286 cpumask_copy(&p->cpus_allowed, new_mask);
5287 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5290 /* Can the task run on the task's current CPU? If so, we're done */
5291 if (cpumask_test_cpu(task_cpu(p), new_mask))
5292 goto out;
5294 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5295 if (migrate_task(p, dest_cpu)) {
5296 struct migration_arg arg = { p, dest_cpu };
5297 /* Need help from migration thread: drop lock and wait. */
5298 task_rq_unlock(rq, &flags);
5299 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5300 tlb_migrate_finish(p->mm);
5301 return 0;
5303 out:
5304 task_rq_unlock(rq, &flags);
5306 return ret;
5308 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5311 * Move (not current) task off this cpu, onto dest cpu. We're doing
5312 * this because either it can't run here any more (set_cpus_allowed()
5313 * away from this CPU, or CPU going down), or because we're
5314 * attempting to rebalance this task on exec (sched_exec).
5316 * So we race with normal scheduler movements, but that's OK, as long
5317 * as the task is no longer on this CPU.
5319 * Returns non-zero if task was successfully migrated.
5321 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5323 struct rq *rq_dest, *rq_src;
5324 int ret = 0;
5326 if (unlikely(!cpu_active(dest_cpu)))
5327 return ret;
5329 rq_src = cpu_rq(src_cpu);
5330 rq_dest = cpu_rq(dest_cpu);
5332 double_rq_lock(rq_src, rq_dest);
5333 /* Already moved. */
5334 if (task_cpu(p) != src_cpu)
5335 goto done;
5336 /* Affinity changed (again). */
5337 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5338 goto fail;
5341 * If we're not on a rq, the next wake-up will ensure we're
5342 * placed properly.
5344 if (p->se.on_rq) {
5345 deactivate_task(rq_src, p, 0);
5346 set_task_cpu(p, dest_cpu);
5347 activate_task(rq_dest, p, 0);
5348 check_preempt_curr(rq_dest, p, 0);
5350 done:
5351 ret = 1;
5352 fail:
5353 double_rq_unlock(rq_src, rq_dest);
5354 return ret;
5358 * migration_cpu_stop - this will be executed by a highprio stopper thread
5359 * and performs thread migration by bumping thread off CPU then
5360 * 'pushing' onto another runqueue.
5362 static int migration_cpu_stop(void *data)
5364 struct migration_arg *arg = data;
5367 * The original target cpu might have gone down and we might
5368 * be on another cpu but it doesn't matter.
5370 local_irq_disable();
5371 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5372 local_irq_enable();
5373 return 0;
5376 #ifdef CONFIG_HOTPLUG_CPU
5378 * Figure out where task on dead CPU should go, use force if necessary.
5380 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5382 struct rq *rq = cpu_rq(dead_cpu);
5383 int needs_cpu, uninitialized_var(dest_cpu);
5384 unsigned long flags;
5386 local_irq_save(flags);
5388 raw_spin_lock(&rq->lock);
5389 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5390 if (needs_cpu)
5391 dest_cpu = select_fallback_rq(dead_cpu, p);
5392 raw_spin_unlock(&rq->lock);
5394 * It can only fail if we race with set_cpus_allowed(),
5395 * in the racer should migrate the task anyway.
5397 if (needs_cpu)
5398 __migrate_task(p, dead_cpu, dest_cpu);
5399 local_irq_restore(flags);
5403 * While a dead CPU has no uninterruptible tasks queued at this point,
5404 * it might still have a nonzero ->nr_uninterruptible counter, because
5405 * for performance reasons the counter is not stricly tracking tasks to
5406 * their home CPUs. So we just add the counter to another CPU's counter,
5407 * to keep the global sum constant after CPU-down:
5409 static void migrate_nr_uninterruptible(struct rq *rq_src)
5411 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5412 unsigned long flags;
5414 local_irq_save(flags);
5415 double_rq_lock(rq_src, rq_dest);
5416 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5417 rq_src->nr_uninterruptible = 0;
5418 double_rq_unlock(rq_src, rq_dest);
5419 local_irq_restore(flags);
5422 /* Run through task list and migrate tasks from the dead cpu. */
5423 static void migrate_live_tasks(int src_cpu)
5425 struct task_struct *p, *t;
5427 read_lock(&tasklist_lock);
5429 do_each_thread(t, p) {
5430 if (p == current)
5431 continue;
5433 if (task_cpu(p) == src_cpu)
5434 move_task_off_dead_cpu(src_cpu, p);
5435 } while_each_thread(t, p);
5437 read_unlock(&tasklist_lock);
5441 * Schedules idle task to be the next runnable task on current CPU.
5442 * It does so by boosting its priority to highest possible.
5443 * Used by CPU offline code.
5445 void sched_idle_next(void)
5447 int this_cpu = smp_processor_id();
5448 struct rq *rq = cpu_rq(this_cpu);
5449 struct task_struct *p = rq->idle;
5450 unsigned long flags;
5452 /* cpu has to be offline */
5453 BUG_ON(cpu_online(this_cpu));
5456 * Strictly not necessary since rest of the CPUs are stopped by now
5457 * and interrupts disabled on the current cpu.
5459 raw_spin_lock_irqsave(&rq->lock, flags);
5461 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5463 activate_task(rq, p, 0);
5465 raw_spin_unlock_irqrestore(&rq->lock, flags);
5469 * Ensures that the idle task is using init_mm right before its cpu goes
5470 * offline.
5472 void idle_task_exit(void)
5474 struct mm_struct *mm = current->active_mm;
5476 BUG_ON(cpu_online(smp_processor_id()));
5478 if (mm != &init_mm)
5479 switch_mm(mm, &init_mm, current);
5480 mmdrop(mm);
5483 /* called under rq->lock with disabled interrupts */
5484 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5486 struct rq *rq = cpu_rq(dead_cpu);
5488 /* Must be exiting, otherwise would be on tasklist. */
5489 BUG_ON(!p->exit_state);
5491 /* Cannot have done final schedule yet: would have vanished. */
5492 BUG_ON(p->state == TASK_DEAD);
5494 get_task_struct(p);
5497 * Drop lock around migration; if someone else moves it,
5498 * that's OK. No task can be added to this CPU, so iteration is
5499 * fine.
5501 raw_spin_unlock_irq(&rq->lock);
5502 move_task_off_dead_cpu(dead_cpu, p);
5503 raw_spin_lock_irq(&rq->lock);
5505 put_task_struct(p);
5508 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5509 static void migrate_dead_tasks(unsigned int dead_cpu)
5511 struct rq *rq = cpu_rq(dead_cpu);
5512 struct task_struct *next;
5514 for ( ; ; ) {
5515 if (!rq->nr_running)
5516 break;
5517 next = pick_next_task(rq);
5518 if (!next)
5519 break;
5520 next->sched_class->put_prev_task(rq, next);
5521 migrate_dead(dead_cpu, next);
5527 * remove the tasks which were accounted by rq from calc_load_tasks.
5529 static void calc_global_load_remove(struct rq *rq)
5531 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5532 rq->calc_load_active = 0;
5534 #endif /* CONFIG_HOTPLUG_CPU */
5536 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5538 static struct ctl_table sd_ctl_dir[] = {
5540 .procname = "sched_domain",
5541 .mode = 0555,
5546 static struct ctl_table sd_ctl_root[] = {
5548 .procname = "kernel",
5549 .mode = 0555,
5550 .child = sd_ctl_dir,
5555 static struct ctl_table *sd_alloc_ctl_entry(int n)
5557 struct ctl_table *entry =
5558 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5560 return entry;
5563 static void sd_free_ctl_entry(struct ctl_table **tablep)
5565 struct ctl_table *entry;
5568 * In the intermediate directories, both the child directory and
5569 * procname are dynamically allocated and could fail but the mode
5570 * will always be set. In the lowest directory the names are
5571 * static strings and all have proc handlers.
5573 for (entry = *tablep; entry->mode; entry++) {
5574 if (entry->child)
5575 sd_free_ctl_entry(&entry->child);
5576 if (entry->proc_handler == NULL)
5577 kfree(entry->procname);
5580 kfree(*tablep);
5581 *tablep = NULL;
5584 static void
5585 set_table_entry(struct ctl_table *entry,
5586 const char *procname, void *data, int maxlen,
5587 mode_t mode, proc_handler *proc_handler)
5589 entry->procname = procname;
5590 entry->data = data;
5591 entry->maxlen = maxlen;
5592 entry->mode = mode;
5593 entry->proc_handler = proc_handler;
5596 static struct ctl_table *
5597 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5599 struct ctl_table *table = sd_alloc_ctl_entry(13);
5601 if (table == NULL)
5602 return NULL;
5604 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5605 sizeof(long), 0644, proc_doulongvec_minmax);
5606 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5607 sizeof(long), 0644, proc_doulongvec_minmax);
5608 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5609 sizeof(int), 0644, proc_dointvec_minmax);
5610 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5611 sizeof(int), 0644, proc_dointvec_minmax);
5612 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5613 sizeof(int), 0644, proc_dointvec_minmax);
5614 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5615 sizeof(int), 0644, proc_dointvec_minmax);
5616 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5617 sizeof(int), 0644, proc_dointvec_minmax);
5618 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5619 sizeof(int), 0644, proc_dointvec_minmax);
5620 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5621 sizeof(int), 0644, proc_dointvec_minmax);
5622 set_table_entry(&table[9], "cache_nice_tries",
5623 &sd->cache_nice_tries,
5624 sizeof(int), 0644, proc_dointvec_minmax);
5625 set_table_entry(&table[10], "flags", &sd->flags,
5626 sizeof(int), 0644, proc_dointvec_minmax);
5627 set_table_entry(&table[11], "name", sd->name,
5628 CORENAME_MAX_SIZE, 0444, proc_dostring);
5629 /* &table[12] is terminator */
5631 return table;
5634 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5636 struct ctl_table *entry, *table;
5637 struct sched_domain *sd;
5638 int domain_num = 0, i;
5639 char buf[32];
5641 for_each_domain(cpu, sd)
5642 domain_num++;
5643 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5644 if (table == NULL)
5645 return NULL;
5647 i = 0;
5648 for_each_domain(cpu, sd) {
5649 snprintf(buf, 32, "domain%d", i);
5650 entry->procname = kstrdup(buf, GFP_KERNEL);
5651 entry->mode = 0555;
5652 entry->child = sd_alloc_ctl_domain_table(sd);
5653 entry++;
5654 i++;
5656 return table;
5659 static struct ctl_table_header *sd_sysctl_header;
5660 static void register_sched_domain_sysctl(void)
5662 int i, cpu_num = num_possible_cpus();
5663 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5664 char buf[32];
5666 WARN_ON(sd_ctl_dir[0].child);
5667 sd_ctl_dir[0].child = entry;
5669 if (entry == NULL)
5670 return;
5672 for_each_possible_cpu(i) {
5673 snprintf(buf, 32, "cpu%d", i);
5674 entry->procname = kstrdup(buf, GFP_KERNEL);
5675 entry->mode = 0555;
5676 entry->child = sd_alloc_ctl_cpu_table(i);
5677 entry++;
5680 WARN_ON(sd_sysctl_header);
5681 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5684 /* may be called multiple times per register */
5685 static void unregister_sched_domain_sysctl(void)
5687 if (sd_sysctl_header)
5688 unregister_sysctl_table(sd_sysctl_header);
5689 sd_sysctl_header = NULL;
5690 if (sd_ctl_dir[0].child)
5691 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5693 #else
5694 static void register_sched_domain_sysctl(void)
5697 static void unregister_sched_domain_sysctl(void)
5700 #endif
5702 static void set_rq_online(struct rq *rq)
5704 if (!rq->online) {
5705 const struct sched_class *class;
5707 cpumask_set_cpu(rq->cpu, rq->rd->online);
5708 rq->online = 1;
5710 for_each_class(class) {
5711 if (class->rq_online)
5712 class->rq_online(rq);
5717 static void set_rq_offline(struct rq *rq)
5719 if (rq->online) {
5720 const struct sched_class *class;
5722 for_each_class(class) {
5723 if (class->rq_offline)
5724 class->rq_offline(rq);
5727 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5728 rq->online = 0;
5733 * migration_call - callback that gets triggered when a CPU is added.
5734 * Here we can start up the necessary migration thread for the new CPU.
5736 static int __cpuinit
5737 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5739 int cpu = (long)hcpu;
5740 unsigned long flags;
5741 struct rq *rq = cpu_rq(cpu);
5743 switch (action) {
5745 case CPU_UP_PREPARE:
5746 case CPU_UP_PREPARE_FROZEN:
5747 rq->calc_load_update = calc_load_update;
5748 break;
5750 case CPU_ONLINE:
5751 case CPU_ONLINE_FROZEN:
5752 /* Update our root-domain */
5753 raw_spin_lock_irqsave(&rq->lock, flags);
5754 if (rq->rd) {
5755 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5757 set_rq_online(rq);
5759 raw_spin_unlock_irqrestore(&rq->lock, flags);
5760 break;
5762 #ifdef CONFIG_HOTPLUG_CPU
5763 case CPU_DEAD:
5764 case CPU_DEAD_FROZEN:
5765 migrate_live_tasks(cpu);
5766 /* Idle task back to normal (off runqueue, low prio) */
5767 raw_spin_lock_irq(&rq->lock);
5768 deactivate_task(rq, rq->idle, 0);
5769 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5770 rq->idle->sched_class = &idle_sched_class;
5771 migrate_dead_tasks(cpu);
5772 raw_spin_unlock_irq(&rq->lock);
5773 migrate_nr_uninterruptible(rq);
5774 BUG_ON(rq->nr_running != 0);
5775 calc_global_load_remove(rq);
5776 break;
5778 case CPU_DYING:
5779 case CPU_DYING_FROZEN:
5780 /* Update our root-domain */
5781 raw_spin_lock_irqsave(&rq->lock, flags);
5782 if (rq->rd) {
5783 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5784 set_rq_offline(rq);
5786 raw_spin_unlock_irqrestore(&rq->lock, flags);
5787 break;
5788 #endif
5790 return NOTIFY_OK;
5794 * Register at high priority so that task migration (migrate_all_tasks)
5795 * happens before everything else. This has to be lower priority than
5796 * the notifier in the perf_event subsystem, though.
5798 static struct notifier_block __cpuinitdata migration_notifier = {
5799 .notifier_call = migration_call,
5800 .priority = 10
5803 static int __init migration_init(void)
5805 void *cpu = (void *)(long)smp_processor_id();
5806 int err;
5808 /* Start one for the boot CPU: */
5809 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5810 BUG_ON(err == NOTIFY_BAD);
5811 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5812 register_cpu_notifier(&migration_notifier);
5814 return 0;
5816 early_initcall(migration_init);
5817 #endif
5819 #ifdef CONFIG_SMP
5821 #ifdef CONFIG_SCHED_DEBUG
5823 static __read_mostly int sched_domain_debug_enabled;
5825 static int __init sched_domain_debug_setup(char *str)
5827 sched_domain_debug_enabled = 1;
5829 return 0;
5831 early_param("sched_debug", sched_domain_debug_setup);
5833 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5834 struct cpumask *groupmask)
5836 struct sched_group *group = sd->groups;
5837 char str[256];
5839 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5840 cpumask_clear(groupmask);
5842 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5844 if (!(sd->flags & SD_LOAD_BALANCE)) {
5845 printk("does not load-balance\n");
5846 if (sd->parent)
5847 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5848 " has parent");
5849 return -1;
5852 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5854 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5855 printk(KERN_ERR "ERROR: domain->span does not contain "
5856 "CPU%d\n", cpu);
5858 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5859 printk(KERN_ERR "ERROR: domain->groups does not contain"
5860 " CPU%d\n", cpu);
5863 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5864 do {
5865 if (!group) {
5866 printk("\n");
5867 printk(KERN_ERR "ERROR: group is NULL\n");
5868 break;
5871 if (!group->cpu_power) {
5872 printk(KERN_CONT "\n");
5873 printk(KERN_ERR "ERROR: domain->cpu_power not "
5874 "set\n");
5875 break;
5878 if (!cpumask_weight(sched_group_cpus(group))) {
5879 printk(KERN_CONT "\n");
5880 printk(KERN_ERR "ERROR: empty group\n");
5881 break;
5884 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5885 printk(KERN_CONT "\n");
5886 printk(KERN_ERR "ERROR: repeated CPUs\n");
5887 break;
5890 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5892 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5894 printk(KERN_CONT " %s", str);
5895 if (group->cpu_power != SCHED_LOAD_SCALE) {
5896 printk(KERN_CONT " (cpu_power = %d)",
5897 group->cpu_power);
5900 group = group->next;
5901 } while (group != sd->groups);
5902 printk(KERN_CONT "\n");
5904 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5905 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5907 if (sd->parent &&
5908 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5909 printk(KERN_ERR "ERROR: parent span is not a superset "
5910 "of domain->span\n");
5911 return 0;
5914 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5916 cpumask_var_t groupmask;
5917 int level = 0;
5919 if (!sched_domain_debug_enabled)
5920 return;
5922 if (!sd) {
5923 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5924 return;
5927 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5929 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
5930 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
5931 return;
5934 for (;;) {
5935 if (sched_domain_debug_one(sd, cpu, level, groupmask))
5936 break;
5937 level++;
5938 sd = sd->parent;
5939 if (!sd)
5940 break;
5942 free_cpumask_var(groupmask);
5944 #else /* !CONFIG_SCHED_DEBUG */
5945 # define sched_domain_debug(sd, cpu) do { } while (0)
5946 #endif /* CONFIG_SCHED_DEBUG */
5948 static int sd_degenerate(struct sched_domain *sd)
5950 if (cpumask_weight(sched_domain_span(sd)) == 1)
5951 return 1;
5953 /* Following flags need at least 2 groups */
5954 if (sd->flags & (SD_LOAD_BALANCE |
5955 SD_BALANCE_NEWIDLE |
5956 SD_BALANCE_FORK |
5957 SD_BALANCE_EXEC |
5958 SD_SHARE_CPUPOWER |
5959 SD_SHARE_PKG_RESOURCES)) {
5960 if (sd->groups != sd->groups->next)
5961 return 0;
5964 /* Following flags don't use groups */
5965 if (sd->flags & (SD_WAKE_AFFINE))
5966 return 0;
5968 return 1;
5971 static int
5972 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5974 unsigned long cflags = sd->flags, pflags = parent->flags;
5976 if (sd_degenerate(parent))
5977 return 1;
5979 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5980 return 0;
5982 /* Flags needing groups don't count if only 1 group in parent */
5983 if (parent->groups == parent->groups->next) {
5984 pflags &= ~(SD_LOAD_BALANCE |
5985 SD_BALANCE_NEWIDLE |
5986 SD_BALANCE_FORK |
5987 SD_BALANCE_EXEC |
5988 SD_SHARE_CPUPOWER |
5989 SD_SHARE_PKG_RESOURCES);
5990 if (nr_node_ids == 1)
5991 pflags &= ~SD_SERIALIZE;
5993 if (~cflags & pflags)
5994 return 0;
5996 return 1;
5999 static void free_rootdomain(struct root_domain *rd)
6001 synchronize_sched();
6003 cpupri_cleanup(&rd->cpupri);
6005 free_cpumask_var(rd->rto_mask);
6006 free_cpumask_var(rd->online);
6007 free_cpumask_var(rd->span);
6008 kfree(rd);
6011 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6013 struct root_domain *old_rd = NULL;
6014 unsigned long flags;
6016 raw_spin_lock_irqsave(&rq->lock, flags);
6018 if (rq->rd) {
6019 old_rd = rq->rd;
6021 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6022 set_rq_offline(rq);
6024 cpumask_clear_cpu(rq->cpu, old_rd->span);
6027 * If we dont want to free the old_rt yet then
6028 * set old_rd to NULL to skip the freeing later
6029 * in this function:
6031 if (!atomic_dec_and_test(&old_rd->refcount))
6032 old_rd = NULL;
6035 atomic_inc(&rd->refcount);
6036 rq->rd = rd;
6038 cpumask_set_cpu(rq->cpu, rd->span);
6039 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6040 set_rq_online(rq);
6042 raw_spin_unlock_irqrestore(&rq->lock, flags);
6044 if (old_rd)
6045 free_rootdomain(old_rd);
6048 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6050 gfp_t gfp = GFP_KERNEL;
6052 memset(rd, 0, sizeof(*rd));
6054 if (bootmem)
6055 gfp = GFP_NOWAIT;
6057 if (!alloc_cpumask_var(&rd->span, gfp))
6058 goto out;
6059 if (!alloc_cpumask_var(&rd->online, gfp))
6060 goto free_span;
6061 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6062 goto free_online;
6064 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6065 goto free_rto_mask;
6066 return 0;
6068 free_rto_mask:
6069 free_cpumask_var(rd->rto_mask);
6070 free_online:
6071 free_cpumask_var(rd->online);
6072 free_span:
6073 free_cpumask_var(rd->span);
6074 out:
6075 return -ENOMEM;
6078 static void init_defrootdomain(void)
6080 init_rootdomain(&def_root_domain, true);
6082 atomic_set(&def_root_domain.refcount, 1);
6085 static struct root_domain *alloc_rootdomain(void)
6087 struct root_domain *rd;
6089 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6090 if (!rd)
6091 return NULL;
6093 if (init_rootdomain(rd, false) != 0) {
6094 kfree(rd);
6095 return NULL;
6098 return rd;
6102 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6103 * hold the hotplug lock.
6105 static void
6106 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6108 struct rq *rq = cpu_rq(cpu);
6109 struct sched_domain *tmp;
6111 for (tmp = sd; tmp; tmp = tmp->parent)
6112 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6114 /* Remove the sched domains which do not contribute to scheduling. */
6115 for (tmp = sd; tmp; ) {
6116 struct sched_domain *parent = tmp->parent;
6117 if (!parent)
6118 break;
6120 if (sd_parent_degenerate(tmp, parent)) {
6121 tmp->parent = parent->parent;
6122 if (parent->parent)
6123 parent->parent->child = tmp;
6124 } else
6125 tmp = tmp->parent;
6128 if (sd && sd_degenerate(sd)) {
6129 sd = sd->parent;
6130 if (sd)
6131 sd->child = NULL;
6134 sched_domain_debug(sd, cpu);
6136 rq_attach_root(rq, rd);
6137 rcu_assign_pointer(rq->sd, sd);
6140 /* cpus with isolated domains */
6141 static cpumask_var_t cpu_isolated_map;
6143 /* Setup the mask of cpus configured for isolated domains */
6144 static int __init isolated_cpu_setup(char *str)
6146 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6147 cpulist_parse(str, cpu_isolated_map);
6148 return 1;
6151 __setup("isolcpus=", isolated_cpu_setup);
6154 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6155 * to a function which identifies what group(along with sched group) a CPU
6156 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6157 * (due to the fact that we keep track of groups covered with a struct cpumask).
6159 * init_sched_build_groups will build a circular linked list of the groups
6160 * covered by the given span, and will set each group's ->cpumask correctly,
6161 * and ->cpu_power to 0.
6163 static void
6164 init_sched_build_groups(const struct cpumask *span,
6165 const struct cpumask *cpu_map,
6166 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6167 struct sched_group **sg,
6168 struct cpumask *tmpmask),
6169 struct cpumask *covered, struct cpumask *tmpmask)
6171 struct sched_group *first = NULL, *last = NULL;
6172 int i;
6174 cpumask_clear(covered);
6176 for_each_cpu(i, span) {
6177 struct sched_group *sg;
6178 int group = group_fn(i, cpu_map, &sg, tmpmask);
6179 int j;
6181 if (cpumask_test_cpu(i, covered))
6182 continue;
6184 cpumask_clear(sched_group_cpus(sg));
6185 sg->cpu_power = 0;
6187 for_each_cpu(j, span) {
6188 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6189 continue;
6191 cpumask_set_cpu(j, covered);
6192 cpumask_set_cpu(j, sched_group_cpus(sg));
6194 if (!first)
6195 first = sg;
6196 if (last)
6197 last->next = sg;
6198 last = sg;
6200 last->next = first;
6203 #define SD_NODES_PER_DOMAIN 16
6205 #ifdef CONFIG_NUMA
6208 * find_next_best_node - find the next node to include in a sched_domain
6209 * @node: node whose sched_domain we're building
6210 * @used_nodes: nodes already in the sched_domain
6212 * Find the next node to include in a given scheduling domain. Simply
6213 * finds the closest node not already in the @used_nodes map.
6215 * Should use nodemask_t.
6217 static int find_next_best_node(int node, nodemask_t *used_nodes)
6219 int i, n, val, min_val, best_node = 0;
6221 min_val = INT_MAX;
6223 for (i = 0; i < nr_node_ids; i++) {
6224 /* Start at @node */
6225 n = (node + i) % nr_node_ids;
6227 if (!nr_cpus_node(n))
6228 continue;
6230 /* Skip already used nodes */
6231 if (node_isset(n, *used_nodes))
6232 continue;
6234 /* Simple min distance search */
6235 val = node_distance(node, n);
6237 if (val < min_val) {
6238 min_val = val;
6239 best_node = n;
6243 node_set(best_node, *used_nodes);
6244 return best_node;
6248 * sched_domain_node_span - get a cpumask for a node's sched_domain
6249 * @node: node whose cpumask we're constructing
6250 * @span: resulting cpumask
6252 * Given a node, construct a good cpumask for its sched_domain to span. It
6253 * should be one that prevents unnecessary balancing, but also spreads tasks
6254 * out optimally.
6256 static void sched_domain_node_span(int node, struct cpumask *span)
6258 nodemask_t used_nodes;
6259 int i;
6261 cpumask_clear(span);
6262 nodes_clear(used_nodes);
6264 cpumask_or(span, span, cpumask_of_node(node));
6265 node_set(node, used_nodes);
6267 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6268 int next_node = find_next_best_node(node, &used_nodes);
6270 cpumask_or(span, span, cpumask_of_node(next_node));
6273 #endif /* CONFIG_NUMA */
6275 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6278 * The cpus mask in sched_group and sched_domain hangs off the end.
6280 * ( See the the comments in include/linux/sched.h:struct sched_group
6281 * and struct sched_domain. )
6283 struct static_sched_group {
6284 struct sched_group sg;
6285 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6288 struct static_sched_domain {
6289 struct sched_domain sd;
6290 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6293 struct s_data {
6294 #ifdef CONFIG_NUMA
6295 int sd_allnodes;
6296 cpumask_var_t domainspan;
6297 cpumask_var_t covered;
6298 cpumask_var_t notcovered;
6299 #endif
6300 cpumask_var_t nodemask;
6301 cpumask_var_t this_sibling_map;
6302 cpumask_var_t this_core_map;
6303 cpumask_var_t send_covered;
6304 cpumask_var_t tmpmask;
6305 struct sched_group **sched_group_nodes;
6306 struct root_domain *rd;
6309 enum s_alloc {
6310 sa_sched_groups = 0,
6311 sa_rootdomain,
6312 sa_tmpmask,
6313 sa_send_covered,
6314 sa_this_core_map,
6315 sa_this_sibling_map,
6316 sa_nodemask,
6317 sa_sched_group_nodes,
6318 #ifdef CONFIG_NUMA
6319 sa_notcovered,
6320 sa_covered,
6321 sa_domainspan,
6322 #endif
6323 sa_none,
6327 * SMT sched-domains:
6329 #ifdef CONFIG_SCHED_SMT
6330 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6331 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6333 static int
6334 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6335 struct sched_group **sg, struct cpumask *unused)
6337 if (sg)
6338 *sg = &per_cpu(sched_groups, cpu).sg;
6339 return cpu;
6341 #endif /* CONFIG_SCHED_SMT */
6344 * multi-core sched-domains:
6346 #ifdef CONFIG_SCHED_MC
6347 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6348 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6349 #endif /* CONFIG_SCHED_MC */
6351 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6352 static int
6353 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6354 struct sched_group **sg, struct cpumask *mask)
6356 int group;
6358 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6359 group = cpumask_first(mask);
6360 if (sg)
6361 *sg = &per_cpu(sched_group_core, group).sg;
6362 return group;
6364 #elif defined(CONFIG_SCHED_MC)
6365 static int
6366 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6367 struct sched_group **sg, struct cpumask *unused)
6369 if (sg)
6370 *sg = &per_cpu(sched_group_core, cpu).sg;
6371 return cpu;
6373 #endif
6375 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6376 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6378 static int
6379 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6380 struct sched_group **sg, struct cpumask *mask)
6382 int group;
6383 #ifdef CONFIG_SCHED_MC
6384 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6385 group = cpumask_first(mask);
6386 #elif defined(CONFIG_SCHED_SMT)
6387 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6388 group = cpumask_first(mask);
6389 #else
6390 group = cpu;
6391 #endif
6392 if (sg)
6393 *sg = &per_cpu(sched_group_phys, group).sg;
6394 return group;
6397 #ifdef CONFIG_NUMA
6399 * The init_sched_build_groups can't handle what we want to do with node
6400 * groups, so roll our own. Now each node has its own list of groups which
6401 * gets dynamically allocated.
6403 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6404 static struct sched_group ***sched_group_nodes_bycpu;
6406 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6407 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6409 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6410 struct sched_group **sg,
6411 struct cpumask *nodemask)
6413 int group;
6415 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6416 group = cpumask_first(nodemask);
6418 if (sg)
6419 *sg = &per_cpu(sched_group_allnodes, group).sg;
6420 return group;
6423 static void init_numa_sched_groups_power(struct sched_group *group_head)
6425 struct sched_group *sg = group_head;
6426 int j;
6428 if (!sg)
6429 return;
6430 do {
6431 for_each_cpu(j, sched_group_cpus(sg)) {
6432 struct sched_domain *sd;
6434 sd = &per_cpu(phys_domains, j).sd;
6435 if (j != group_first_cpu(sd->groups)) {
6437 * Only add "power" once for each
6438 * physical package.
6440 continue;
6443 sg->cpu_power += sd->groups->cpu_power;
6445 sg = sg->next;
6446 } while (sg != group_head);
6449 static int build_numa_sched_groups(struct s_data *d,
6450 const struct cpumask *cpu_map, int num)
6452 struct sched_domain *sd;
6453 struct sched_group *sg, *prev;
6454 int n, j;
6456 cpumask_clear(d->covered);
6457 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6458 if (cpumask_empty(d->nodemask)) {
6459 d->sched_group_nodes[num] = NULL;
6460 goto out;
6463 sched_domain_node_span(num, d->domainspan);
6464 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6466 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6467 GFP_KERNEL, num);
6468 if (!sg) {
6469 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6470 num);
6471 return -ENOMEM;
6473 d->sched_group_nodes[num] = sg;
6475 for_each_cpu(j, d->nodemask) {
6476 sd = &per_cpu(node_domains, j).sd;
6477 sd->groups = sg;
6480 sg->cpu_power = 0;
6481 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6482 sg->next = sg;
6483 cpumask_or(d->covered, d->covered, d->nodemask);
6485 prev = sg;
6486 for (j = 0; j < nr_node_ids; j++) {
6487 n = (num + j) % nr_node_ids;
6488 cpumask_complement(d->notcovered, d->covered);
6489 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6490 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6491 if (cpumask_empty(d->tmpmask))
6492 break;
6493 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6494 if (cpumask_empty(d->tmpmask))
6495 continue;
6496 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6497 GFP_KERNEL, num);
6498 if (!sg) {
6499 printk(KERN_WARNING
6500 "Can not alloc domain group for node %d\n", j);
6501 return -ENOMEM;
6503 sg->cpu_power = 0;
6504 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6505 sg->next = prev->next;
6506 cpumask_or(d->covered, d->covered, d->tmpmask);
6507 prev->next = sg;
6508 prev = sg;
6510 out:
6511 return 0;
6513 #endif /* CONFIG_NUMA */
6515 #ifdef CONFIG_NUMA
6516 /* Free memory allocated for various sched_group structures */
6517 static void free_sched_groups(const struct cpumask *cpu_map,
6518 struct cpumask *nodemask)
6520 int cpu, i;
6522 for_each_cpu(cpu, cpu_map) {
6523 struct sched_group **sched_group_nodes
6524 = sched_group_nodes_bycpu[cpu];
6526 if (!sched_group_nodes)
6527 continue;
6529 for (i = 0; i < nr_node_ids; i++) {
6530 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6532 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6533 if (cpumask_empty(nodemask))
6534 continue;
6536 if (sg == NULL)
6537 continue;
6538 sg = sg->next;
6539 next_sg:
6540 oldsg = sg;
6541 sg = sg->next;
6542 kfree(oldsg);
6543 if (oldsg != sched_group_nodes[i])
6544 goto next_sg;
6546 kfree(sched_group_nodes);
6547 sched_group_nodes_bycpu[cpu] = NULL;
6550 #else /* !CONFIG_NUMA */
6551 static void free_sched_groups(const struct cpumask *cpu_map,
6552 struct cpumask *nodemask)
6555 #endif /* CONFIG_NUMA */
6558 * Initialize sched groups cpu_power.
6560 * cpu_power indicates the capacity of sched group, which is used while
6561 * distributing the load between different sched groups in a sched domain.
6562 * Typically cpu_power for all the groups in a sched domain will be same unless
6563 * there are asymmetries in the topology. If there are asymmetries, group
6564 * having more cpu_power will pickup more load compared to the group having
6565 * less cpu_power.
6567 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6569 struct sched_domain *child;
6570 struct sched_group *group;
6571 long power;
6572 int weight;
6574 WARN_ON(!sd || !sd->groups);
6576 if (cpu != group_first_cpu(sd->groups))
6577 return;
6579 child = sd->child;
6581 sd->groups->cpu_power = 0;
6583 if (!child) {
6584 power = SCHED_LOAD_SCALE;
6585 weight = cpumask_weight(sched_domain_span(sd));
6587 * SMT siblings share the power of a single core.
6588 * Usually multiple threads get a better yield out of
6589 * that one core than a single thread would have,
6590 * reflect that in sd->smt_gain.
6592 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6593 power *= sd->smt_gain;
6594 power /= weight;
6595 power >>= SCHED_LOAD_SHIFT;
6597 sd->groups->cpu_power += power;
6598 return;
6602 * Add cpu_power of each child group to this groups cpu_power.
6604 group = child->groups;
6605 do {
6606 sd->groups->cpu_power += group->cpu_power;
6607 group = group->next;
6608 } while (group != child->groups);
6612 * Initializers for schedule domains
6613 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6616 #ifdef CONFIG_SCHED_DEBUG
6617 # define SD_INIT_NAME(sd, type) sd->name = #type
6618 #else
6619 # define SD_INIT_NAME(sd, type) do { } while (0)
6620 #endif
6622 #define SD_INIT(sd, type) sd_init_##type(sd)
6624 #define SD_INIT_FUNC(type) \
6625 static noinline void sd_init_##type(struct sched_domain *sd) \
6627 memset(sd, 0, sizeof(*sd)); \
6628 *sd = SD_##type##_INIT; \
6629 sd->level = SD_LV_##type; \
6630 SD_INIT_NAME(sd, type); \
6633 SD_INIT_FUNC(CPU)
6634 #ifdef CONFIG_NUMA
6635 SD_INIT_FUNC(ALLNODES)
6636 SD_INIT_FUNC(NODE)
6637 #endif
6638 #ifdef CONFIG_SCHED_SMT
6639 SD_INIT_FUNC(SIBLING)
6640 #endif
6641 #ifdef CONFIG_SCHED_MC
6642 SD_INIT_FUNC(MC)
6643 #endif
6645 static int default_relax_domain_level = -1;
6647 static int __init setup_relax_domain_level(char *str)
6649 unsigned long val;
6651 val = simple_strtoul(str, NULL, 0);
6652 if (val < SD_LV_MAX)
6653 default_relax_domain_level = val;
6655 return 1;
6657 __setup("relax_domain_level=", setup_relax_domain_level);
6659 static void set_domain_attribute(struct sched_domain *sd,
6660 struct sched_domain_attr *attr)
6662 int request;
6664 if (!attr || attr->relax_domain_level < 0) {
6665 if (default_relax_domain_level < 0)
6666 return;
6667 else
6668 request = default_relax_domain_level;
6669 } else
6670 request = attr->relax_domain_level;
6671 if (request < sd->level) {
6672 /* turn off idle balance on this domain */
6673 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6674 } else {
6675 /* turn on idle balance on this domain */
6676 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6680 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6681 const struct cpumask *cpu_map)
6683 switch (what) {
6684 case sa_sched_groups:
6685 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6686 d->sched_group_nodes = NULL;
6687 case sa_rootdomain:
6688 free_rootdomain(d->rd); /* fall through */
6689 case sa_tmpmask:
6690 free_cpumask_var(d->tmpmask); /* fall through */
6691 case sa_send_covered:
6692 free_cpumask_var(d->send_covered); /* fall through */
6693 case sa_this_core_map:
6694 free_cpumask_var(d->this_core_map); /* fall through */
6695 case sa_this_sibling_map:
6696 free_cpumask_var(d->this_sibling_map); /* fall through */
6697 case sa_nodemask:
6698 free_cpumask_var(d->nodemask); /* fall through */
6699 case sa_sched_group_nodes:
6700 #ifdef CONFIG_NUMA
6701 kfree(d->sched_group_nodes); /* fall through */
6702 case sa_notcovered:
6703 free_cpumask_var(d->notcovered); /* fall through */
6704 case sa_covered:
6705 free_cpumask_var(d->covered); /* fall through */
6706 case sa_domainspan:
6707 free_cpumask_var(d->domainspan); /* fall through */
6708 #endif
6709 case sa_none:
6710 break;
6714 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6715 const struct cpumask *cpu_map)
6717 #ifdef CONFIG_NUMA
6718 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6719 return sa_none;
6720 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6721 return sa_domainspan;
6722 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6723 return sa_covered;
6724 /* Allocate the per-node list of sched groups */
6725 d->sched_group_nodes = kcalloc(nr_node_ids,
6726 sizeof(struct sched_group *), GFP_KERNEL);
6727 if (!d->sched_group_nodes) {
6728 printk(KERN_WARNING "Can not alloc sched group node list\n");
6729 return sa_notcovered;
6731 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6732 #endif
6733 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6734 return sa_sched_group_nodes;
6735 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6736 return sa_nodemask;
6737 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6738 return sa_this_sibling_map;
6739 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6740 return sa_this_core_map;
6741 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6742 return sa_send_covered;
6743 d->rd = alloc_rootdomain();
6744 if (!d->rd) {
6745 printk(KERN_WARNING "Cannot alloc root domain\n");
6746 return sa_tmpmask;
6748 return sa_rootdomain;
6751 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6752 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6754 struct sched_domain *sd = NULL;
6755 #ifdef CONFIG_NUMA
6756 struct sched_domain *parent;
6758 d->sd_allnodes = 0;
6759 if (cpumask_weight(cpu_map) >
6760 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6761 sd = &per_cpu(allnodes_domains, i).sd;
6762 SD_INIT(sd, ALLNODES);
6763 set_domain_attribute(sd, attr);
6764 cpumask_copy(sched_domain_span(sd), cpu_map);
6765 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6766 d->sd_allnodes = 1;
6768 parent = sd;
6770 sd = &per_cpu(node_domains, i).sd;
6771 SD_INIT(sd, NODE);
6772 set_domain_attribute(sd, attr);
6773 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6774 sd->parent = parent;
6775 if (parent)
6776 parent->child = sd;
6777 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6778 #endif
6779 return sd;
6782 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6783 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6784 struct sched_domain *parent, int i)
6786 struct sched_domain *sd;
6787 sd = &per_cpu(phys_domains, i).sd;
6788 SD_INIT(sd, CPU);
6789 set_domain_attribute(sd, attr);
6790 cpumask_copy(sched_domain_span(sd), d->nodemask);
6791 sd->parent = parent;
6792 if (parent)
6793 parent->child = sd;
6794 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6795 return sd;
6798 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6799 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6800 struct sched_domain *parent, int i)
6802 struct sched_domain *sd = parent;
6803 #ifdef CONFIG_SCHED_MC
6804 sd = &per_cpu(core_domains, i).sd;
6805 SD_INIT(sd, MC);
6806 set_domain_attribute(sd, attr);
6807 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6808 sd->parent = parent;
6809 parent->child = sd;
6810 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6811 #endif
6812 return sd;
6815 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6816 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6817 struct sched_domain *parent, int i)
6819 struct sched_domain *sd = parent;
6820 #ifdef CONFIG_SCHED_SMT
6821 sd = &per_cpu(cpu_domains, i).sd;
6822 SD_INIT(sd, SIBLING);
6823 set_domain_attribute(sd, attr);
6824 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6825 sd->parent = parent;
6826 parent->child = sd;
6827 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6828 #endif
6829 return sd;
6832 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6833 const struct cpumask *cpu_map, int cpu)
6835 switch (l) {
6836 #ifdef CONFIG_SCHED_SMT
6837 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6838 cpumask_and(d->this_sibling_map, cpu_map,
6839 topology_thread_cpumask(cpu));
6840 if (cpu == cpumask_first(d->this_sibling_map))
6841 init_sched_build_groups(d->this_sibling_map, cpu_map,
6842 &cpu_to_cpu_group,
6843 d->send_covered, d->tmpmask);
6844 break;
6845 #endif
6846 #ifdef CONFIG_SCHED_MC
6847 case SD_LV_MC: /* set up multi-core groups */
6848 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6849 if (cpu == cpumask_first(d->this_core_map))
6850 init_sched_build_groups(d->this_core_map, cpu_map,
6851 &cpu_to_core_group,
6852 d->send_covered, d->tmpmask);
6853 break;
6854 #endif
6855 case SD_LV_CPU: /* set up physical groups */
6856 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6857 if (!cpumask_empty(d->nodemask))
6858 init_sched_build_groups(d->nodemask, cpu_map,
6859 &cpu_to_phys_group,
6860 d->send_covered, d->tmpmask);
6861 break;
6862 #ifdef CONFIG_NUMA
6863 case SD_LV_ALLNODES:
6864 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6865 d->send_covered, d->tmpmask);
6866 break;
6867 #endif
6868 default:
6869 break;
6874 * Build sched domains for a given set of cpus and attach the sched domains
6875 * to the individual cpus
6877 static int __build_sched_domains(const struct cpumask *cpu_map,
6878 struct sched_domain_attr *attr)
6880 enum s_alloc alloc_state = sa_none;
6881 struct s_data d;
6882 struct sched_domain *sd;
6883 int i;
6884 #ifdef CONFIG_NUMA
6885 d.sd_allnodes = 0;
6886 #endif
6888 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6889 if (alloc_state != sa_rootdomain)
6890 goto error;
6891 alloc_state = sa_sched_groups;
6894 * Set up domains for cpus specified by the cpu_map.
6896 for_each_cpu(i, cpu_map) {
6897 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6898 cpu_map);
6900 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
6901 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
6902 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
6903 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
6906 for_each_cpu(i, cpu_map) {
6907 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
6908 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
6911 /* Set up physical groups */
6912 for (i = 0; i < nr_node_ids; i++)
6913 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
6915 #ifdef CONFIG_NUMA
6916 /* Set up node groups */
6917 if (d.sd_allnodes)
6918 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
6920 for (i = 0; i < nr_node_ids; i++)
6921 if (build_numa_sched_groups(&d, cpu_map, i))
6922 goto error;
6923 #endif
6925 /* Calculate CPU power for physical packages and nodes */
6926 #ifdef CONFIG_SCHED_SMT
6927 for_each_cpu(i, cpu_map) {
6928 sd = &per_cpu(cpu_domains, i).sd;
6929 init_sched_groups_power(i, sd);
6931 #endif
6932 #ifdef CONFIG_SCHED_MC
6933 for_each_cpu(i, cpu_map) {
6934 sd = &per_cpu(core_domains, i).sd;
6935 init_sched_groups_power(i, sd);
6937 #endif
6939 for_each_cpu(i, cpu_map) {
6940 sd = &per_cpu(phys_domains, i).sd;
6941 init_sched_groups_power(i, sd);
6944 #ifdef CONFIG_NUMA
6945 for (i = 0; i < nr_node_ids; i++)
6946 init_numa_sched_groups_power(d.sched_group_nodes[i]);
6948 if (d.sd_allnodes) {
6949 struct sched_group *sg;
6951 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
6952 d.tmpmask);
6953 init_numa_sched_groups_power(sg);
6955 #endif
6957 /* Attach the domains */
6958 for_each_cpu(i, cpu_map) {
6959 #ifdef CONFIG_SCHED_SMT
6960 sd = &per_cpu(cpu_domains, i).sd;
6961 #elif defined(CONFIG_SCHED_MC)
6962 sd = &per_cpu(core_domains, i).sd;
6963 #else
6964 sd = &per_cpu(phys_domains, i).sd;
6965 #endif
6966 cpu_attach_domain(sd, d.rd, i);
6969 d.sched_group_nodes = NULL; /* don't free this we still need it */
6970 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
6971 return 0;
6973 error:
6974 __free_domain_allocs(&d, alloc_state, cpu_map);
6975 return -ENOMEM;
6978 static int build_sched_domains(const struct cpumask *cpu_map)
6980 return __build_sched_domains(cpu_map, NULL);
6983 static cpumask_var_t *doms_cur; /* current sched domains */
6984 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6985 static struct sched_domain_attr *dattr_cur;
6986 /* attribues of custom domains in 'doms_cur' */
6989 * Special case: If a kmalloc of a doms_cur partition (array of
6990 * cpumask) fails, then fallback to a single sched domain,
6991 * as determined by the single cpumask fallback_doms.
6993 static cpumask_var_t fallback_doms;
6996 * arch_update_cpu_topology lets virtualized architectures update the
6997 * cpu core maps. It is supposed to return 1 if the topology changed
6998 * or 0 if it stayed the same.
7000 int __attribute__((weak)) arch_update_cpu_topology(void)
7002 return 0;
7005 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7007 int i;
7008 cpumask_var_t *doms;
7010 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7011 if (!doms)
7012 return NULL;
7013 for (i = 0; i < ndoms; i++) {
7014 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7015 free_sched_domains(doms, i);
7016 return NULL;
7019 return doms;
7022 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7024 unsigned int i;
7025 for (i = 0; i < ndoms; i++)
7026 free_cpumask_var(doms[i]);
7027 kfree(doms);
7031 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7032 * For now this just excludes isolated cpus, but could be used to
7033 * exclude other special cases in the future.
7035 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7037 int err;
7039 arch_update_cpu_topology();
7040 ndoms_cur = 1;
7041 doms_cur = alloc_sched_domains(ndoms_cur);
7042 if (!doms_cur)
7043 doms_cur = &fallback_doms;
7044 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7045 dattr_cur = NULL;
7046 err = build_sched_domains(doms_cur[0]);
7047 register_sched_domain_sysctl();
7049 return err;
7052 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7053 struct cpumask *tmpmask)
7055 free_sched_groups(cpu_map, tmpmask);
7059 * Detach sched domains from a group of cpus specified in cpu_map
7060 * These cpus will now be attached to the NULL domain
7062 static void detach_destroy_domains(const struct cpumask *cpu_map)
7064 /* Save because hotplug lock held. */
7065 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7066 int i;
7068 for_each_cpu(i, cpu_map)
7069 cpu_attach_domain(NULL, &def_root_domain, i);
7070 synchronize_sched();
7071 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7074 /* handle null as "default" */
7075 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7076 struct sched_domain_attr *new, int idx_new)
7078 struct sched_domain_attr tmp;
7080 /* fast path */
7081 if (!new && !cur)
7082 return 1;
7084 tmp = SD_ATTR_INIT;
7085 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7086 new ? (new + idx_new) : &tmp,
7087 sizeof(struct sched_domain_attr));
7091 * Partition sched domains as specified by the 'ndoms_new'
7092 * cpumasks in the array doms_new[] of cpumasks. This compares
7093 * doms_new[] to the current sched domain partitioning, doms_cur[].
7094 * It destroys each deleted domain and builds each new domain.
7096 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7097 * The masks don't intersect (don't overlap.) We should setup one
7098 * sched domain for each mask. CPUs not in any of the cpumasks will
7099 * not be load balanced. If the same cpumask appears both in the
7100 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7101 * it as it is.
7103 * The passed in 'doms_new' should be allocated using
7104 * alloc_sched_domains. This routine takes ownership of it and will
7105 * free_sched_domains it when done with it. If the caller failed the
7106 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7107 * and partition_sched_domains() will fallback to the single partition
7108 * 'fallback_doms', it also forces the domains to be rebuilt.
7110 * If doms_new == NULL it will be replaced with cpu_online_mask.
7111 * ndoms_new == 0 is a special case for destroying existing domains,
7112 * and it will not create the default domain.
7114 * Call with hotplug lock held
7116 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7117 struct sched_domain_attr *dattr_new)
7119 int i, j, n;
7120 int new_topology;
7122 mutex_lock(&sched_domains_mutex);
7124 /* always unregister in case we don't destroy any domains */
7125 unregister_sched_domain_sysctl();
7127 /* Let architecture update cpu core mappings. */
7128 new_topology = arch_update_cpu_topology();
7130 n = doms_new ? ndoms_new : 0;
7132 /* Destroy deleted domains */
7133 for (i = 0; i < ndoms_cur; i++) {
7134 for (j = 0; j < n && !new_topology; j++) {
7135 if (cpumask_equal(doms_cur[i], doms_new[j])
7136 && dattrs_equal(dattr_cur, i, dattr_new, j))
7137 goto match1;
7139 /* no match - a current sched domain not in new doms_new[] */
7140 detach_destroy_domains(doms_cur[i]);
7141 match1:
7145 if (doms_new == NULL) {
7146 ndoms_cur = 0;
7147 doms_new = &fallback_doms;
7148 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7149 WARN_ON_ONCE(dattr_new);
7152 /* Build new domains */
7153 for (i = 0; i < ndoms_new; i++) {
7154 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7155 if (cpumask_equal(doms_new[i], doms_cur[j])
7156 && dattrs_equal(dattr_new, i, dattr_cur, j))
7157 goto match2;
7159 /* no match - add a new doms_new */
7160 __build_sched_domains(doms_new[i],
7161 dattr_new ? dattr_new + i : NULL);
7162 match2:
7166 /* Remember the new sched domains */
7167 if (doms_cur != &fallback_doms)
7168 free_sched_domains(doms_cur, ndoms_cur);
7169 kfree(dattr_cur); /* kfree(NULL) is safe */
7170 doms_cur = doms_new;
7171 dattr_cur = dattr_new;
7172 ndoms_cur = ndoms_new;
7174 register_sched_domain_sysctl();
7176 mutex_unlock(&sched_domains_mutex);
7179 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7180 static void arch_reinit_sched_domains(void)
7182 get_online_cpus();
7184 /* Destroy domains first to force the rebuild */
7185 partition_sched_domains(0, NULL, NULL);
7187 rebuild_sched_domains();
7188 put_online_cpus();
7191 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7193 unsigned int level = 0;
7195 if (sscanf(buf, "%u", &level) != 1)
7196 return -EINVAL;
7199 * level is always be positive so don't check for
7200 * level < POWERSAVINGS_BALANCE_NONE which is 0
7201 * What happens on 0 or 1 byte write,
7202 * need to check for count as well?
7205 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7206 return -EINVAL;
7208 if (smt)
7209 sched_smt_power_savings = level;
7210 else
7211 sched_mc_power_savings = level;
7213 arch_reinit_sched_domains();
7215 return count;
7218 #ifdef CONFIG_SCHED_MC
7219 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7220 struct sysdev_class_attribute *attr,
7221 char *page)
7223 return sprintf(page, "%u\n", sched_mc_power_savings);
7225 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7226 struct sysdev_class_attribute *attr,
7227 const char *buf, size_t count)
7229 return sched_power_savings_store(buf, count, 0);
7231 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7232 sched_mc_power_savings_show,
7233 sched_mc_power_savings_store);
7234 #endif
7236 #ifdef CONFIG_SCHED_SMT
7237 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7238 struct sysdev_class_attribute *attr,
7239 char *page)
7241 return sprintf(page, "%u\n", sched_smt_power_savings);
7243 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7244 struct sysdev_class_attribute *attr,
7245 const char *buf, size_t count)
7247 return sched_power_savings_store(buf, count, 1);
7249 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7250 sched_smt_power_savings_show,
7251 sched_smt_power_savings_store);
7252 #endif
7254 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7256 int err = 0;
7258 #ifdef CONFIG_SCHED_SMT
7259 if (smt_capable())
7260 err = sysfs_create_file(&cls->kset.kobj,
7261 &attr_sched_smt_power_savings.attr);
7262 #endif
7263 #ifdef CONFIG_SCHED_MC
7264 if (!err && mc_capable())
7265 err = sysfs_create_file(&cls->kset.kobj,
7266 &attr_sched_mc_power_savings.attr);
7267 #endif
7268 return err;
7270 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7272 #ifndef CONFIG_CPUSETS
7274 * Add online and remove offline CPUs from the scheduler domains.
7275 * When cpusets are enabled they take over this function.
7277 static int update_sched_domains(struct notifier_block *nfb,
7278 unsigned long action, void *hcpu)
7280 switch (action) {
7281 case CPU_ONLINE:
7282 case CPU_ONLINE_FROZEN:
7283 case CPU_DOWN_PREPARE:
7284 case CPU_DOWN_PREPARE_FROZEN:
7285 case CPU_DOWN_FAILED:
7286 case CPU_DOWN_FAILED_FROZEN:
7287 partition_sched_domains(1, NULL, NULL);
7288 return NOTIFY_OK;
7290 default:
7291 return NOTIFY_DONE;
7294 #endif
7296 static int update_runtime(struct notifier_block *nfb,
7297 unsigned long action, void *hcpu)
7299 int cpu = (int)(long)hcpu;
7301 switch (action) {
7302 case CPU_DOWN_PREPARE:
7303 case CPU_DOWN_PREPARE_FROZEN:
7304 disable_runtime(cpu_rq(cpu));
7305 return NOTIFY_OK;
7307 case CPU_DOWN_FAILED:
7308 case CPU_DOWN_FAILED_FROZEN:
7309 case CPU_ONLINE:
7310 case CPU_ONLINE_FROZEN:
7311 enable_runtime(cpu_rq(cpu));
7312 return NOTIFY_OK;
7314 default:
7315 return NOTIFY_DONE;
7319 void __init sched_init_smp(void)
7321 cpumask_var_t non_isolated_cpus;
7323 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7324 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7326 #if defined(CONFIG_NUMA)
7327 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7328 GFP_KERNEL);
7329 BUG_ON(sched_group_nodes_bycpu == NULL);
7330 #endif
7331 get_online_cpus();
7332 mutex_lock(&sched_domains_mutex);
7333 arch_init_sched_domains(cpu_active_mask);
7334 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7335 if (cpumask_empty(non_isolated_cpus))
7336 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7337 mutex_unlock(&sched_domains_mutex);
7338 put_online_cpus();
7340 #ifndef CONFIG_CPUSETS
7341 /* XXX: Theoretical race here - CPU may be hotplugged now */
7342 hotcpu_notifier(update_sched_domains, 0);
7343 #endif
7345 /* RT runtime code needs to handle some hotplug events */
7346 hotcpu_notifier(update_runtime, 0);
7348 init_hrtick();
7350 /* Move init over to a non-isolated CPU */
7351 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7352 BUG();
7353 sched_init_granularity();
7354 free_cpumask_var(non_isolated_cpus);
7356 init_sched_rt_class();
7358 #else
7359 void __init sched_init_smp(void)
7361 sched_init_granularity();
7363 #endif /* CONFIG_SMP */
7365 const_debug unsigned int sysctl_timer_migration = 1;
7367 int in_sched_functions(unsigned long addr)
7369 return in_lock_functions(addr) ||
7370 (addr >= (unsigned long)__sched_text_start
7371 && addr < (unsigned long)__sched_text_end);
7374 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7376 cfs_rq->tasks_timeline = RB_ROOT;
7377 INIT_LIST_HEAD(&cfs_rq->tasks);
7378 #ifdef CONFIG_FAIR_GROUP_SCHED
7379 cfs_rq->rq = rq;
7380 #endif
7381 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7384 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7386 struct rt_prio_array *array;
7387 int i;
7389 array = &rt_rq->active;
7390 for (i = 0; i < MAX_RT_PRIO; i++) {
7391 INIT_LIST_HEAD(array->queue + i);
7392 __clear_bit(i, array->bitmap);
7394 /* delimiter for bitsearch: */
7395 __set_bit(MAX_RT_PRIO, array->bitmap);
7397 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7398 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7399 #ifdef CONFIG_SMP
7400 rt_rq->highest_prio.next = MAX_RT_PRIO;
7401 #endif
7402 #endif
7403 #ifdef CONFIG_SMP
7404 rt_rq->rt_nr_migratory = 0;
7405 rt_rq->overloaded = 0;
7406 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7407 #endif
7409 rt_rq->rt_time = 0;
7410 rt_rq->rt_throttled = 0;
7411 rt_rq->rt_runtime = 0;
7412 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7414 #ifdef CONFIG_RT_GROUP_SCHED
7415 rt_rq->rt_nr_boosted = 0;
7416 rt_rq->rq = rq;
7417 #endif
7420 #ifdef CONFIG_FAIR_GROUP_SCHED
7421 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7422 struct sched_entity *se, int cpu, int add,
7423 struct sched_entity *parent)
7425 struct rq *rq = cpu_rq(cpu);
7426 tg->cfs_rq[cpu] = cfs_rq;
7427 init_cfs_rq(cfs_rq, rq);
7428 cfs_rq->tg = tg;
7429 if (add)
7430 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7432 tg->se[cpu] = se;
7433 /* se could be NULL for init_task_group */
7434 if (!se)
7435 return;
7437 if (!parent)
7438 se->cfs_rq = &rq->cfs;
7439 else
7440 se->cfs_rq = parent->my_q;
7442 se->my_q = cfs_rq;
7443 se->load.weight = tg->shares;
7444 se->load.inv_weight = 0;
7445 se->parent = parent;
7447 #endif
7449 #ifdef CONFIG_RT_GROUP_SCHED
7450 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7451 struct sched_rt_entity *rt_se, int cpu, int add,
7452 struct sched_rt_entity *parent)
7454 struct rq *rq = cpu_rq(cpu);
7456 tg->rt_rq[cpu] = rt_rq;
7457 init_rt_rq(rt_rq, rq);
7458 rt_rq->tg = tg;
7459 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7460 if (add)
7461 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7463 tg->rt_se[cpu] = rt_se;
7464 if (!rt_se)
7465 return;
7467 if (!parent)
7468 rt_se->rt_rq = &rq->rt;
7469 else
7470 rt_se->rt_rq = parent->my_q;
7472 rt_se->my_q = rt_rq;
7473 rt_se->parent = parent;
7474 INIT_LIST_HEAD(&rt_se->run_list);
7476 #endif
7478 void __init sched_init(void)
7480 int i, j;
7481 unsigned long alloc_size = 0, ptr;
7483 #ifdef CONFIG_FAIR_GROUP_SCHED
7484 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7485 #endif
7486 #ifdef CONFIG_RT_GROUP_SCHED
7487 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7488 #endif
7489 #ifdef CONFIG_CPUMASK_OFFSTACK
7490 alloc_size += num_possible_cpus() * cpumask_size();
7491 #endif
7492 if (alloc_size) {
7493 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7495 #ifdef CONFIG_FAIR_GROUP_SCHED
7496 init_task_group.se = (struct sched_entity **)ptr;
7497 ptr += nr_cpu_ids * sizeof(void **);
7499 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7500 ptr += nr_cpu_ids * sizeof(void **);
7502 #endif /* CONFIG_FAIR_GROUP_SCHED */
7503 #ifdef CONFIG_RT_GROUP_SCHED
7504 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7505 ptr += nr_cpu_ids * sizeof(void **);
7507 init_task_group.rt_rq = (struct rt_rq **)ptr;
7508 ptr += nr_cpu_ids * sizeof(void **);
7510 #endif /* CONFIG_RT_GROUP_SCHED */
7511 #ifdef CONFIG_CPUMASK_OFFSTACK
7512 for_each_possible_cpu(i) {
7513 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7514 ptr += cpumask_size();
7516 #endif /* CONFIG_CPUMASK_OFFSTACK */
7519 #ifdef CONFIG_SMP
7520 init_defrootdomain();
7521 #endif
7523 init_rt_bandwidth(&def_rt_bandwidth,
7524 global_rt_period(), global_rt_runtime());
7526 #ifdef CONFIG_RT_GROUP_SCHED
7527 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7528 global_rt_period(), global_rt_runtime());
7529 #endif /* CONFIG_RT_GROUP_SCHED */
7531 #ifdef CONFIG_CGROUP_SCHED
7532 list_add(&init_task_group.list, &task_groups);
7533 INIT_LIST_HEAD(&init_task_group.children);
7535 #endif /* CONFIG_CGROUP_SCHED */
7537 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7538 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7539 __alignof__(unsigned long));
7540 #endif
7541 for_each_possible_cpu(i) {
7542 struct rq *rq;
7544 rq = cpu_rq(i);
7545 raw_spin_lock_init(&rq->lock);
7546 rq->nr_running = 0;
7547 rq->calc_load_active = 0;
7548 rq->calc_load_update = jiffies + LOAD_FREQ;
7549 init_cfs_rq(&rq->cfs, rq);
7550 init_rt_rq(&rq->rt, rq);
7551 #ifdef CONFIG_FAIR_GROUP_SCHED
7552 init_task_group.shares = init_task_group_load;
7553 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7554 #ifdef CONFIG_CGROUP_SCHED
7556 * How much cpu bandwidth does init_task_group get?
7558 * In case of task-groups formed thr' the cgroup filesystem, it
7559 * gets 100% of the cpu resources in the system. This overall
7560 * system cpu resource is divided among the tasks of
7561 * init_task_group and its child task-groups in a fair manner,
7562 * based on each entity's (task or task-group's) weight
7563 * (se->load.weight).
7565 * In other words, if init_task_group has 10 tasks of weight
7566 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7567 * then A0's share of the cpu resource is:
7569 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7571 * We achieve this by letting init_task_group's tasks sit
7572 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7574 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7575 #endif
7576 #endif /* CONFIG_FAIR_GROUP_SCHED */
7578 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7579 #ifdef CONFIG_RT_GROUP_SCHED
7580 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7581 #ifdef CONFIG_CGROUP_SCHED
7582 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7583 #endif
7584 #endif
7586 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7587 rq->cpu_load[j] = 0;
7588 #ifdef CONFIG_SMP
7589 rq->sd = NULL;
7590 rq->rd = NULL;
7591 rq->post_schedule = 0;
7592 rq->active_balance = 0;
7593 rq->next_balance = jiffies;
7594 rq->push_cpu = 0;
7595 rq->cpu = i;
7596 rq->online = 0;
7597 rq->idle_stamp = 0;
7598 rq->avg_idle = 2*sysctl_sched_migration_cost;
7599 rq_attach_root(rq, &def_root_domain);
7600 #endif
7601 init_rq_hrtick(rq);
7602 atomic_set(&rq->nr_iowait, 0);
7605 set_load_weight(&init_task);
7607 #ifdef CONFIG_PREEMPT_NOTIFIERS
7608 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7609 #endif
7611 #ifdef CONFIG_SMP
7612 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7613 #endif
7615 #ifdef CONFIG_RT_MUTEXES
7616 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7617 #endif
7620 * The boot idle thread does lazy MMU switching as well:
7622 atomic_inc(&init_mm.mm_count);
7623 enter_lazy_tlb(&init_mm, current);
7626 * Make us the idle thread. Technically, schedule() should not be
7627 * called from this thread, however somewhere below it might be,
7628 * but because we are the idle thread, we just pick up running again
7629 * when this runqueue becomes "idle".
7631 init_idle(current, smp_processor_id());
7633 calc_load_update = jiffies + LOAD_FREQ;
7636 * During early bootup we pretend to be a normal task:
7638 current->sched_class = &fair_sched_class;
7640 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7641 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7642 #ifdef CONFIG_SMP
7643 #ifdef CONFIG_NO_HZ
7644 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7645 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7646 #endif
7647 /* May be allocated at isolcpus cmdline parse time */
7648 if (cpu_isolated_map == NULL)
7649 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7650 #endif /* SMP */
7652 perf_event_init();
7654 scheduler_running = 1;
7657 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7658 static inline int preempt_count_equals(int preempt_offset)
7660 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7662 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7665 void __might_sleep(const char *file, int line, int preempt_offset)
7667 #ifdef in_atomic
7668 static unsigned long prev_jiffy; /* ratelimiting */
7670 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7671 system_state != SYSTEM_RUNNING || oops_in_progress)
7672 return;
7673 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7674 return;
7675 prev_jiffy = jiffies;
7677 printk(KERN_ERR
7678 "BUG: sleeping function called from invalid context at %s:%d\n",
7679 file, line);
7680 printk(KERN_ERR
7681 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7682 in_atomic(), irqs_disabled(),
7683 current->pid, current->comm);
7685 debug_show_held_locks(current);
7686 if (irqs_disabled())
7687 print_irqtrace_events(current);
7688 dump_stack();
7689 #endif
7691 EXPORT_SYMBOL(__might_sleep);
7692 #endif
7694 #ifdef CONFIG_MAGIC_SYSRQ
7695 static void normalize_task(struct rq *rq, struct task_struct *p)
7697 int on_rq;
7699 on_rq = p->se.on_rq;
7700 if (on_rq)
7701 deactivate_task(rq, p, 0);
7702 __setscheduler(rq, p, SCHED_NORMAL, 0);
7703 if (on_rq) {
7704 activate_task(rq, p, 0);
7705 resched_task(rq->curr);
7709 void normalize_rt_tasks(void)
7711 struct task_struct *g, *p;
7712 unsigned long flags;
7713 struct rq *rq;
7715 read_lock_irqsave(&tasklist_lock, flags);
7716 do_each_thread(g, p) {
7718 * Only normalize user tasks:
7720 if (!p->mm)
7721 continue;
7723 p->se.exec_start = 0;
7724 #ifdef CONFIG_SCHEDSTATS
7725 p->se.statistics.wait_start = 0;
7726 p->se.statistics.sleep_start = 0;
7727 p->se.statistics.block_start = 0;
7728 #endif
7730 if (!rt_task(p)) {
7732 * Renice negative nice level userspace
7733 * tasks back to 0:
7735 if (TASK_NICE(p) < 0 && p->mm)
7736 set_user_nice(p, 0);
7737 continue;
7740 raw_spin_lock(&p->pi_lock);
7741 rq = __task_rq_lock(p);
7743 normalize_task(rq, p);
7745 __task_rq_unlock(rq);
7746 raw_spin_unlock(&p->pi_lock);
7747 } while_each_thread(g, p);
7749 read_unlock_irqrestore(&tasklist_lock, flags);
7752 #endif /* CONFIG_MAGIC_SYSRQ */
7754 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7756 * These functions are only useful for the IA64 MCA handling, or kdb.
7758 * They can only be called when the whole system has been
7759 * stopped - every CPU needs to be quiescent, and no scheduling
7760 * activity can take place. Using them for anything else would
7761 * be a serious bug, and as a result, they aren't even visible
7762 * under any other configuration.
7766 * curr_task - return the current task for a given cpu.
7767 * @cpu: the processor in question.
7769 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7771 struct task_struct *curr_task(int cpu)
7773 return cpu_curr(cpu);
7776 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7778 #ifdef CONFIG_IA64
7780 * set_curr_task - set the current task for a given cpu.
7781 * @cpu: the processor in question.
7782 * @p: the task pointer to set.
7784 * Description: This function must only be used when non-maskable interrupts
7785 * are serviced on a separate stack. It allows the architecture to switch the
7786 * notion of the current task on a cpu in a non-blocking manner. This function
7787 * must be called with all CPU's synchronized, and interrupts disabled, the
7788 * and caller must save the original value of the current task (see
7789 * curr_task() above) and restore that value before reenabling interrupts and
7790 * re-starting the system.
7792 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7794 void set_curr_task(int cpu, struct task_struct *p)
7796 cpu_curr(cpu) = p;
7799 #endif
7801 #ifdef CONFIG_FAIR_GROUP_SCHED
7802 static void free_fair_sched_group(struct task_group *tg)
7804 int i;
7806 for_each_possible_cpu(i) {
7807 if (tg->cfs_rq)
7808 kfree(tg->cfs_rq[i]);
7809 if (tg->se)
7810 kfree(tg->se[i]);
7813 kfree(tg->cfs_rq);
7814 kfree(tg->se);
7817 static
7818 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7820 struct cfs_rq *cfs_rq;
7821 struct sched_entity *se;
7822 struct rq *rq;
7823 int i;
7825 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7826 if (!tg->cfs_rq)
7827 goto err;
7828 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7829 if (!tg->se)
7830 goto err;
7832 tg->shares = NICE_0_LOAD;
7834 for_each_possible_cpu(i) {
7835 rq = cpu_rq(i);
7837 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7838 GFP_KERNEL, cpu_to_node(i));
7839 if (!cfs_rq)
7840 goto err;
7842 se = kzalloc_node(sizeof(struct sched_entity),
7843 GFP_KERNEL, cpu_to_node(i));
7844 if (!se)
7845 goto err_free_rq;
7847 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7850 return 1;
7852 err_free_rq:
7853 kfree(cfs_rq);
7854 err:
7855 return 0;
7858 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7860 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7861 &cpu_rq(cpu)->leaf_cfs_rq_list);
7864 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7866 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7868 #else /* !CONFG_FAIR_GROUP_SCHED */
7869 static inline void free_fair_sched_group(struct task_group *tg)
7873 static inline
7874 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7876 return 1;
7879 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7883 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7886 #endif /* CONFIG_FAIR_GROUP_SCHED */
7888 #ifdef CONFIG_RT_GROUP_SCHED
7889 static void free_rt_sched_group(struct task_group *tg)
7891 int i;
7893 destroy_rt_bandwidth(&tg->rt_bandwidth);
7895 for_each_possible_cpu(i) {
7896 if (tg->rt_rq)
7897 kfree(tg->rt_rq[i]);
7898 if (tg->rt_se)
7899 kfree(tg->rt_se[i]);
7902 kfree(tg->rt_rq);
7903 kfree(tg->rt_se);
7906 static
7907 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7909 struct rt_rq *rt_rq;
7910 struct sched_rt_entity *rt_se;
7911 struct rq *rq;
7912 int i;
7914 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
7915 if (!tg->rt_rq)
7916 goto err;
7917 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
7918 if (!tg->rt_se)
7919 goto err;
7921 init_rt_bandwidth(&tg->rt_bandwidth,
7922 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7924 for_each_possible_cpu(i) {
7925 rq = cpu_rq(i);
7927 rt_rq = kzalloc_node(sizeof(struct rt_rq),
7928 GFP_KERNEL, cpu_to_node(i));
7929 if (!rt_rq)
7930 goto err;
7932 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
7933 GFP_KERNEL, cpu_to_node(i));
7934 if (!rt_se)
7935 goto err_free_rq;
7937 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
7940 return 1;
7942 err_free_rq:
7943 kfree(rt_rq);
7944 err:
7945 return 0;
7948 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7950 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7951 &cpu_rq(cpu)->leaf_rt_rq_list);
7954 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7956 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7958 #else /* !CONFIG_RT_GROUP_SCHED */
7959 static inline void free_rt_sched_group(struct task_group *tg)
7963 static inline
7964 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7966 return 1;
7969 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7973 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7976 #endif /* CONFIG_RT_GROUP_SCHED */
7978 #ifdef CONFIG_CGROUP_SCHED
7979 static void free_sched_group(struct task_group *tg)
7981 free_fair_sched_group(tg);
7982 free_rt_sched_group(tg);
7983 kfree(tg);
7986 /* allocate runqueue etc for a new task group */
7987 struct task_group *sched_create_group(struct task_group *parent)
7989 struct task_group *tg;
7990 unsigned long flags;
7991 int i;
7993 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7994 if (!tg)
7995 return ERR_PTR(-ENOMEM);
7997 if (!alloc_fair_sched_group(tg, parent))
7998 goto err;
8000 if (!alloc_rt_sched_group(tg, parent))
8001 goto err;
8003 spin_lock_irqsave(&task_group_lock, flags);
8004 for_each_possible_cpu(i) {
8005 register_fair_sched_group(tg, i);
8006 register_rt_sched_group(tg, i);
8008 list_add_rcu(&tg->list, &task_groups);
8010 WARN_ON(!parent); /* root should already exist */
8012 tg->parent = parent;
8013 INIT_LIST_HEAD(&tg->children);
8014 list_add_rcu(&tg->siblings, &parent->children);
8015 spin_unlock_irqrestore(&task_group_lock, flags);
8017 return tg;
8019 err:
8020 free_sched_group(tg);
8021 return ERR_PTR(-ENOMEM);
8024 /* rcu callback to free various structures associated with a task group */
8025 static void free_sched_group_rcu(struct rcu_head *rhp)
8027 /* now it should be safe to free those cfs_rqs */
8028 free_sched_group(container_of(rhp, struct task_group, rcu));
8031 /* Destroy runqueue etc associated with a task group */
8032 void sched_destroy_group(struct task_group *tg)
8034 unsigned long flags;
8035 int i;
8037 spin_lock_irqsave(&task_group_lock, flags);
8038 for_each_possible_cpu(i) {
8039 unregister_fair_sched_group(tg, i);
8040 unregister_rt_sched_group(tg, i);
8042 list_del_rcu(&tg->list);
8043 list_del_rcu(&tg->siblings);
8044 spin_unlock_irqrestore(&task_group_lock, flags);
8046 /* wait for possible concurrent references to cfs_rqs complete */
8047 call_rcu(&tg->rcu, free_sched_group_rcu);
8050 /* change task's runqueue when it moves between groups.
8051 * The caller of this function should have put the task in its new group
8052 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8053 * reflect its new group.
8055 void sched_move_task(struct task_struct *tsk)
8057 int on_rq, running;
8058 unsigned long flags;
8059 struct rq *rq;
8061 rq = task_rq_lock(tsk, &flags);
8063 running = task_current(rq, tsk);
8064 on_rq = tsk->se.on_rq;
8066 if (on_rq)
8067 dequeue_task(rq, tsk, 0);
8068 if (unlikely(running))
8069 tsk->sched_class->put_prev_task(rq, tsk);
8071 set_task_rq(tsk, task_cpu(tsk));
8073 #ifdef CONFIG_FAIR_GROUP_SCHED
8074 if (tsk->sched_class->moved_group)
8075 tsk->sched_class->moved_group(tsk, on_rq);
8076 #endif
8078 if (unlikely(running))
8079 tsk->sched_class->set_curr_task(rq);
8080 if (on_rq)
8081 enqueue_task(rq, tsk, 0);
8083 task_rq_unlock(rq, &flags);
8085 #endif /* CONFIG_CGROUP_SCHED */
8087 #ifdef CONFIG_FAIR_GROUP_SCHED
8088 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8090 struct cfs_rq *cfs_rq = se->cfs_rq;
8091 int on_rq;
8093 on_rq = se->on_rq;
8094 if (on_rq)
8095 dequeue_entity(cfs_rq, se, 0);
8097 se->load.weight = shares;
8098 se->load.inv_weight = 0;
8100 if (on_rq)
8101 enqueue_entity(cfs_rq, se, 0);
8104 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8106 struct cfs_rq *cfs_rq = se->cfs_rq;
8107 struct rq *rq = cfs_rq->rq;
8108 unsigned long flags;
8110 raw_spin_lock_irqsave(&rq->lock, flags);
8111 __set_se_shares(se, shares);
8112 raw_spin_unlock_irqrestore(&rq->lock, flags);
8115 static DEFINE_MUTEX(shares_mutex);
8117 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8119 int i;
8120 unsigned long flags;
8123 * We can't change the weight of the root cgroup.
8125 if (!tg->se[0])
8126 return -EINVAL;
8128 if (shares < MIN_SHARES)
8129 shares = MIN_SHARES;
8130 else if (shares > MAX_SHARES)
8131 shares = MAX_SHARES;
8133 mutex_lock(&shares_mutex);
8134 if (tg->shares == shares)
8135 goto done;
8137 spin_lock_irqsave(&task_group_lock, flags);
8138 for_each_possible_cpu(i)
8139 unregister_fair_sched_group(tg, i);
8140 list_del_rcu(&tg->siblings);
8141 spin_unlock_irqrestore(&task_group_lock, flags);
8143 /* wait for any ongoing reference to this group to finish */
8144 synchronize_sched();
8147 * Now we are free to modify the group's share on each cpu
8148 * w/o tripping rebalance_share or load_balance_fair.
8150 tg->shares = shares;
8151 for_each_possible_cpu(i) {
8153 * force a rebalance
8155 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8156 set_se_shares(tg->se[i], shares);
8160 * Enable load balance activity on this group, by inserting it back on
8161 * each cpu's rq->leaf_cfs_rq_list.
8163 spin_lock_irqsave(&task_group_lock, flags);
8164 for_each_possible_cpu(i)
8165 register_fair_sched_group(tg, i);
8166 list_add_rcu(&tg->siblings, &tg->parent->children);
8167 spin_unlock_irqrestore(&task_group_lock, flags);
8168 done:
8169 mutex_unlock(&shares_mutex);
8170 return 0;
8173 unsigned long sched_group_shares(struct task_group *tg)
8175 return tg->shares;
8177 #endif
8179 #ifdef CONFIG_RT_GROUP_SCHED
8181 * Ensure that the real time constraints are schedulable.
8183 static DEFINE_MUTEX(rt_constraints_mutex);
8185 static unsigned long to_ratio(u64 period, u64 runtime)
8187 if (runtime == RUNTIME_INF)
8188 return 1ULL << 20;
8190 return div64_u64(runtime << 20, period);
8193 /* Must be called with tasklist_lock held */
8194 static inline int tg_has_rt_tasks(struct task_group *tg)
8196 struct task_struct *g, *p;
8198 do_each_thread(g, p) {
8199 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8200 return 1;
8201 } while_each_thread(g, p);
8203 return 0;
8206 struct rt_schedulable_data {
8207 struct task_group *tg;
8208 u64 rt_period;
8209 u64 rt_runtime;
8212 static int tg_schedulable(struct task_group *tg, void *data)
8214 struct rt_schedulable_data *d = data;
8215 struct task_group *child;
8216 unsigned long total, sum = 0;
8217 u64 period, runtime;
8219 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8220 runtime = tg->rt_bandwidth.rt_runtime;
8222 if (tg == d->tg) {
8223 period = d->rt_period;
8224 runtime = d->rt_runtime;
8228 * Cannot have more runtime than the period.
8230 if (runtime > period && runtime != RUNTIME_INF)
8231 return -EINVAL;
8234 * Ensure we don't starve existing RT tasks.
8236 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8237 return -EBUSY;
8239 total = to_ratio(period, runtime);
8242 * Nobody can have more than the global setting allows.
8244 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8245 return -EINVAL;
8248 * The sum of our children's runtime should not exceed our own.
8250 list_for_each_entry_rcu(child, &tg->children, siblings) {
8251 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8252 runtime = child->rt_bandwidth.rt_runtime;
8254 if (child == d->tg) {
8255 period = d->rt_period;
8256 runtime = d->rt_runtime;
8259 sum += to_ratio(period, runtime);
8262 if (sum > total)
8263 return -EINVAL;
8265 return 0;
8268 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8270 struct rt_schedulable_data data = {
8271 .tg = tg,
8272 .rt_period = period,
8273 .rt_runtime = runtime,
8276 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8279 static int tg_set_bandwidth(struct task_group *tg,
8280 u64 rt_period, u64 rt_runtime)
8282 int i, err = 0;
8284 mutex_lock(&rt_constraints_mutex);
8285 read_lock(&tasklist_lock);
8286 err = __rt_schedulable(tg, rt_period, rt_runtime);
8287 if (err)
8288 goto unlock;
8290 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8291 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8292 tg->rt_bandwidth.rt_runtime = rt_runtime;
8294 for_each_possible_cpu(i) {
8295 struct rt_rq *rt_rq = tg->rt_rq[i];
8297 raw_spin_lock(&rt_rq->rt_runtime_lock);
8298 rt_rq->rt_runtime = rt_runtime;
8299 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8301 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8302 unlock:
8303 read_unlock(&tasklist_lock);
8304 mutex_unlock(&rt_constraints_mutex);
8306 return err;
8309 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8311 u64 rt_runtime, rt_period;
8313 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8314 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8315 if (rt_runtime_us < 0)
8316 rt_runtime = RUNTIME_INF;
8318 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8321 long sched_group_rt_runtime(struct task_group *tg)
8323 u64 rt_runtime_us;
8325 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8326 return -1;
8328 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8329 do_div(rt_runtime_us, NSEC_PER_USEC);
8330 return rt_runtime_us;
8333 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8335 u64 rt_runtime, rt_period;
8337 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8338 rt_runtime = tg->rt_bandwidth.rt_runtime;
8340 if (rt_period == 0)
8341 return -EINVAL;
8343 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8346 long sched_group_rt_period(struct task_group *tg)
8348 u64 rt_period_us;
8350 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8351 do_div(rt_period_us, NSEC_PER_USEC);
8352 return rt_period_us;
8355 static int sched_rt_global_constraints(void)
8357 u64 runtime, period;
8358 int ret = 0;
8360 if (sysctl_sched_rt_period <= 0)
8361 return -EINVAL;
8363 runtime = global_rt_runtime();
8364 period = global_rt_period();
8367 * Sanity check on the sysctl variables.
8369 if (runtime > period && runtime != RUNTIME_INF)
8370 return -EINVAL;
8372 mutex_lock(&rt_constraints_mutex);
8373 read_lock(&tasklist_lock);
8374 ret = __rt_schedulable(NULL, 0, 0);
8375 read_unlock(&tasklist_lock);
8376 mutex_unlock(&rt_constraints_mutex);
8378 return ret;
8381 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8383 /* Don't accept realtime tasks when there is no way for them to run */
8384 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8385 return 0;
8387 return 1;
8390 #else /* !CONFIG_RT_GROUP_SCHED */
8391 static int sched_rt_global_constraints(void)
8393 unsigned long flags;
8394 int i;
8396 if (sysctl_sched_rt_period <= 0)
8397 return -EINVAL;
8400 * There's always some RT tasks in the root group
8401 * -- migration, kstopmachine etc..
8403 if (sysctl_sched_rt_runtime == 0)
8404 return -EBUSY;
8406 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8407 for_each_possible_cpu(i) {
8408 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8410 raw_spin_lock(&rt_rq->rt_runtime_lock);
8411 rt_rq->rt_runtime = global_rt_runtime();
8412 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8414 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8416 return 0;
8418 #endif /* CONFIG_RT_GROUP_SCHED */
8420 int sched_rt_handler(struct ctl_table *table, int write,
8421 void __user *buffer, size_t *lenp,
8422 loff_t *ppos)
8424 int ret;
8425 int old_period, old_runtime;
8426 static DEFINE_MUTEX(mutex);
8428 mutex_lock(&mutex);
8429 old_period = sysctl_sched_rt_period;
8430 old_runtime = sysctl_sched_rt_runtime;
8432 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8434 if (!ret && write) {
8435 ret = sched_rt_global_constraints();
8436 if (ret) {
8437 sysctl_sched_rt_period = old_period;
8438 sysctl_sched_rt_runtime = old_runtime;
8439 } else {
8440 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8441 def_rt_bandwidth.rt_period =
8442 ns_to_ktime(global_rt_period());
8445 mutex_unlock(&mutex);
8447 return ret;
8450 #ifdef CONFIG_CGROUP_SCHED
8452 /* return corresponding task_group object of a cgroup */
8453 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8455 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8456 struct task_group, css);
8459 static struct cgroup_subsys_state *
8460 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8462 struct task_group *tg, *parent;
8464 if (!cgrp->parent) {
8465 /* This is early initialization for the top cgroup */
8466 return &init_task_group.css;
8469 parent = cgroup_tg(cgrp->parent);
8470 tg = sched_create_group(parent);
8471 if (IS_ERR(tg))
8472 return ERR_PTR(-ENOMEM);
8474 return &tg->css;
8477 static void
8478 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8480 struct task_group *tg = cgroup_tg(cgrp);
8482 sched_destroy_group(tg);
8485 static int
8486 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8488 #ifdef CONFIG_RT_GROUP_SCHED
8489 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8490 return -EINVAL;
8491 #else
8492 /* We don't support RT-tasks being in separate groups */
8493 if (tsk->sched_class != &fair_sched_class)
8494 return -EINVAL;
8495 #endif
8496 return 0;
8499 static int
8500 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8501 struct task_struct *tsk, bool threadgroup)
8503 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8504 if (retval)
8505 return retval;
8506 if (threadgroup) {
8507 struct task_struct *c;
8508 rcu_read_lock();
8509 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8510 retval = cpu_cgroup_can_attach_task(cgrp, c);
8511 if (retval) {
8512 rcu_read_unlock();
8513 return retval;
8516 rcu_read_unlock();
8518 return 0;
8521 static void
8522 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8523 struct cgroup *old_cont, struct task_struct *tsk,
8524 bool threadgroup)
8526 sched_move_task(tsk);
8527 if (threadgroup) {
8528 struct task_struct *c;
8529 rcu_read_lock();
8530 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8531 sched_move_task(c);
8533 rcu_read_unlock();
8537 #ifdef CONFIG_FAIR_GROUP_SCHED
8538 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8539 u64 shareval)
8541 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8544 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8546 struct task_group *tg = cgroup_tg(cgrp);
8548 return (u64) tg->shares;
8550 #endif /* CONFIG_FAIR_GROUP_SCHED */
8552 #ifdef CONFIG_RT_GROUP_SCHED
8553 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8554 s64 val)
8556 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8559 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8561 return sched_group_rt_runtime(cgroup_tg(cgrp));
8564 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8565 u64 rt_period_us)
8567 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8570 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8572 return sched_group_rt_period(cgroup_tg(cgrp));
8574 #endif /* CONFIG_RT_GROUP_SCHED */
8576 static struct cftype cpu_files[] = {
8577 #ifdef CONFIG_FAIR_GROUP_SCHED
8579 .name = "shares",
8580 .read_u64 = cpu_shares_read_u64,
8581 .write_u64 = cpu_shares_write_u64,
8583 #endif
8584 #ifdef CONFIG_RT_GROUP_SCHED
8586 .name = "rt_runtime_us",
8587 .read_s64 = cpu_rt_runtime_read,
8588 .write_s64 = cpu_rt_runtime_write,
8591 .name = "rt_period_us",
8592 .read_u64 = cpu_rt_period_read_uint,
8593 .write_u64 = cpu_rt_period_write_uint,
8595 #endif
8598 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8600 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8603 struct cgroup_subsys cpu_cgroup_subsys = {
8604 .name = "cpu",
8605 .create = cpu_cgroup_create,
8606 .destroy = cpu_cgroup_destroy,
8607 .can_attach = cpu_cgroup_can_attach,
8608 .attach = cpu_cgroup_attach,
8609 .populate = cpu_cgroup_populate,
8610 .subsys_id = cpu_cgroup_subsys_id,
8611 .early_init = 1,
8614 #endif /* CONFIG_CGROUP_SCHED */
8616 #ifdef CONFIG_CGROUP_CPUACCT
8619 * CPU accounting code for task groups.
8621 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8622 * (balbir@in.ibm.com).
8625 /* track cpu usage of a group of tasks and its child groups */
8626 struct cpuacct {
8627 struct cgroup_subsys_state css;
8628 /* cpuusage holds pointer to a u64-type object on every cpu */
8629 u64 __percpu *cpuusage;
8630 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8631 struct cpuacct *parent;
8634 struct cgroup_subsys cpuacct_subsys;
8636 /* return cpu accounting group corresponding to this container */
8637 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8639 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8640 struct cpuacct, css);
8643 /* return cpu accounting group to which this task belongs */
8644 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8646 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8647 struct cpuacct, css);
8650 /* create a new cpu accounting group */
8651 static struct cgroup_subsys_state *cpuacct_create(
8652 struct cgroup_subsys *ss, struct cgroup *cgrp)
8654 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8655 int i;
8657 if (!ca)
8658 goto out;
8660 ca->cpuusage = alloc_percpu(u64);
8661 if (!ca->cpuusage)
8662 goto out_free_ca;
8664 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8665 if (percpu_counter_init(&ca->cpustat[i], 0))
8666 goto out_free_counters;
8668 if (cgrp->parent)
8669 ca->parent = cgroup_ca(cgrp->parent);
8671 return &ca->css;
8673 out_free_counters:
8674 while (--i >= 0)
8675 percpu_counter_destroy(&ca->cpustat[i]);
8676 free_percpu(ca->cpuusage);
8677 out_free_ca:
8678 kfree(ca);
8679 out:
8680 return ERR_PTR(-ENOMEM);
8683 /* destroy an existing cpu accounting group */
8684 static void
8685 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8687 struct cpuacct *ca = cgroup_ca(cgrp);
8688 int i;
8690 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8691 percpu_counter_destroy(&ca->cpustat[i]);
8692 free_percpu(ca->cpuusage);
8693 kfree(ca);
8696 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8698 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8699 u64 data;
8701 #ifndef CONFIG_64BIT
8703 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8705 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8706 data = *cpuusage;
8707 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8708 #else
8709 data = *cpuusage;
8710 #endif
8712 return data;
8715 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8717 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8719 #ifndef CONFIG_64BIT
8721 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8723 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8724 *cpuusage = val;
8725 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8726 #else
8727 *cpuusage = val;
8728 #endif
8731 /* return total cpu usage (in nanoseconds) of a group */
8732 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8734 struct cpuacct *ca = cgroup_ca(cgrp);
8735 u64 totalcpuusage = 0;
8736 int i;
8738 for_each_present_cpu(i)
8739 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8741 return totalcpuusage;
8744 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8745 u64 reset)
8747 struct cpuacct *ca = cgroup_ca(cgrp);
8748 int err = 0;
8749 int i;
8751 if (reset) {
8752 err = -EINVAL;
8753 goto out;
8756 for_each_present_cpu(i)
8757 cpuacct_cpuusage_write(ca, i, 0);
8759 out:
8760 return err;
8763 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8764 struct seq_file *m)
8766 struct cpuacct *ca = cgroup_ca(cgroup);
8767 u64 percpu;
8768 int i;
8770 for_each_present_cpu(i) {
8771 percpu = cpuacct_cpuusage_read(ca, i);
8772 seq_printf(m, "%llu ", (unsigned long long) percpu);
8774 seq_printf(m, "\n");
8775 return 0;
8778 static const char *cpuacct_stat_desc[] = {
8779 [CPUACCT_STAT_USER] = "user",
8780 [CPUACCT_STAT_SYSTEM] = "system",
8783 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8784 struct cgroup_map_cb *cb)
8786 struct cpuacct *ca = cgroup_ca(cgrp);
8787 int i;
8789 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8790 s64 val = percpu_counter_read(&ca->cpustat[i]);
8791 val = cputime64_to_clock_t(val);
8792 cb->fill(cb, cpuacct_stat_desc[i], val);
8794 return 0;
8797 static struct cftype files[] = {
8799 .name = "usage",
8800 .read_u64 = cpuusage_read,
8801 .write_u64 = cpuusage_write,
8804 .name = "usage_percpu",
8805 .read_seq_string = cpuacct_percpu_seq_read,
8808 .name = "stat",
8809 .read_map = cpuacct_stats_show,
8813 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8815 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8819 * charge this task's execution time to its accounting group.
8821 * called with rq->lock held.
8823 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8825 struct cpuacct *ca;
8826 int cpu;
8828 if (unlikely(!cpuacct_subsys.active))
8829 return;
8831 cpu = task_cpu(tsk);
8833 rcu_read_lock();
8835 ca = task_ca(tsk);
8837 for (; ca; ca = ca->parent) {
8838 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8839 *cpuusage += cputime;
8842 rcu_read_unlock();
8846 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8847 * in cputime_t units. As a result, cpuacct_update_stats calls
8848 * percpu_counter_add with values large enough to always overflow the
8849 * per cpu batch limit causing bad SMP scalability.
8851 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8852 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8853 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8855 #ifdef CONFIG_SMP
8856 #define CPUACCT_BATCH \
8857 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8858 #else
8859 #define CPUACCT_BATCH 0
8860 #endif
8863 * Charge the system/user time to the task's accounting group.
8865 static void cpuacct_update_stats(struct task_struct *tsk,
8866 enum cpuacct_stat_index idx, cputime_t val)
8868 struct cpuacct *ca;
8869 int batch = CPUACCT_BATCH;
8871 if (unlikely(!cpuacct_subsys.active))
8872 return;
8874 rcu_read_lock();
8875 ca = task_ca(tsk);
8877 do {
8878 __percpu_counter_add(&ca->cpustat[idx], val, batch);
8879 ca = ca->parent;
8880 } while (ca);
8881 rcu_read_unlock();
8884 struct cgroup_subsys cpuacct_subsys = {
8885 .name = "cpuacct",
8886 .create = cpuacct_create,
8887 .destroy = cpuacct_destroy,
8888 .populate = cpuacct_populate,
8889 .subsys_id = cpuacct_subsys_id,
8891 #endif /* CONFIG_CGROUP_CPUACCT */
8893 #ifndef CONFIG_SMP
8895 void synchronize_sched_expedited(void)
8897 barrier();
8899 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8901 #else /* #ifndef CONFIG_SMP */
8903 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
8905 static int synchronize_sched_expedited_cpu_stop(void *data)
8908 * There must be a full memory barrier on each affected CPU
8909 * between the time that try_stop_cpus() is called and the
8910 * time that it returns.
8912 * In the current initial implementation of cpu_stop, the
8913 * above condition is already met when the control reaches
8914 * this point and the following smp_mb() is not strictly
8915 * necessary. Do smp_mb() anyway for documentation and
8916 * robustness against future implementation changes.
8918 smp_mb(); /* See above comment block. */
8919 return 0;
8923 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8924 * approach to force grace period to end quickly. This consumes
8925 * significant time on all CPUs, and is thus not recommended for
8926 * any sort of common-case code.
8928 * Note that it is illegal to call this function while holding any
8929 * lock that is acquired by a CPU-hotplug notifier. Failing to
8930 * observe this restriction will result in deadlock.
8932 void synchronize_sched_expedited(void)
8934 int snap, trycount = 0;
8936 smp_mb(); /* ensure prior mod happens before capturing snap. */
8937 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
8938 get_online_cpus();
8939 while (try_stop_cpus(cpu_online_mask,
8940 synchronize_sched_expedited_cpu_stop,
8941 NULL) == -EAGAIN) {
8942 put_online_cpus();
8943 if (trycount++ < 10)
8944 udelay(trycount * num_online_cpus());
8945 else {
8946 synchronize_sched();
8947 return;
8949 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
8950 smp_mb(); /* ensure test happens before caller kfree */
8951 return;
8953 get_online_cpus();
8955 atomic_inc(&synchronize_sched_expedited_count);
8956 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
8957 put_online_cpus();
8959 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8961 #endif /* #else #ifndef CONFIG_SMP */